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Abstract 

Fitting a model based on the Bloch-McConnell (BM) equations to Chemical Exchange 

Saturation Transfer (CEST) spectra allows for the quantification of metabolite concentration 

and exchange rate as well as simultaneous correction of field inhomogeneity, direct water 

saturation and magnetization transfer. Employing a Bayesian fitting approach permits the 

integration of prior information into the analysis to incorporate expected parameter 

distributions and to prevent over-fitting. However, the analysis can be time consuming if a 

general numerical solution of the BM equations is applied. In this study, we combined a 

Bayesian fitting algorithm with approximate analytical solutions of the BM equations to 

achieve feasible computational times. To evaluate the accuracy and speed of the suggested 

approach, phantoms including Iodipamide, Taurine and Creatine were tested in addition to 

simulated data with continuous-wave (CW) and pulsed saturation with Gaussian pulses. A 

significant reduction of computational time was achieved when fitting CW data (about 50-

fold) and pulsed saturation data (more than 100-fold) with the analytical model while the 

estimated parameters were largely consistent with the parameters from the general 

numerical solution. The increased speed of the algorithm facilitates the Bayesian analysis of 

CEST data within clinically feasible processing times. Other analytical models valid for 

different parameter regimes may be employed to extend the applicability to a wider range 

of CEST agents.  

 

1. Introduction 

Chemical Exchange Saturation Transfer (CEST) is an approach in magnetic resonance 

imaging (MRI) aiming to detect molecules containing exchangeable protons. The CEST 



 

 

contrast results from the selective saturation of these protons and their subsequent 

exchange with bulk water protons which in turn leads to a measurable reduction of the 

water signal. This CEST effect can be several orders of magnitude larger than the direct 

signal from the metabolites as measured with magnetic resonance spectroscopy (MRS) 

techniques, leading to enhanced sensitivity [1]. Various endogenous as well as exogenous 

CEST agents have been utilized in studies to investigate physiological parameters that are 

used as risk factors for the prediction of several pathologies[2–4]. For example, the 

endogenous CEST effect in Amide Proton Transfer (APT) imaging depends on the exchange 

rate of amide NH groups, which has been shown to be pH-dependent and capable of 

detecting pH deficits in stroke [5]. 

 

Several approaches have been adopted to quantify the CEST effect, such as, among others, 

the magnetization transfer ratio (MTR), the asymmetry magnetization transfer ratio 

(MTRasym), quantitative CEST (qCEST) [6], the Omega plot [7], QUEST and QUESP (quantifying 

exchange rates using the saturation time and saturation power dependencies) [8] and 

QUEST with ratiometric analysis (QUESTRA) [9]. In the case of MTR, the water proton signal 

Ssat which is obtained upon saturation at a single offset frequency is compared to the water 

signal without saturation S0. However, MTR might be overestimated due a direct effect on 

the water signal known as the “spill-over effect”. This effect is often symmetric with respect 

to the water frequency and can therefore be eliminated by means of an additional 

reference measurement at the negative offset frequency, which is exploited for MTRasym. A 

bias is introduced, however, if the reference measurement is influenced by non-symmetric 

effects caused by exchanging protons with overlapping resonance frequencies or slow 

exchange processes mediated via the Nuclear Overhauser Effect (NOE) [10]. Furthermore, 



 

 

these metrics quantify the magnitude of the CEST effect, but do not give much insight about 

the underlying parameters such as agent concentration or exchange rate. These parameters 

can be determined by qCEST, Omega plot, QUEST, QUESP and QUESTRA. In contrast to MTR 

and MTRasym, many acquisitions with varying saturation parameters (i.e. variations of the 

length and/or amplitude of the saturation pulse) are typically required which can result in 

long scanning times. 

 

CESTR* is another metric that has recently been developed [11] and which has potential to 

quantify pH differences between tumour and normal tissue in vivo without the need for 

exogenous contrast agents [12]. This metric is calculated based on parameters estimated by 

a Bayesian model-fitting method [13], which has previously been shown to permit the 

quantification of the APT effect in vivo, even in the presence of asymmetries in the Z-

spectrum arising from Magnetization Transfer (MT) or NOE-mediated contributions [11].  

 

In contrast to conventional least-squares fitting [14,15], Bayesian model-fitting of the Z-

spectrum provides a framework to combine prior information about the model parameters 

with the information inferred from the measured data, also referred to as the likelihood. 

The prior information reflects the expected values and uncertainties for each model 

parameter such as information available from previous experiments. Furthermore, this 

approach reduces the risk of over fitting which can arise when a large number of model 

parameters is estimated from fitting data with a low signal-to-noise ratio (SNR).  

 

One of the main limitations of the current Bayesian model-fitting approach for CEST is the 

long processing time which can be up to several hours per acquired section [11]. Especially 



 

 

in the clinic such long processing times are not feasible. The bottleneck of the algorithm is 

the evaluation of the model itself which is based on a numerical solution of the Bloch-

McConnell (BM) equations [16,17].  

 

On the other hand, analytical approximations of the BM equations which were shown to be 

valid for different ranges of physiological parameter values and experimental settings have 

been developed [8,18–22]. Here, we show that the processing time of the Bayesian model-

fitting approach can be reduced considerably by replacing the BM equations with analytical 

approximations without significantly affecting the resulting parameter distributions or the 

convergence of the algorithm. We evaluated the modified algorithm by comparing the 

estimated parameters to those obtained from the algorithm based on the numerical 

solution of the BM equations. This evaluation was performed on both simulated data and 

data from the measurement of phantoms. The analytical approximations that were applied 

in this study were derived by Zaiss et al. [23] for CEST data acquired with continuous-wave 

(CW) saturation and by Roeloffs et al. [21] for CEST data acquired with a pulsed saturation 

scheme. In the case of pulsed saturation, the analytical solution was further developed to be 

applicable to adiabatic Gaussian-shaped pulses.  

 

2. Theory 

Bayes theorem 
Bayesian model-fitting is based on Bayes theorem which combines the prior distribution 

𝑝(Θ) with the likelihood 𝑝(𝑆|Θ) to obtain the posterior distribution 𝑝(Θ|S): 

 𝑝(Θ|S) ∝ 𝑝(𝑆|Θ)𝑝(Θ). (1) 

 



 

 

The measured data is given by 𝑆 and the set of 𝑁 model parameters by Θ =

{Θ1, … , Θi, … , ΘN}. Assuming a model 𝑓(Θ) and additive Gaussian noise with standard 

deviation 𝜎𝑛, the likelihood can be expressed by the probability density function: 

 𝑝(𝑆|Θ) =
1

𝜎𝑛√2𝜋
𝑒
(𝑆−𝑓(Θ))2

2𝜎𝑛
2

. (2) 

In the context of CEST, 𝑆 represents one or multiple measured Z-spectra and Θ corresponds 

to the set of model parameters to be estimated by the fitting algorithm such as exchange 

rates and equilibrium magnetizations. Furthermore, the model is given by a numerical or, as 

applied in this study, analytical solution of the BM equations.  

Integrating the posterior distribution over all model parameters but one, Θi, renders the so-

called marginalized posterior 𝑝(Θi|𝑆) which reflects the estimated probability distribution 

for Θi. The mean of this distribution 𝑝(Θi|𝑆) can be interpreted as the expected value of Θi 

and credible intervals can be determined, e.g. the 𝜎-credible interval corresponds to the 

range of values within which Θi falls with a probability of 0.68.  

 

A Z-spectrum can be accurately described by a model 𝑓(Θ) which is based on the BM 

equations. In this model, bulk water is described by pool 𝑎 and the CEST agents are 

described by pools 𝑖 = 𝑏, 𝑐, 𝑑, … . Each pool is modelled by its longitudinal and transverse 

relaxation rates 𝑇1𝑖 and 𝑇2𝑖, equilibrium magnetization 𝑀0𝑖, resonance frequency 𝜔𝑖 and 

forward proton exchange rate constants 𝑘𝑖𝑗 with the other pools 𝑗. A general numerical 

solution of the BM equations can be found in [24], however its evaluation is 

computationally demanding as it contains a matrix exponential [15]. Instead of the full 

model, two simplified approximations for the cases of CW saturation and pulsed saturation 

were applied here. 



 

 

CW saturation 
For CW saturation, the following approximate solution for the normalized water pool 

magnetization in the direction of the main magnetic field 𝑍(𝑡) =
𝑀𝑧𝑎(𝑡)

𝑀0𝑎
 was used [23]: 

 𝑍(𝑡) =  (𝑃𝑧𝑃𝑧𝑒𝑓𝑓 − 𝑍CW
SS )exp (−R1ρ𝑡) + 𝑍CW

SS . (3) 

 

The parameter 𝑡 represents the duration of the CW saturation. 𝑃𝑧 and 𝑃𝑧𝑒𝑓𝑓 are factors 

describing the projection of magnetization along the z-axis onto the direction of the 

effective magnetic field and vice versa. They are given by 𝑃𝑧 = 𝑃𝑧𝑒𝑓𝑓 = cos(𝜃), where 𝜃 =

tan−1 (
𝜔1

𝛥𝜔
) is the angle between the effective magnetic field and the z-axis. The parameters 

𝜔1 and Δ𝜔 = 𝜔𝑟𝑓 − 𝜔𝑎 designate the CW saturation amplitude and frequency offset with 

respect to the resonance frequency of the water pool. The steady-state value is given by 

 𝑍CW
SS = cos2(𝜃)

𝑅1𝑎

𝑅1𝜌
 , (4) 

 and the longitudinal relaxation rate of the water pool in the rotating frame, including the 

contribution due to chemical exchange, by 𝑅1𝜌. An approximate analytical expression for 

𝑅1𝜌 for the case of multiple CEST pools is given in Appendix A. 

 

Pulsed saturation 
For pulsed saturation, we employ a solution termed ISAR2 derived in [21] for a series of 𝑛 

rectangular pulses of duration 𝑡𝑝, interleaved with delays of duration 𝑡𝑑 and for 2 pools, i.e. 

the water and the CEST pool. This model assumes that the temporal evolution of the Z-

spectrum is determined by an exponential decay with rate 𝑅1𝜌 during the rectangular pulse 

(according to equation 3), and by the biexponential dynamics of the free BM-equations 

during the inter-pulse delay. To extend the model for multiple CEST agent pools, we assume 

that 𝑅1𝜌 comprises the sum of contributions from each CEST pool to the exchange-



 

 

dependent relaxation rate 𝑅𝑒𝑥 = ∑ 𝑅𝑒𝑥,𝑖𝑖  (Appendix A). During the inter-pulse delay, we 

assume the 𝑁-exponential dynamics of the free BM-equations, where 𝑁 is the number of 

modelled pools. The derivation as outlined in Appendix B is analogous to the derivation of 

the 2-pool model and leads to the following model for the Z-spectrum: 

 𝑍(𝑛) = (𝑍I − 𝑍pulsed
SS )𝛽𝑛𝑒−𝑅1𝜌𝑡𝑝𝑛 + 𝑍pulsed

SS , (5) 

 

where 𝑍I is the initial normalized water magnetization.  

Furthermore: 

 𝛽 = 𝑃𝑧𝑒𝑓𝑓𝑃𝑧 (𝑑𝑎𝑎 +∑ 𝑑𝑎𝑖Ψ𝑖
𝑖

) (6) 

 

and 

 𝑍pulsed
SS =

𝑃𝑧𝑃𝑧𝑒𝑓𝑓(1−𝑑𝑎𝑎−∑ 𝑓𝑖𝑑𝑎𝑖𝑖 ) exp(−𝑅1𝜌𝑡𝑝)+𝑍CW
SS (1−exp(−𝑅1𝜌𝑡𝑝))

1−𝑃𝑧𝑃𝑧𝑒𝑓𝑓(𝑑𝑎𝑎+∑ 𝑑𝑎𝑖Ψ𝑖𝑖 ) exp(−𝑅1𝜌𝑡𝑝)
. (7) 

 

The parameters Ψ𝑖  represent the ratios of z-magnetizations of pools 𝑖 and 𝑎 at the end of 

the rectangular saturation pulse and can be approximated in the large-shift limit as: 

 
Ψ𝑖 =

𝑀𝑧𝑖(𝑡=𝑡𝑝)

𝑀𝑧𝑎(𝑡=𝑡𝑝)
= 𝑓𝑖(1 − 𝛼𝑙𝑎𝑏,𝑖), (8) 

 

where 𝛼𝑙𝑎𝑏,𝑖 is the labelling efficiency of pool 𝑖: 

 𝛼𝑙𝑎𝑏,𝑖(Δ𝜔) =
𝑅𝑒𝑥,𝑖 (Δω)

𝑓𝑖𝑘𝑖𝑎
, (9) 

The functions 𝑑𝑎𝑎 and 𝑑𝑎𝑖  represent the 𝑁-exponential decay of the magnetization during 

the inter-pulse delay. However, full expressions for these functions are very long. Thus, in 

analogy to the approximation given in Appendix D of [21] for 𝑘𝑏𝑎 ≫ 𝑅1𝑎, we approximate 



 

 

these expressions by neglecting the quickly decaying exponential components for 𝑘𝑖𝑎 ≫ 𝑅1𝑎 

using the following simplifications of equations 6 and 7: 

 𝛽 = 𝑃𝑧𝑒𝑓𝑓𝑃𝑧exp (−𝑅1𝑎𝑡𝑑)(1 −∑𝛼𝑙𝑎𝑏,𝑖𝑓𝑖
𝑖

) (10) 

and 

 𝑍pulsed
SS =

𝑃𝑧𝑃𝑧𝑒𝑓𝑓(1−exp (−𝑅1𝑎𝑡𝑑)) exp(−𝑅1𝜌𝑡𝑝)+𝑍CW
SS (1−exp(−𝑅1𝜌𝑡𝑝))

1−𝑃𝑧𝑃𝑧𝑒𝑓𝑓exp (−𝑅1𝑎𝑡𝑑)(1−∑ 𝛼𝑙𝑎𝑏,𝑖𝑓𝑖𝑖 )exp(−𝑅1𝜌𝑡𝑝)
. (11) 

 

Extension to Gaussian-shaped pulses 
Equation 5 was derived for a train of rectangular pulses. In the following, we assume that 

shaped pulses can be treated in a similar manner as the integration of adiabatic spin-lock 

pulses [25,26]. To extend the ISAR2 approach for shaped pulses, reasonable assumptions for 

the parameters 𝑃𝑧 and 𝑃𝑧𝑒𝑓𝑓 , the effective 𝑅1𝜌 and the initial relative pool magnetizations 

after the pulse given by Ψ𝑖  have to be found.  

1. Assumption: Shaped pulses are adiabatic. This is given if [27]: 𝜃̇ ≪ 𝜔𝑒𝑓𝑓. This allows the 

assumption 𝑃𝑧 = 𝑃𝑧𝑒𝑓𝑓 = 1.  

2. Assumption: The effective 𝑅1𝜌 decay during the pulse can be described by the mean value 

𝑅1𝜌̅̅ ̅̅ ̅ given by: 

 𝑅1𝜌̅̅ ̅̅ ̅ =
1

𝑡𝑝
∫ 𝑅1𝜌(𝜔1(𝑡))𝑑𝑡
𝑡𝑝

𝑡=0
 . (12) 

3. Assumption: The parameters Ψ𝑖  represent the ratio of magnetizations of pool 𝑖 and 𝑎 at 

the end of the pulse and are given by equation 8 when rectangular pulses are considered. 

However, if the envelope of the RF pulse varies slowly with respect to 𝑘𝑖, the magnetization 

of pool 𝑖 is determined by the last 𝐵1-value of the pulse, which is approximately 0 for a 

Gaussian shape. This corresponds to a labelling efficiency of 𝛼𝑙𝑎𝑏,𝑖 = 0. Thus, for fast 

exchange, Ψ𝑖 should be replaced by 𝑓𝑖. 



 

 

If the changes in the RF envelope are comparable to 𝑘𝑖 the state of pool 𝑖 becomes 

complicated, however Ψ𝑖  must be somewhere between the upper bound Ψ𝑖,𝑚𝑎𝑥 = 𝑓𝑖  and a 

lower bound given by the value predicted for a block pulse with the same average 𝑅̅𝑒𝑥,𝑖 

which is Ψ𝑖,𝑚𝑖𝑛 = 𝑓𝑖 −
𝑅̅𝑒𝑥,𝑖

𝑘𝑖
. As a first guess, Ψ𝑖  is replaced by Ψ̅𝑖 = 𝑓𝑖 −

𝑅̅𝑒𝑥,𝑖

𝑘𝑖
𝛼𝑠𝑡𝑎𝑟𝑡, where 

𝛼𝑠𝑡𝑎𝑟𝑡 is introduced as a heuristic parameter (0 < 𝛼𝑠𝑡𝑎𝑟𝑡 < 1) that determines Ψ̅𝑖  subject to 

Ψ𝑖,𝑚𝑖𝑛 < Ψ̅𝑖 < Ψ𝑖,𝑚𝑎𝑥. For the Gaussian pulses employed in the following experiments, the 

value of 𝛼𝑠𝑡𝑎𝑟𝑡 = 0.5 was chosen based on numerical simulations of the Bloch-McConnell 

equations (see Appendix D). 

 

3. Methods 

The convergence of the algorithm and accuracy of determined fit parameters were 

investigated by fitting the simplified model equations to simulated as well as phantom data 

for both CW saturation (equation 3) and pulsed saturation (equation 5).  

 

Simulations 

Z-spectra were simulated by evaluating the general solution of the BM equations 

numerically [15] in Matlab (vR2016b). For pulsed saturation, Gaussian-shaped pulses were 

approximated by piecewise constant pulses, i.e. each pulse was split into 200 uniform 

segments of constant pulse amplitude.  

 

The simulation parameters describing the sample were chosen to represent typical values of 

APT phantoms. A two-pool model was assumed with one pool describing the amide proton 

and the other pool the water proton with the following parameters: 𝑇1𝑎 = 3𝑠, 𝑇2𝑎 = 1.5𝑠, 



 

 

𝑇1𝑏 = 1𝑠, 𝑇2𝑏 = 0.015𝑠 and 𝑘𝑏𝑎 = 30Hz. The equilibrium magnetizations were assumed as 

𝑀0𝑎 = 1 and 𝑀0𝑏 = 0.007 and the resonance frequency of the amide protons at 𝜔𝑏𝑎 =

3.5ppm. The spectra were sampled at saturation frequency offsets Δ𝜔𝑎 from -6ppm to 

6ppm in steps of 0.1ppm. White Gaussian noise with a standard deviation of 𝜎 = 0.02 was 

added to all simulated spectra before the fitting procedure as we observed this level of 

noise in Z-spectra of individual 27mm3 voxels on a 3T clinical scanner, acquired with the 

snapshot-CEST technique [28]. In order to assess systematic biases and to examine the 

robustness of the algorithm with either model, each fit was repeated 1000 times with 

different realizations of this noise. If the algorithms failed to converge to any solution 

(returning Not-a-Number (NaN) upon encountering operations with undefined numerical 

results) or rendered negative parameter estimates they were classified as outliers and 

excluded from the subsequent analysis. 

 

The parameter values of the pulse sequence and MRI scanner assumed for the CW 

saturation experiment were as follows: 𝐵0 = 7T, 𝐵1 = 3.2𝜇T and pulse duration 𝑡𝑝 = 10s. 

The pulsed saturation experiment was simulated with: 𝐵0 = 7T, 𝑛 = 50 Gaussian pulses of 

duration 𝑡𝑝 = 0.1s, standard deviation 𝜎𝑝 = 0.017𝑠 and an average amplitude of 𝐵1 =

3.2𝜇T. The duty cycle was DC = 0.98. The means and precisions (defined as the inverses of 

the variances) of the prior distributions are shown in table 1. 

 

Furthermore, data sets of multiple Z-spectra with varying saturation powers were simulated 

for CW and pulsed saturation, since the availability of multiple Z-spectra at different 𝐵1 

permits the simultaneous estimation of exchange rate and concentration of CEST pools 

[7,8,11,29,30]. The average amplitudes were 𝐵1 = 0.5, 1.0, 2.0, 5.0 and 10.0 μT. All other 



 

 

parameter values were the same as for the single Z-spectra. The assumed prior distributions 

are shown in table 1. 

A further simulation was performed to investigate the performance of the algorithm for Z-

spectra with two CEST pools. The simulation parameters were chosen to represent a 

solution of Taurine and Creatine, whose resonance peaks overlap in our experimentally 

acquired Z-spectra: 𝑇1𝑎 = 3𝑠, 𝑇2𝑎 = 2.2𝑠, 𝑀0𝑏 = 0.00056, 𝑀0𝑐 = 0.0022, 𝑇1𝑏 = 𝑇1𝑐 = 1𝑠, 

𝑇2𝑏 = 𝑇2𝑐 = 0.015𝑠, 𝑘𝑏𝑎 = 1800Hz, 𝑘𝑐𝑎 = 80Hz, 𝜔𝑏𝑎 = 3.0ppm , 𝜔𝑐𝑎 = 1.9ppm. The 

spectral sampling and the noise properties were the same as in the previous simulation. 

Scanner and pulse sequence parameters were: 𝐵0 = 9.4T, 𝑛 = 151, 𝑡𝑝 = 0.1s, DC = 0.98 

and B1 = 0.78, 1.17, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31μT. Using different 

realizations of the added noise, these fits were repeated 1000 times with the analytical 

model and due to the long processing time 100 times with the numerical model.  

 

Phantom experiments 

For CW saturation experiments a 15mM Iodipamide in phosphate-buffered saline (PBS) 

solution was measured on a 7T MRI scanner Bruker Avance 300 (Bruker, Ettlingen, 

Germany), 𝐵1 = 1.5, 2.0, 3.0 and 6.0 μT and 𝑡𝑝 = 5s. The pH was adjusted to pH = 7.4 and 

the temperature to 𝑇 = 37°C. Frequency offsets were between -10ppm and 10ppm in steps 

of 0.1ppm. The saturation was followed by a fast spin-echo sequence with centric encoding 

(repetition time TR/echo time TE/number of excitations NEX/RareFactor = 10s/3.5ms/2/64). 

𝑇1 relaxation times were measured using a Rapid Acquisition with Relaxation Enhancement 

(RARE) sequence with eleven repetition times in the range 50-10000ms. 𝑇1 measurements 

were performed in a central axial plane with the following parameters: TE/NEX/RareFactor = 



 

 

11ms/3/2, matrix = 128x128, FOV = 30x30mm2, slice thickness = 3mm, total acquisition time 

= 1h 7min. Prior distributions assumed for the Bayesian fit are shown in table 3. 

 

To obtain pulsed saturation data, we measured 12.5, 25.0, 50.0 and 100.0 mM Taurine in 

water solution which consisted of titrated 0.1% PBS with pH = 6.2 and temperature 𝑇 =

23°C. The data set was acquired on a 9.4T Agilent MRI scanner using a transmit/receive RF 

coil with 33mm inner diameter (Rapid Biomedical, Germany). The saturation consisted of 

151 Gaussian pulses of duration 𝑡𝑝  =  0.05𝑠, standard deviation 𝜎𝑝 =  0.017 and duty cycle 

of DC = 0.98. The average saturation amplitudes were B1 =

 0.78, 1.17, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31 μT. Each spectrum  

was sampled at 77 equally spaced frequency offsets between −6ppm and 6ppm. The 

readout sequence was a single-slice 2D-GRE sequence with a field of view of 20 × 20mm2, 

matrix size of 64 × 64, TR = 5s, TE = 1.3ms and slice thickness of 4mm. An Inversion recovery 

EPI sequence was used to quantify 𝑇1. A global adiabatic inversion pulse (flip angle of 180°, 

duration 2ms) was applied at the frequency of water followed by 20 equally spaced 

inversion times from 8.1ms to 7.5s. The other parameters were as follows: 𝑇𝑅 =  15s, 

𝑇𝐸 =  25.5ms, slice thickness of 2mm, field of view of 20 × 20mm2 and matrix size of 64 × 

64. For the quantification of 𝑇2 the Carr Purcell Meiboom Gill (CPMG) sequence was used. It 

consisted of a 90° excitation pulse (sinc pulse of 2ms duration) in x-direction followed by 15 

refocusing pulses in y-direction (flip angle of 180°, sinc shape and duration of 1.6ms). The 

other parameters were: TR = 3s, τCPMG = 8.33ms, slice thickness of 2mm, field of view of 20 × 

20mm2 and matrix size of 64 × 64.  

 



 

 

To present an application with 2 CEST agent pools whose peaks overlap in the Z-spectrum, a 

solution consisting of 0.1% PBS with 25mM Taurine (resonance around 3.0ppm) and 50mM 

Creatine (resonance around 1.9ppm) was prepared. 5 different levels of acidity (pH = 6.18, 

6.44, 6.62, 6.82 7.06) were realized by adding sodium hydroxide (NaOH) and hydrochloric 

acid (HCl) to the solution. To acquire the Z-spectra the same sequence settings as in the 

Taurine only experiment were used, but with slightly different saturation amplitudes of 

 B1 =  0.39, 0.78, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31 μT. 

 

For each phantom, mean Z-spectra at various saturation powers were obtained by 

averaging the measured intensities in a circular region of interest (ROI) covering the 

phantom vials’ cross sections. Additionally, pixel-wise fits were performed on the Taurine 

data. The Z-spectra were normalized by the average signal of the 5 most negative frequency 

offsets in order to reduce the impact of noise.  

 

For the implementation of the fitting algorithm the Variational Bayesian (VB) algorithm 

available in the FMRIB Software Library (v5.0) was used. We extended the model library by 

replacing the full BM model by the simplified models described by equations 3 and 5. Fits 

were also performed with the full BM model (according to [11]) to compare the accuracy of 

parameter estimates and processing times between the two models.  

In order to validate the exchange rates determined with the Bayesian fits of the Taurine Z-

spectra, a QUESP analysis was performed according to [31] by fitting the full BM equations 

to the MTRasym values at 3.0ppm. 

 



 

 

4. Results 

Simulations 

An example of simulated Z-spectra with added Gaussian white noise is shown in figure 1 

together with the Bayesian fits obtained with the analytical models. The individual Z-spectra 

simulated for a single 𝐵1 (figure 1a and 1b) are well described by the fitted spectrum as 

confirmed in the standard deviation of the fit residuals (𝜎𝑟𝑒𝑠 = 0.019 for CW and 𝜎𝑟𝑒𝑠 =

0.029 for pulsed saturation). Z-spectra simulated at multiple B1 values (figure 1c and 1d) are 

also well estimated by the fitted model (𝜎𝑟𝑒𝑠 = 0.02), though larger residuals are 

observable at higher B1 (𝜎𝑟𝑒𝑠 = 0.05), especially close to on-resonance.  

 

Large differences in processing times between analytical and numerical algorithm were 

observed (table 1). For CW saturation, the algorithm based on the simplified analytical 

forward model was processed 51 times faster than the numerical forward model when a 

single B1 Z-spectrum was fitted and 48 times faster for the fitting of multiple B1 Z-spectra. 

For pulsed saturation, the analytical solution led to a 127-fold decrease in processing time 

for the single Z-spectrum data set and a 108-fold decrease for the multiple B1 Z-spectra data 

set.  

 

Repeating these fits 1000 times with different realizations of added white Gaussian noise 

led to estimated parameter distributions whose means and standard deviations are 

visualized in figure 2. In the case of CW saturation, no significant biases are observable with 

respect to the ground truth and standard deviations are comparable between the two 

algorithms. This is also the case for a single pulsed Z-spectrum except that the numerical 

model leads to a small underestimation of 𝑘𝑏𝑎. In the case of multiple pulsed Z-spectra 



 

 

fitted with either the analytical or the numerical model all estimates are biased, however, 

the biases when fitting with the numerical model are larger. Outliers, as defined in the 

methods section, were excluded from the subsequent analysis. Table 1 shows the 

proportion of converged fits, with the numerical approach generally performing equally well 

or better than the analytical one.  

 

The equilibrium magnetizations and exchange rates of overlapping CEST pools estimated in 

the second simulation are visualized in figure 3 (values shown in table 2). With respect to 

the fast exchanging pool 𝑏, both algorithms resulted in underestimations of the equilibrium 

magnetization of about 10%. The numerical algorithm also led to a similar underestimation 

of the exchange rate 𝑘𝑏𝑎, whereas the analytical algorithm had no significant bias. With 

respect to the slowly exchanging pool 𝑎, the analytical algorithm underestimated the 

equilibrium magnetization and overestimated the exchange rate by 19.1% and 33.8%, 

respectively, whereas the numerical algorithm resulted in estimates with no significant 

biases.  

 

Phantom experiments 

The CW saturation Z-spectra of Iodipamide and the corresponding fits obtained with 

analytical and numerical models are shown in figure 4. The fits were obtained with a fixed 

relaxation time 𝑇1𝑎 = 3.3s as determined by the Inversion Recovery sequence. The 

estimated probability distributions for 𝑀0𝑏, 𝑘𝑏𝑎, 𝜔𝑏, 𝜔𝑎and 𝑇2𝑎 are shown in table 3. Both 

algorithms led to matching estimates for 𝑀0𝑏, 𝑘𝑏𝑎 and 𝜔𝑏, but 𝛥𝜔0,𝑜𝑓𝑓 and 𝑇2𝑎 are 

significantly different, i.e. the mean of one estimated distribution is not included in the σ-

credible interval of the other estimated distribution.  



 

 

 

The averaged Z-spectra of the Taurine phantoms and the corresponding fits are shown in 

figure 5. The modelled Z-spectra describe the measured data reasonably well and residuals 

are negligible, except close to on-resonance and at small concentrations. Assuming fixed 

relaxation times of 𝑇1𝑎 = 3.05, 3.04, 3.00, 2.96s for Taurine concentrations of 12.5, 25.0, 

50.0, 100.0mM, respectively, the fit based on the simplified analytical equations yielded the 

parameter estimates shown in table 4. The estimates for 𝑀0𝑏 and 𝑘𝑏𝑎 are plotted against 

the Taurine concentration in figure 6. Linear relationships were observed in both cases. The 

exchange rates calculated with the QUESP analysis were: 𝑘𝑏𝑎 = 1.05, 2.01, 3.27, 5.58 𝑘Hz 

from low to high Taurine concentration. The 𝑇2𝑎 values estimated by the fit show small 

differences of the transverse relaxation time of water between the phantoms and larger 

credible intervals at higher concentration. The increased credible intervals can be explained 

by a stronger correlation between 𝑘𝑏𝑎 and 𝑇2𝑎 at higher concentrations, as both parameters 

influence the width of the water peak in a similar way. At large exchange rates, as observed 

in the phantoms with high Taurine concentration, 𝑘𝑏𝑎 dominates the width of the water 

peak and makes the estimation of 𝑇2𝑎 more difficult. On the other hand, when 𝑘𝑏𝑎 is small, 

the width of the water peak is dominated by 𝑇2𝑎, which can therefore be estimated more 

accurately. The influence of 𝑇2𝑏 on the Z-spectra is negligible under the chosen 

experimental settings, which means that an accurate estimation of this parameter is not 

possible.  

 

The resulting parameter maps of pixel-wise fits of the Taurine Z-spectra are shown in figure 

7. For 𝑀0𝑎, 𝑀0𝑏, 𝑘𝑏𝑎, 𝜔0,𝑜𝑓𝑓 and 𝜔𝑏we obtained smooth parameter maps in each phantom, 

except from a few pixels at the edges of the plastic tubes. In accordance with the fit results 



 

 

of the averaged Z-spectra, 𝑘𝑏𝑎 and 𝑀0𝑏 increase with the Taurine concentration. The 𝑇2𝑎 

map is smooth only for the low concentration phantom, but more erroneous estimates 

were observed the higher the concentration. The parameter maps of 𝑀0𝑎, 𝑀0𝑏, 𝑘𝑏𝑎 and 

𝜔𝑏 (figure 7 a-d) agree with the fit results obtained from the fit of the averaged Z-spectra. 

The map of Δ𝜔0,𝑜𝑓𝑓 corresponds to the measured 𝐵0 map and reveals inhomogeneities of 

up to ±0.15ppm. In this way, an additional acquisition of a 𝐵0 map and pre-processing of 

the Z-spectra can be avoided. The 𝑇2𝑎 map confirms the interpretation that a large 

exchange rate reduces the accuracy of the 𝑇2𝑎 estimation, leading to unrealistic parameter 

estimates of more than 4s for many pixels. 

 

The averaged Z-spectra with overlapping Creatine and Taurine peaks are shown in figure 8. 

The parameters 𝑀0𝑏, 𝑘𝑏𝑎, 𝑘𝑐𝑎 and 𝜔0,𝑜𝑓𝑓 were fitted with pool 𝑏 and 𝑐 representing the 

Taurine and Creatine pools, respectively. 𝑇1𝑎 = 2.5s was fixed according to the inversion 

recovery measurement and 𝑇2𝑎 = 2.2s was set according to the values estimated in the 

previous experiment (table 4). The Creatine parameters 𝑇2𝑐 = 27ms (according to [32]) and 

𝑀0𝑐 = 0.0018 were fixed, assuming 4 exchanging protons per Creatine molecule. 

Furthermore, the Taurine and Creatine peaks were located at 𝜔𝑏 = 2.96ppm and 𝜔𝑐 =

1.85ppm, respectively. The estimated parameters are shown in table 5 and the measured 

relationship between exchange rates and pH was plotted in figure 9. 

  



 

 

Figure 1: Fit  results of simulated data sets obtained with the simplified analytical equations 

for a two-pool model of an amide in water solution: (a) single 𝐵1  CW saturation, (b) single 

𝐵1  pulsed saturation, (c) multiple 𝐵1  CW saturation, and (d) multiple 𝐵1  pulsed saturation. 

The single 𝐵1 Z-spectra were simulated with an average amplitude of 𝐵1 = 3.2μT. For 

multiple 𝐵1 Z-spectra we employed 𝐵1 = 0.5, 1.0, 2.0, 5.0 and 10.0 μT. White Gaussian 

noise was added. Average estimated parameters are shown in table 1. 

  

 

  



 

 

Figure 2: The means and standard deviations of estimated parameter distributions and the 

CESTR* metric (table 1) obtained from 1000 repetitions of the fitting algorithms. Outliers 

were removed in the analysis for this figure. Numerical and analytical models were applied 

to fit simulated Z-spectra with different realizations of white Gaussian noise. The following 

saturation schemes were investigated: single 𝐵1  CW saturation (sCW), single 𝐵1  pulsed 

saturation (sP), multiple 𝐵1 CW saturation (mCW), and multiple 𝐵1  pulsed saturation (mP). 

Note, that 𝑀0𝑏 was kept fixed for the single 𝐵1 saturation schemes and is therefore only 

shown for the multiple 𝐵1saturation schemes.  

 

 
 
 
  



 

 

Figure 3: The means and standard deviations of estimated parameter distributions (table 2) 

obtained from 100 repetitions of the numerical algorithm and 1000 repetitions of the 

analytical algorithm for pulsed saturation based on simulated Z-spectra with 2 overlapping 

CEST pools. Each repetition was run with a different realization of white Gaussian noise. 

 

 
  



 

 

Figure 4: Z-spectra of a 15mM Iodipamide in PBS solution at pH = 7.4 and T = 37◦C, acquired 

at average saturation amplitudes of 𝐵1 = 1.5, 2.0, 3.0 and 6.0 μT. The fit was obtained with 

the simplified analytical equations (a) and the numerical model (b).  

  

 

  



 

 

Figure 5: Z-spectra of 12.5mM (a), 25.0mM (b), 50.0mM (c), 100.0mM(d) Taurine in PBS 

solutions at pH = 6.2 and T = 23◦C. The saturation pulse average amplitude was varied with 

 B1 =  0.78, 1.17, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31 μT. The fits were obtained 

with the simplified analytical equations for a two-pool model.  

 

  



 

 

Figure 6: The linear dependencies between Taurine concentration and the means of the 

distributions of the equilibrium magnetization of the Taurine pool 𝑀0𝑏 (a) and the exchange 

rate 𝑘𝑏𝑎 (b), respectively as estimated by the fit. The error bars in a) correspond to the 𝜎-

credible intervals. The linear regression lines are weighted least squares lines where the 

weights are inverse variances of the estimated parameter distributions. As a comparison, 

the exchange rates measured with the PRO-QUEST approach in [33] and with the QUESP 

analysis are shown. 

 

  



 

 

Figure 7: Parameter maps obtained from pixel-wise Bayesian fits of Z-spectra at multiple 

𝐵1 of Taurine in PBS solutions at pH = 6.2 and T=23◦C a) 𝑀0𝑎, b) 𝑀0𝑏, c) 𝑘𝑏𝑎 in Hz, d) 𝜔0,𝑜𝑓𝑓 

in ppm, e) 𝜔𝑏 in ppm, f) 𝑇2𝑎 in s. The Taurine concentrations from the bottom tube to the 

top tube are: 12.5mM, 25.0mM, 50.0mM, 100.0mM. The maps were masked to include only 

those pixels showing the Taurine phantom vials.  

 

  



 

 

Figure 8: Z-spectra of a 25mM Taurine and 50mM Creatine in PBS solution at T = 20◦C and 

varying acidity: a) pH = 6.18, b) pH = 6.22, c) pH = 6.62, d) pH = 6.82, e) pH = 7.06. The 

saturation pulse average amplitude was varied with B1 =

0.39, 0.78, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31 μT. The fits were obtained with the 

simplified analytical equations for a three-pool model. 

 

  



 

 

Figure 9: The figures show the estimated exchange rates of a) Taurine and b) Creatine in the 

same solution, depending on acidity. The values correspond to the estimates obtained from 

the fits presented in figure 8 and table 5. Two metrics, CESTR* (c) and MTRasym (d) were 

calculated at the Creatine resonance. CESTR* correlates with the Creatine exchange rate at 

all saturation amplitudes, whereas MTRasym is skewed by the overlapping Taurine peak, 

especially at higher saturation amplitudes. 

 

 

  



 

 

Table 1: Summary of the results obtained from 1000 repetitions of the Bayesian fitting 

algorithm with numerical and analytical models applied to simulated Z-spectra with a single 

CEST pool. Each repetition was run with a different realization of white Gaussian noise. The 

values in brackets correspond to the standard deviation of the estimated means. The error 

columns contain the relative absolute difference to the ground truth. In addition, the 

CESTR* values are given for an average saturation amplitude of 𝐵1 = 3.2μT. The two values 

listed under truth correspond to the CW case and pulsed case, respectively. The processing 

times were measured on a 2.9GHz Intel Core i5 processor.  

 

 

Table 2: Summary of the results obtained from 1000 repetitions of the fitting algorithm with 

the analytical model and 100 repetitions with the analytical model applied to simulated Z-

spectra with 2 overlapping CEST pools. Each repetition was run with a different realization 

of white Gaussian noise. The values in brackets correspond to the standard deviation of the 

estimated means. The error columns contain the relative absolute difference to the ground 

truth The processing times were measured on a 2.9GHz Intel Core i5 processor.  



 

 

 

 

Table 3: Estimated parameters corresponding to the fits in figure 4 of an Iodipamide 

solution analysed with the analytical and numerical models. The values correspond to the 

means of the Gaussian posterior distributions of the estimated parameters. The uncertainty 

in brackets indicates the standard deviation of these distributions and refers to the last 

digits of the mean, e.g. 2.63(26) = 2.63 ± 0.26. 

 

 

Table 4: Estimated parameters corresponding to the fits in figure 5 of Taurine solutions at 

different concentrations, obtained with the analytical model.  

 



 

 

Table 5: Estimated parameters corresponding to the fits in figure 8 of a Taurine and 

Creatine solution at varying acidity, obtained with the analytical model.  

 

  



 

 

5. Discussion 

 

In this study, a Variational Bayesian algorithm for fast Bayesian inference [13] has been 

applied to fit CEST data. In contrast to a previous approach based on a general solution of 

the BM equations [11], we used simplified analytical models with the aim to reduce 

processing time. To assess the processing times as well as the convergence and accuracy of 

this evaluation, the algorithm was applied to Z-spectra obtained from simulations as well as 

phantom experiments under both CW and pulsed saturation. The results show that the 

simplified algorithm converges to a solution that describes the data well and thus allows us 

to estimate parameters with an accuracy and precision that is comparable with the previous 

algorithm. 

 

With this approach, it was however possible to considerably reduce processing time. The 

approximately 50-fold reduction of computational time for CW saturation can largely be 

attributed to the reduced complexity of the applied analytical solution. In more details, the 

numerical solution requires the relatively time-consuming calculation of a matrix 

exponential, whereas equation 3 comprises only basic arithmetic operations. As the 

Variational Bayesian algorithm iteratively updates the parameter estimates until 

convergence, the respective solutions are evaluated for each update.  

 

For pulsed saturation, the reduction of processing time was even greater (up to 127-fold), 

although the analytical formula for pulsed saturation (equation 5) is more complex than the 

analytical formula for CW saturation. This significant reduction was possible because the 

numerical solution requires a separation of the pulse shape into multiple intervals with 



 

 

approximately constant amplitude, each of which requires the numerical evaluation of a 

matrix exponential. In contrast, with the simplified model the averaging of 𝑅1𝜌 over the 

pulse shape makes it possible to obtain the parameter update for each iteration with only 

one evaluation of equation 5.  

 

Assuming the processing times observed in the simulations, the time required for fitting a 

single slice of 100×100 pixels can be reduced from 5.6 hours to 6.5 minutes in CW 

saturation. Fitting a slice of these dimensions with pulsed saturation would be infeasible 

with the numerical solution (~44 days) and would take 8.3 hours with the analytical 

approximation. Such improvements in processing time might be crucial when quantitative 

CEST methods are considered for clinical routine. Further reductions on such processing 

times can be expected by using implementations on computer graphics cards. 

 

The repetition of fits with different instances of added Gaussian white noise allows us to 

draw conclusions about the accuracy and robustness of the algorithms. The observed biases 

and standard deviations of the obtained distributions suggest that in most cases the 

Bayesian algorithm does not yield more accurate results with the numerical model than 

with the analytical ones. While we attribute the biases of the estimates obtained with the 

analytical models to the approximating assumptions made in their derivation, particularly 

the application of effective parameters averaged over the pulse shape, and the choice of the 

heuristic value 𝛼𝑠𝑡𝑎𝑟𝑡, no such assumptions are made in the numerical model. Hence, we 

suspect that the biases observed in the numerical model approach are a result of the 

algorithm converging towards other local optima in the solution space, which exist due to a 

strong correlation between the estimated parameters. This interpretation is supported by 



 

 

the observation that the residuals of the numerical approach are always determined by the 

noise rather than systematic deviations. We expect that the probability of converging 

towards a particular minimum is dependent on the means of the prior distributions and that 

therefore the observed biases will vary depending on the choice of these priors. The 

problem of parameter correlations is inherent in all CEST data and can therefore only be 

mitigated by different sampling or acquisition techniques. Another approach to this problem 

offered only by the Bayesian technique is to specify more specific prior distributions, if prior 

knowledge is available. 

 

In order to fit the Iodipamide Z-spectrum, 6 model parameters were estimated by the 

analytical and numerical algorithms (table 3). The comparison shows deviations of the 

posterior distribution which are included in the σ-credible intervals and are therefore not 

significant for 𝑀0𝑏, 𝑘𝑏𝑎 and 𝜔𝑏. On the other hand, the differences of Δ𝜔0,𝑜𝑓𝑓  (≈0.014ppm) 

and 𝑇2𝑎 (≈ 22ms) don’t fall within the credible intervals. As discussed in regard to the 

deviations in the simulated study, these discrepancies can be explained either by 

convergence issues (local optima) or by the limited range of validity of the assumptions of 

the analytical model. The latter is less likely, since equations 3-11 were in good agreement 

with the numerical solution of the BM equations in [23] for the parameters estimated here. 

The increased asymmetry of the residuals with respect to the water peak in the numerical 

solution (figure 4b) suggests that the B0 correction by estimating Δ𝜔0,𝑜𝑓𝑓 was not 

successful, resulting in a local optimum and the observed significant biases in Δ𝜔0,𝑜𝑓𝑓 and 

𝑇2𝑎 . The determined relative Iodipamide equilibrium magnetizations (𝑀0𝑏,  = 2.6(3)·10−4 and 

𝑀0𝑏,  = 2.9(4)·10−4 for analytical and numerical solutions respectively) are in agreement with 

the expected value of a 15mM solution, assuming that both Iodipamide and water 



 

 

molecules have 2 exchanging proton sites (𝑀0𝑏 = 
15𝑚𝑀∙2𝑝𝑟𝑜𝑡𝑜𝑛𝑠

55𝑀∙2𝑝𝑟𝑜𝑡𝑜𝑛𝑠
≈ 2.7 ∙ 10−4). The 

transverse relaxation time of Iodipamide 𝑇2𝑏 was determined with large uncertainty by 

both, numerical and analytical algorithm. This is due to the small influence of 𝑇2𝑏 on the 

shape of the Z-spectrum. The increased magnitude of residuals close to the water peak was 

also observed in the simulation experiments and can be attributed to the breakdown of the 

model assumption of negligible rotation of the water magnetization about the effective 

magnetic field. This effect becomes more important for shorter pulse duration 𝑡𝑝, higher 𝐵1 

and longer 𝑇2𝑎. Furthermore, it is also possible that the fixed value for 𝑇1𝑎 deviates 

sufficiently from its true value to contribute to the larger residuals at the water peak.  

 

In the Taurine experiment, the linear increase of the measured exchange rate with Taurine 

concentration was unexpected, since both pH and buffer concentrations were maintained 

constant. However, an alternative analysis of the same data set with the QUESP method, as 

well as a different CEST sequence, PRO-QUEST, which was applied to the same phantoms 

(results published in [33]), confirmed the exchange rates determined by the Bayesian fits. 

Thus, we conclude that the increase of exchange rates was determined correctly. However, 

the question by which mechanism the exchange rate is influenced by the Taurine 

concentration remains open.  

 

 

One of the major challenges with analysing in-vivo Z-spectra is the presence of multiple 

overlapping peaks. The simulations show that analysing Z-spectra containing a fast 

exchanging Taurine pool which overlaps with a slowly exchanging Creatine pool using either 

the analytical or the numerical algorithm can result in biased parameter estimates. 



 

 

Nevertheless, an expected increase of estimated exchange rates with pH in the Taurine 

phantom (figure 9a and 9b) can be attributed to a systematic deviation of estimates which 

maintains the correlation between pH and estimated exchange rates. Additionally, the 

assumption of a fixed Creatine concentration reduces the uncertainty of the other fit 

parameters and thus leads to an increased precision. The interpretation of simple metrics 

such as MTRasym can be difficult for overlapping CEST pools (figure 9c) while CESTR* (more 

complex metric based on the estimated model parameters) allows for an unbiased 

interpretation of such data, and correlates with the changes of the Creatine exchange rate 

(figure 9d). 

 

To date, the Variational Bayesian algorithm on which this study is based [13] is the only 

Bayesian algorithm that incorporates the BM equations to fit Z-spectra. The main limitation 

of this study is that the assumptions of the employed analytical solution is valid only for 

slow and intermediate exchange regimes. Therefore, agents at high pH might yield different 

estimates due to violation of the assumptions of the analytical solutions. For different 

exchange regimes, a few publications have reported alternative analytical solutions [8,18–

22,34] . Problems related to the correlation between model parameters such as agent 

concentration and exchange rate are not mitigated by employing improved analytical 

solutions, as the correlation stems from the data acquisition itself. Instead, improving the 

sampling strategy can lead to a smaller degree of correlation in the data. An improved 

sampling strategy can also be advantageous to reduce the measurement time [35] since 

sampling the full Z-spectrum might not be feasible in a clinical setting.  

  



 

 

6. Conclusion 

A Bayesian fitting algorithm based on approximate analytical solutions of the BM equations 

has been employed to fit Z-spectra. A considerable reduction of processing times was 

observed, while the accuracy of estimated parameters was maintained in both simulation 

and phantom data. This method is expected to be beneficial for quantification of CEST 

effects within clinically acceptable data processing time. Therefore, future directions include 

a wide range of in vivo applications utilizing endogenous CEST agent with slow and 

intermediate exchange regimes, such as patients with cancer or stroke.  
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Appendix A 

For small population fractions (𝑓𝑖 =
𝑀0𝑖

𝑀0𝑎
≪ 1), the parameter 𝑅1𝜌 can be regarded as the 

rate which is perturbed by chemical exchange. This perturbation can be expressed by the 

exchange-dependent relaxation rates 𝑅𝑒𝑥: 

 𝑅1𝜌 = 𝑅𝑒𝑓𝑓 + 𝑅𝑒𝑥, (13) 



 

 

where 𝑅𝑒𝑥 is comprised of the contributions from each CEST agent pool 𝑖: 

 𝑅𝑒𝑥 = ∑ 𝑅𝑒𝑥,𝑖𝑖 , (14) 

 

𝑅𝑒𝑓𝑓 is the unperturbed relaxation rate in the rotating frame, i.e. without exchange, which 

can be approximated by [36]: 

 𝑅𝑒𝑓𝑓 = cos
2(𝜃) 𝑅1𝑎 + sin

2(𝜃) 𝑅2𝑎. (15) 

The following assumptions are made to obtain a simplified expression for 𝑅𝑒𝑥,𝑖: 

1. The influence of 𝑅1𝑎 and 𝑅2𝑎 on 𝑅𝑒𝑥,𝑖 is negligible, 

2. 𝑅1𝑖 ≪ 𝑅1𝑎 and 𝑅1𝑖 ≪ 𝑘𝑖𝑎, 

3. 𝑅𝑒𝑥 can be linearized in 𝑘𝑎𝑖. 

 

Under these assumptions, 𝑅𝑒𝑥 can be approximated by: 

 𝑅𝑒𝑥,𝑖 = 
𝑅𝑒𝑥
𝑚𝑎𝑥 𝛤

2

4
𝛤2

4 + 𝛥𝜔𝑖
2

 (16) 

 

 with  

 
𝑅𝑒𝑥,𝑖
𝑚𝑎𝑥 = 𝑓𝑖𝑘𝑖𝑎 sin

2(𝜃)
(𝜔𝑖 − 𝜔𝑎)

2 +
𝑅2𝑖
𝑘𝑖𝑎

(𝜔1
2 + 𝛥𝜔2) + 𝑅2𝑖(𝑘𝑖𝑎 + 𝑅2𝑖)

𝛤𝑖
2

4

 

 

(17) 

and   

 𝛤𝑖 = 2√
𝑘𝑖𝑎+𝑅2𝑖

𝑘𝑖𝑎
𝜔1
2 + (𝑘𝑖𝑎 + 𝑅2𝑖)2. (18) 

Here, Δω𝑖 = 𝜔𝑟𝑓 − 𝜔𝑖 is the difference between the frequency of the CW irradiation and 

the resonance frequency of pool 𝑖.  



 

 

Appendix B 

Here, approximations towards a model for pulsed saturation with rectangular pulses of 

duration 𝑡𝑝, interleaved with delays of duration 𝑡𝑑 as published in Appendix A of [21] for 

two pools are presented for multiple pools.  

The operators 𝐻pulse and 𝐻pause describe the evolution of the water pool magnetization 

during the RF pulse and during the delay, respectively.  

The assumption is that during the pulse the magnetization 𝑍(𝑡) decays with relaxation rate 

𝑅1𝜌 (equation 13) towards the steady state 𝑍CW
SS  as described by equation 3: 

 𝑍(𝑡𝑝) =  𝐻pulse[𝑍(𝑡 = 0)] =  (𝑃𝑧𝑃𝑧𝑒𝑓𝑓𝑍(𝑡 = 0) − 𝑍CW
SS )exp (−R1𝜌𝑡𝑝) + 𝑍CW

SS . (19) 

Assuming a multi-exponential recovery of pool 𝑎 during the pause with one exponential 

component per pool, and furthermore assuming negligible magnetization exchange 

between any two CEST agent pools, the evolution of the water pool z-magnetization is given 

by: 

 𝑍(𝑡𝑑) =  𝐻pause[𝑍(𝑡 = 0)] =  𝑑𝑎𝑎(𝑍(𝑡 = 0) − 1) + ∑ (𝑑𝑎𝑖Ψ𝑖𝑍(𝑡 = 0) − 𝑓𝑖)𝑖 + 1. (20) 

Note, that the only difference compared to equation A2 in [21] is the summation over all 

CEST agent pools 𝑖.  

 

The combined effect of the delay and the pulse is thus expressed by: 

 

𝑍(𝑡𝑝 + 𝑡𝑑) = 𝐻pulse{𝐻pause[𝑍(𝑡 = 0)]}

=  𝑃𝑧𝑃𝑧𝑒𝑓𝑓 (𝑑𝑎𝑎 +∑(𝑑𝑎𝑖
𝑖

Ψ𝑖)) exp (−R1𝜌𝑡𝑝)
⏟                          

𝛽

𝑍(𝑡 = 0)

+ 𝑃𝑧𝑃𝑧𝑒𝑓𝑓 (1 − 𝑑𝑎𝑎 −∑(𝑓𝑖𝑑𝑎𝑖
𝑖

)) exp (−R1𝜌𝑡𝑝) + 𝑍CW
SS (1 − exp (−R1𝜌𝑡𝑝))

⏟                                              
𝛼

 

(21) 



 

 

 

Since the magnetization at the end of this pause-pulse module corresponds to the initial 

magnetization of the consecutive pause-pulse module, one can formulate the following 

recursive relationship for the magnetization after 𝑛 pause-pulse modules: 

 𝑍(𝑛) = 𝛽𝑍(𝑛 − 1) + 𝛼 (22) 

Using the formula for the geometrical series, this relationship is simplified as: 

𝑍(𝑛) = 𝛽𝑛 (𝑍(𝑡 = 0) −
𝛼

1−𝛾
) +

𝛼

1−𝛾
. (23) 

By interpreting 𝑍pulsed
SS =

𝛼

1−𝛾
 as the steady-state magnetization and defining 𝑍i = 𝑍(𝑡 = 0), 

one obtains equation 5. 

 

Appendix C 

Expressions for 𝑑𝑎𝑎 and 𝑑𝑎𝑏 were presented in [37], as part of the biexponential solution of 

the BM equations for 𝐵1 = 0 (no saturation) and negligible transverse magnetization (𝑀i𝑥 =

𝑀i𝑦 = 0):  

 𝑑𝑎𝑎 =
(𝜆1 + 𝑅1𝑏 + 𝑘𝑏𝑎) exp(𝜆1𝑡𝑑) − (𝜆2 + 𝑅1𝑏 + 𝑘𝑏𝑎)exp (𝜆2𝑡𝑑)

𝜆1 − 𝜆2
 (24) 

 𝑑𝑎𝑏 =
𝑘𝑏𝑎(exp(𝜆1𝑡𝑑) − exp(𝜆2𝑡𝑑)

𝜆1 − 𝜆2
 (25) 

 

Expressions for 𝜆1 and 𝜆2 are: 

 

𝜆1 = −
1

2
(𝑘𝑎𝑏 + 𝑘𝑏𝑎 + 𝑅1𝑎 + 𝑅1𝑏

+√(𝑘𝑎𝑏 + 𝑘𝑏𝑎 + 𝑅1𝑎 + 𝑅1𝑏)2 − 4(𝑘𝑏𝑎𝑅1𝑎 + 𝑘𝑎𝑏𝑅1𝑏 + 𝑅1𝑎𝑅1𝑏)) 

(26) 



 

 

 

𝜆2 = −
1

2
(𝑘𝑎𝑏 + 𝑘𝑏𝑎 + 𝑅1𝑎 + 𝑅1𝑏

−√(𝑘𝑎𝑏 + 𝑘𝑏𝑎 + 𝑅1𝑎 + 𝑅1𝑏)2 − 4(𝑘𝑏𝑎𝑅1𝑎 + 𝑘𝑎𝑏𝑅1𝑏 + 𝑅1𝑎𝑅1𝑏)) 

(27) 

The following terms that appear in equations 6 and 7 can be approximated for 𝑘𝑏𝑎 ≫ 𝑅1𝑎: 

 𝑑𝑎𝑎 + 𝑓𝑏𝑑𝑎𝑏 ≈ exp (−𝑅1𝑎𝑡𝑑) (28) 

 𝑑𝑎𝑎 +Ψ𝑑𝑎𝑏 ≈ exp (−𝑅1𝑎𝑡𝑑)(1 − 𝛼𝑙𝑎𝑏,𝑏𝑓𝑏) (29) 

For multiple CEST agent pools we apply the corresponding approximations for 𝑘𝑖𝑎 ≫ 𝑅1𝑎: 

 𝑑𝑎𝑎 +∑𝑓𝑖𝑑𝑎𝑖
𝑖

≈ exp (−𝑅1𝑎𝑡𝑑) (30) 

 𝑑𝑎𝑎 +∑Ψ𝑖𝑑𝑎𝑖
𝑖

≈ exp (−𝑅1𝑎𝑡𝑑)(1 −∑𝛼𝑙𝑎𝑏,𝑖𝑓𝑖
𝑖

) (31) 

 

Appendix D 

Figure 10 shows the dependence of the numerically determined ideal value of 𝛼𝑠𝑡𝑎𝑟𝑡 on the 

exchange rate 𝑘𝑖𝑎 and the average pulse amplitude 𝐵1. For large 𝑘𝑖𝑎, 𝛼𝑠𝑡𝑎𝑟𝑡 should be 

chosen close to 1, whereas 𝛼𝑠𝑡𝑎𝑟𝑡 = 0 is a good choice for small 𝑘𝑖𝑎. In the intermediate 

regime of amide exchange rates, a value of 𝛼𝑠𝑡𝑎𝑟𝑡 ≈ 0.5 is a reasonable choice. In figure 11 

the effect of this choice of 𝛼𝑠𝑡𝑎𝑟𝑡 on the analytical solution is shown for different saturation 

powers and assuming an exchange rate of 𝑘𝑖𝑎 = 30Hz. Note that the analytical solution is 

closer to the numerical solution for 𝛼𝑠𝑡𝑎𝑟𝑡 = 0.5 than for 𝛼𝑠𝑡𝑎𝑟𝑡 = 0 or 𝛼𝑠𝑡𝑎𝑟𝑡 = 1. For 

faster exchange rates the influence of 𝛼𝑠𝑡𝑎𝑟𝑡 on the Z-spectrum is negligible (Figure 12). 

Hence, 𝛼𝑠𝑡𝑎𝑟𝑡 = 0.5 was chosen for all fits in this study.  

  



 

 

Figure 10: Dependence of the ideal value of 𝛼𝑠𝑡𝑎𝑟𝑡 on the exchange rate and the average 

saturation amplitude. The value was calculated according to 𝛼𝑠𝑡𝑎𝑟𝑡 = 
Ψ𝑚𝑎𝑥−Ψ

Ψ𝑚𝑎𝑥−Ψmin
, where 

Ψ =
𝑀𝑧𝑏(𝑡=𝑡𝑝)

𝑀𝑧𝑎(𝑡=𝑡𝑝)
 was calculated by solving the 2-pool BM equations numerically. The 

simulation parameters were the same as those of the simulation experiment described in 

the Methods section. 

 

  



 

 

Figure 11: Comparison of the effect of different values of 𝛼𝑠𝑡𝑎𝑟𝑡 on the analytical solution 

for pulsed saturation with Gaussian pulses at different average saturation amplitudes. The 

left column shows full Z-spectra and the right column shows a magnification of the solute 

peak. The simulation parameters were the same as those of the simulation experiment 

described in the Methods chapter, in particular 𝑘𝑏𝑎 = 30Hz. At this exchange rate, 𝛼𝑠𝑡𝑎𝑟𝑡 =

0.5 is a reasonable choice.  
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Figure 12: Comparison of the effect of different values of 𝛼𝑠𝑡𝑎𝑟𝑡 on the analytical solution 

for pulsed saturation with Gaussian pulses at different average saturation amplitudes. 

Regarding the simulation parameters, the only difference to Figure 11 is the exchange rate 

which was increased to 𝑘𝑏𝑎 = 300Hz. The figure shows that at faster exchange rates, the 

influence of 𝛼𝑠𝑡𝑎𝑟𝑡 on the analytical Z-spectrum is negligible. Note, that the analytical Z-

spectra overlap and are therefore almost not distinguishable.  
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