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Abstract: Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes
significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic
posttranslational modification that plays an important role in numerous biological processes, both in
normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates
stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury.
Experimental cellular and animal models, and also human studies, have demonstrated that protection
against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic
preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the
principal mechanisms underlying tissue protection against IR injury and the associated immediate
elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial
permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of
inflammatory and heat shock responses, and interference with established cardioprotective pathways.
O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is
activated by mechanical conditioning strategies.
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1. Introduction

Stressors triggering organ damage and disease continuously influence the cells of biological
organisms. Damage introduced by ischemia reperfusion injury (IR injury) is pivotal in diseases
such as coronary heart disease (CHD) and stroke, causing substantial mortality and morbidity [1,2].
Restoration of blood flow to the ischemic area is the most important component for reduction of infarct
size. Implementation of reperfusion modalities, including percutaneous coronary intervention and
thrombolytic therapy, has significantly improved mortality and morbidity over the last 20 years [3,4].
However, CHD remains the leading cause of death in the Western world [5]. While reperfusion is
essential for cytoprotection, it also contributes to cellular damage by inducing reperfusion injury [6].
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The body has innate cytoprotective systems that activate protection against IR injury. Ischemic
preconditioning (IPC) is a potential treatment modality that activates intrinsic protective mechanisms
against IR injury. By short sublethal periods of ischemia and reperfusion, IPC activates a variety of
protective mechanisms that render tissue or organs resistant to infarction from subsequent sustained
ischemia and reperfusion [7]. This mechanism not only offers protection of the tissue subjected to
brief ischemia, but also renders myocardium resistant to ischemia by exposure of a remote organ to
an IPC stimulus [8,9]. This discovery has greatly facilitated the ability to translate this concept into a
clinical applicability. Remote ischemic conditioning (RIC) by subjecting an arm to intermittent short
periods of ischemia and reperfusion increases myocardial salvage in patients with evolving myocardial
infarction [10], reduces release of troponin in patients undergoing heart surgery [11,12], and reduces
cerebral damage in stroke patients [13].

One of the earliest responses to cellular stress is a rapid and global increase in the rate of
O-GlcNAcylation, a dynamic posttranslational glycosylation of a variety of proteins [14]. This increase
facilitates stress tolerance and cell survival, and has been shown to be protective [15]. An increase of
intracellular O-GlcNAc levels protects against IR injury. Pharmacological and genetic augmentations
of O-GlcNAc levels in isolated perfused hearts reduce infarct size when subjected to IR injury [16–19].
O-GlcNAc is also involved in protection against IR injury by ischemic conditioning. IPC has been
shown to increase myocardial O-GlcNAc levels in rodents [20–22]. RIC has been shown to increase
myocardial O-GlcNAc levels in human atrial trabeculae [23]. Blocking O-GlcNAcylation abrogated the
cardioprotective effect of RIC in human atrial trabeculae [23].

The aim of the present review is to evaluate the impact of current research on the underlying
mechanisms behind the interaction between O-GlcNAcylation and protection against IR injury.
However, specific research on the effects of O-GlcNAcylation in IR injury is limited, so we critically
evaluated whether the protective mechanisms associated with O-GlcNAcylation from studies
conducted in other models may be extrapolated to the settings of IR injury.

2. O-Linked β-N-Acetylglucosamine (O-GlcNAc)

O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification of
nuclear, cytoplasmatic, and mitochondrial proteins through the hexosamine biosynthetic pathway
(HBP) (Figure 1).



Int. J. Mol. Sci. 2019, 20, 404 3 of 20

Int. J. Mol. Sci. 2019, 20, 0000 2 of 20 

 

against IR injury. By short sublethal periods of ischemia and reperfusion, IPC activates a variety of 

protective mechanisms that render tissue or organs resistant to infarction from subsequent sustained 

ischemia and reperfusion [7]. This mechanism not only offers protection of the tissue subjected to 

brief ischemia, but also renders myocardium resistant to ischemia by exposure of a remote organ to 

an IPC stimulus [8,9]. This discovery has greatly facilitated the ability to translate this concept into a 

clinical applicability. Remote ischemic conditioning (RIC) by subjecting an arm to intermittent short 

periods of ischemia and reperfusion increases myocardial salvage in patients with evolving 

myocardial infarction [10], reduces release of troponin in patients undergoing heart surgery [11,12], 

and reduces cerebral damage in stroke patients [13]. 

One of the earliest responses to cellular stress is a rapid and global increase in the rate of O-

GlcNAcylation, a dynamic posttranslational glycosylation of a variety of proteins [14]. This increase 

facilitates stress tolerance and cell survival, and has been shown to be protective [15]. An increase of 

intracellular O-GlcNAc levels protects against IR injury. Pharmacological and genetic augmentations 

of O-GlcNAc levels in isolated perfused hearts reduce infarct size when subjected to IR injury [16–

19]. O-GlcNAc is also involved in protection against IR injury by ischemic conditioning. IPC has been 

shown to increase myocardial O-GlcNAc levels in rodents [20–22]. RIC has been shown to increase 

myocardial O-GlcNAc levels in human atrial trabeculae [23]. Blocking O-GlcNAcylation abrogated 

the cardioprotective effect of RIC in human atrial trabeculae [23]. 

The aim of the present review is to evaluate the impact of current research on the underlying 

mechanisms behind the interaction between O-GlcNAcylation and protection against IR injury. 

However, specific research on the effects of O-GlcNAcylation in IR injury is limited, so we critically 

evaluated whether the protective mechanisms associated with O-GlcNAcylation from studies 

conducted in other models may be extrapolated to the settings of IR injury. 

2. O-Linked β-N-Acetylglucosamine (O-GlcNAc) 

O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification of 

nuclear, cytoplasmatic, and mitochondrial proteins through the hexosamine biosynthetic pathway 

(HBP) (Figure 1). 

 

Figure 1. The hexosamine biosynthsis pathway (HBP) and protein O-GlcNAcylation. Enzymes
are illustrated by orange circles. Blockers are written in red. Abbreviations: GFAT:
L-glutamine-D-fructose 6-phosphate amidotransferase; UDP-GlcNAc: UDP-N-acetylglucosamine; OGT:
uridine-diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase; O-GlcNAcase:
β-N-acetylglucosaminidase; DON: 6-diazo-5-oxo-norleucine; UDP-5SGlcNAc: uridine diphospho-5-
thio-N-acetylglucosamine; TTO4: 2[(4-chlorophenyl)imino]tetrahydro-4-oxo-3-[2-tricyclo(3.3.1.13.7)dec-1-
ylethel]; PUGNAc: O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate; NAG:
1,2-Dideoxy-2′-methyl-α-D-glucopyranoso-[2,1-d]-δ2′-thiazoline; NButGT:1,2-dideoxy-2′-propyl-α-d-
glucopyranoso-[2,1-d]-δ2′-thiazoline. GFAT can be inhibited by glutamine analogue azaserine
(O-diazoacetyl-L-serine) or DON. OGT can be inhibited by the uridine analogue alloxan, substrate
analog of O-GlcNAc UDP-5SGlcNAc, or with TTO4, whereas O-GlcNAcylation of proteins can be rapidly
increased by inhibiting O-GlcNAcase with PUGNAc, Thiamet G, NAG, or NButGT. Alloxan has also
shown to have an inhibitory effect on O-GlcNAcase.

The initial step of the HBP transforms fructose-6-phosphate to glucosamine-6-phosphate by the
enzyme L-glutamine-D-fructose-6-phosphate amidotransferase (GFAT). Through several enzymatic
steps, glucosamine-6-phosphate is converted into uridine- diphosphate-N-acetylglucosamine
(UDP-GlcNAc), which acts as substrate for the enzyme that catalyzes the addition of
O-GlcNAc to serine and threonine residues, uridine-diphospho-N-acetylglucosamine:polypeptide-
N-acetylglucosaminyltransferase (OGT). The removal of O-GlcNAc is catalyzed by β-hexoamininidase
(O-GlcNAcase). In experimental settings, the formation of O-GlcNAc can be augmented
pharmacologically by increasing flux through HBP using glucosamine [24,25] or glutamine
treatment [18], or pharmacologic inhibition of O-GlcNAcase with O-(2-acetamido-2-deoxy-D-
glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) [24,26], Thiamet G [27], or 1,2-Dideoxy-
2′-methyl-α-D-glucopyranoso[2,1-d]- δ2′-thiazoline (NAG-thiazoline) [16], or 1,2-dideoxy-2′-propyl-α-
d-glucopyranoso-[2,1-d]-δ2′-thiazoline (NButGT) [25], and through genetic inhibition of O-GlcNAcase
by transfection with short interfering (si) RNA directed against O-GlcNAcase [26] or
genetic increase in OGT expression [28,29], by adenoviral overexpression. O-GlcNAcylation
can be blocked by pharmacologic GFAT inhibition with the glutamine analogue azaserine
(o-diazoacetyl-L-serine) [18,23,24], or GFAT inhibitor 6-diazo-5-oxo-norleucine (DON) [30], or OGT
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inhibition with uridine analogue alloxan [24,31] or with 2[(4-chlorophenyl)imino]tetrahydro-4-oxo-
3-[2-tricyclo(3.3.1.13.7)dec-1-ylethel] (TTO4) [27], or substrate analog of O-GlcNAc uridine
diphospho-5-thio-N-acetylglucosamine (UDP-5SGlcNAc) [32]. Unfortunately none of the enzyme
blockers are entirely specific [22,33]. Alloxan has inhibitory effects on both OGT and O-GlcNAcase [33].
O-GlcNAcylation can also be blocked genetically by adenoviral overexpression of O-GlcNAcase [26],
inhibition of OGT by transfection with short interfering (si) RNA directed against OGT [28], or genetic
deletion of OGT using a cre-lox approach [28].

O-GlcNAc modification plays an important role in numerous biological processes, both in normal
cell functions such as regulating cell cycle [34], protease activity [35], and transcription [36,37], and in
the etiology of chronic disease. Transient elevation of O-GlcNAc in relation to stress is protective, as
discussed below, while chronic elevation of O-GlcNAc plays a role in the pathophysiological processes
of neurodegeneration in Alzheimer’s [38] and Parkinson’s disease[39]; cancer [40]; hypertension;
cardiac hypertrophy and failure [41]; complications of diabetes mellitus, particularly insulin
resistance [42]; increased atherosclerosis [43]; and cardiac dysfunction [44].

In mammalian cells multiple stress varieties, such as chemical, thermal, and biological stimuli,
increase O-GlcNAcylation of nuclear and cytoplasmatic proteins. A reduction of O-GlcNAc levels,
achieved by deletion of OGT, sensitizes cells to thermal stress, while augmentation of O-GlcNAc
by genetic overexpression of OGT or pharmacologic inhibition of O-GlcNAcase with PUGNAc
increases thermal tolerance and improves cell survival [14]. Accordingly, augmentation of intracellular
O-GlcNAc levels is protective against IR injury in various experimental models. In neonatal
rat ventricular myocytes, an increase of protein O-GlcNAcylation by inhibition of O-GlcNAcase
pharmacologically with PUGNAc [24,26] or NAG-thiazoline derivative [25], or genetically by RNA
interference of O-GlcNAcase [26], improves survival following IR injury. Moreover, an increase of
O-GlcNAc levels by glucosamine treatment or genetic augmentation of OGT expression by adenovirus
transfection attenuates cardiac myocyte death following hypoxia–reoxygenation [25,28]. Reduction in
O-GlcNAc levels by pharmacologic (alloxan or TT04) [24,28] or genetic OGT inhibition [28], or genetic
overexpression of O-GlcNAcase [26], exacerbated myocyte death.

In isolated perfused hearts, increasing cardiac O-GlcNAc levels by perfusion with glucosamine
or glutamine [17,18], subjection to O-GlcNAcase inhibitor PUGNAc [19], or NAG-thiazoline
derivatives [16] reduced myocardial damage when subjected to IR injury. Additional support for the
cardioprotective effect of O-GlcNAc was given in studies demonstrating that the increase in myocardial
O-GlcNAc levels and the protective effect of glucosamine was blocked by inhibition of OGT with
alloxan or inhibition of GFAT with azaserine [17,18].

An increase in cerebral O-GlcNAc levels by glucosamine treatment has been shown to be
neuroprotective against IR injury. In a rat middle cerebral artery occlusion model, intraperitoneal
glucosamine administration reduced cerebral infarct size and afforded reduction in motor impairment
and neurological deficits [45].

In 2008, Jones et al. used a mouse model to demonstrate that IPC increased cardiac O-GlcNAc
levels and reduced infarct size after 30 min of left coronary artery ligation and 24 h of reperfusion [20].
In an isolated perfused rat heart model, we confirmed in two studies that IPC reduces infarct size and
increases cardiac O-GlcNAc levels [21,22]. In the first study, the increase in O-GlcNAc was induced by
enhanced OGT expression and activity [22]. In the second study, we demonstrated that cardioprotection
by IPC was associated with increased myocardial glucose uptake, which may also contribute to the
mechanism by which IPC increases O-GlcNAc levels [21]. To test the influence of O-GlcNAc in protection
by the more clinically relevant RIC, we demonstrated that dialysate from healthy volunteers exposed to
RIC improved post-ischemic recovery and increased myocardial O-GlcNAc levels in human isolated atrial
trabeculae subjected to IR injury (Figure 2) [23]. The cardioprotective effect and the increase in O-GlcNAc
were abolished by the GFAT inhibitor azaserine. In human non-diabetic trabeculae, the increase in
O-GlcNAc afforded by dialysate from healthy volunteers subjected to RIC was associated with increased
OGT activity and decreased O-GlcNAcase activity [23].
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In conclusion, an increase of cardiac O-GlcNAc levels is protective against IR injury. The protection
has been demonstrated in many different models, including cells, isolated heart models, and in vivo.
Protection against IR injury following IPC and RIC is associated with increase in O-GlcNAc levels,
predominately through increased OGT activity and increased glucose uptake.
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Figure 2. (a,b) Recovery of contractile force in atrial trabeculae from non-diabetic (a) and diabetic
(b) patients, perfused with control and RIC dialysate from non-diabetic and diabetic patients;
(c,d) O-GlcNAc levels in atrial trabeculae from non-diabetic (c) and diabetic (d) patients, perfused
with control and RIC dialysate from non-diabetic and diabetic patients; (e,f) OGT activity in atrial
trabeculae from non-diabetic (e) and diabetic (f) patients, perfused with control and RIC dialysate from
non-diabetic and diabetic patients; (g,h) O-GlcNAcase activity in atrial trabeculae from non-diabetic
(g) and diabetic (h) patients, perfused with control and RIC dialysate from non-diabetic and diabetic
patients. Data are mean ± SEM. Originally published Cardiovasc Res. 2013 Feb 1; 97(2): 369–378 [23].
Reproduced with permission.
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3. Mechanisms by Which O-GlcNAc Confers Protection

3.1. Calcium Overload

Calcium overload contributes to the detrimental cascade of IR injury. Similar to the effect
of IPC [46,47], increasing O-GlcNAc levels by glucosamine treatment protected against injury
resulting from calcium paradox [17]. The calcium paradox was established in isolated perfused
rat hearts, where calcium-free perfusion followed by perfusion with buffer containing physiological
calcium concentration led to cardiomyocyte injury [48,49]. Glucosamine treatment also blocked
ANG-II-induced calcium overload in neonatal rat ventricular myocytes [31]. The beneficial effects
were dependent on OGT [31]. More importantly, O-GlcNAc also attenuates calcium overload in IR
injury. In neonatal rat ventricular myocytes, glucosamine treatment and OGT overexpression increased
O-GlcNAc levels and attenuated hypoxia-induced calcium overload during reoxygenation, when
assessed by time-lapse fluorescence microscopy [24,50]. O-GlcNAcylation is known to be one of the
regulators of the inositol 1,4,5-trisphosphate (InsP3) receptor type I, a channel for intracellular calcium
release in many cell types [51].

In conclusion, O-GlcNAc may be involved in protection against IR injury through attenuation of
calcium overload (Figure 3). The mechanisms by which O-GlcNAc attenuates calcium overload are
not known. O-GlcNAc may regulate other calcium channels in the endoplasmic reticulum [51,52] or
mitochondria, but currently no evidence documents this speculation.
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Figure 3. Summary of potential mechanisms by which O-GlcNAc confers protection. The mechanisms
involve attenuation of endoplasmic reticulum (ER) stress, interaction with established cardioprotective
pathways, predominantly Akt, inhibition of mitochondrial permeability transition pore (MPTP),
attenuation of calcium overload, reactive oxygen species (ROS), heat shock protein (HSP), and cytokine
production that reduce systemic inflammatory response. Other abbreviations as in Figure 1.

3.2. mPTP Opening

Opening of the mitochondrial permeability transition pore (mPTP) is considered to be a critical
step in cellular death from IR injury. Opening of the mPTP causes depolarization of the mitochondria,
influx of solutes and water, mitochondrial swelling, rupture, and release of pro-apoptotic factors as
cytochome C [53–55].

The effect of O-GlcNAcylation on ROS generation in the setting of IR injury has been
sparsely evaluated. It has been demonstrated that augmenting O-GlcNAc levels by adenoviral
OGT overexpression or PUGNAc treatment attenuated hypoxia and oxidative stress-induced ROS
generation [50]. Notably, in contrast to this study, O-GlcNAcylation is thought to promote ROS
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generation in models of hyperglycemia and glucose toxicity [56]. The interplay between O-GlcNAc
and ROS is complex and not fully understood [57,58]. In the setting of chronic elevation of O-GlcNAc
by hyperglycemia or glucosamine treatment, ROS generation was elevated and cell death induced [59],
while more acute increase in O-GlcNAcylation attenuated ROS generation [50].

Increased intracellular O-GlcNAc levels attenuate the loss of mitochondrial membrane potential.
In neonatal rat cardiac myocytes, augmentation of O-GlcNAc levels by treatment with PUGNAc,
glucosamine, OGT overexpression, or O-GlcNAcase inhibition with a NAG-thiazoline derivative
significantly attenuated loss of mitochondrial membrane potential in a dose-dependent manner
after exposure to H2O2, as assessed by fluorescent cationic dye, JC-1, or TMRE fluorescence [20,25].
Increased O-GlcNAc levels also attenuated IR-induced loss of mitochondrial membrane potential.
Genetic overexpression of OGT, or inhibition of O-GlcNAcase, increased O-GlcNAc and protected
neonatal rat cardiac myocytes from cell death following hypoxia–reoxygenation, and aggravated the
loss of mitochondrial membrane potential assessed by changes in TMRE fluorescence. Pharmacologic
inhibition of OGT with TT04 exacerbated the loss of mitochondrial membrane potential and cell
death [26,28].

Substantial evidence documents that increased cardiac O-GlcNAc levels attenuate mPTP
opening [20,25,28,50,60]. Ngoh et al. demonstrated that in neonatal rat ventricular myocytes,
increased cardiac O-GlcNAc levels by OGT overexpression significantly delayed H2O2 mediated mPTP
opening, as assessed by changes in calcein fluorescence using time-lapse fluorescence microscopy,
while O-GlcNAcase overexpression accelerated H2O2 mediated mPTP formation [50]. O-GlcNAcase
inhibition with PUGNAc significantly mitigated mPTP formation [50]. Hirose et al. showed that
isoflurane treatment was cardioprotective in mice and in cardiomyocytes, and was associated with
elevation in O-GlcNAc levels [60]. The cardioprotective effect and increase in O-GlcNAc levels
were eliminated by the OGT inhibitor alloxan. Similar to Ngoh’s findings, Hirose showed that the
cardioprotective effect was associated with a delay of H2O2 mediated mPTP opening in isolated adult
cardiomyocytes, and the effect was abrogated by OGT inhibition [60]. Following IR of isolated neonatal
rat ventricular myocytes, increasing O-GlcNAc levels by glucosamine treatment, OGT overexpression,
and O-GlcNAcase inhibition using a NAG-thiazoline derivative decreased cytochrome C release,
reflecting attenuated mPTP opening [25]. Increasing cardiac O-GlcNAc levels enhanced the resistance
of isolated mitochondria cardiomyocytes towards calcium-induced mitochondrial swelling [20], also
reflecting attenuated mPTP opening. Accordingly, reduction in cardiac O-GlcNAc levels sensitized
isolated mitochondria to calcium-induced mitochondrial swelling [28].

The mechanism by which O-GlcNAc inhibits mPTP opening is not known, mainly because the
exact structure of the mPTP is not established and the identity and function of a variety of subunits are
not clear. The mPTP is thought to consist of several subunits that include several factors modifying
the transporter function. It is widely accepted that the pore consists of the voltage-dependent anion
channel (VDAC) in the mitochondrial outer membrane, the adenine nucleotide translocase (ANT) in
the mitochondrial inner membrane, the matrix protein cyclophilin D, and complex V ATP synthase.
Interaction between these subunits increases the sensitivity of the mPTP to calcium. The interaction
can be prevented in several ways [61]. Cyclosporine A inhibits mPTP opening through cyclophilin D
inhibition [62], while anti-apoptotic factors such as Bcl-2 interact with ANT to hinder opening of the
mPTP [61].

Mitochondrial subunit VDAC is subject to O-GlcNAc modification. In isolated cardiomyocytes,
PUGNAc elevated global O-GlcNAc levels and increased O-GlcNAcylation of the VDAC subunit, while
the cardiomyocytes simultaneously became more resistant to calcium-induced swelling compared with
those treated with vehicle [20,28,60]. O-GlcNAc also influences Bcl-2 levels. In neonatal rat ventricular
myocytes, glucosamine and OGT transfection increased O-GlcNAc levels, attenuated cell injury
following IR injury, increased mitochondrial Bcl-2 levels, and attenuated mitochondrial-mediated
apoptosis evaluated by assessment of cytochrome C loss [25]. Whether O-GlcNAcylation of VDAC or
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the O-GlcNAc induced increase in Bcl-2 prevents a direct interaction between the subunits and the
mPTP opening is not known.

Taken together, available data indicate that increased O-GlcNAc protects against IR injury by
attenuation of mPTP opening (Figure 3). The mechanisms are not fully understood, and it is not known
whether a direct effect of increased intracellular O-GlcNAc content and O-GlcNAcylation of mPTP
subunits, or an indirect effect through attenuation of calcium overload and ROS production prevails.

3.3. Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) maintains synthesis, folding, and transport of proteins.
Exposure to stress, such as IR, provokes ER stress, potentially leading to increases in unfolded
proteins and subsequent apoptosis [63,64]. Activation of the unfolded protein response (UPR)
promotes re-establishment of normal ER function, but prolonged ER stress activates a maladaptive
response of UPR ultimately leading to apoptosis. The transcription factor CCAAT-enhancer-binding
protein homologous protein (CHOP) is also involved in ER stress-induced apoptosis [65,66], and
PERK-mediated phosphorylation of eIF2α is thought to play a dominant role in the induction of CHOP
in response to ER stress [67,68].

O-GlcNAc mediated protection against IR injury may partially be mediated by modulation of ER
stress. In neonatal rat ventricular myocytes, pharmacological O-GlcNAcase inhibition using PUGNAc
augmented O-GlcNAc levels and reduced brefeldin A-induced ER stress, according to UPR-inducible
proteins Grp94, Grp78, and calreticulin levels. Increased O-GlcNAc levels blocked the activation
of maladaptive ER stress response as reflected by diminished CHOP activation, and mitigated ER
stress-induced cell death but not apoptosis, according to caspase-3/7 activity [29]. In a rabbit model of
renal ischemia, glucosamine treatment increased O-GlcNAc levels and protected against renal damage.
Glucosamine attenuated increase in CHOP and GRP78 expression during hypoxia, and decreased the
proportion of apoptotic cells [69].

O-GlcNAc may protect cells against ER stress-induced apoptosis through regulation of eIF2α
phosphorylation. In HepG2 cells, augmentation of O-GlcNAc levels by Thiamet G treatment or
OGT overexpression showed that eIF2α was O-GlcNAcylated at Ser 219, Thr 239, and Thr 241,
hindering phosphorylation of eIF2α and reducing CHOP activation [70]. Point mutation of the
O-GlcNAcylation sites of eIF2α increased eIF2α phosphorylation and CHOP activation, and was
associated with increased apoptosis upon ER stress [70].

Overall, O-GlcNAc mediated protection against IR injury seems to involve a reduction of ER stress
(Figure 3) through attenuated induction of CHOP, presumably by inhibition of eIF2α phosphorylation.

3.4. Inflammation

IR injury induces an inflammatory response with release of cytokines, activation of the
complement system, and activation of neutrophils [71]. IR also activates Nuclear Factor kappa-B
(NF-κB) during reperfusion, which may have a detrimental effect, as inhibition of NF-κB improves
outcome after IR injury [72,73]. In contrast, NF-κB activation may have a beneficial role in IPC.
A preconditioning stimulus seems to activate NF-κB, and pharmacological inhibition of NF-κB
abolishes the cardioprotective effect of preconditioning [74,75]. The finding is ambiguous because
protection in some models, including models of non-cardiac IPC, is associated with depression of
NF-κB [76–78].

O-GlcNAc has anti-inflammatory effects in a variety of cell types and models [79–82].
In a model of endoluminal arterial injury, the increase of proinflammatory mediator expression

(chemokines and adhesion molecules) was attenuated, and glucosamine or PUGNAc reduced
infiltration of leukocytes after balloon injury of the carotid artery [83].

Increased O-GlcNAcylation by glucosamine or Thiamet G administration has a neuroprotective
effect against IR injury through suppression of inflammation. Glucosamine and Thiamet G treatment
suppress induction of proinflammatory markers, IL1b, IL6, TNF-α, iNOS, and COX-2 [45,84]. Studies
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investigating the protection by O-GlcNAc through anti-inflammatory effects in classic IR injury models
beyond neuroprotection are scarce.

In a trauma–hemorrhagic shock model, PUGNAc administration increased O-GlcNAc levels,
improved cardiac function after resuscitation, and reduced plasma tumor necrosis factor-α (TNF-α)
and interleukin-6 (IL-6) levels 2 h after resuscitation [85,86], while inflammatory cytokines did not
differ 24 h after resuscitation [87]. In a similar model using not-resuscitated animals, glucosamine
treatment had no effect on TNF-α and IL-10 release [88], suggesting that reperfusion is necessary
for this protection mechanism to be involved. In a model of trauma–hemorrhagic shock and
resuscitation, an increase of cardiac O-GlcNAc levels by glucosamine treatment was associated with
attenuation of NF-κB activation. The nuclear translocation of NF-κB that leads to an inflammatory
and immune response is dependent on the phosphorylation of IκB-α, which leads to degradation by
the proteasome. Glucosamine attenuated the increase of IκB-α phosphorylation and the subsequent
NF-κB nuclear translocation, as well as the attenuation of the increase of mRNA of TNF-α, IL-6, and
ICAM-1 expression. Neutrophil infiltration was reduced, as evaluated by reduced MPO activity [89].
Similarly, in cultured cardiomyocytes, OGT overexpression attenuated LPS-induced increase in IκB-α
phosphorylation, ICAM-1, TNF-α levels, and NF-κB activation, while increased O-GlcNAc levels by
glucosamine treatment of mouse macrophage cells attenuated LPS-induced IκB-α phosphorylation
and iNOS expression [89]. Potential mechanisms by which O-GlcNAc attenuates NF-kB activation are
not clear, but may be by decreased IκB-α by inhibition of proteasome activity [90].

In vascular smooth muscle cells and human umbilical vein endothelial cells, increased O-GlcNAc
levels by PUGNAc or glucosamine treatment attenuated the TNF-α induced activation of NF-κB [91,92].
Phosphorylation of the p65 subunit of NF-κB is required for the transcriptional activation of
NF-κB. Glucosamine or PUGNAc treatment increased O-GlcNAcylation of p65 subunit of NF-κB,
which attenuated the TNF-α-induced phosphorylation of p65 subunit of NF-κB, subsequently
inhibiting activation of NF-κB and NF-κB mediated inflammatory response [91,92]. In a similar
model, augmentation of O-GlcNAc protected against TNF-α induced oxidative stress and vascular
dysfunction, while associated with inhibiting iNOS expression and suppressing the nitrotyros(yl)ation
of proteins [93]. Additionally in neuroprotection, a potential mechanism by which O-GlcNAc protects
against IR injury and O-GlcNAc regulates NF-κB activation could be by inhibiting translocation of
p65 [84].

Thus, available data suggest that O-GlcNAc mediated protection against IR injury involves
suppression of the inflammatory response through reduced induction of proinflammatory markers
(Figure 3), and attenuated NF-κB activation by hindering IκB-α phosphorylation and translocation
of p65.

3.5. Heat Shock Proteins

Heat shock proteins (HSP) are a group of proteins produced by the cell in response to stress stimuli.
They play a crucial role as chaperones in cell-cycle control, stabilizing, repair, folding, and unfolding
of proteins [84,94]. O-GlcNAc is involved in regulating the expression of numerous HSPs. Elevating
O-GlcNAc levels augments expression of HSPs by heat stress [14,95], while decreasing O-GlcNAc
suppresses expression of HSPs [96]. Expression of HSP70 and HSP72 may be protective against IR
injury through repression of apoptosis [97–99], because they are upregulated by a RIC stimulus [100].
Jones et al. showed that HSP70 levels were increased in cardiomyocytes that were protected by
PUGNAc against H2O2 injury [20]. Whether the augmentation of HSP70 was required for conferring
protection was not determined. In a study by Wischmeyer et al., administration of glucosamine
reduced infarct size after IR injury, but the authors found no change in HSP72 or HSP73 during the
course of the experiment [101]. HSP70 physically interacts with O-GlcNAc proteins through a lectinic
activity [102], such that O-GlcNAc seems to modify protein stability through specific interaction with
70-kDa-HSP members.
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O-GlcNAc may induce cardioprotection by stabilizing protein structure. However, further studies
are needed to determine the interaction between O-GlcNAc, HSP and protection against IR injury.

3.6. Interaction with Established Cardioprotective Pathways

The reperfusion injury salvage kinase pathway (RISK) conveys the cardioprotective stimulus
by IPC from the cell surface to the mitochondria through activation of survival kinases and
cytokines in the beginning of reperfusion. IPC activates PI3K, Akt, and downstream kinases such
as GSKβ by phosphorylation in a biphasic manner after the IPC stimulus, and in the beginning
of reperfusion [103,104]. Knowledge about the interaction between O-GlcNAc and PI3K/Akt
signaling in relation to protection against IR injury is scarce. An interplay between O-GlcNAc
and Akt phosphorylation has been acknowledged, but the biological significance has not been
fully characterized and understood [105]. While O-GlcNAcylation has been reported in some
studies to impair the Akt phosphorylation, resulting in insulin resistance [106] and induction of
apoptosis [107,108], studies in other settings report that the interplay between O-GlcNAc and Akt
inhibits apoptosis and provide cytoprotection in the kidney [109] and the liver [110].

Hu et al. suggested that acute augmentation of O-GlcNAc confers renal protection through
activation of PI3K/Akt. In this study, administration of glucosamine increased O-GlcNAc levels
and conferred renal protection against contrast-induced acute kidney injury. Augmented O-GlcNAc
signaling increased phosphorylation of Akt in Ser473, but not in Thr 308 and Thr450, and GSK-3β
in Ser9. The OGT inhibitor alloxan and the PI3K inhibitors Wortmannin and LY294002 blocked the
renoprotective effect. Immunoprecipitation demonstrated that O-GlcNAc modified Akt activity in
renal tissue [109]. In isolated cardiomyocytes subjected to hypoxia/reoxygenation stimulus, Akt
phosphorylation was increased during the first 30 min of reoxygenation. Pretreatment with Thiamet G
increased cell survival with no change in activation of Akt. Akt phosphorylation during reoxygenation
was enhanced by O-GlcNAcase inhibition with TT04, while cell survival decreased it [27]. Hence,
activation of Akt does not appear to be a mechanism of Thiamet G-mediated cytoprotection. However,
Akt phosphorylation may not have been measured in a timely way during reoxygenation, compared
to the changes in Akt described in the RISK pathway [101,103].

Other established pathways in protection against IR injury by IPC are the survivor activating
factor enhancement (SAFE) pathway [111] and nitric oxide (NO) pathway. O-GlcNAcylation generally
suppresses induction of TNF-α, which is activated in IPC [112]. The interplay between O-GlcNAc
and signal transducer and activator of transcription or NO-pathways has not to our knowledge been
investigated in the IR injury.

Thus, cardioprotection involves an interaction between O-GlcNAc and Akt (Figure 3), but it is not
clear whether O-GlcNAc mediated protection involves the RISK pathway.

3.7. Impact of O-GlcNAcylation on Cardiac Function

As in skeletal muscle (for recent review see [113]), several contractile and regulatory proteins
of cardiac muscle have been identified as being O-GlcNAcylated [114]. These observations strongly
support the idea that O-GlcNAcylation is involved in the regulation of contraction, or in its dysfunction.
O-GlcNAc is essential for cell viability. While acute activation of pathways that increase O-GlcNAc
levels improves tolerance of cells to a wide range of stress stimuli, sustained increase in O-GlcNAc
levels has been implicated in chronic disease states, in particular as a pathogenic contributor to
insulin resistance [42] and diabetic complications [115]. The consequences of chronically elevated
O-GlcNAc linked to metabolic disease may compromise cardiomyocyte [44] as well as vascular
function [116]. The contrasting beneficial effect of acute elevation of O-GlcNAc levels demonstrate
that this posttranslational modification system is extremely dynamic. However, the fundamental
mechanisms involved in regulating O-GlcNAc turnover and the precise regulation of its functional
consequences still remain limited.
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3.8. Impact of Diabetes Mellitus on O-GlcNAcylation and Cardioprotective Efficacy

Diabetes mellitus is associated with increased O-GlcNAcylation of intracellular proteins in
several cells and tissues, including cardiomyocytes [23], renal cells [117], pancreatic cells [118],
erythrocytes [119], and cornea [120]. Chronically increased O-GlcNAcylation contributes to
complications of diabetes mellitus, particularly insulin resistance [42], increased atherosclerosis [43],
and cardiac dysfunction [44].

Studies in animal models have demonstrated that diabetic animals have reduced susceptibility
to IR injury [121–126]. The tolerance is dependent on diabetes duration and the severity of
diabetes [122,126]. We documented that O-GlcNAc levels were elevated in atrial trabeculae from
diabetic patients, which was associated with improved hemodynamic function of the trabeculae.
Perfusion of atrial trabeculae from non-diabetic patients with dialysate from diabetic volunteers
increased O-GlcNAc levels, also conferring protection against IR injury (Figure 2) [23]. No further
increase in O-GlcNAc levels and no additional protection were achieved by RIC in trabeculae perfused
with dialysate from diabetic patients, or in trabeculae from diabetic patients, suggesting that type
2 diabetes per se activates, through augmentation of O-GlcNAc levels, an inherent cardioprotective
mechanism that may restrict further cardioprotection by RIC [23]. In a study of isolated hearts from
young Zucker diabetic fatty rats, we found a upwards tendency, although not a statistically significant
increase, in O-GlcNAc levels compared with non-diabetic rats. Diabetic rats were endogenously
protected with significant reduced infarct size after IR injury during normoglycemic conditions, but
not during hypoglycemia [21]. The association between IPC, infarct size reduction, and increase of
O-GlcNAc levels was found in both diabetic and non-diabetic animals [21]. In streptozocin-induced
diabetic isolated perfused hearts, diabetes improved recovery after exposure to the calcium paradox.
The improvement was associated with an increase in cardiac O-GlcNAc levels [17].

Altogether, the chronic elevation of O-GlcNAcylation in diabetes mellitus is associated with
complications of diabetes, but also seems to be involved in endogenous protection against IR injury.

3.9. Pharmacological Modulation of O-GlcNAcylation and Role for Cardioprotection

The most clinically applicably pharmacological modulation of O-GlcNAc levels can be achieved by
glutamine or glucosamine treatment, because both compounds increase O-GlcNAcylation and induce
cardioprotection against IR injury in rodents in vivo and in isolated heart models [18,19,24,25,101],
and rodents exposed to trauma hemorrhage [85,87–89]. In contrast, glutamine failed to provide any
protective effect in pigs [127]. Cardiac O-GlcNAc levels were not measured in this study, so it cannot
be ruled out that the lack of protection was due to an insufficient dose. The effect of oral glucosamine
treatment remains controversial [128], which may be due to insufficient intestinal absorption to secure
the needed increase in cardiac O-GlcNAc levels to induce cytoprotection.

Metformin induces cardioprotection against IR injury in the rat heart 24 h after administration [129].
The cardioprotective effect was associated with an increased AMPK activity, which is thought to be
an important signal mediator of the cardioprotective effects by metformin. Although speculations
about modification of O-GlcNAcylation may be attractive because metformin increases cellular glucose
uptake, no available data support this assumption. In a streptozotocin-induced diabetic mouse model,
eight days of metformin administration protected against retinal cell death by OGT inhibition and the
interaction between OGT and NF-κB [130]. While NF-κB is an important regulator of programmed cell
death, and elevated O-GlcNAc levels enhance NF-κB signaling, the findings may have implications
for chronic glucotoxicity, but they can hardly be extrapolated to acute IR injury. While studies of
glucose-insulin-potassium (GIK) infusion to patients undergoing cardiac surgery have shown a
cardioprotective effect [131,132], GIK infusion to patients with ST-elevation myocardial infarction
(STEMI) has yielded conflicting results about cardioprotective efficacy [133–135]. High dose GIK
therapy offers no clinical benefit at 1 year in patients with STEMI without signs of heart failure
treated with reperfusion therapy [136]. GIK treatment was associated with a significant increase in
O-GlcNAcylation of selected protein bands in the Hypertrophy, Insulin, Glucose and Electrolytes
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(HINGE) trial [137]. While the underlying mechanisms may be several, including improved
myocardial energy production efficiency during acute ischemia by high-dose glucose substituting
depleted myocardial potassium levels during ischemia and suppression of circulating levels and
myocardial uptake of free fatty acids, which are toxic to ischemic myocardium by insulin, the increased
O-GlcNAcylation may be an additional mechanism that may explain the beneficial effects of GIK
solution. Indeed, a recent experimental study demonstrated that glucose and insulin synergistically
reduced ROS production, protected neonatal rat ventricular myocytes dose-dependently from
apoptosis, and altered O-GlcNAc and OGT expression [138]. Efficacy seems to be dependent on
early administration before reperfusion, and seems to be associated with activation of cardioprotective
pathways rather than modulation of metabolism [139,140].

Volatile anesthetics have protective effects against IR injury [141–143]. The cardioprotective
effect of isoflurane is associated with increase in cardiac O-GlcNAc levels and abrogated by OGT
inhibitor alloxan [60]. Isoflurane induces O-GlcNAc modification of mitochondrial voltage-dependent
anion channel. This modification inhibits the opening of the mPTP, and confers resistance to
ischemia-reperfusion stress.

In conclusion, available data do not identify specific pharmacological compounds that
convincingly establish them as cardioprotective drugs by modulation of the HBP activity at present.
Increase of cardiac O-GlcNAc may be involved in the mechanism underlying cardioprotection by
volatile anesthetics, and supports the idea that pharmacologic modulation of O-GlcNAcylation may be
a potential target for future pharmacologic treatment.

4. Conclusions

Increased intracellular O-GlcNAc content is cytoprotective against a variety of stress stimuli,
including protection against IR injury. Studies on the involvement of O-GlcNAc in IPC are limited,
but cardioprotection against IR injury by IPC seems to be associated with increased O-GlcNAc levels.
Several of the mechanisms through which O-GlcNAc affords protection correlate with mechanisms
underlying IPC, including attenuation of calcium overload, inhibition of mPTP opening, reduction
of ER stress and apoptosis, suppression of the inflammatory response, and HSP expression. Thus,
O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that may be
activated by mechanical conditioning strategies.
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ANT Adenine nucleotide translocase
CHD Coronary heart disease
CHOP CCAAT-enhancer-binding protein homologous protein
DON 6-diazo-5-oxo-norleucine
ER Endoplasmic reticulum
GFAT L-glutamine-D-fructose-6-phosphate amidotransferase
GIK Glucose-insulin-potassium
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HBP Hexosamine biosynthetic pathway
HSP Heat shock proteins
IL-6 Interleurkin-6
IPC Ischemic preconditioning
IR Ischemia-reperfusion
mPTP Mitochondrial permeability transition pore
NAG 1,2-dideoxy-2′-methyl-α-D-glucopyranoso-[2,1-d]-δ2′-thiazoline
NButGT 1,2-dideoxy-2′-propyl-α-D-glucopyranoso-[2,1-d]-δ2′-thiazoline
NF-κB Nuclear factor kappa-B
NO Nitric oxide
O-GlcNAc O-linked β-N-acetylglucosamine
OGT Uridine-diphospho-N-acetylglucosamine:polypetptide-N-acetylglycosaminyltransferase
O-GlcNAcase β-N-hexoamininidase
PUGNAc O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate
RISK Reperfusion Injury Salvage Kinase pathway
RIC Remote ischemic conditioining
SAFE Survival activating factor enhancement
STEMI ST-elevation myocardial infarction
TNF-α Tumor necrosis factor-α
TTO4 2[(4-chlorophenyl)imino]tetrahydro-4-oxo-3-[2-tricyclo(3.3.1.13.7)dec-1-ylethel]
UDP-5SGlcNAc Uridine diphospho-5-thio-N-acetylglucosamine
UDP-GlcNAc Uridine-diphosphate-N-acetylglycosamine
VDAC Voltage-dependent anion channel
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