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ABSTRACT 
The paper introduces the concept of conditional inflation forecast uncertainty. It is proposed 
that the joint and conditional distributions of the bivariate forecast uncertainty can be derived 
from estimation unconditional distributions of these uncertainties and applying appropriate 
copula function. Empirical results have been obtained for Canada and US. Term structure has 
been evaluated in the form of unconditional and conditional probabilities of hitting the 
inflation range of ±1% around the Canadian inflation target. The paper suggests a new 
measure of inflation forecast uncertainty that accounts for possible inter-country dependence. 
It is shown that evaluation of targeting precision can be effectively improved with the use of 
ex-ante formulated conditional and unconditional probabilities of inflation being within the 
pre-defined band around the target. 
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1. INTRODUCTION 

Stimulated by the current uncertain economic climate, there has been an increasing interest in 
the measurement and evaluation of macroeconomic uncertainty. The research has 
predominantly focused on the development of the univariate conditional measures of 
uncertainty, describing it either for particular macroeconomic indicators (usually inflation or 
output, see e.g. Clements, 2014; Lahiri and Sheng, 2010; Lahiri, Peng and Sheng, 2014; 
Rossi and Sekhposyan, 2015; Rossi, Sekhposyan and Soupre, 2016 and others), or the 
aggregated macroeconomic, policy or behavioural uncertainty (Jurado, Ludvigson and Ng, 
2015; Tuckett et al., 2014; Baker, Bloom and Davis, 2016; Caldara and Iacoviello, 2018). 
These measures are usually significantly correlated among themselves, especially the 
indicators’ measures and the aggregated measures, as the former are often incorporated 
within the latter. However, this correlation is, in some cases, disappearing; particularly, 
inflation and macroeconomic uncertainties become, on the surface, unrelated. 

This paper claims that such lack of correlation might result from interrelations between 
inflation uncertainty for different countries. Section 2 provides motivation for the research by 
presenting rather puzzling result of such lack of correlation for Canada and its existence for a 
number of other countries. It is claimed that this was the result of conditioning inflation 
uncertainty in Canada on that in the US. Section 3 introduces measures and indicators of the 
bivariate, unconditional and conditional uncertainty. Section 4 gives the results of the 
estimation of the univariate (unconditional) uncertainties. Section 5 discusses main results for 
Canada and shows that the probabilities of inflation in Canada being within ±1% band around 
the target increases, especially for short forecast horizons, if conditioned on the US inflation 
being within similar bands. It shows that evaluation of targeting precision can be effectively 
improved with the use of ex-ante formulated conditional and unconditional probabilities of 
inflation being within the pre-defined band around the target. It also suggests a new measure 
of inflation uncertainty that is that is less affected by external inflation than the measures 
based solely on forecast errors. Section 6 concludes. 

2. MOTIVATION: WHAT HAPPENED TO CORRELATION BETWEEN THE 
UNCERTAINTIES? 

The motivation for this research has been provided by puzzling results of correlations 
between a rudimentary measure of inflation forecast uncertainty and economic policy 
uncertainty. Inflation uncertainty is evaluated simply by the squares of forecast errors made 
from a univariate ARMA-GARCH model (see e.g. Clements, 2014; Charemza, Díaz and 
Makarova, forthcoming). Table 1 contains Spearman’s rank correlation coefficients of the 
logarithms of such squares of forecast errors for the forecast horizons from 1 to 12 months 
with the logarithms of economic policy uncertainty index (EPU), described by Baker, Bloom 
and Davis (2016) and available at http://www.policyuncertainty.com/ for selected countries. 
The EPU is a three-component index, based on (a) the frequency of the use of world 
‘uncertainty’ in leading newspapers, (b) tax code provisions and (c) disagreement between 
the forecasters (so-called uncertainty by disagreement).1 For US, we have additionally 
included Spearman’s rank correlation coefficients of the forecast errors with the Jurado, 
Ludvigson and Ng (2015) measure of macroeconomic uncertainty, denoted as JLN, with data 
described in Jurado, Ludvigson and Ng, (2014). The period for which the correlations are 
computed is from January 1997 until December 2012, where the last data on the JLN index is 
available. P-values of the correlation coefficients have been computed by simple bootstrap. 

                                                
1 For some countries only first two components are applied. 

http://www.policyuncertainty.com/
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They are not reported here, but that correlation coefficient that are not significant at 10% 
level are boldfaced. 

Table 1 indicates that, except for Canada, there is a significant positive correlation between 
the squares of forecast errors and uncertainty measures for most forecasts horizons. Such 
correlation is in fact expected, as inflation forecast errors constitute a substantial component 
of macroeconomic uncertainty. However, for Canada, the correlation is predominantly 
insignificant. Closer inspection of data suggests that such breakdown in correlation was 
mainly caused by an unpredictable (by a univariate autoregressive model) fall in inflation in 
the first half of 1990’s, where the decline in Canadian inflation was preceded by an earlier 
inflation drop in US and therefore foreseen by the Canadian media. As media information 
constitute a relevant component of the political uncertainty, it affected the EPU earlier, than 
the changes in inflation happen.  

 
Table 1: Spearman’s rank correlation between uncertainty measures and 

squares of inflation forecast errors 

 EPU  
US_JLN  Canada France India Italy Spain UK US 

1 0.05 0.02 0.10 0.13 0.23 0.31 0.09 0.34 

2 -0.03 0.14 0.10 0.13 0.25 0.30 0.17 0.37 

3 0.01 0.10 0.15 0.17 0.39 0.42 0.22 0.43 

4 0.06 0.10 0.21 0.12 0.39 0.47 0.25 0.45 

5 0.09 0.17 0.28 0.11 0.35 0.46 0.26 0.46 

6 0.06 0.21 0.30 0.15 0.28 0.47 0.25 0.47 

7 0.09 0.19 0.26 0.20 0.20 0.53 0.23 0.48 

8 0.14 0.15 0.26 0.18 0.14 0.53 0.27 0.48 

9 0.17 0.15 0.27 0.20 0.15 0.49 0.30 0.49 

10 0.16 0.18 0.34 0.23 0.18 0.42 0.32 0.49 

11 0.17 0.22 0.22 0.23 0.22 0.39 0.33 0.49 

12 0.20 0.24 0.25 0.20 0.22 0.36 0.33 0.47 

 
Ad-hoc reflection is that there might be an influence of the US inflation uncertainty on that of 
Canada. If the US inflation uncertainty affects, possibly with some lag, Canadian uncertainty, 
a natural way to proceed would be to model Canadian inflation jointly with the US inflation 
and analyse the Canadian inflation forecast uncertainty conditionally on that of the US. 
3. MEASURING THE DEPENDENCE BETWEEN UNCERTAINTIES 

We traditionally define the observations on the ex-post forecast uncertainty for the forecast 
horizon h made at time t h  as the rolling sequence of pseudo out-of-sample forecast errors 
(see e.g. Stock and Watson, 2007). These forecasts are usually obtained from a time series 
econometric model and possibly adjusted for variance predictability. Under the assumptions 
of stationarity and ergodicity of these errors, we assume that they stand for realisations of a 
random variable, denoted by ,

i
t hU , where i represents the i-th country. 

We consider the bivariate ex-post forecast uncertainty for countries 1 and 2, 

 '(1) (2)
, , ,,t h t h t hU U U  given by: 
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1/2 1/2
, , | |( )t h t h t t h t t t hU  

     ,      (1) 
 

where t  is the bivariate vector containing the inflation in both countries in period t, |t t h   is 

the vector containing the corresponding forecasts made at time t-h for the period t, ,t h  is the 

unconditional covariance matrix of the h step ahead forecast errors at time t and |t t h  is the 
conditional covariance matrix made at time t-h for time t. The variable ,t hU  is, then, net of all 
information available at the time of making the forecast regarding its first two moments. The 
bivariate density of ,t hU  is denoted as ,(0, )t hD  . The unconditional distributions of (1)

,t hU  and 
(2)
,t hU  can be approximated by a variety of statistical distributions. Unfortunately, the 

analytical forms of the bivariate distributions mentioned above might not be of much use here 
(even if they were known). Firstly, the dependence between forecast uncertainties might be 
different for lower and upper tails of their distributions and, for the policy analysis, 
asymmetric dependences of macroeconomic indicators might be of particular interest.  

Secondly, due to different monetary policies pursued by countries 1 and 2, types of the 
unconditional distributions might be different. For instance, country 1, which implements 
inflation targeting successfully, might have the distribution of inflation forecast errors well 
described by the WSN distribution, while country 2, which pursue a different policy, might 
have the empirical distribution of forecast errors better described by the TPN distribution. 

In the light of these difficulties, we propose to evaluate the bivariate density of ,t hU  defined 
by (1) by approximating the unconditional densities using a univariate parametric density and 
then modelling the dependency using copulas. Let 1F  and 2F  be the unconditional 
cumulative distribution functions (cdf’s) of the uncertainties in both countries and 1f  and 2f  
the corresponding probability density functions (pdf’s). We can obtain the joint cdf as 

   12 1 2 1 2;, ,F x x C u u  ,      (2) 

where  1 1iu F x ,  2 2ju F x  with 1 2,x x   and 2:[0,1] [0,1]C   is a copula function 
which depends on parameter  . Sklar’s (1959) Theorem shows that if both unconditional 
cdf’s are continuous then, the copula is unique, so that ( , )C    can be considered a cdf itself 
(we limit our interest here to one-parameter copulas). Also, if the copula is twice 
differentiable, we can define   2

1 2 1 2 1 2, | ( , | ) /c u u C u u u u      as the density function of 
the copula and, differentiating (2), we can express the joint density of (1) as  

 12 1 2 1 2 2211;( ,   (, )) ) (f x x c u u f x f x   .    (3) 

Although the copula parameter   can be estimated jointly with the parameters of the 
unconditional distributions by the maximum likelihood directly from (3), this can be 
numerically awkward if the unconditional distributions are difficult to estimate. Because of 
that we use the Inference Function for Margins (IFM) approach described in Joe and Xu 
(1996). This is a two-steps estimation method which consists of: 

1. estimating the parameters of the density functions of the unconditional distributions; 
2. estimating the copula parameter by the maximum likelihood by plugging in the 

probability integral transforms (pit’s) of the marginals into the copula density (3). For 
the details of the algorithms see Durrelman, Nikeghbali and Roncalli (2000). 
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Finally, developing from the joint density of uncertainties (3), we can evaluate the density of 
inflation uncertainty in country 1 conditional on inflation in country 2 being in a certain range 
[a, b] around its point forecast as 

   
12 1 2 2

1|2 1 2

2 2 2

( , )
|

( )

b

a
b

a

f x x dx
f x a x b

f x dx
  




  .     (4) 

Knowledge of (4) can be of a relevant practical importance. In particular, policy makers in 
country 1 can assess the probabilities related to changes in monetary policy in country 2, for 
instance, the probability of hitting the inflation target band. More generally, they can evaluate 
the conditional term structure of inflation, which is changes in uncertainty with the changes 
in forecast horizon (see Patton and Timmermann, 2011).  

4. ESTIMATING UNIVARIATE FORECAST UNCERTAINTIES 
Motivated by the puzzling lack of correlation between inflationary forecast errors and the 
EPU index for Canada, discussed in Section 2, we focus on the interrelations between the 
Canadian and US forecast uncertainties. The raw data we used are monthly data on annual 
CPI inflation in Canada and US from January 1985 until October 2014. As the Canadian 
inflation targeting is often discussed in terms of the core rather than headline inflation, we 
have also applied data on the core inflation for Canada2. Inflation in both countries has been 
found to be I(1); therefore the model has been estimated in first differences, using 358 
observations in total. The first recursion is made with 80 observations, which gives 278 one 
step ahead forecast errors, 257 two-step ahead errors, etc.. In each recursion, for the time 
period until t h , in order to account for second order predictability, the two-equation VAR-
BEKK-GARCH(1,1) model for the Canadian and US inflation with seasonal dummies in its 
deterministic part has been estimated (for the discussion of the assumptions and properties of 
the BEKK-GARCH model and its comparison with other multivariate GARCH models see 
e.g. Silvennoinen and Teräsvirta, 2009). The autoregressive order of the model had been 
chosen as the minimal for which the residuals’ autocorrelation is not significant at 5% 
significance level. In order to avoid spurious dependence between the corresponding h-step-
ahead forecast errors for 1h  , forecasts have been made from the moving average rather 
than autoregressive form of the model (see e.g. Lütkepohl, 2007, p. 94). Forecasting gives h-
step ahead forecast errors |t t he  , up to h=24 months. The conditional and unconditional 

variance-covariance matrices of |t t he  , denoted in (1) as |t t h  and ,t h , have been estimated 
using variance-covariance matrices obtained for the estimated VAR-BEKK-GARCH(1,1) 
model. Then, using a rolling window of the length of 120, we have estimated 158 
distributions of one-step-ahead forecasts for both countries, 157 of two-step-ahead forecasts 
and so on. 
As the first step of the IFM estimation method is to evaluate the parameters of the 
unconditional distributions, we start with choosing the most appropriate distribution of the 
marginals. As this is somewhat arbitrary, we have decided to choose from two distributions 
used for modelling forecast uncertainties, namely the two-piece normal (TPN; see Tay and 
Wallis, 2000; Wallis, 2004) and the weighted skew normal (WSN, see Charemza, Díaz and 

                                                
2 Data on US CPI are from the Bureau of Labor Statistics at http://www.bls.gov/cpi/ . Canadian price data are 
from CANSIM (http://www5.statcan.gc.ca/cansim/home-accueil?lang=eng ). Data for core inflation for Canada, 
are under header CANSIM-V41693242. 

http://www.bls.gov/cpi/
http://www5.statcan.gc.ca/cansim/home-accueil?lang=eng
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Makarova, forthcoming). Parameters of these distributions can be interpreted in the context of 
policy effects. The TPN has the density function with three parameters and is defined by 

 
 

2 2
1

1 2 2 2
2

exp ( ) / 2 if
( ; , , )

exp ( ) / 2 if
TPN

A t t
f t

A t t

  
  

  

    
  

, 

where   1

1 22 ( ) / 2A   


  . If 2 2
1 2   it becomes normal and the deviations from 

normality (that is the differences between the estimates of 1  and 2 ) are interpreted as the 
effects of the balance of risks given by over-and underestimated forecasts (see Wallis, 2004). 
WSN is the 5-parameters’ distribution, with the density function given, after normalization 

/U U   , where   is the standard deviation of U , as: 

1 2 2

2 2

1 1( ; , , , , )
(1 ) (1 )

( )
1 1

WSN

B t kAB t mAt tf t m k
A A A AA A

m t k tt

  

    

    
 

 


 

                             
            

         

 , 

 
where  and  denote the density and cumulative distribution functions of the standard 
normal distribution respectively, 21 2A     , and B    . If 0   , WSN 
reduces to normal distribution. In the general case, parameters 0   and 0   can be 
interpreted as the effects of the anti- and pro-inflationary policy respectively in reducing 
inflation uncertainty, m  and k  represent the tolerance level to the nuisance (not strong 
enough) forecast signals coming from outside of the model and (0,1)   describes the 
degree of accuracy of these forecast signals (see Charemza, Díaz and Makarova, 
forthcoming).  

It is shown that the maximum likelihood estimation of skew normal distributions can be 
subject to bias and convergence problems (see e.g. Pewsey, 2000, Monti, 2003). Therefore, 
the estimation procedure applied here is the Simulated Minimum Distance Estimator (SMDE) 
method of Charemza et. al. (2012). The SMDE is defined as 

  , 1
ˆ arg min ( ,

RSMDE
n n r r

HD d f 


 


    , 

where k   , ,rf   is the Monte Carlo approximation of the theoretical probabilities of 
the estimated distribution obtained from R replications for each combination of parameters 
within the admissible area, nd  denotes the density of empirical sample of size n, HD is the 
distance measure and   is an aggregation operator. This method, albeit relatively slow and 
not very precise (as it relies on the accuracy of the grid search algorithm applied), does not, 
however, suffer from convergence problems. The distance measure chosen here is the 
Hellinger distance (see e.g. Basu, Shioya and Park, 2011) which is known to be robust to 
outliers. To make results comparable, three parameters have been estimated for each 
distribution: 2

1  , 2
2  and  for the TPN and , β and , with three remaining parameters 

fixed as  = 0.75 and 1m k   .  
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Detailed estimation results, for all forecast horizons and all rolling windows, are available at 
http://pramu.ac.uk . Selection of unconditional distributions has been made using the forecast 
accuracy tests, also available at http://pramu.ac.uk. The tests applied are: (1) the Cramer-von 
Mises test of uniformity of the probability integral transforms (pit’s), Jarque-Bera test of 
normality of pit’s transformed to normality (see Berkowitz, 2001) and, (3) the Amisano and 
Giacomini (2007) test for direct comparison of the distributions. Results of all these tests 
almost universally support the superiority of WSN over TPN for both Canada and US. 
Consequently, we base a further investigation on using WSN as the unconditional 
distributions for both countries. 
5. COPULA ESTIMATION AND CONDITIONAL FORECASTING 

Once the unconditional distributions of uncertainties are decided, we model the joint density 
as in (3). We have experimented with a number of different copula functions, and we have 
finally decided to use Frank’s copula as it is capable of modelling strong asymmetric 
dependence between non normal skewed distributions, without favouring neither the upper 
nor lower tail (for some discussion of the properties of Frank’s copula see e.g. Assunção, 
2004, Lin and Wu, 2015). The expressions of this copula and its density are, respectively  

  1 21
1 2, log([ (1 )(1 )] / ); u uC u u e e            , 

     1 2 1 2 2
1 2, / [ (1 )(1 )]; u u u uc u u e e e              ,   (5) 

where the copula parameter [0, )    and 1   . Following the IFM procedure, we 
estimate the copula parameter by maximizing  1 21

g ;lo ,T
t tt

c u u 
 . The conditional density 

can be then evaluated using (4) for the pairs of observations on uncertainties separately for 
each forecast horizon. . As the natural and easily interpretable condition we set the bands of 
inflation in the US as 2%±1%, that is around the 2% of US inflation target. The 2% target for 
inflation has been officially set in January 2012, but in practice was used earlier in the form 
of the ‘desired inflation’. In Canada, the 2% inflation target was established in late 1995. 
Figure 1 shows inflation in Canada and US with the ±1% bands indicated. 

Figure 1: CPI Inflation in Canada and US, January 1992-October 2014 

  

  
 
Usually, the term structure of inflation forecast is expressed by the sequence of standard 
deviations of uncertainty for each forecast horizon (see Clements, 2014). However, we have 
decided to express it by the average (across rolling windows) probabilities of the Canadian 
inflation being within the target bands. In the context of inflation targeting this seems to be a 
natural and more easily interpretable measure.  

http://pramu.ac.uk
http://pramu.ac.uk.
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Let us denote by 
( )ˆ

( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ( ) ( ; , , , ,0.75)WSNf t f t


   
       the estimated WSN density 

function where ( ) ( ) ( )ˆˆ ˆ, ,      are the SMD estimates of the WSN parameters for Canada  

( 1  ) and U.S. ( 2  ). The corresponding cdf’s are denoted by F̂ . The unconditional 
probabilities of the Canadian inflation being within the [a,b] range, where 1a    and 3b  , 
are: 

1 1 1
ˆ ( )

b

a

f x dx  ,  

The (conditional) probabilities of the Canadian inflation being within the [a,b] range, where 
1a   and 3b  , given that the US inflation be within the [1%,3%] are, following (3) and (5), 

given by: 

   
 1 1 2 2 1 1 2 2 1 2

2 2 2

ˆ ˆˆˆ ˆ( ), ( ); ( ) ( )

ˆ ( )

b b

a a
b

a

c F x F x f x f x dx dx

f x dx

 


    ,  

where ̂  is the estimated parameter of the Frank’s copula.3 

Table 2 gives, in columns (1) and (5), the averaged unconditional probabilities of inflation 
being within the [1%,3%] interval, and, in columns (2) and (6), conditional probabilities for 
selected forecast horizons, for the headline and core inflation in Canada respectively. 
Standard errors are reported in brackets below the averages. In columns (3), (4), (7) and (8) 
the corresponding rudimentary sharpness measures of forecasts are given (see Gneiting, 
Balabdaoui and Raftery, 2007; and Mitchell and Wallis, 2011). The idea of sharpness 
measures is such that the density forecast should be concentrated around the realized value 
(observed ex-post) if the model forecasts accurately. The measure used here is the average 
(unconditional or conditional) probability of the Canadian inflation being within the [1%,3%] 
band computed for the cases where inflation (ex-post forecast realization) actually was within 
this band. For a ’sharp’ forecast, such measure should be higher than the corresponding 
unconditional and conditional probabilities. 

All probabilities in Table 2 decline monotonously with the increase in the forecast horizon, 
indicating a typical forecast term structure (or fan chart) pattern, where the uncertainty 
increases with the increase in the forecast horizon. The conditional probabilities are, as 
expected, higher than the corresponding unconditional ones. The differences diminish with 
the increase in the forecast horizon, indicating some convergence of the unconditional and 
conditional distributions. This is also illustrated in Figure 1, where the probabilities are 
plotted for all forecast horizons up to 24. The sharpness measure is, in most cases greater than 
the corresponding probabilities. Standard deviations for all probabilities are relatively high, 
particularly for shorter forecast horizons. This might indicate changes in parameters of the 
estimated distributions over time. 
The probabilities obtained for core inflation uncertainty are markedly higher than that for the 
headline inflation uncertainty. Also, the differences in the conditional and unconditional 
probabilities are greater for core rather than headline inflation, particularly for shorter 
forecast horizons. On the one hand, it confirms that the core rather than headline inflation has 

                                                
3 Programming have been made in GAUSS 12 and computations performed on the high powered parallel 

computer HPC ALICE at the University of Leicester. Computational details and codes are available from the 
authors. 
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been efficiently targeted. On the other hand, however, it indicates that the effects of the U.S. 
inflation uncertainty onto the Canadian core inflation uncertainty is greater than that on the 
headline. As the U.S. inflation is outside the reach of the Canadian monetary policy, it 
suggest a possible way of improvement in setting up an effective inflation indicator for 
Canada, which should be net of the U.S. inflation effects. High probabilities of hitting the 
band close to the inflation target, both unconditional and conditional, confirms the rationale 
of the way Bank of Canada constructs its core inflation measure.  
 

Table 2: Average probabilities of inflation in Canada being  
in the interval [1%,3%] 

 

for. 
hor 

headline inflation core inflation 

uncond. 
prob. 

cond. 
prob. 

sharpn. 
uncond. 
prob. 

sharpn. 
cond. 
prob. 

uncond. 
prob. 

cond. 
prob. 

sharpn. 
uncond 
prob. 

sharpn. 
cond. 
prob. 

(1) (2) (3) (4) (5) (6) (7) (8) 

3 
0.69 

(0.32) 
0.73 

(0.33) 
0.72 

(0.30) 
0.79 

(0.30) 
0.79 

(0.40) 
0.96 

(0.16) 
0.79 

(0.39) 
0.97 

(0.14) 

6 
0.62 

 (0.26) 
0.67 

(0.27) 
0.61 

(0.27) 
0.70 

(0.27) 
0.89 

(0.29) 
0.96 

(0.15) 
0.88 

(0.30) 
0.96 

(0.15) 

9 
0.58 

(0.22) 
0.62 

(0.22) 
0.56 

(0.23) 
0.61 

(0.23) 
0.87 

(0.31) 
0.96 

(0.16) 
0.87 

(0.33) 
0.95 

(0.16) 

12 
0.53 

(0.20) 
0.58 

(0.19) 
0.54 

(0.19) 
0.57 

(0.19) 
0.88 

(0.28) 
0.95 

(0.16) 
0.90 

(0.28) 
0.95 

(0.17) 

15 
0.50 

(0.17) 
0.52 

(0.17) 
0.51 

(0.18) 
0.52 

(0.18) 
0.93 

(0.21) 
0.94 

(0.17) 
0.93 

(0.20) 
0.94 

(0.17) 

18 
0.48 

(0.16) 
0.49 

(0.17) 
0.49 

(0.15) 
0.48 

(0.16) 
0.92 

(0.21) 
0.94 

(0.18) 
0.92 

(0.21) 
0.93 

(0.18) 

21 
0.45 

(0.15) 
0.46 

(0.15) 
0.47 

(0.14) 
0.47 

(0.13) 
0.92 

(0.20) 
0.93 

(0.17) 
0.93 

(0.20) 
0.93 

(0.17) 

24 
0.43 

(0.14) 
0.44 

(0.14) 
0.42 

 (0.15) 
0.45 

(0.13) 
0.92 

(0.20) 
0.94 

(0.15) 
0.99 

(0.20) 
0.94 

(0.15) 
 

Figure 2: Average conditional and unconditional probabilities of hitting 
the [1% - 3%] inflation band in Canada 

 
With the use of the conditional and unconditional probabilities of inflation being within the 
[a,b] range it is possible to forecast effectively the inflation targeting precision. Figure 3 
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shows plots of such conditional probabilities for Canada for forecast horizons 2 and 7 plotted 
alongside the simple measure of precision of inflation targeting, defined as the absolute value 
of the difference between the headline inflation and target inflation (that is, 2%). Forecast has 
been shifted backwards by one horizon, so that the two-steps ahead probabilities are plotted 
against inflation observed in time 1t h  , that is, are treated as one-step ahead forecasts. 
Analogously, the seven-steps ahead probabilities are treated as six-steps ahead forecasts. For 
the sake of plot clarity, we have plotted the complements of the conditional probabilities to 
one, that is the probabilities that inflation is outside the [1%,3%,] range rather than inside. 

 
Figure 3: Inflation targeting precision in Canada and the conditional 

probabilities of inflation being outside the [1%,3%] range, January 2003-
December 2013 

2h   7h   

  
 

The plots show reasonable accuracy in explaining deviations of inflation from target, even of 
the reasonably large horizon. The probabilities that the short-term forecast has not missed the 
target band follow closely the inflation targeting precision, relevant large deviations and the 
longer-term forecast, with probabilities approaching unity for January-March 2003 and May-
September 2008. The main peaks in inflation targeting precision for the longer-term forecast 
also coincide with the conditional probabilities approaching unity. 

On the basis of the probabilities discussed above we can construct an uncertainty measure 
that, unlike the squares of the ARMA-GARCH forecast errors (see Table 1) correlates with 
the EPU index. It can be formulated as a squared forecast error scaled by the odds of the U.S. 
inflation being outside the [1%,3%] zone, by the unconditional probabilities. Denoting such 
measure as ,t hum  we can write is as 

2

2 2 2
(1)

, ,

2 2 2

ˆ1 ( )

ˆ ( )

b

a
t h t h b

a

f x dx
um U

f x dx

 
 

  
 
 
 




  , where 1a   and 3b  . 

and, as before Canada and U.S are denoted by 1 and 2 respectively. The intuition here is such 
that and increased odds for uncertainty in U.S. being outside the range affects positively the 
Canadian uncertainty. As such information is might find its way to the media (but not to the 
VAR-BEKK-GARCH model directly), such correction should increase the correlation of the 
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new uncertainty measure with the EPU index. Table 3 gives the Spearman’s rank correlation 
measures of ,t hum  with EPU for 1,2,...,12h  .  

Table 3: Spearman’s rank correlation coefficients between EPU and ,t hum   

f.hor 1 2 3 4 5 6 

 0.09 0.11 0.22 0.39 0.31 0.36 

f.hor 7 8 9 10 11 12 

 0.41 0.42 0.38 0.42 0.37 0.37 

Legend: coefficients not significant at the 10% significance level are 
boldfaced. P-values used for testing have been obtained by simple 
bootstrap. 

 

The rank correlation coefficients for forecast horizons of 1 and 2 remain insignificant, as they 
are for some other countries listed in Table 1. However, for longer forecast horizons, the 
coefficients become significant, which is in line with the results of correlation of EPU with 
inflation forecast uncertainty for other countries.  

6. CONCLUSIONS 
We managed to shed a new light on the puzzling absence of correlation of the inflation 
forecast uncertainty and the economic policy uncertainty index. We argue that the presence of 
dependence between such uncertainties between countries might cause such effect. For such 
cases we propose a new method for constructing an inflation term structure. The method is 
conceptually simple, albeit computationally awkward. Its application can lead to an 
improvement in foreseeing uncertainty related to inflation and enables computation of term 
structure relatively to the performance of another country, or economic alliance. It also 
suggests a potentially new way of computing uncertainty measures. We exemplify the 
concept by the analysis of the Canadian inflation forecast term structure, but our technique 
can also be applied, for instance, for evaluating the inflation forecast term structure for the 
European Union countries outside the Eurozone relatively to the policy of the European 
Central Bank. For Canada, the results look promising. It has been possible to forecast 
effectively the deviations of inflation from its target using conditional and unconditional ex-
ante probabilities of inflation being within a certain band around the target. The results also 
confirm the rationale for using core inflation in inflation targeting and suggest a way of 
eliminating the effect of external inflation uncertainty onto such measure. 
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