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Abstract: The distribution of nitrogen oxides (NG@lux within the cross-section area

in front of ammonia injection grid (AlIG) under different operating conditions was
obtained by computational fluid dynamics (CFD) method. Weight of tN@ in the
sub-zone corresponding to each of the ammonig)Ntjection branch-pipes of AIG
system was analyzed and the sensitivity of which against the plant power load was
figured out. A number of “critical” ammonia injection branch-pipes were determined
with regard to the weight sensitivity analysis. The selected “critical” branch-pipes
were changed to be controlled by the automatic valves, and an intelligent tuning
strategy was proposed. The MRH3; mixing stoichiometry over the cross-section
area in front of AIG system was significantly modified for the high utilization ratio of
ammonia. A case work was launched on the selective catalytic reduction (SCR)
system of a 660 MW plant. As a result, the ammonia consumption rate (ACR) was
found to be reduced by 6.44% compared to that under previous control system, and
was 9.31% lower than that of the unapplied system. The methodology for determining
the *“critical” branch-pipes and intelligent tuning strategy of ammonia injection
notably saved the ammonia consumption of SCR system, and the formation of
ammonium bisulfate (ABS) were greatly confined.

Key Words: SCR system, NGIlux distribution, ammonia injection grid, intelligent
control, ammonium bisulfate

1. Introduction

Nowadays, N serving as a class of nitrogen-containing atmospheric pollutant
have been attracting more and more public attention [1,2]. Coal-fired power plants in
China which used to be the largest source of Meing compulsively carried out a
retrofit of ultra-low emission with respect to NOIt is regulated that the
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concentration of NQemission from coal-fired power plants with the aeipy above
300MW should be lower than 50mginbefore 2020 [3,4]. Otherwise, those
substandard units would be forced to shut down.

SCR flue gas denitrification technology has beemlelyi adopted in most
coal-fired power plants due to its mature technigue high efficiency. More
importantly, the SCR flue gas denitrification teology can be readily controlled in
terms of the molar ratio of ammonia to nitrogerg tihharacteristics of catalyst and so
on [5-8]. In a typical ultra-low emission retrofiiree-layer SCR catalyst technique
was generally applied. The denitrification effimgnwas found to be greatly
improved when the reaction time between catalyst fare gas was being properly
prolonged. It needs to be noted that a remarkatieease in the concentration of
sulfur trioxide (SQ) occurred at the exit of SCR system due to thengtoxidation of
the commercial catalyst employed [9-11]. On theepthand, the ammonia escape at
the exit of SCR system was also foundotaviously increase resulting from the
inferior operation strategy of NHnjection [12]. The gaseous ABS was massively
generated due to the simultaneous increase ofrtimecaia escape, which was prone
to be condensed at the cold-side of air prehe@her.strong stickiness of ABS (liquid
phase) was open to adhere fly ash of the flueg#setwall of air preheater [13]. As a
result, the problems of ash accumulation and camo®f the cold-side of air
preheater were suffered, which consequently letthéoincreasing flow resistance of
flue gas and even the decline of boiler efficie[lc4+16].

Due to the difficulty in directly controlling theCRR catalyst, to reduce ammonia
escape appears to be the key point to ensure ftheusd economical operation of the
unit after retrofit. Among various techniques adaptthe tuning of NHlinjection has
been considered as the most feasible and pronmusiadl17-19].

A great inhomogeneity of the velocity of flue gaglahe concentration of NO
can be observed in the entrance section of SCReraysiwing to the operation
adjustment of the boiler, the transformation of #teictural parameters of the flue,
and so on [20-23]. The NQIux in the sub-zone of the cross-section in frohAIG
varied with the power load of plant [24]. Accordiypgit is difficult to make the
NO./NH3; mixing ratio in SCR system approximate the desnaib based on the
traditional NH injection strategy (equal or fixed distribution d®&). Herein, a
strategy for the intelligent automatic tuning of NiHjection in SCR system matching
the concrete distribution characteristics of Nflux is highly required via the
optimization of NQ/NHz mixing ratio.

A technique for analyzing the weight of N@ux in the sub-zone corresponding
to each NH injection branch-pipe in AIG system was proposegether with the
weight sensitivity of the branch-pipe. The “criitammonia injection branch-pipes
of AIG system were determined with regard to thégivesensitivity analysis, giving
the intelligent ammonia injection strategy. Afteetlaunch of the technology on the
SCR system of a 660 MW power plant, it was fourat the ammonia consumption
of SCR system can be notably saved, while the foomaf ABS and the corrosion of
cold-side of air preheater was confined.
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2. Research method

2.1. Object of the case work

One side of a SCR system with the capacity of 68U Was studied in this paper,
which had been achieved the requirement of ultwvadmission through the method of
three-layer catalyst arrangement. A three-dimeragituil scale geometry model with
the 40 separate inlet boundaries and 5 internalegpiates was established including
the flue between the inlet of the SCR system aerdctbhss-section of AlG, as shown
in Fig. 1. The total number of meshes in the caazg about 1.01 million.

Y

AIG cross section
X
\ z
,‘ e \

y

Fig. 1. A geometry model established in the case.
A district controlled AIG with different branchingject groups of three types

was adopted in the object studied of the case wetkch was composed of 14
identical branching inject groups for each typee Thixed gas of Nkland air is
injected to the flue by the above 42 branchingdhgroups. Accordingly, 42 manual
butterfly valves with the function of tuning the aumt of gas injected were installed
on each main-pipe of 42 branching inject groupgsehmanual butterfly valves could
be divided into three types corresponding to thasdin criteria of branching inject
groups, and they were numbered U, M, L in turn,olvhs respectively the initials of
upper, middle, and lower. The total amount of thixemh gas to participate the
denitrification reaction was redistributed throwsgith a district controlled AIG on the
basis of the NQflux distribution in the flue.

2.2. Acquisition and utilization of non-uniform inlet boundary

The velocity and NQ concentration of flue gas against 7 sets of st&ime
conditions were obtained through the 10 temporasy lioles available at the entrance
position of the SCR system studied. Discrete measent grid of 40 nodes within the
inlet cross-section of the SCR system was set up thie arrangement of total 4
measuring depths of 500mm, 1200mm, 1900mm and 2@0fémeach temporary test
hole. As a result, the corresponding 40 sub-zooesralled by 40 discrete-nodes at
the inlet position were formed hypothetically. Ty flux distribution on the said 40
discrete-nodes in the inlet cross-section of th&® S¢stem was acquired through the
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product of velocity and N concentration of flue gas on the corresponding
discrete-node. The actual amount of N@assing through those 40 controlled
sub-zones could be accurately described by empidiie index of NQflux.

The final values adopted of the NQoncentration or velocity on each
discrete-node was obtained through the arithmetarmof 3 sets of the measured
records to ensure the accuracy of data acquisitibe.measurement of each set of the
flue gas velocity was realized by using a microspuge gauge and a pitot tube of S
type with a correction factor of 0.85, and the ,N®@lume concentration of each set
was carried out through applying the Testo 350 snaotalyzer. The transformation of
NOx mass concentration and the standard state, thedudtion of the area of the
corresponding controlled sub-zone should be caoigdo obtain the final NOflux
distribution.

Thus, a non-uniform inlet boundary closely assecdatith the operating
characteristics of the SCR system studied was forb@sed on the 40 sub-zones of
discrepant input parameters from an overall petspecBut from a local point of
view, a uniform inlet boundary within each sub-zomas adopted according to the
mean of the data acquisition.

In this case, the parameters of the velocity irdeundary condition and
component transport model were closely relatedhto drea of the corresponding
sub-zone and the final adopted measured valuesi@n discrete-nodes. The specific
inlet boundary parameters of the 600MW load coadittould be found in the table
S1 of supplementary material, and the componetiteflue gas was simplified as a
mixture of NO and I

2.3. Analytic method of NOy flux weight and sensitivity for the sub-zone of each
branch-pipe

The method to determine the weight of NHhjection branch-pipe was put
forward based on the N@lux distribution of the cross-section in front AfG, which
can be described as Egs. (1). The weight of thecbraipei shows the ratio of the
NOx flux in the sub-zone of the AIG cross-section colted by branch-pipé to the
NOx flux in the whole AIG cross-section.

©i = fi/ fmean (1)

where @;, fi, fmean represented the weight of branch-pipethe NQ flux
within the sub-zone of the AIG cross-section cdigtbby branch-pip& and the mean
of NO flux in the whole AIG cross-section, respectively.

In view of the variation characteristic of the Nflux distribution, the weight of
each AIG branch-pipe was further investigated undariable power load. The
analysis of the weight sensitivity for each AIG ieh-pipe was conducted according
to the empirical formula in Egs. (2).

max{|0¢;/0L|} = ¢ ()
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where L, ¢ represented the power load and the empirical icosft of
sensitivity judgment of AlIG branch-pipe, respediyve

The left of the above Eqgs. (2) represents the mamxinvalue of the variation
slope which could be obtained by analyzing theatemn of the branch-pipe weight
with the power load. According to the given coeéiit of sensitivity judgement,
the AIG branch-pipe would be considered critical and sensitive if émepirical EQs.
(2) is established.

The corresponding relationship between the weigtdt the opening of AIG
branch-pipe valves could be described as Egs. TBg opening of the 42 AIG
branch-pipe valves must be kept within the rang®-f, in case of a frequent or
sharp change in the opening of any valves to enswstable operation of the SCR
system. The compression coefficiec@P must be introduced to meet the above
requirements (Eqgs. (3)).

ON;=0ON +Z > ¢ 3)

38

where ON; , ON , CP represented the opening of AIG branch-pipe valtiee
base average opening of the 42 AIG branch-pipeegaland the compression
coefficient, respectively.

The compression coefficier@P introduced here was an empirical coefficient
related to the maximum weight and the average opgeoi the 42 AIG branch-pipe
valves, and its empirical formula can be shown igs.E(4). All the 42 AIG
branch-pipe valves could work reasonably in all ditons through a reasonable
compression coefficient adopted.

CP > max{p;} 4)
— 1-ON
wheremax{p;} represented the maximum weight of the 42 AIG bngpipe
valves in all studied conditions.

3. Results and discussion

3.1. Thedistribution of NO, flux over the cross-section area in front of AIG

According to the non-uniform inlet boundary acqdied the entrance position of
the SCR system, the N@lux distribution within the cross-section in frioof AIG
was obtained indirectly under 7 sets of stable latlitions including 300, 350, 400,
450, 500, 550 and 600MW as shown in Fig. 2(a)-Rg)evant studies shown that the
concentration of NQ produced by the combustion of pulverized coal gesatly
affected by many factors, such as coal speciesbastion mode and so on [25-28].

As can be seen from Fig. 2(a)~(g), the mean of M@ flux within the
cross-section in front of AIG shows a rough treridcontinuous growth with the
increase of the power load. It is worth mentionthgt the amount of flue gas
generated grows accordingly with the increase ef ghwer load. It hence can be
inferred that the velocity of flue gas should dtsoconsidered as an important index
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193 Fig. 3. The corresponding structure of AIG.
194 As shown in Fig. 3, the N(flux distribution within the cross-section in froof

195 AIG was further analyzed in terms of the correspogdstructure of AIG. It was
196 found that the NQflux distribution under individual power load catidn exhibited a
197 pronounced non-uniformity. The average deviationNg&dy, flux distribution was
198  28.94%. Particularly, the maximum deviation of Nflux distribution was derived
199 from 600MW load condition which was up to 32.87%ccArdingly, the NQ'NH3
200 mixing ratio within the cross-section of AIG relgron the uniform injection should
201  be improved.

202 The non-uniform characteristic of the N@ux distribution varied with the
203  power load condition, especially for each sub-zerthin the AIG cross-section. The
204  cross-section in front of AIG could also be dividiedo 42 hypothetical sub-zones
205  which correspond to the 42 AIG branch-pipes. Aral\thriation characteristic of the
206  NOx flux within each sub-zone is completely differeRtr example, it can be seen
207 that the NQ flux in one sub-zone exhibited obvious variatiothwthe power load
208 while the NQ flux in another sub-zone maintained at a relayivstable level
209 regardless of the change of load conditions. Tthestuning strategy of NdHnjection
210 should be analyzed concretely for different brapiges according to the variation
211  characteristic of the NCHlux within corresponding sub-zone.

212  3.2. Analysis of NOx flux weight and sensitivity of each branch-pipe

213 The distribution of NQ@ flux over the cross-section area in front of Al@Gsw
214  evaluated quantitatively by analyzing the weightle branch-pipe based on the Eq
215 (1). It was found that the weights of the 42 AlCGatch-pipes showed different
216  variation characteristics. Several typical variataharacteristics of these branch-pipes
217  are shown in Fig. 4 with the function of the powsad ranging from 300 to 600MW.
218 As can be seen from Fig. 4(a), the variation charetic of the weight of
219 branch-pipe 1L and 13U was similar to the cubicveuwith relatively severe
220 variation, and their corresponding maximum deviatié the weight is 33.95% and
221  39.13% respectively. It can be inferred that the,N@x distribution in the sub-zone
222 in front of AIG controlled by branch-pipe 1L or 13id strongly affected by the
223  variation of the power load condition. Similarlys aan be seen from Fig. 4(b), the
224  variation characteristic of the weight of branchgi5U and 13L was close to a
225 quadric curve either with a downward or upward apgnThe maximum deviation of
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the weight calculated of 5U and 13L is as high Agl%%6 and 33.86%, respectively.
This indicated that the NGlux distribution in the sub-zone in front of Al€ntrolled
by these two branch-pipes was strongly affectedhleyvariation of the power load
condition. However, the variation characteristidlog weight of branch-pipe 8M and
7M showed a different trend compared with the abwwe cases which can be seen
from Fig. 4(c). It can be seen that the weightatawn curve of branch-pipe 8M or 7M
is approximately consistent with the horizontaklimnd the maximum deviation of
the weight calculated is only 14.58% for 8M and09@for 7M. It can be concluded
that the NQ flux distribution in the sub-zone in front of Al@ontrolled by
branch-pipe 8M and 7M was basically stable instedakeing easily affected by other
factors. The variation characteristic of the weighthe other 36 branch-pipes could
be summed up into the above three types.
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(c)
Fig. 4. Variation characteristics of the weight of sevéyaical branch-pipes.
The tuning strategy of NHinjection for branch-pipé should be matched with

the variation characteristic of the weight of bitapipe i combined with the
mechanism of SCR denitrification. In other worddjene the amount of the NO
passing through changes, the amount of Nftction should be tuned accordingly.
Thus, the manual valves installed on the brancksiwith stronger variation
characteristic of the weight should be convertdd mutomatic regulating valves to
realize the automatic tuning of NHnjection against the power load, such as
branch-pipe 1L, 13U, 5U and 13L. On the other hahd, opening of the manual
valves that installed on the branch-pipes with militiation characteristic of the
weight should be tuned to a fixed value that optadi through all load conditions
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studied, such as branch-pipe 8M and 7M. Based @mptinciple of weight sensitivity
judgment showed in Egs. (2), the manual “criticadives that needed to be automatic
retrofit could be determined through analyzing\hgation of the branch-pipe weight
with the power load. A total of 11 “critical” NfHnjection branch-pipes of AlG system
is determined in this case waricluding 5U, 6U, 14U, 13U, 9U, 12U, 1M, 10U, 1L,
1U and 13L. The empirical coefficient of sensitwvijudgment adopted here was
0.33%.

3.3. Theintelligent ammonia injection strategy

The automatic tuning strategy of Nhhjection for each branch-pipe could be
obtained based on the corresponding relationshipdas the weight and the opening
of AIG branch-pipe valves shown in the Egs. (3)weduer, the operational reliability
of the automatic regulating valves reformed mustichany frequent or sharp change
in the opening of valves. Accordingly, the empiticampression coefficien€P as
shown in Egs. (4) is introduced to ensure the stabld safe operation of all 42 AIG
branch-pipe valves. An intelligent ammonia injectigtrategy for the “critical”
branch-pipes could be developed for engineerindicgijpn after the retrofit of
automatic control valves for “critical” valves.

The variation of N@ flux in the sub-zone controlled by the correspagdi
“critical” branch-pipes is consistent with the weigvariation law. The weight of
“critical” branch-pipes related to the N®ux in the sub-zone is significantly changed
when the plant load is varied (Fig. 4). The openafighe “critical” branch-pipes
valves would be changed accordingly with the helpthe intelligent ammonia
injection strategy, The N@NHj; ratio in the area can be greatly improved, leading
higher denitrification efficiency and less ammoegzape.

In this case work, the base average opening o#A?h&IG branch-pipe valves
was set to 0.5 empirically, and the minimum comgiges coefficientCPgin was
calculated to be 2.9686 accordingly. The compressaefficientCP adopted finally
should be larger tha@Py,in order to keep the opening of the branch-piperesl
within the range of 0~1. And the pressure loss & Bystem would be too high when
the CP taken is too large, which is not conducive to $hée and economic operation
of SCR system. So the empirical compression coefficCP taken finally was set to
3.325 with comprehensive consideration of abovki@nfces. As a result of that, the
actual average opening of the 42 AIG branch-pipregis about 0.8, with the
maximum of 0.95 and the minimum of 0.69.

Finally, an intelligent ammonia injection strategfyautomatic regulating against
power load was proposed for the 11 “critical” brapepe valves, while the opening
of the “uncritical” branch-pipe valves was tuned aofixed value that optimized
through all load conditions studied. It is worthting that the ammonia injection
strategy of “critical” or “uncritical” branch-pipealves was both obtained base on the
analysis of NQflux distribution within the cross-section in frioof AlG.

3.4. Analysis of the application case

The optimized ammonia injection strategy has bgmatied on the A side of the
SCR system while the B side was not applied seragghe contrast one. The ACR
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was adopted to evaluate the application effecthef dptimized ammonia injection
strategy as shown in Egs. (5). The rate of the ansnmonsumed to the N@®emoved
could be quantitative described through the dinmness index of ACR. And it can
be inferred that the lower the value of ACR, thghleir the utilization rate of ammonia
obviously.

ACR = M, /[(CE, — €O Qs ] (5)

where M, (mg-1"), ¢, (mg-Nni®), Cg¥(mg-Nmd), Q;(Nm>h') represented

the mass flow of ammonia consumed, the mass caatemnt of inlet NQ, the mass
concentration of outlet NCand the volume flow of flue gas, respectively.

The application effect of the optimized ammoniaeatjon strategy can be
analyzed from both lateral and vertical aspect® derating data of 5 whole days of
A and B side were used to analyze the average AlReoSCR system before and
after the application of the intelligent optimizadimonia injection strategy, which
were shown in Fig. 5.

0.50 —
0.48424

1 0.46859
0.46106
0.45 4
0.43137
0.30
0.25 =

A side-Applied B side-Unapplied A side-Applied B side-Unapplied
before optimization before optimization after optimization after optimization

Fig. 5. The average ACR before and after optimizatiorhendase work.

As can be seen from the Fig. 5, the average ACRegabf A and B sides were
comparable before the application of optimizedliigient ammonia injection strategy.
The difference of the average ACR values betweentwo sides was only 1.61%.
However, that difference was increased to abol@2P@. after the optimization in A
side. Accordingly, it can be calculated that theRAGf A side optimized was about
9.31% lower than that of B side. In addition, therage ACR of A side reduced from
0.46106 to 0.43137 with a decrease of about 6.48%refore, it can be concluded
that the average ACR of the SCR system would bearesbly reduced as the
application of the optimized intelligent ammonigection strategy, which would
optimize the NGINHs; mixing ratio, reduce the ammonia escape, confine t
formation of ABS and the corrosion of cold-sideaofpreheater.
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4. Conclusions

Weight of NQ flux of the sub-zone corresponding to each ammanéction
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branch-pipe in AIG system was analyzed, sensitigftyvhich was correlated to the
structure of AIG under different operating condito The determination of “critical”
injection branch-pipes and the intelligent tuninigategy was proposed. It was found
that the ammonia consumption of SCR system wadblyosaved with the change of
the “critical” branch-pipe valve and applicationtbé intelligent tuning strategy.
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Nomenclature

SCR: selective catalytic reduction
NOy: nitrogen oxides

NHs: ammonia

AIG: ammonia injection grid

CFD: computational fluid dynamics
ACR: ammonia consumption rate
ABS: ammonium bisulfate

MW: megawatt

SGs: sulfur trioxide
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Highlights

Weight of NQ flux in sub-zone of section-cross area in front Adfs was
analyzed.
The “critical” NH3 injection branch-pipes were determined for ingelht control.

NO./NH; ratio in SCR system can be optimized via applcatiof this

technology.



