
Automatically Verifying Temporal
Properties of Heap Programs with

Cyclic Proof

Gadi de Leon Tellez Espinosa

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

February 2, 2019

2

I, Gadi de Leon Tellez Espinosa, confirm that the work presented in this thesis

is my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

This work proposes a deductive reasoning approach to the automatic verification of

temporal properties of pointer programs, based on cyclic proof. We present a proof

system whose judgements express that a program has a certain temporal property,

given a suitable precondition, and whose rules operate directly on the temporal

modalities as well as symbolically executing programs. Cyclic proofs in our system

are, as elsewhere, finite rooted proof graphs subject to a natural, decidable sound-

ness condition, encoding a form of proof by infinite descent.

We present two variants of our proof system, one for CTL (branching time)

properties and one for LTL (linear time) properties, and show them both to be sound.

We have implemented both variants in the CYCLIST theorem prover, yielding an au-

tomated tool that is capable of automatically discovering proofs of temporal prop-

erties of our programs. Evaluation of our tool on well-known benchmarks in the

model checking community indicates that our approach is viable, and offers an in-

teresting alternative to traditional model checking techniques.

Impact Statement

For the last 20+ years, most of the research in verification of temporal logic has

been focused on model checking while only a minor part has been dedicated to

deductive verification. With our work we have demonstrated that, in practical appli-

cation terms, software verification of temporal properties based on deductive verifi-

cation has a comparable performance when compared model checking approaches.

Achieving similar capabilities and performance to those of model checking tools in

a much shorter span of time, with a comparably lower manpower, seems to indicate

that deductive verification has a place in current temporal verification of software.

The work presented in this thesis could lay down the basis on a resurgent interest in

the study of deductive verification techniques for temporal logic.

A substantial component of our work is the implementation of an automated

tool for the verification of temporal properties of heap-aware programs. The readily

availability of this tool could be put to use in verifying a wide range of software

components. Moreover, the provision of its source code facilitates its improvement

and extensions, empowering its potential application to software programs beyond

the scope of those exercised so far.

Finally, the class of computer programs considered for our study, in particu-

lar the use of heap memory, constitutes a significant segment of systems found in

commercial software, spanning over several domains of science and technology. As

such, our research could have an immediate impact on the quality and safety of

ubiquitous computer systems, greatly increasing our confidence in its correctness

and minimising their probability of failure.

Acknowledgements

I am infinitely grateful to my supervisor James Brotherston who has provided in-

valuable guidance, support and encouragement. Words cannot describe how much

you have impacted my life inside and outside of academia. Thanks for your time

and for guiding me towards producing this thesis.

A very special gratitude goes to all the people involved in the vibrant com-

munity around PPLV research group. Being surrounded by leaders in the field of

verification was greatly encouraging. I will always appreciate the inspiring talks

and discussions surrounding the group.

I am also grateful to my friends for keeping me sane during this period of my

life. After all, not all in life is about career advancement. You are a very dear

reminder of that, for which I am glad.

Most importantly, I would like to express my biggest gratitude to my family. It

is invaluable to feel the support of the most amazing persons I will ever know. To

my siblings, parents, grandparents, aunties, uncles, cousins... I know I could have

not accomplished this without your eternal love and support. I love you all.

Finally, a very special mention to my departed grandfather Fernando Tellez

Santana. Your life is the greatest example of commitment, dedication, discipline,

and, most importantly, love. Here’s to you.

Contents

1 Introduction 10

1.1 Temporal logic . 10

1.1.1 Model checking . 12

1.1.2 Deductive verification . 17

1.1.3 Current open problems in temporal verification 18

1.2 Our proposal . 20

1.2.1 Separation logic . 22

1.2.2 Cyclic proofs . 26

1.3 Synopsis . 28

2 Background 30

2.1 Programming language . 30

2.2 Memory state assertions. 34

2.3 Temporal assertions. 38

2.3.1 CTL assertions . 38

2.3.2 LTL assertions . 40

3 CTL Proof System 42

3.1 CTL proof rules . 42

3.2 CTL cyclic proofs . 44

3.3 Soundness of CTL system . 52

3.4 Related work . 86

Contents 7

4 Adaptation to LTL 88

4.1 LTL cyclic proofs . 89

4.2 Soundness of LTL system . 96

5 Fairness 107

5.1 Fair program executions . 107

5.2 Fair CTL cyclic proof system . 110

5.2.1 Decidable soundness condition 119

5.3 Fair LTL cyclic proof system . 127

6 Implementation 132

6.1 Fundamentals . 133

6.1.1 Proof Rules . 134

6.2 Proof Search Algorithm . 140

6.2.1 Automated Soundness Check 142

7 Experimental Results 146

7.1 CTL cyclic proof system experiments 147

7.2 LTL cyclic proof system experiments 149

8 General Conclusions 152

8.1 Contributions . 152

8.2 Future work . 155

Appendices 158

A Colophon 158

Bibliography 159

List of Figures

2.1 Small-step operational semantics of programs, given by the binary

relation ↝ over program configurations. 33

3.1 Proof rules for CTL judgements. We write ◯ϕ to mean “either ◻ϕ

or ◇ϕ”. 45

3.2 Nested temporal operators example 49

3.3 Single threaded monolithic server example where where AGEF(emp)

is replaced by ϕ and EF(emp) is replaced by ψ 53

4.1 Small-step operational semantics for nondeterminism in LTL. 90

4.2 LTL proof rules. 92

4.3 LTL example. The proof tree at the bottom corresponds to those

program executions that never exit the first loop. The proof tree

at the top (connected to the left-most sequent of the bottom tree)

corresponds to those program executions that execute the first loop

a finite number of times and eventually exit it. 95

5.1 Fair CTL cyclic proof example . 113

5.2 Single threaded monolithic server example 116

5.3 Fair LTL cyclic proof example . 130

7.1 Comparison between the original implementation of a sample pro-

gram and our heap manipulation adaptation used in the experiments 147

List of Tables

7.1 Experimental results for (fair) CTL system. 148

7.2 Experimental results for (fair) LTL system. 150

Chapter 1

Introduction

Formal methods constitute a mathematical approach for ensuring the reliability and

correctness of computer programs. The central aim of formal methods is to be able

to rigorously guarantee the behaviour of a given computer system. To this effect, a

set of formalisms and mathematical tools for modelling, specifying and reasoning

about systems is devised.

Naturally, the reliability and correctness of a system only make sense with

respect to a given set of requirements, which gives rise to the notion of specifica-

tion: a description of the desired behaviour of the system expressed in some formal

language expressive enough to state the behaviour.

Historically, there has been a wide variety of proposed languages to serve as

the formal specification language for computer systems. Among these, temporal

logic has gathered a lot of attention for its ability to express a wide range of system

properties.

1.1 Temporal logic
In the late 70’s, Pnueli observed that the common notions in the early work of sys-

tem specifications such as termination, partial and total correctness were not suitable

for expressing properties of a class of computer systems referred to as reactive sys-

tems [76]. These systems are characterised by their ongoing interaction with their

environment. Due to their non-terminating nature, Pnueli observed that a different

approach was needed to specify these systems.

1.1. Temporal logic 11

Properties of reactive systems, instead, involve notions of invariance (an as-

sertion always holds in every state of the execution), eventuality (an assertion even-

tually holds in some reachable future state) and fairness (if a process is enabled, it

should eventually be scheduled for execution). Temporal logics were introduced by

Pnueli as a formalism for characterising such properties.

One of the key aspects of temporal logics is their underlying model of time.

Two possible views regarding the nature of time induce a categorisation of tempo-

ral logics into linear time and branching time logics. In linear time temporal logics,

time is treated as if each moment in time has a unique possible future. In branching

temporal logics, each moment in time may split into many possible futures. Linear

time logic formulas are interpreted over linear structures and are regarded as de-

scribing the behaviour of a single computation of a program. Conversely, the struc-

tures over which branching temporal logics are interpreted have a tree-like shape,

where each branch corresponds to a possible execution path.

In their various forms, temporal logics are commonly composed of a non-

temporal part for specifying basic properties of states, called atomic properties, plus

a set of temporal operators for specifying temporal properties. Atomic properties

can be checked by observing a specific program state, whereas verifying temporal

properties involves investigating execution paths (i.e. sequences of states).

The most commonly used temporal operators are denoted by X ,U,F,G with

the following intuitive meaning:

X p ∶ Assertion p will hold in the next state.

pU q ∶ Assertion p will hold until assertion q holds.

F p ∶ Assertion p will hold at some point in the future.

Gp ∶ Assertion p holds always.

The level of expressivity induced by these temporal operators make temporal logic a

popular and widely studied specification formalism; a wide variety of safety (“some-

thing bad cannot happen”) and liveness properties (“something good eventually hap-

pens”) can be captured in these languages [68].

1.1. Temporal logic 12

Establishing a specification in a formal language that describes the desired

behaviour is a critical aspect of any formal method but is not sufficient to ensure

a certain behaviour. Rather than simply constructing specifications and models,

one is interested in proving properties about them; this is the realm of software

verification.

There exists a wide range of approaches for guaranteeing the correctness of

computer programs, that vary in the choice of formal language in which the speci-

fication is described, and in the different techniques used to show the program has

correct behaviour. Depending on these factors, most approaches to software ver-

ification can be classified into two large families: model checking and deductive

verification.

1.1.1 Model checking

Historically, perhaps the most popular approach to ensuring that a program exhibits

a given temporal behaviour has been model checking, where one first builds an

abstract model that over-approximates all possible executions of the program, and

then checks that the desired temporal property holds in this model (see e.g. [41, 38,

32]).

Model checking is a technique for the verification of finite state systems devel-

oped in the early 80’s by Clarke et.al. [34]. Soon after the introduction of temporal

logics, it was observed that temporal properties can be checked automatically for

finite computations [37]. A procedure which checks if a computer program is a

model of a temporal logic formula is called a model checker.

The idea of model checking is that the expected properties of the model are

expressed by formulae of a temporal logic, and a symbolic execution algorithm is

used to traverse the model in its entirety so as to check whether all possible states

in the execution of a program satisfy those properties. The set of all program states

is called the state space.

Algorithms for concrete enumerative model checking essentially traverse the

graph of program states and transitions using various graph search techniques. The

term “concrete” indicates that the technique represents program states exactly. The

1.1. Temporal logic 13

term “enumerative” indicates that these methods manipulate individual states of the

program.

The execution-based model checking approach is a special case of enumera-

tive model checking. This approach uses the runtime system of a programming lan-

guage implementation to carry out enumerative state space exploration. The idea is

that the outcome of a program execution is determined by the inputs from the en-

vironment and the scheduling choices made by the scheduler. Therefore, the set of

all behaviours can be explored by analysing the behaviour of the process under all

possible inputs and schedules. A variety of tools have emerged as the result of this

approach, such as VERISOFT[59], JavaPathFinder[98], CMC[79] and Chess[80].

A serious drawback of enumerative state representation is the state explosion

problem, in which the transition graph grows exponentially in the size of the sys-

tem. The immediate consequence of this problem is that no matter how efficient

the traversing algorithm is, the exploration of the state space soon becomes in-

tractable. Different techniques have been studied to tackle this problem, among

which reduction-based methods are a popular choice.

Reduction-based techniques compute equivalence relations on the program

behaviours, and explore one candidate from each equivalence class. Reduction-

based techniques include partial-order reduction [95, 58], symmetry reduction

[35, 55, 62, 90] and minimisation based on behavioural equivalences such as sim-

ulation or bisimulation [14, 70, 26]. Partial order reductions are mainly applicable

to parallel threads of execution, where they take advantage of the notion of inde-

pendence between threads. That is, if two transitions in parallel threads access

independent sets of variables, the final state reached after executing both transitions

is independent of the order in which the transitions were executed. Symmetry re-

duction determines symmetries in the program, and explores one element from each

symmetry class. Behavioural equivalences such as similarity and bisimilarity con-

struct a quotient graph that preserves reachability and then performs reachability

analysis on the quotient.

Despite the efforts of reduction-based techniques to lower the size of the state

1.1. Temporal logic 14

space, in practice, their use is still often hampered by severe state space explosion.

This limitation of enumerative model checking led to research on symbolic algo-

rithms which manipulate (representations of) sets of states, rather than individual

states, and perform state exploration through the symbolic transformation of these

representations. For example, the constraint 1 < x ≤ 10∧1 ≤ y ≤ 8 represents the set

of all states over variables {x,y} satisfying the constraint. Hence, the constraint im-

plicitly represents the list of all 80 states that would be enumerated in enumerative

model checking.

The power of symbolic techniques comes from advances in the performance

of constraint solvers that underlie effective symbolic representations for proposi-

tional logics [89, 53], binary decision diagrams (BDDs) [23] and, more recently,

combinations of first order theories [82, 47].

BDDs have been instrumental in scaling hardware model checkers to extremely

large state spaces. Nevertheless, each boolean operation and existential quantifica-

tion of a single variable can be quadratic in the size of the BDD, and the size of the

BDD can be exponential in the number of variables in the worst case. Moreover, the

size of the BDD is sensitive to the order in which variables appear in the formula.

Finally, many functions do not have a feasible BDD representation. This is the

symbolic analogue of the state explosion problem, and has been a major research

direction in model checking [65].

As in enumerative model checking, trading off soundness for effective bug

finding is a common approach in symbolic model checking. A popular approach

is called bounded model checking (BMC), a technique that unrolls the symbolic

representation of a program for a fixed number of steps.

Tools for bounded model checking come in two flavours. The first, including

CMBC [33], F-SOFT [64], SATURN [99], and Calysto [5] generate constraints in

propositional logic and use SAT solvers to discharge the constraints. Scalability of

this technique depends on the scalability of the underlying SAT solver, as well as

carefully tuned heuristics which keep the size of the constraints small. The second

class of tools generates constraints in an appropriate first order theory and uses

1.1. Temporal logic 15

decision procedures for such theories [78, 3]. The basic algorithm is identical to

SAT-based bounded model checking, but the constraints are interpreted over more

expressive theories.

Work on symbolic model checking has led to verification tools that can work

on infinite state systems [1, 2] including concurrent programs [24, 25, 48]. Explor-

ing all possible states of an infinite execution is necessarily uncomputable. How-

ever, the use of heuristics and semi-procedures sometimes allows us to verify such

systems. For infinite state programs, symbolic model checking might not termi-

nate, or take an unfeasible amount of time and/or memory to terminate. Abstract

model checking trades off precision of the analysis for efficiency. In abstract model

checking, model checking is performed on an abstract domain which captures some

but not all the information about an execution [42]. Examples of common abstract

domains include:

• polyhedral domains, which have been successfully used to check for array

bounds [44];

• predicate abstraction, the underlying technique behind well-known model

checkers SLAM [7] and BLAST [12];

• control abstraction, which (as its name suggests) focuses on merging different

execution paths into equivalence classes [12]; and

• combinations of the above, with most common model checking tools follow-

ing this approach, e.g. IMPACT [77], ASTREE [43] and BLAST [12].

In general, due to the over-approximation generated by the use of abstractions,

abstract model checking generates false negatives; i.e., the abstract analysis can

return a counterexample even though the program is correct. In this case, there ex-

ist techniques to automatically refine the abstract domain, that is, construct a new

abstract domain that represents strictly more sets of concrete program states. The

intent is to provide a more precise analysis which rules out the current counterex-

ample and possibly others. This iterative strategy was proposed as localisation

reduction in [67] and generalised to counterexample-guided refinement in [6, 36].

1.1. Temporal logic 16

The input to the counterexample analysis algorithm is a path in the control-flow

graph ending in the error location. The path represents a possible counterexample

produced by abstract analysis. The first step of the algorithm constructs a logical

formula, called the trace formula of the path, such that the formula is satisfiable if

the path is executed by the concrete program. Then, a decision procedure is used

to check if the trace formula is satisfiable. If satisfiable, the path is reported as

a concrete counterexample to the property. If not, the proof of unsatisfiability is

mined for new predicates that can rule out the current counterexample when the

abstract domain is augmented with these predicates.

Improving the elimination of individual counterexamples, interpolation-based

refinement was suggested in [60] to find predicates that capture the implicit rela-

tionships of counterexamples with the concrete program, hence eliminating multi-

ple counterexamples at once. Another advantage of interpolation-based refinement

is that it not only discovers new predicates but also determines the control locations

at which these predicates are useful. Therefore, instead of keeping a global set of

predicates, one can keep a map from locations to sets of predicates and perform

predicate abstraction with respect to local set of predicates, resulting in an order of

magnitude improvement in the running times of model checking.

Recent advances in abstraction refinement have led to the implementation of

these techniques in a variety of model checkers. The SLAM model checker [7]

was the first implementation of refinement model checking for C programs. The

BLAST model checker [12] implements an optimisation to abstract refinement for

constructing the abstract model on the fly and locally refining the model on demand.

The MAGIC model checker implements a predicate abstraction that yields a finite

state machine representing the program behaviour and infers new predicates which

yield refined state machines [29]. F-SOFT [63] combines abstraction refinement

for predicate abstraction with several other abstract domains to check standard run-

time errors in C programs such as buffer overflows and null dereferences. Finally,

the ARMC model checker [85] implements abstract refinement using a constraint-

based logic programming language. ARMC can generate refinements for linear

1.1. Temporal logic 17

arithmetic constraints which allows it to handle programs with intensive operations

on numerical data.

1.1.2 Deductive verification

An alternative approach for demonstrating that a program exhibits a specific tem-

poral behaviour has been deductive verification, where one attempts to construct a

formal object (i.e. a proof) by deducing statements from premises using a formal

proof system.

Deductive verification has been linked to temporal logics from their early be-

ginnings. Some of the earliest examples of proof systems for verification come

from the proposers of CTL and LTL, Manna and Pnueli [74, 73]. The complexity of

devising a proof system for verification of temporal logic is witnessed in this early

attempt, as its capability was limited to demonstrate safety and liveness formulas of

a very restricted form. These early papers perhaps influenced the direction of work

of deductive verification, where the emphasis was highly inclined towards show-

ing the systems’ (relative) completeness whilst placing less importance on practical

implementation.

Attempting to overcome the initial limitations, an extended version of the ini-

tial work was soon to come in [75, 76] where the set of properties that could be

verified was extended to include reactivity formulas, stating that some program be-

haviours occurs as the consequence of previous actions. This extension provided

full coverage for the entire linear temporal logic since it was demonstrated that any

property specifiable by LTL can be expressed as a reactivity formula.

Having a proof system capable of proving linear temporal properties of pro-

grams, a natural extension was to tackle the problem of branching temporal logics.

Some of the first approaches aimed to leverage existing linear temporal logic proof

systems by restricting the shape of the temporal formulas that could be verified,

disallowing nested path quantifiers [84, 66, 57]. This approach required a two-fold

transformation: 1) replacing temporal formulas by assertions which contain no path

quantifiers or temporal operators, and 2) replacing the resulting formula by a single

Boolean variable, at the price of augmenting the original program with auxiliary

1.1. Temporal logic 18

variables. Hence, the problem of verifying an arbitrary branching temporal logic

formula was reduced to verifying a linear temporal logic formula on a transformed

program.

These early pieces raised some concerns regarding the practical use of their

proof systems in particular, and that of deductive verification in general. Transfor-

mation of arbitrary formulas into a canonical form was far from trivial, and at least

exponential [84]. Moreover, the resulting verification conditions required by the

rules in the proof systems also involved complex verification tasks.

In light of these concerns, deductive verification techniques that operated di-

rectly on the temporal formula were studied. Samples of this technique are found

in [15, 13, 93] where the proof structure itself is constructed from the original prop-

erty formula. When compared to previous approaches, this technique yields perhaps

less succinct proof systems, with a larger set of rules (including one for each tem-

poral operator). On the other hand, the complexity of the verification conditions

generated by the system is reduced as the proof progresses (reducing the complex-

ity of the temporal formula), resulting in verification of simpler assertions.

Unfortunately, due to its generality, this technique presents very difficult chal-

lenges in constructing proofs in a fully automatic way, requiring human insight to

complete the construction of the proof. This observation meant that the use of these

proof systems was usually deemed unsuitable for practical purposes.

1.1.3 Current open problems in temporal verification

The importance of the temporal verification techniques and approaches so far men-

tioned is undeniable, but this does not mean there is no room for improvement. In

particular, most of the techniques and tools related to model checking mentioned

so far either ignore the effect of mutable data structures, focus on restricted prob-

lems regarding the heap (i.e. alias analysis and reachability analysis) or presume

the safe execution of a given program with respect to heap operations. However,

the effects of an unbounded heap represent one of the biggest challenges to scalable

and precise software verification [65, 38].

One of the main complications of heap analysis arises from aliasing where

1.1. Temporal logic 19

two syntactically distinct expressions might refer to the same memory location, and

hence updating the memory by writing to one of the locations requires updating

information about the contents of a syntactically different location. One proposed

solution to this problem is simply to translate such heap-aware programs into inte-

ger variables, in such a way that properties such as memory safety or termination

of the original program follows from a corresponding property in its integer trans-

lation [72, 41, 38]. However, for more general temporal properties, this technique

might produce unsound results. In general, it is not clear whether it is feasible to

provide suitable translations from heap to integer programs for any temporal prop-

erty we might wish to prove. Moreover, even when a suitable abstraction is found,

important information about the shape of the heap data structures is typically lost,

which might break the verification of temporal properties that rely on such shape

information.

Example 1.1.1. Consider the following nonterminating program that nondetermin-

istically alternates between emptying the heap and appending an arbitrary number

of elements to the head of a list structure:

while(true){

if(*) {

while(x!=nil) {

temp:=x.next; free(x); x:=temp;

}

} else {

while(*) {

y:=new(); y.next:=x; x:=y;

} } }

Proving memory safety of this program (i.e. no null dereferences / deallo-

cations) could be achieved by means of a simple numeric abstraction that tracks

emptiness / nonemptiness of the list. Attempting to prove instead the more interest-

ing property that it is always possible for the heap to become empty would require

us to produce a different numeric abstraction, requiring the user to provide a notion

1.2. Our proposal 20

of size that represents the length of the list. Even when such an abstraction is pro-

vided, we cannot prove the stronger property that throughout the execution of the

program the heap is always a nil-terminating acyclic list, as the number of elements

in a list is not enough to show that the list is not acyclic.

Whereas it might be possible to provide numeric abstractions to suit more com-

plex temporal properties, it is not clear that this transformation is more beneficial

than a direct treatment of the original program.

With regards to verification of heap-aware programs, deductive verification

has presented different lines of work that advocated the use of non-standard spec-

ification languages that build on temporal logic concepts. In particular, aiming to

tackle the problem of non-terminating heap manipulating programs resulted in so-

lutions with varied levels of expressivity and automation. Navigational Temporal

Logic (NTL) [49] introduces an extension of linear temporal logic that allows one

to express the creation, adaptation and removal of heap structures and proposes a

tableau-based model checking algorithm to verify these properties automatically,

but with limited support for data structures. Evolution Temporal Logic [100] pro-

poses a similar but more expressible language in which arbitrary predicates on heap

locations are allowed. This approach is less automatic than NTL since the user must

first examine the code to provide suitable ranking functions. [10, 18] introduces a

formalism to reason about termination of heap manipulating programs.

Despite these efforts, these approaches present their own set of limitations,

where practical application has so far been limited to non-automated solutions.

1.2 Our proposal
Following the previously stated limitations in the state-of-the-art verification of in-

finite heap-aware programs, we aim to devise a sound and fully automated temporal

verification framework for such programs. In this pursuit, we set out a list of objec-

tives for such a framework:

Generality - Driven by the nature of the problem at hand, we aim to step aside

from properties of finite state program properties in favour of verifying the

1.2. Our proposal 21

whole spectrum of safety, liveness and fairness properties of programs. In

particular, we seek to produce a temporal logic framework applicable to both

linear and branching views of time.

Soundness - Without fully sacrificing scalability and speed, the cornerstone of the

framework is to be a sound system that prevents false negatives, where the

validity of the product is rigorously checked.

Memory awareness - Witnessing a critical shortcoming of previous temporal logic

verification frameworks based on model checking, we aim to tackle programs

with full access to the heap. Observing the limitations of previous deduc-

tive verification approaches to tackle this problem we seek to avoid devising

ad-hoc logics. We instead favour the use of the established and well-studied

separation logic as a key element of our proposed solution.

Infinite-state - Addressing limitations of previous analyses designed for heap-

aware programs, we intend to provide a verification framework capable of

analysing infinite state programs.

Full automation - Finally, seeking to reduce the burden of deductive verification’s

practical applicability, our framework endeavours to achieve full automation.

In summary, the aim of this thesis is to provide a verification framework that

combines the expressivity of temporal logic to describe properties about the evo-

lution of program behaviours with the expressivity of separation logic to elegantly

handle the manipulation of the heap. To this effect, we will formulate proof systems

which manipulate temporal judgements about programs, and attempt to directly

construct a proof that a program has a given temporal property by means of an auto-

matic proof search. To handle the fact that the proof search can be done ad infinitum,

we will employ the increasingly popular technique of cyclic proof [92, 17, 19, 22],

in which proofs are finite cyclic graphs subject to a global soundness condition.

Having previously discussed the concepts regarding temporal logic and proof

systems, the next two section are dedicated to introducing the concepts of the two

other major ingredients of our framework: separation logic and cyclic proofs.

1.2. Our proposal 22

1.2.1 Separation logic

Separation logic is a formal system for specifying and reasoning about heap-

aware programs. Like Hoare logic, it uses annotations that serve as pre- and post-

conditions of commands. Unlike Hoare logic, it provides support for the principle

of locality, where an assertion holds on a particular part of the heap, or heaplet.

This is particularly useful when handling memory aliases, meaning that two mem-

ory pointers are pointing to the same memory address.

In a broad sense, separation logic is often understood as both an assertion lan-

guage and a specification language that is applied to programs in an imperative

language.

A common feature of the programming languages to which separation logic

reasoning is applied is the use of commands for the manipulation of mutable shared

data structures where memory management is explicit.

<C >∶∶= . . . ∣ var ∶= [exp] ∣ [exp] ∶= exp ∣ var ∶= alloc() ∣ free(exp) ∣ . . .

Intuitively, the command var ∶= [exp] reads a value from memory and assigns

it to a variable; this command would cause a memory fault if the memory location is

not accessible. The command for mutation [exp] ∶= exp stores a value into a given

memory address; this command would also cause a memory fault if the memory

location is not accessible. The memory allocation command var ∶= alloc() allows

us to allocate fresh memory to be handled by the program. Finally, the command

for memory deallocation free(exp) allows us to give up memory locations when no

longer needed; this command would also cause a memory fault when the memory

location is not accessible.

The model of heaps on which these assertions are interpreted extends compu-

tational states, previously limited to the store store ∶ Var→ Val, mapping variables

to values, with a heap heap ∶ Loc⇀fin Val, mapping finitely many memory locations

to values.

As in Hoare logic, assertions of separation logic describe program states. Since

the model of program states has been extended with a heap, separation logic extends

1.2. Our proposal 23

the usual operators of propositional logic with three new forms of assertions that

describe the heap. These are

• the empty heap assertion emp indicating that the heap is empty;

• the points-to assertion e↦ e′ indicating that the heap consists of a single mem-

ory cell with address e and contents e′;

• the separating conjunction assertion P∗Q indicating that the memory can be

split into two disjoint parts such that P holds for one part and Q holds for the

other; and

• the separating implication P−∗Q, asserting that whenever a heap satisfies the

property P, its composition with the current heap satisfies the property Q.

The use of the separating implication is particularly useful when a piece of code mu-

tates memory locally, and we want to state some property of the entire heap. Nev-

ertheless it has been shown that the inclusion of the separating implication makes

separation logic undecidable and hard to reason with [28], with most systems and

tools excluding it from the assertion language. In this work, we will follow this

trend and exclude the separating implication from the language we will use later on

to describe program states.

While assertions describe program states, specifications in separation logic

describe the behaviour of programs. Specifications in separation logic are Hoare

triples, of the form

{< assertion >} <command> {< assertion >}

The initial assertion is called the precondition and the second assertion is called

the postcondition. The partial correctness specification {P} C {Q} is true if and

only if, starting in any state that satisfies the assertion P no execution of C leads to a

memory fault, and when the execution of C terminates in a final state, then this final

state satisfies the assertion Q.

This form of specification is so similar to standard Hoare logic that it is impor-

tant to note the differences. Unlike Hoare logic, separation logic provides support

1.2. Our proposal 24

for the principle of locality, where an assertion holds on a particular part of the pro-

gram’s heap. This is particularly useful when handling memory aliases (i.e. two

memory locations pointing to the same location).

To illustrate this, consider the following simple program:

[x] := 4;

[y] := 2;

It would be very tempting to say that at the end of the execution of this program

(i.e. the postcondition) we have a program state where variable x contains the value

4 (i.e. x↦ 4) while variable y contains the value 2 (i.e. y↦ 2). Nevertheless, this

is not the case when x and y are aliases for the same memory location (i.e. x = y).

If this was the case, the resulting state after executing this program would witness

x↦ 2∧y↦ 2. To avoid this situation, we would have to explicitly state the relation

held between program variables x ≠ y. It is evident from this simple program that

this solution scales poorly.

In separation logic, however, this kind of difficulty can be avoided by using the

separating conjunction that states that the two components hold for disjoint portions

of the addressable storage. A more general advantage of this operation is the support

that separation logic gives to local reasoning, which underlies the scalability of the

approach. For example, given the specification

{x↦ 4} [x]:=2 {x↦ 2}

it is implied that not only that the program expects to find the value 4 assigned to

variable x, but also that this memory location is the only memory location accessed

by the execution of the program (commonly called its footprint). If [x]:=2 is part

of a larger codebase that manipulates some separate memory addresses, one can

infer directly that the additional storage is not modified by [x]:=2.

In a realistic situation, the program under analysis can be a much more sub-

stantial program and the separate memory storage can be much larger. Nevertheless,

one can still reason locally about it, while ignoring the separate memory locations.

This locality property is what gives rise to the frame rule, to which most of the

1.2. Our proposal 25

modularity success of separation logic is due:

{P} C {Q}
{P∗R} C {Q∗R} (Frame)

The triple {P} C {Q} implicitly states that the execution of C depends only

on the part of the heap described by the assertion P. Any other part of the heap R

remains unchanged by the execution of C.

The frame rule allows us to extend a local specification, involving only the vari-

ables and heap cells that may actually be used by C, by adding arbitrary assertions

about variables and heap cells that are not modified or mutated by C.

In any valid specification {P}C {Q}, the precondition states that the heap con-

tains every cell in the footprint of C, except for those that are locally allocated;

locality is the converse implication that every cell described in the precondition be-

longs to the footprint. The role of the frame rule is therefore to infer from a local

specification of a command the more global specification appropriate to the possibly

larger footprint of an enclosing command.

Beyond the rules pertaining to Hoare logic and the frame rule, separation logic

presents an axiom for each of the new heap-manipulating commands.

{e↦ e′} x:=[e] {x = e′∧e↦ e′} (Read)

{e↦−} [e]:=e’ {e↦ e′} (Write)

{emp} x:=alloc() {x↦−} (Alloc)

{e↦−} free(e) {emp} (Free)

The extensive study of separation logic (and similar approaches that rely on

program contracts) provided a significant advance in the automation of the verifica-

tion process of programs that access the heap. Smallfoot [9] was the first implemen-

tation to use separation logic; its goal was to investigate the extent to which proofs

1.2. Our proposal 26

and specifications made by hand could be treated automatically. The automation

in Smallfoot is related to the assertion checking, but the user has to provide pre-

conditions, postconditions and loop invariants. A major step was to show that the

method is indeed scalable in practice [101]. This led the way to multiple academic

tools using separation logic as their assertion language, such as SpaceInvader [50],

Thor [71], Xisa [30], SmallFoot [9], JStar [51] and CYCLIST [22], that are able to

demonstrate specific properties of programs such as memory safety, termination and

the shape of data structures used by the program.

Much of the success of these tools is thanks to the mechanisation of

verification-related questions regarding separation logic, such as satisfiability and

entailment of separation formulae in various tools, including Asterix[81], CY-

CLIST[22], SLSAT[21] and SLEEK[31]. A notable fact about these tools is the

diversity of techniques used by these solvers, from reduction to SAT and SMT

problems, resolution-based, to reduction to tree automata membership.

In a sense, the question about the practical utility of separation logic was

quickly answered, leading to a new generation of industrial strength tools in the

last 5 years. Examples of these include Facebook INFER [27], a tool that uses sep-

aration logic to analyse mobile applications and report problems caused by null

pointer access and resource memory leaks, and Microsoft Slayer [11], a tool de-

signed to prove memory safety of industrial system code reporting dangling pointer

dereferences, double frees and memory leaks.

Leveraging on the strengths of separation logic in the analysis of heap-aware

programs, primarily its expressivity, scalability and popularity, we seek to include it

in our proposed temporal logic framework to replace previous predicate-logic based

assertions with separation logic assertions as the pure part of our logic.

1.2.2 Cyclic proofs

Cyclic proofs have been recently proposed as an alternative to traditional proof by

explicit induction for fixed point logics. In contrast to standard proofs, which are

simply derivation trees, a cyclic proof is a derivation tree with back-links, subject

to a global soundness condition ensuring that the proof can be read as a proof by

1.2. Our proposal 27

infinite descent à la Fermat [16]. This allows explicit induction rules to be dropped

in favour of simple unfolding rules.

Broadly speaking, the soundness condition states that every infinite path in

the derivation must have a syntactic trace following the path, which progresses

infinitely often; informally, a trace can be thought of as a well-founded measure

while its progress corresponds to strict decreases of this measure.

Cyclic proof systems seem to have first been used in computer science as

tableaux for the propositional µ-calculus [88]. Since then, cyclic proof systems

have been proposed for a number of applications, including theorem provers that

span from interactive theorem provers for specific logical systems to fully auto-

mated generic theorem provers.

Regarding interactive theorem provers, the QUODLIBET tool [4], based on

first-order logic with inductive datatypes, uses a version of infinite descent to prove

inductive theorems whereby a proof node is annotated with a weight, which must

strictly decrease at back-link sites. This weight effectively serves the purpose of the

syntactic trace condition following infinite paths in cyclic proofs.

Advances on the automation of cyclic proofs led to the work presented in [20],

where Brotherston et al. describe an automated cyclic prover for entailments of

separation logic implemented in HOL Light. Generalising the previous work, in

[22], Brotherston et al. present CYCLIST: a generic theory of cyclic proof and an

unrestricted implementation in a fully automated theorem prover. Along with the

framework, multiple applications to concrete logical systems, including automated

proof search procedures, are also introduced. In its various instantiations, the prover

is capable of automatically proving theorems with a complex inductive structure.

Although CYCLIST does not claim to be an industrial-strength theorem prover, the

results of the experiments carried out in CYCLIST are encouraging, presenting the

potential for developing new instantiations of automated theorem provers to other

fixed-point logics in this framework.

The study of cyclic proofs in the last decade has lead to the implementation of

program verification tools that employ cyclic proofs in some form or another.

1.3. Synopsis 28

In [18], Brotherston et al. propose a novel approach to proving the termination

of pointer programs, which combines separation logic with cyclic proofs within a

Hoare-style proof system. The logical preconditions in this system employ induc-

tively defined predicates to describe heap properties, and proofs are cyclic deriva-

tions in which some inductive predicate is unfolded infinitely often along every

infinite path, thus allowing to discard such infinite paths in the proof by an infinite

descent argument.

Extending the previous work, Rowe and Brotherston describe a formal verifi-

cation framework and implementation, based upon cyclic proofs, for certifying the

safe termination of imperative pointer programs with recursive procedures in [87].

Despite the recent rise in cyclic proof works, their application for the auto-

mated verification of temporal properties of heap manipulating programs has not,

to the best of our knowledge, been studied before. It is our aim to address this gap.

1.3 Synopsis
The remainder of this thesis is structured as follows.

Chapter 2 We introduce the syntax and semantics of our programming language

used to implement the programs we aim to verify. This language in-

cludes constructs to directly manipulate the heap by allowing memory allo-

cation/deallocation and reading/writing to memory locations. We then intro-

duce our language of assertions for memory states based on separation logic.

Finally, we introduce our CTL and LTL languages for expressing temporal

properties of programs.

Chapter 3 We formulate a cyclic proof system for verifying CTL properties of our

programs. We show that the proof rules of our system are sound with respect

to the operational semantics of our programming language and demonstrate

the global soundness of our cyclic proof system.

Chapter 4 We define a second proof system to handle LTL temporal assertions. We

review the concept of prophecy variables (cf. [40]) to determinise the execu-

tion of nondeterministic programs in order to induce a linearisation of time.

1.3. Synopsis 29

Equipped with this formalism, we present the proof rules of our LTL proof

system, emphasising the introduction of new rules to handle nondeterminism.

After defining the system and formulating the global soundness condition we

prove that our LTL cyclic proof system is sound.

Chapter 5 An important component in the verification of reactive systems is a set

of fairness constraints to guarantee that no computation is neglected forever.

We describe how our CTL and LTL cyclic proof systems can be modified to

treat (strong) fairness constraints.

Chapter 6 We discuss the implementation details of the cyclic proof systems pre-

sented in this thesis. Our proof systems are implemented on top of the CY-

CLIST theorem prover [22]. Broadly speaking, our implementation performs

iterative depth-first search, aimed at closing open nodes in the proof by either

applying an axiom or forming a back-link. If an open node cannot be closed,

we instead attempt to apply symbolic execution inference rule; if this is not

possible, we try unfolding temporal operators and inductive predicates in the

precondition to enable symbolic execution to proceed. Finally, after all open

nodes in the proof have been closed, a global soundness check of the cyclic

proof is performed automatically.

Chapter 7 Following the implementation of our cyclic proof systems, we evaluate

these automated tools on handcrafted nondeterministic and nonterminating

programs. Our test suite is an adaptation of the common model checking

benchmarks presented in [40, 41] for the verification of temporal properties of

nondeterministic programs, where operations/iterations on integer variables

in the original benchmarks are replaced in favour of operations/iterations on

heap data structures.

Chapter 8 We present our conclusions, summarising our contributions and propos-

ing lines for future work.

Chapter 2

Background

In this chapter we lay out the technical background that serves as the foundation

of our proof systems. In Section 2.1 we fix the syntax and semantics of the pro-

gramming language used to implement the programs we aim to verify. We then

introduce the formalism of symbolic heaps extended with inductive predicates as

our language of assertions about memory states in Section 2.2. We bring this chap-

ter to an end by introducing two languages for expressing temporal properties of

programs in Section 2.3. The first language is based on Computation Tree Logic

(CTL) and the second based on Linear Temporal Logic (LTL).

2.1 Programming language

In this section, we introduce a simple language of while programs which includes

constructs to directly manipulate the heap by allowing memory allocation/dealloca-

tion and reading/writing to memory locations.

We assume a countably infinite set Var of variables and a first-order language

Σexp of expressions over Var, satisfying Σexp ⊇ Var and containing a distiguished

constant symbol nil.

Definition 2.1.1 (Programming language). The syntax of expressions E branching

conditions B and commands C of our programming language is given by the follow-

ing grammar:

2.1. Programming language 31

E ∶∶= x ∣ f (E1, . . . ,En)

B ∶∶= E = E ∣ E ≠ E ∣ ∗

C ∶∶= x ∶= [E] ∣ [E] ∶= E ∣ x ∶= alloc() ∣ free(E) ∣ x ∶= E ∣

skip ∣ if B then C else C fi ∣while B do C od ∣C;C ∣ ε

where x ranges over variables and f over function symbols. Note that we write ε

for the empty command, ∗ for a nondeterministic branching condition, and [E] for

dereferencing of expression E.

We define the semantics of the programming language in a standard stack-and-

heap model employing heaps of records. We fix an infinite set Val of values, and

a set Loc ⊂ Val of addressable memory locations, and assume a distiguished null

value nil ∈Val−Loc. A stack is simply a map s ∶Var→Val from variables to values.

The semantics JEKs of expression E under stack s is then given in the standard way;

in particular, JnilKs = nil and JxKs = s(x) for x ∈Var. Assuming some fixed interpreta-

tion for any function symbols in the expression language, s can then be extended to

all expressions in the usual way J f (E1, . . . ,En)Ks = f (JE1Ks, . . . ,JEnKs). We extend

stacks pointwise to act on tuples of terms.

A heap is a partial, finite-domain function h ∶ Loc ⇀fin (Val List), mapping

finitely many memory locations to records, i.e. arbitrary-but-finite-length tuples of

values; we write dom(h) for the set of locations on which h is defined. We write

emp for the empty heap, undefined on all locations, and ⊎ to denote composition of

domain-disjoint heaps: h1⊎h2 is the union of h1 and h2 when dom(h1)∩dom(h2) =

∅ (and undefined otherwise). If f is a stack or a heap then we write f [x↦ v] for the

“updated” environment defined by:

f [x↦ v](y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v if y = x

f (y) otherwise

A stack paired with a heap, (s,h), is called a (memory) state.

Lemma 2.1.2 (Expression substitution). For all expressions E, stacks s and vari-

2.1. Programming language 32

ables x,x′, JE[x′/x]Ks = JEKs[x↦ Jx′Ks]

Proof. By structural induction on E.

Base case E = x, where x ∈Var.

Jx[x′/x]Ks = JxKs[x↦ Jx′Ks]

Jx′Ks = JxKs[x↦ Jx′Ks] by rewriting

Jx′Ks = Jx′Ks by construction

Base case E = y, where y ∈Var and y ≠ x.

Jy[x′/x]Ks = JyKs[x↦ Jx′Ks]

JyKs = JyKs[x↦ Jx′Ks] by rewriting

JyKs = JyKs by construction

Inductive case E = f (E1, . . . ,En) for any function f .

J f (E1, . . . ,En)[x′/x]Ks

= f (JE1[x′/x]Ks, . . . ,JEn[x′/x]Ks) interpretation of f

= f (J(E1Ks[x↦ Jx′Ks], . . . ,JEnKs[x↦ Jx′Ks]) induction hypothesis

= J f (E1, . . . ,En)Ks[x↦ Jx′Ks] interpretation of f

A (program) configuration γ is a triple ⟨C,s,h⟩ where C is a command as per

Definition 2.1.1, s a stack and h a heap. If γ is a configuration, we write γC,γs,

and γh respectively for its first, second and third components. A configuration γ is

called final if γC = ε . The small-step operational semantics of programs is given by

a binary relation ↝ on program configurations, where γ ↝ γ ′ holds if the execution

of the command γC in the state (γs,γh) can result in a new program configuration γ ′.

We write↝∗ for the reflexive-transitive closure of↝. The special configuration fault

is used to denote a memory fault, e.g., if a command tries to access non-allocated

memory. The operational semantics of our programming language are shown in

Figure 2.1.

2.1. Programming language 33

⟨skip; C,s,h⟩ ↝ ⟨C,s,h⟩ ⟨ε; C,s,h⟩ ↝ ⟨C,s,h⟩

⟨x ∶= E; C,s,h⟩ ↝ ⟨C,s[x↦ JEKs],h⟩
JEKs ∈ dom(h)

⟨x ∶= [E]; C,s,h⟩ ↝ ⟨C,s[x↦ h(JEKs)],h⟩

JEKs ∈ dom(h)
⟨[E] ∶= E′; C,s,h⟩ ↝ ⟨C,s,h[JEKs↦ JE′Ks]⟩

` ∈ Loc∖dom(h) v ∈Val
⟨x ∶= alloc(); C,s,h⟩ ↝ ⟨C,s[x↦ `],h[`↦ v]⟩

JEKs ∈ dom(h)
⟨ f ree(E); C,s,h⟩ ↝ ⟨C,s,(h ∣ dom(h)∖{JEKs})⟩

JBKs
⟨if B then C else C′ fi; C′′,s,h⟩ ↝ ⟨C; C′′,s,h⟩

¬JBKs
⟨if B then C else C′ fi; C′′,s,h⟩ ↝ ⟨C′; C′′,s,h⟩

¬JBKs
⟨while B do C od; C′,s,h⟩ ↝ ⟨C′,s,h⟩

JBKs
⟨while B do C od; C′,s,h⟩ ↝ ⟨C; while B do C od; C′,s,h⟩

JEKs /∈ dom(h)
⟨x ∶= [E]; C,s,h⟩ ↝ fault

JEKs ∉ dom(h)
⟨[E] ∶= E′; C,s,h⟩ ↝ fault

JEKs ∉ dom(h)
⟨ f ree(E); C,s,h⟩ ↝ fault

Figure 2.1: Small-step operational semantics of programs, given by the binary relation ↝
over program configurations.

An execution path is a (maximal finite or infinite) sequence (γi)i≥0 of config-

urations such that γi ↝ γi+1 for all i ≥ 0. If π = γ0 ↝ γ1 ↝ γ2 ↝ . . . is a path, then we

write πi to denote the ith suffix of π (e.g. π1 = γ1↝ γ2↝ . . .). We also write π[i] to

denote the ith configuration of π (e.g. π[1] = γ1). A path π starts from configuration

γ if π[0] = γ .

Remark 2.1.3. In temporal program verification, it is relatively common to con-

sider all program execution paths to be infinite, and all temporal properties to quan-

tify over infinite paths. This can be achieved either (i) by modifying programs to

contain an infinite loop at every exit point, or (ii) by modifying the operational

semantics so that final configurations loop infinitely (i.e. ⟨ε,s,h⟩ ↝ ⟨ε,s,h⟩).

We take a slightly different, but equivalent approach, by quantifying over paths

that are either infinite or else maximally finite. This has the same effect as directly

modifying programs or their operational semantics.

2.2. Memory state assertions. 34

2.2 Memory state assertions.

In this section we introduce the formalism of symbolic-heap separation logic [8]

extended with user-defined (inductive) predicates [17], typically needed to express

complex shape properties of the memory, that will serve as our assertion language

to express properties of memory states.

We assume a fixed first-order logic language Σlog that extends the expression

language of our programming language (i.e. Σlog ⊇ Σexp). The terms of Σlog are

defined as usual, with variables drawn from Var. We write t(x1, . . . ,xk) for a term

t all whose variables occur in {x1, . . . ,xk} and we use vector notation to abbreviate

sequences, e.g. x for (x1, . . . ,xk). The interpretation JtKs of a term t of Σlog in a

stack s is then defined in the same way as expressions, provided we are given an

interpretation for any constant or function symbol that is not in Σexp.

We designate finitely many of the predicate symbols of our logic language as

inductive symbols. For each predicate symbol Q of arity k we assign an interpreta-

tion JQK ∈ Pow(Heaps×Val Listk)

Definition 2.2.1. A symbolic heap is given by a disjunction of assertions each of

the form Π ∶ Σ, where Π is a finite set of pure formulas ϖ given by the following

grammar:

ϖ ∶∶= E = E ∣ E ≠ E

and Σ is a spatial formula given by the following grammar:

Σ ∶∶= ⊺ ∣ � ∣ emp ∣ E ↦E ∣ Σ∗Σ ∣Ψ(E)

where E ranges over expressions, E over tuples of expressions and Ψ over predicate

symbols.

Definition 2.2.2. Given a state (s,h) and symbolic heap Π ∶Σ, we write s,h⊧Π ∶Σ if

s,h⊧ϖ for all pure formulas ϖ ∈Π, and s,h⊧Σ, where the relation s,h⊧A between

states and formulas is defined by

2.2. Memory state assertions. 35

s,h ⊧ ⊺ ⇔ always

s,h ⊧ � ⇔ never

s,h ⊧ E1 = E2 ⇔ JE1Ks = JE2Ks

s,h ⊧ E1 ≠ E2 ⇔ JE1Ks ≠ JE2Ks

s,h ⊧ emp ⇔ dom(h) = ∅

s,h ⊧ E ↦E ⇔ dom(h) = {JEKs}andh(JEKs) = JEKs

s,h ⊧Ψ(E) ⇔ (JEKs,h) ∈ JΨK

s,h ⊧ Σ1∗Σ2 ⇔ h = h1⊎h2 and s,h1 ⊧ Σ1 and s,h2 ⊧ Σ2

s,h ⊧Ω1∨Ω2 ⇔ s,h ⊧Ω1 or s,h ⊧Ω2

Symbolic heaps denote memory states via the satisfaction relation shown be-

fore. However, we insist that the interpretation JΨK of each inductive predicate

symbol Ψ is fixed by a given inductive definition for Ψ. Our inductive definition

schema follows closely the one formulated in [17] and is given by the following

definition:

Definition 2.2.3 (Inductive definition). An inductive definition of an inductive pred-

icate symbol Ψ is a finite set of inductive rules, each of the form Π∶Σ⇒Ψ(E)where

Π∶Σ is a symbolic heap formula and Ψ(E) is a predicate formula.

The standard interpretation of an inductive predicate symbol Ψ is then the least

prefixed point of a monotone operator constructed from the inductive definitions.

Definition 2.2.4 (Definition set operator). Let the inductive predicate symbols of

Σlog be Ψ1, . . . ,Ψn with arities a1, . . . ,an respectively, and suppose we have a unique

inductive definition for each predicate symbol Ψi. Then for each i ∈ {1, . . . ,n},

from the inductive definition for Ψi, say Π1 ∶ Σ1⇒Ψi(E1), . . . ,Πk ∶ Σk ⇒Ψi(Ek)

we obtain a corresponding n-ary function χi ∶ (Pow(Heaps × Val Lista1) × . . . ×

Pow(Heaps×Val Listan)) → Pow(Heaps×Val Listai) as follows:

χi(X) = ⋃
1≤ j≤k
{(h,JE jK(s[E j ↦ d])) ∣ (s[E j ↦ d,h]) ⊧JΨK↦X Π j ∶ Σ j}

2.2. Memory state assertions. 36

where s is an arbitrary stack and ⊧JΨK↦X is the satisfaction relation defined exactly

as Definition 2.2.2 except that JΨiK = πn
i (X) for each i ∈ {1, . . . ,n} (where πi. is the

ith projection function on n-tuples of sets defined by πn
i (X1, . . . ,Xn) = Xi). Then the

definition set operator for Ψi, . . . ,Ψn is the operator χΨ defined by:

χΨ(X) = (χ1(X), . . . ,χn(X))

Example 2.2.5. For example, consider the following inductive definition for a bi-

nary inductive predicate symbol ls that denoted singly-linked list segments

emp ⇒ ls(x,x)

x↦ x′∗ ls(x′,y) ⇒ ls(x,y)

Then JlsK is the least prefixed point of the following operator, with domain and

codomain Pow(Heaps×Val List2):

χls(X) = {(emp,(v,v)) ∣ v ∈Val}

∪ {(h1⊎h2,(v,v′)) ∣ ∃w ∈Val.dom(h1) = v and h(v) =w

and (h2,(w,v′)) ∈ X}

Note that the operator generated from a set of inductive definitions by Defini-

tion 2.2.4 is monotone [17] and consequently has a least prefixed point, which gives

the standard interpretation for the inductively defined predicates of the language.

Moreover, this least prefixed point can be iteratively approached by approximants.

Definition 2.2.6 (Approximants). Let χΨ be the definition set operator for the in-

ductive predicates Ψ1, . . . ,Ψn as in Definition 2.2.4. Define a chain of ordinal-

indexed sets (χα

Ψ
)α≥0 by transfinite induction : χα

Ψ
= ⋃β<α χΨ(χβ

Ψ
). Then, for each

i ∈ 1, . . . ,n, the set Ψα
i = πn

i (χα

Ψ
) is called the α-th approximant of Ψi.

Lemma 2.2.7 (Substitution). ∀P ∶ SymbolicHeap,x ∶Var,x′ ∶Var,s ∶Stack,h ∶Heap.

(s,h) ⊧ P[x′/x] if and only if (s[x↦ Jx′Ks],h) ⊧ P.

Proof. By structural induction on P.

2.2. Memory state assertions. 37

Base cases P = ⊺ and P = � and P = emp are trivial since variable substitution has no

effect on the satisfaction of these formulas.

Base case P = (E1 = E2):

(s,h) ⊧ (E1 = E2)[x′/x]

⇔ JE1[x′/x]Ks = JE2[x′/x]Ks Definition 2.2.2

⇔ JE1Ks[x↦ Jx′Ks] = JE2Ks[x↦ Jx′Ks] Lemma 2.1.2

⇔ (s[x↦ Jx′Ks],h) ⊧ (E1 = E2) Definition 2.2.2

Base case P = (E1 ≠ E2).

(s,h) ⊧ (E1 ≠ E2)[x′/x]

⇔ JE1[x′/x]Ks ≠ JE2[x′/x]Ks Definition 2.2.2

⇔ JE1Ks[x↦ Jx′Ks] ≠ JE2Ks[x↦ Jx′Ks] Lemma 2.1.2

⇔ (s[x↦ Jx′Ks],h) ⊧ (E1 ≠ E2) Definition 2.2.2

Base case P = (E ↦E).

(s,h) ⊧ (E ↦E)[x′/x]

⇔ dom(h) = {JE[x′/x]Ks} and h(JE[x′/x]Ks) = JE[x′/x]Ks Definition 2.2.2

⇔ dom(h) = {JEKs[x↦ Jx′Ks]} and

h(JEKs[x↦ Jx′Ks]) = JEKs[x↦ Jx′Ks] Lemma 2.1.2

⇔ (s[x↦ Jx′Ks],h) ⊧ (E ↦E) Definition 2.2.2

Inductive case P =Ψ(E).

(s,h) ⊧Ψ(E)[x′/x]

⇔ (JE[x′/x]Ks,h) ∈ JΨ[x′/x]K Definition 2.2.2:

⇔ (JE[x′/x]Ks,h) ∈
k
⋃
j=1
{(h,JE[x′/x] jK(s[x j ↦ d])) ∣

(s[x j ↦ d,h]) ⊧JΨK↦X (Π j ∶ Σ j)[x′/x]} Definition 2.2.4

⇔ (JEKs[x↦Jx′Ks],h)∈
k
⋃
j=1
{(h,JE jK(s[x↦Jx′Ks][x j↦d])) ∣

(s[x↦ Jx′Ks][x j ↦ d,h]) ⊧JΨK↦X Π j ∶ Σ j} Induction hypothesis

⇔ (JEKs[x↦ Jx′Ks],h) ∈ JΨK Definition 2.2.4

⇔ (s[x↦ Jx′Ks],h) ⊧Ψ(E) Definition 2.2.2

2.3. Temporal assertions. 38

Inductive case P = (Σ1∗Σ2).

(s,h) ⊧ (Σ1∗Σ2)[x′/x]

⇔ h = h1⊎h2 and (s,h1) ⊧ Σ1[x′/x] and

(s,h2) ⊧ Σ2[x′/x] Definition 2.2.2

⇔ h = h1⊎h2 and (s[x↦ Jx′Ks],h1) ⊧ Σ1 and

(s[x↦ Jx′Ks],h2) ⊧ Σ2 Induction hypothesis

⇔ (s[x↦ Jx′Ks],h) ⊧ Σ1∗Σ2 Definition 2.2.2

Inductive case P = (Ω1∨Ω2).

(s,h) ⊧ (Ω1∨Ω2)[x′/x]

⇔ (s,h) ⊧Ω1[x′/x] or (s,h) ⊧Ω2[x′/x] Definition 2.2.2

⇔ (s[x↦ Jx′Ks],h) ⊧Ω1 or (s[x↦ Jx′Ks],h) ⊧Ω2 Induction hypothesis

⇔ (s[x↦ Jx′Ks],h) ⊧ (Ω1∨Ω2) Definition 2.2.2

2.3 Temporal assertions.
We describe temporal properties of our programs using temporal assertions, built

from the memory state assertions given above using standard operators of temporal

logic [83]. We examine two concrete assertion languages, the first based on com-

putation tree logic (CTL) [34], whose temporal operators quantify over possible

execution paths, and the second on linear time logic (LTL) [83], whose temporal

operators quantify over events along a given execution path.

2.3.1 CTL assertions

Computational Tree Logic is a branching temporal logic in the sense that a compu-

tation starting from a state is viewed as a tree, where each branch corresponds to

a possible execution path. Apart from the usual logical operators (∧ and ∨), CTL

offers temporal operators (◻,◇,EF,AF,EG,AG,EU,AU) to describe the behaviour

of computer programs and its evolution over time.

2.3. Temporal assertions. 39

Definition 2.3.1 (CTL assertions). CTL assertions are described by the grammar:

ϕ ∶∶= P ∣ error ∣ final ∣ ϕ ∧ϕ ∣ ϕ ∨ϕ ∣ ◇ϕ ∣ ◻ϕ ∣

EFϕ ∣ AFϕ ∣ EGϕ ∣ AGϕ ∣ E(ϕUϕ) ∣ A(ϕUϕ)

where P ranges over memory state assertions (Definition 2.2.1).

Note that we use ◇ in favour of EX for the existential quantification over

the immediate next configuration. Similarly, we use ◻ in favour of AX for the

universally quantified immediate next configuration. Also, final and error denote

final and faulting configurations respectively.

Definition 2.3.2. A (program) configuration γ is a model of the CTL assertion ϕ if

the relation γ ⊧ ϕ holds, defined by structural induction on ϕ:

γ ⊧ P ⇔ (γs,γh) ⊧ P

γ ⊧ error ⇔ γ = fault

γ ⊧ final ⇔ γC = ε

γ ⊧ ϕ1∧ϕ2 ⇔ γ ⊧ ϕ1 and γ ⊧ ϕ2

γ ⊧ ϕ1∨ϕ2 ⇔ γ ⊧ ϕ1 or γ ⊧ ϕ2

γ ⊧◇ϕ ⇔ ∃γ ′. γ ↝ γ ′ and γ ′ ⊧ ϕ

γ ⊧ ◻ϕ ⇔ ∀γ ′. γ ↝ γ ′ implies γ ′ ⊧ ϕ

γ ⊧ EFϕ ⇔ ∃γ ′. γ ↝∗ γ ′ and γ ′ ⊧ ϕ

γ ⊧ AFϕ ⇔ ∀π starting from γ. ∃γ ′ ∈ π.γ ′ ⊧ ϕ

γ ⊧ EGϕ ⇔ ∃π starting from γ. ∀γ ′ ∈ π.γ ′ ⊧ ϕ

γ ⊧ AGϕ ⇔ ∀γ ′. if γ ↝∗ γ ′ then γ ′ ⊧ ϕ

γ ⊧ E(ϕ1Uϕ2) ⇔ ∃π starting from γ.

∃i ≥ 0. π[i] ⊧ ϕ2 and ∀ j∶0 ≤ j < i.π[j] ⊧ ϕ1

γ ⊧ A(ϕ1Uϕ2) ⇔ ∀π starting from γ.

∃i ≥ 0. π[i] ⊧ ϕ2 and ∀ j∶0 ≤ j < i.π[j] ⊧ ϕ1

2.3. Temporal assertions. 40

2.3.2 LTL assertions

In contrast to branching temporal logics, in linear time logics, the truth of temporal

logic formulas are defined on execution paths. This supports the linear view of time,

where a computation starting from a state is seen as a single sequence of states.

Definition 2.3.3. LTL assertions are described by the grammar:

ψ ∶∶= P ∣ error ∣ final ∣ψ ∧ψ ∣ψ ∨ψ ∣ Xψ ∣ Fψ ∣Gψ ∣ (ψUψ)

where P ranges over memory state assertions (Definition 2.2.1) extended with

prophecy variables to correctly handle nondeterminism; see Chapter 4 for details.

Definition 2.3.4. An execution path π is a model of an LT L temporal formula ψ if

the relation π ⊧ψ holds, defined by structural induction on ψ:

π ⊧Q ⇔ (π[0]s,π[0]h) ⊧Q

π ⊧ error ⇔ π[0] = fault

π ⊧ final ⇔ π[0]C = ε

π ⊧ψ1∧ψ2 ⇔ π ⊧ψ1 and π ⊧ψ2

π ⊧ψ1∨ψ2 ⇔ π ⊧ψ1 or π ⊧ψ2

π ⊧ Xψ ⇔ π1 ⊧ψ

π ⊧ Fψ ⇔ ∃k ≥ 0.πk ⊧ψ

π ⊧Gψ ⇔ ∀k ≥ 0.πk ⊧ψ

π ⊧ψ1Uψ2 ⇔ ∃k ≥ 0.πk ⊧ψ2 and ∀0 ≤ j ≤ k.π j ⊧ψ1

The subtle difference between considering computation as a tree of executions

(in CTL) and as a collection of executions (in LTL) can be exemplified as follows.

Example 2.3.5. Assume the following program starts its execution from an initial

program state where x = true.

2.3. Temporal assertions. 41

while(*) {

x:=true;

}

x:=false;

x:=true;

while(true) {

skip;

}

Suppose that we attempt to demonstrate that for every execution in the program, x

will become true and remain true for the rest of the program execution. In CTL,

this property would be expressed as AFAG(x = true), which is invalid due to the

existence of an execution path which fails to exhibit AG(x = true). Concretely,

consider the path π that executes the loop n times, reaching a configuration with

command while ∗ do x ∶= true od; x ∶= f alse, say γn. The possibility of exiting

the loop and reaching the configuration with command x ∶= f alse establishes that

γn /⊧ AG(x = true).

However, the analogous LTL property FG(x = true) does hold. This is because

when considering each individual execution of the program, we find that in each

one there is a point from which x = true is always true onwards; for the executions

that reach x ∶= f alse the condition will also hold once the execution reaches the

succeeding assignment x ∶= true.

Chapter 3

CTL Proof System

In this chapter, we present our cyclic proof system for establishing CTL properties

of programs. In Section 3.1 we give the proof rules of our system, which we cate-

gorise into symbolic execution, faulting execution and logical rules. The symbolic

execution rules are adapted from those in [19], accounting for whether an existen-

tially quantified (◇) or universally quantified (◻) path formula property is being

established. The faulting execution rules allow us to prove that a program execu-

tion faults. The logical rules comprise standard rules for the logical connectives and

standard unfolding rules for the temporal operators and inductive predicates. In Sec-

tion 3.2 we formulate the global soundness condition that ensures that cyclic proofs

in our system are sound and demonstrate its applicability on a couple of examples.

Finally, in Section 3.3 we show that our proof rules are sound with respect to the

operational semantics for programs described in the previous chapter and show the

global soundness of our cyclic proof system.

3.1 CTL proof rules
In this section we give the proof rules of our system. We use Hoare logic due to its

common use as an elegant framework in which to write formal proofs as well as its

common use underlying automated theorem-proving tools.

Judgements in our system are of the form P ⊢C ∶ ϕ , where P is a symbolic

heap formula as per Definition 2.2.1; C is a sequence of commands as per Defini-

tion 2.1.1 (i.e. a computer program); and ϕ is a temporal assertion written in the

3.1. CTL proof rules 43

CTL language described in Definition 2.3.1. A proof rule (R) is written as:

P1 ⊢C1 ∶ϕ1 . . .Pn ⊢Cn ∶ϕn
P ⊢C ∶ϕ (R)

where n ∈ N; the sequents above the line are called the premises of the rule

while the sequent below the line is called the conclusion of the rule. A rule with

no premises is called an axiom. We write sP,sC and sϕ to refer to the precondition,

program command and temporal property components of sequent s, respectively.

The interpretation of judgements for CTL is as follows:

Definition 3.1.1 (CTL judgement). A CTL judgement P ⊢C ∶ϕ is valid if and only

if, for all memory states (s,h) such that s,h ⊧ P, we have ⟨C,s,h⟩ ⊧ ϕ .

Our proof rules for CTL judgements are shown in Figure 3.1. The symbolic

execution rules for commands are adapted from those in the proof system for pro-

gram termination in [19], accounting for whether a diamond ◇ or box ◻ property

is being established. The dichotomy between ◇ and ◻ is only visible for the non-

deterministic components of a program. In the specific case of our language, the

nondeterministic constructs are (i) nondeterministic while; (ii) nondeterministic if;

and (iii) memory allocation; it is only for these constructs that we need a specific

rule for each case. Incidentally, the difference between E properties and A prop-

erties is basically the same as the difference between ◇ and ◻, but extended to

execution paths rather than individual steps.

We introduce faulting execution rules to allow us to prove that a program faults

due to attempting to access memory locations outside the program heap. In the case

of our programming language, the constructs that require to access memory that

has been previously allocated are (i) x ∶= [E]; (ii) [E] ∶= E; and (iii) free(E); we

provide a faulting execution rule for each of these cases. The side condition for

these three rules requires that the separating conjunction of the precondition P with

the point-to formula E ↦ nil is unsatisfiable. Intuitively this condition precludes the

memory location JEKs from being in the domain of the heap for models that satisfy

P, hence causing a memory violation that results in a faulting execution.

3.2. CTL cyclic proofs 44

The logical rules comprise standard rules for the logical connectives and stan-

dard unfolding rules for the temporal operators and inductive predicates. As de-

scribed in Section 2.1, we consider an execution path to be a maximally finite or

infinite sequence of configurations. To correctly account for maximally finite paths

we introduce (EG-Finite), otherwise we would not be able to prove EG properties

over finite paths (as the (EG) rule requires the existence of an infinite succession

of configurations). Note that a corresponding (AG-Finite) rule is not required since

any ◻ property is trivially true of any configuration with no successive configura-

tions.

The (Unfold-Pre) rule performs a case-split on an inductive predicate in the

precondition by replacing the predicate with the body of each clause of its inductive

definition. For example, consider the inductive predicate for list segments from

Example 2.2.5; its inductive definition determines the following (Unfold-Pre) rule:

x = y,Π ∶emp∗F ⊢C ∶ϕ Π ∶F ∗x↦ x′∗ ls(x′,y) ⊢C ∶ϕ
Π ∶F ∗ ls(x,y) ⊢C ∶ϕ (Unfold-Pre)

3.2 CTL cyclic proofs

Proofs in our system are cyclic proofs: standard derivation trees in which open

subgoals can be closed either by applying an axiom or by forming a back-link to an

identical interior node. To ensure that such structures correspond to sound proofs,

a global soundness condition is imposed. The following definitions, adaptations of

similar notions in e.g. [17, 19, 22], formalise this notion.

Definition 3.2.1 (Derivation graph). Let Seqs denote the set of all well-formed CTL

judgements and Rules denote the set of rules of the CTL proof system. Then a

derivation graph G is given by the tuple (V,s,r, p), where V is a finite set of nodes,

s ∶V → Seqs is a total function mapping nodes to sequents, r ∶V →Rules is a partial

function mapping nodes to rules, and p ∶N×V →V is a partial function defined just

3.2. CTL cyclic proofs 45

Symbolic execution rules:

P ⊢C ∶final
(Final)

P ⊢C ∶ϕ

P ⊢ (skip ; C) ∶◯ϕ
(Skip)

x = E[x′/x],P[x′/x] ⊢C ∶ϕ

P ⊢ (x ∶= E ; C) ∶◯ϕ
(Assign)

x = E′[x′/x],(P∗E ↦ E′)[x′/x] ⊢C ∶ϕ

P∗E ↦ E′ ⊢ (x ∶= [E] ; C) ∶◯ϕ
(Read)

P∗E ↦ E′ ⊢C ∶ϕ

P∗E ↦−⊢ ([E] ∶= E′ ; C) ∶◯ϕ
(Write)

B,P ⊢C1 ; C3 ∶ϕ ¬B,P ⊢C2 ; C3 ∶ϕ

P ⊢ (if B then C1 else C2 fi ; C3) ∶◯ϕ
(If)

B,P ⊢ (C1 ; while B do C1 od ; C2) ∶ϕ ¬B,P ⊢C2 ∶ϕ

P ⊢ (while B do C1 od ; C2) ∶◯ϕ
(Wh)

P ⊢C ∶ϕ

P∗E ↦−⊢ (free(E) ; C) ∶◯ϕ
(Free)

P[x′/x]∗x↦ v ⊢C ∶ϕ v ∈Val

P ⊢ (x ∶= alloc() ; C) ∶◇ϕ
(Alloc◇)

P[x′/x]∗x↦ v ⊢C ∶ϕ

P ⊢ (x ∶= alloc() ; C) ∶◻ϕ
v fresh (Alloc◻)

P ⊢C1 ; C3 ∶ϕ

P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶◇ϕ
(If*◇1)

P ⊢C2 ; C3 ∶ϕ

P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶◇ϕ
(If*◇2)

P ⊢C1 ; C3 ∶ϕ P ⊢C2 ; C3 ∶ϕ

P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶◻ϕ
(If*◻)

P ⊢ (C1 ; while ∗ do C1 od ; C2) ∶ϕ P ⊢C2 ∶ϕ

P ⊢ (while ∗ do C1 od ; C2) ∶◻ϕ
(Wh*◻)

P ⊢ (C1 ; while ∗ do C1 od ; C2) ∶ϕ

P ⊢ (while ∗ do C1 od ; C2) ∶◇ϕ
(Wh*◇1)

P ⊢C2 ∶ϕ

P ⊢ (while ∗ do C1 od ; C2) ∶◇ϕ
(Wh*◇2)

Faulting execution rules:

P∗E ↦ nil /⊧ �

P ⊢ (x ∶= [E] ; C) ∶◯error
(R�)

P∗E ↦ nil /⊧ �

P ⊢ ([E] ∶= E′ ; C) ∶◯error
(W�)

P∗E ↦ nil /⊧ �

P ⊢ (free(E) ; C) ∶◯error
(Free�)

Logical rules:

P ⊧Q
P ⊢C ∶Q

(Check)
� ⊢C ∶ϕ

(Ex.Falso)
Ω1 ⊢C ∶ϕ Ω2 ⊢C ∶ϕ

Ω1 ∨Ω2 ⊢C ∶ϕ
(Split)

P ⊢C ∶ϕ x /∈ vars(C)

P[E/x] ⊢C ∶ϕ[E/x]
(Subst)

P ⊢C ∶ϕ1 P ⊢C ∶ϕ2

P ⊢C ∶ϕ1 ∧ϕ2
(Conj)

P ⊢C ∶ϕi i ∈ {1,2}
P ⊢C ∶ϕ1 ∨ϕ2

(∨)

P ⊢C ∶ϕ ∨◇EFϕ

P ⊢C ∶EFϕ
(EF)

P ⊢C ∶ϕ P ⊢C ∶◇EGϕ

P ⊢C ∶EGϕ
(EG)

P ⊢C ∶ψ ∨(ϕ ∧◇E(ϕUψ))

P ⊢C ∶E(ϕUψ)
(EU)

P ⊢C ∶ϕ ∨◻AFϕ

P ⊢C ∶AFϕ
(AF)

P ⊢C ∶ϕ P ⊢C ∶◻AGϕ

P ⊢C ∶AGϕ
(AG)

P ⊢C ∶ψ ∨(ϕ ∧◻A(ϕUψ))

P ⊢C ∶A(ϕUψ)
(AU)

P ⊢ ε ∶ϕ

P ⊢ ε ∶EGϕ
(EG-Finite)

P ⊢Q Q ⊢C ∶ψ ψ ⊢ ϕ

P ⊢C ∶ϕ
(Cons)

(Π∪Π
′

i ∶Σ∗Σ
′

i ⊢C ∶ϕ)1≤i≤k

Π ∶Ψ(E)∗Σ ⊢C ∶ϕ

⎛

⎜
⎜

⎝

Π1 ∶ Σ1⇒Ψ(E1), . . . ,Πk ∶ Σk⇒Ψ(Ek)

Π
′

i ∶ Σ
′

i =Πi ∶ Σi with existential variables freshened and

arguments E substituted for parameters Ei

⎞

⎟
⎟

⎠

(Unfold-Pre)

Figure 3.1: Proof rules for CTL judgements. We write ◯ϕ to mean “either ◻ϕ or ◇ϕ”.

3.2. CTL cyclic proofs 46

in case r(v) is a rule with j premises, 1 ≤ i ≤ j and

s(p(1,v)) s(p(2,v)) . . . s(p(j,v))
s(v) r(v)

Definition 3.2.2 (Derivation tree). A derivation graph D = (V,s,r, p) is a derivation

tree if there is a distinguished node root(D) ∈V such that for all v ∈V , there is a

unique path in D from root(D) to v.

Definition 3.2.3 (Bud nodes). Let D = (V,s,r, p) be a finite derivation tree. A bud

node ofD is a vertex b ∈V such that b is not the conclusion of any proof rule instance

(i.e. r(b) is undefined). We write Bud(D) to denote the set of all bus nodes ocurring

in D.

Definition 3.2.4 (Companion). Let D = (V,s,r, p) be a derivation tree and let

b ∈Bud(D). A node c ∈V is said to be a companion for b if s(c) = s(b) and r(c) is

defined.

Definition 3.2.5 (Pre-proof). A pre-proof is a pair P = (D,L), where D is a finite

derivation tree constructed according to the proof rules and L ∶V →V is a partial

function assigning to every bud node b ∈Bud(D) one of its companions.

As usual, a pre-proof P = (D,L) can be understood as a finite cyclic graph by

identifying each open leaf of D with its companion, and a path in P is then just a

path in this graph.

Definition 3.2.6 (Pre-proof graph). Let P = (D,L) be a pre-proof, where D =

(V,s,r, p). Then, the graph of P , written GP is the derivation graph obtained fromD

by identifying each bud node b ∈Bud(D) with its companion L(b). In other words,

GP = (V ′,s,r, p′), where V ′ =V ∖Bud(D) and p′ is defined by

p′(j,v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L(p(j,v)) if p(j,v) ∈Bud(D)

p(j,v) otherwise

for each j ∈N. That is to say GP contains no bud nodes and the rule labelling

function r is total on V ′.

3.2. CTL cyclic proofs 47

To qualify as a proof, a cyclic pre-proof must satisfy a global soundness con-

dition, defined using the notion of a trace along a path in a pre-proof.

Definition 3.2.7 (Temporal trace). Let (Ji=Pi ⊢Ci ∶ϕi)i≥0 be a path in a pre-proof P .

The sequence of temporal formulas along the path, (ϕi)i≥0, is a ◻-trace (◇-trace)

following that path (Ji)i≥0 if there exists a formula ψ such that, for all i ≥ 0, the

following both hold:

(i) the formula ϕi is of the form AGψ (EGψ) or ◻AGψ (◇EGψ); and

(ii) ϕi = ϕi+1 whenever Ji is the conclusion of the consequence rule (Cons).

We say that a temporal trace progresses whenever a symbolic execution rule is ap-

plied. A temporal trace is infinitely progressing if it progresses at infinitely many

points.

We also take account of precondition traces arising from inductive predicates

in the precondition, analogous to [19]. Roughly speaking, a precondition trace

tracks an occurrence of a predicate in the preconditions of the judgements along

the path, progressing whenever the predicate occurrence is unfolded.

Definition 3.2.8 (Precondition trace). Let (Ji = Pi ⊢Ci ∶ϕi)i≥0 be a path in a pre-

proof P . The sequence of symbolic heap formulas along the path, (Ψi)i≥0, is a

precondition trace following that path (Ji)i≥0 if:

(i) Whenever Ji is the conclusion of the (Unfold-Pre) rule, the predicate Ψ(E)

is the predicate in the spatial formula of Pi being unfolded and Ψi+1 =Ψ′(E),

where Ψ′(E) is obtained in the premise Ji+1 by unfolding Ψ(E); and

(ii) Ψi =Ψi+1 (modulo any rewriting done by rules (Assign), (Read), (Alloc◻),

(Alloc◇), (Subst)) for all other rules.

We say that a precondition trace progresses whenever (Unfold-Pre) is applied. A

precondition trace is infinitely progressing if it progresses at infinitely many points.

3.2. CTL cyclic proofs 48

Example 3.2.9. The following examples are intended to show how traces are

tracked for both conditions of Definition 3.2.8.

For condition (i) we show the (progressing) trace induced as result of unfolding the

ls inductive predicate defined in Example 2.2.5:

x = y ∶emp ⊢C ∶ϕ x↦ x′∗ ls(x′,y) ⊢C ∶ϕ
ls(x,y) ⊢C ∶ϕ (Unfold-Pre)

where Ψi = ls(x,y) and Ψi+1 = ls(x′,y).

For condition (ii) we show the (non-progressing) precondition trace involved in the

application of the rule (Assign) (the treatment for other rules is analogous):

tmp = true ∶ ls(x,y) ⊢C ∶ϕ
ls(x,y) ⊢ tmp ∶= true ; C ∶◯ϕ

(Assign)

where Ψi =Ψi+1 = ls(x,y).

Definition 3.2.10 (Proof). A pre-proof P is a proof if it satisfies the following

global soundness condition: for every infinite path (Pi ⊢Ci ∶ϕi)i≥0 in P , there is

an infinitely progressing temporal (◻- or ◇-) trace or precondition trace following

some tail (Pi ⊢Ci ∶ϕi)i≥n of the path.

Example 3.2.11. The following simple example has been designed to illustrate com-

plex cycle structures that arise from the nesting of temporal operators to provide a

non-trivial satisfaction of the soundness condition.

Consider the following program:

1: if(*){

2: x:=1

} else {

3: skip;

}

4: while(x=x) {

5: skip;

}

3.2. CTL cyclic proofs 49

C
h
e
ck

P
`
C

1
:
(Q

)

C
h
e
ck

P
`
C

2
:
(Q

)

C
h
e
ck

P
`
C

4
:
(Q

)

E
x
F
a
ls
o

x
6=
x
`
ε
:
(Q

)

C
h
e
ck

P
`
C

5
:
(Q

)

P
`
C

4
:
A
G
(Q

)
(S

k
ip
)

P
`
C

5
:
�
A
G
(Q

)
(A

G
)

P
`
C

5
:
A
G
(Q

)
(W

h
)

P
`
C

4
:
�
A
G
(Q

)
(A

G
)

P
`
C

4
:
A
G
(Q

)
(A

ss
ig
n
)

P
`
C

2
:
�
A
G
(Q

)
(A

G
)

P
`
C

2
:
A
G
(Q

)

C
h
e
ck

P
`
C

3
:
(Q

)

P
`
C

4
:
A
G
(Q

)
(S

k
ip
)

P
`
C

3
:
�
A
G
(Q

)
(A

G
)

P
`
C

3
:
A
G
(Q

)
(I
f*
�
)

P
`
C

1
:
�
A
G
(Q

)
(A

G
)

P
`
C

1
:
A
G
(Q

)

P
`
C

3
:
A
G
(Q

)

P
`
C

4
:
A
G
(Q

)

P
`
C

5
:
A
G
(Q

)

P
`
C

4
:
E
G
A
G
(Q

)
(S

k
ip
)

P
`
C

5
:
♦
E
G
A
G
(Q

)
(E

G
)

P
`
C

5
:
E
G
A
G
(Q

)
(W

h
)

P
`
C

4
:
♦
E
G
A
G
(Q

)
(E

G
)

P
`
C

4
:
E
G
A
G
(Q

)
(S

k
ip
)

P
`
C

3
:
♦
E
G
A
G
(Q

)
(E

G
)

P
`
C

3
:
E
G
A
G
(Q

)
(I
f*
♦1

)
P

`
C

1
:
♦
E
G
A
G
(Q

)
(E

G
)

P
`
C

1
:
E
G
A
G
(Q

)

Fi
gu

re
3.

2:
N

es
te

d
te

m
po

ra
lo

pe
ra

to
rs

ex
am

pl
e

3.2. CTL cyclic proofs 50

where each atomic command is labelled with a program counter.

One can observe that, under the precondition P = (x = 1), the program has the

invariant property AG(x=1), since the assignment command on line 2 does not break

the invariant and the variable will not be updated throughout the rest of the program

execution. Moreover, since there exists at least one program execution in which the

invariant holds, the program satisfies the formula EGAG(x = 1). Figure 3.2 shows

the proof of this property in our system including the 6 cycles that are formed during

the proof search along with the traces that follow the infinite paths.

For the right-most cycle we note that the temporal component of the sequents in

the infinite proof path are of the form EGψ or ◇EGψ , where ψ =AG(x = 1), so that

there is a ◇-trace following the proof path as per Definition 3.2.7. Moreover, due

to the application of symbolic execution rules (Wh) and (Skip) along the infinite

proof path, the trace progresses infinitely often.

Similarly, for the left-most cycle we note that the temporal component of the

sequents in the infinite proof path are of the form AGψ or ◻AGψ , where ψ = (x = 1),

so that there is a ◻-trace following the proof path as per Definition 3.2.7. Moreover,

due to the application of symbolic execution rules (Wh) and (Skip) along the infinite

proof path, the trace progresses infinitely often.

Contrary to the previous two cycles, the remanding 4 back-links shown in the

proof do not match their corresponding leaf node to a direct descendant. Never-

theless, these infinite paths are, too, followed by ◻-traces that progress infinitely

often.

Consequently, our pre-proof qualifies as a valid cyclic proof since along every

infinite path there is either a ◻- or a ◇- trace progressing infinitely often.

Example 3.2.12. On a more realistic example, we now present a proof of a heap-

aware server program that nondeterministically alternates between adding an ar-

bitrary number of “job requests” to the head of a linked-list and processing job

requests by means of deleting them from the list:

3.2. CTL cyclic proofs 51

1: while(true){

2: if(*) {

3: while(x!=nil) {

4: temp:=x.next;

5: free(x);

6: x:=temp;

}

} else {

7: while(*) {

8: y:=new();

9: y.next:=x;

10: x:=y;

}

}

}

We can show that, given that the heap is initially a linked list from x to nil (com-

monly written in separation logic as ls(x,nil)), it is always possible for the heap to

become empty at any point during program execution. Writing C for our server

program, this property is expressed as the judgement ls(x,nil) ⊢C ∶ AGEF(emp).

Figure 3.3 shows a cyclic proof of this judgement in our system, where

AGEF(emp) is replaced by ϕ and EF(emp) is replaced by ψ due to space con-

straints.

For the cycles depicted in red, we note that the temporal component of the

sequents in the infinite proof path are of the form AGψ or ◻AGψ , where ψ =

EF(emp), so that there is a ◻-trace following the proof path as per Definition 3.2.7.

Moreover, due to the application of symbolic executions rules along the proof path,

the traces progresses infinitely often.

Note that the back-links depicted in green do not form infinite loops as they all

point to a companion that eventually leads to a (Check) axiom; as such, no trace is

required to follow these paths (indeed there are no traces following these paths in

the proof). These back-links resulting on a finite proof path could be intuitively seen

3.3. Soundness of CTL system 52

as lemma applications of previously discovered proofs. Alternatively, one can think

of simply replicating the tails of the path above the respective leaf node to produce

a similarly sound proof.

Consequently, the pre-proof qualifies as a valid cyclic proof since there is an

infinitely progressing ◻-trace along every infinite path.

3.3 Soundness of CTL system
In this section we show that our proof system is sound. We first show local sound-

ness of the proof rules along with the trace properties that are maintained by all

derivation rules, as established in Definitions 3.2.7 and 3.2.8. For each proof rule,

we show soundness from conclusion to premises by assuming that the conclusion

is invalid (by Definition 3.1.1) and proceeding to establish the invalidity (of at least

one) of the premise(s). In the case of the axioms, we show that the conclusion

is a tautology. We then show the global soundness of our system, essentially, by

extending the properties established for local soundness to paths in a pre-proof.

Lemma 3.3.1. Let J = (P ⊢C ∶ϕ) be the conclusion of a proof rule R. If J is invalid

under (s,h), then there exists a premise of the rule J′ = (P′ ⊢C′ ∶ ϕ ′) and a model

(s′,h′) such that J′ is not valid under (s′,h′) and, furthermore,

1. if there is a ◻-trace (ϕ,ϕ ′) following the edge (J,J′) then, letting ψ be the

unique formula given by Definition 3.2.7, there is a configuration γ such that

γ /⊧ ψ , and the finite execution path π ′ = ⟨C′,s′,h′⟩ . . .γ is well-defined and

a subpath of π = ⟨C,s,h⟩ . . .γ . Therefore length(π ′) ≤ length(π). Moreover,

length(π) < length(π ′) when R is a symbolic execution rule.

2. if there is a ◇-trace (ϕ,ϕ ′) following the edge (J,J′) then, letting ψ be the

unique formula given by Definition 3.2.7, there is a smallest finite execution

tree κ with root ⟨C,s,h⟩, each of whose leaves γ satisfies γ /⊧ ψ . Moreover,

κ has a subtree κ ′ with root ⟨C′,s′,h′⟩ and whose leaves are all leaves of κ .

Therefore height(κ ′) ≤ height(κ). Moreover, height(κ ′) < height(κ) when R

is a symbolic execution rule.

3.3. Soundness of CTL system 53

(C
h
e
ck

)
P

2
`
C

1
:
em

p
(E

F
)

P
2
`
C

1
:
ψ

(W
h
)

P
1
`
C

3
:
�ψ

(E
F
)

P
1
`
C

3
:
ψ

(I
f-
�1

)
P

1
`
C

2
:
�ψ

(E
F
)

P
1
`
C

2
:
ψ

(W
h
)

P
1
`
C

1
:
�ψ

(E
F
)

P
1
`
C

1
:
ψ

P
1
`
C

3
:
ψ

(I
f*
�1

)
P

1
`
C

2
:
�ψ

(E
F
)

P
1
`
C

2
:
ψ

P
1
`
C

3
:
ψ

(E
x
F
a
ls
o
)

P
7
`
C

4
:
ϕ

P
1
`
C

3
:
ψ

(C
o
n
s)

P
6
`
C

3
:
ψ

(A
ss
ig
n
)

P
5
`
C

6
:
�ψ

(E
F
)

P
5
`
C

6
:
ψ

(F
re
e
)

P
4
`
C

5
:
�ψ

(E
F
)

P
4
`
C

5
:
ψ

(L
o
a
d
)

P
3
`
C

4
:
�ψ

(E
F
)

P
3
`
C

4
:
ψ

P
1
`
C

3
:
ψ

(C
o
n
s)

P
6
`
C

3
:
ψ

(A
ss
ig
n
)

P
5
`
C

6
:
�ψ

(E
F
)

P
5
`
C

6
:
ψ

(F
re
e
)

P
4
`
C

5
:
�ψ

(E
F
)

P
4
`
C

5
:
ψ

P
1
`
C

3
:
ψ

(C
o
n
s)

P
6
`
C

3
:
ψ

(A
ss
ig
n
)

P
5
`
C

6
:
�ψ

(E
F
)

P
5
`
C

6
:
ψ

P
1
`
C

3
:
ϕ

(C
o
n
s)

P
6
`
C

3
:
ϕ

(A
ss
ig
n
)

P
5
`
C

6
:
�
ϕ

(A
G
)

P
5
`
C

6
:
ϕ

(F
re
e
)

P
4
`
C

5
:
�
ϕ

(A
G
)

P
4
`
C

5
:
ϕ

(L
o
a
d
)

P
3
`
C

4
:
�
ϕ

(A
G
)

. · · · ·
P

3
`
C

4
:
ϕ

(U
n
fo
ld
-P

re
)

P
8
`
C

4
:
ϕ

P
1
`
C

1
:
ϕ

(C
o
n
s)

P
2
`
C

1
:
ϕ

(W
h
)

P
1
`
C

3
:
�
ϕ

(A
G
)

. · · · · · ·
P

1
`
C

3
:
ϕ

P
1
`
C

1
:
ψ

(W
h
*
�2

)
P

1
`
C

7
:
�ψ

(E
F
)

P
1
`
C

7
:
ψ

P
1
`
C

7
:
ψ

(C
o
n
s)

P
1
1
`
C

7
:
ψ

(A
ss
ig
n
)

P
1
0
`
C

1
0
:
�ψ

(E
F
)

P
1
0
`
C

1
0
:
ψ

(S
to

re
)

P
9
`
C

9
:
�ψ

(E
F
)

P
9
`
C

9
:
ψ

(N
e
w
)

P
1
`
C

8
:
�ψ

(E
F
)

P
1
`
C

8
:
ψ

P
1
`
C

7
:
ψ

(C
o
n
s)

P
1
1
`
C

7
:
ψ

(A
ss
ig
n
)

P
1
0
`
C

1
0
:
�ψ

(E
F
)

P
1
0
`
C

1
0
:
ψ

(S
to

re
)

P
9
`
C

9
:
�ψ

(E
F
)

P
9
`
C

9
:
ψ

P
1
`
C

7
:
ψ

(C
o
n
s)

P
1
1
`
C

7
:
ψ

(A
ss
ig
n
)

P
1
0
`
C

1
0
:
�ψ

(E
F
)

P
1
0
`
C

1
0
:
ψ

P
1
`
C

7
:
ϕ

(C
o
n
s)

P
1
1
`
C

7
:
ϕ

(A
ss
ig
n
)

P
1
0
`
C

1
0
:
�
ϕ

(A
G
)

P
1
0
`
C

1
0
:
ϕ

(S
to

re
)

P
9
`
C

9
:
�
ϕ

(A
G
)

P
9
`
C

9
:
ϕ

(N
e
w
)

P
1
`
C

8
:
�
ϕ

(A
G
)

P
1
`
C

8
:
ϕ

P
1
`
C

1
:
ϕ

(W
h
*
�
)

P
1
`
C

7
:
�
ϕ

(A
G
)

P
1
`
C

7
:
ϕ

(I
f*
�
)

P
1
`
C

2
:
�
ϕ

(A
G
)

P
1
`
C

2
:
ϕ

(E
x
F
a
ls
o
)

P
1
2
`
ε
:
ϕ

(W
h
)

P
1
`
C

1
:
�
ϕ

(A
G
)

P
1
`
C

1
:
ϕ

[P
1
]
=

ls
(x
,n
i
l
)

[P
5
]
=

n
i
l
6=

x
:
ls
(t
em

p
,n
i
l
)

[P
9
]
=

n
i
l
6=

y
:
y
7→

y
′
∗
ls
(x
,n
i
l
)

[P
2
]
=

n
i
l
=

x
:
ls
(x
,n
i
l
)

[P
6
]
=

x
=

te
m
p
∧
z
′
6=

n
i
l
:
ls
(t
em

p
,n
i
l
)

[P
1
0
]
=

n
i
l
6=

y
:
y
7→

x
∗
ls
(x
,n
i
l
)

[P
3
]
=

n
i
l
6=

x
:
x
7→

z
′
∗
ls
(z
′ ,
n
i
l
)

[P
7
]
=

n
i
l
=

x
∧
n
i
l
6=

x
[P

1
1
]
=

x
=

y
∧
n
i
l
6=

y
:
y
7→

z
′
∗
ls
(z
′ ,
n
i
l
)

[P
4
]
=

n
i
l
6=

x
:
x
7→

te
m
p
∗
ls
(t
em

p
,n
i
l
)

[P
8
]
=

ls
(x
,n
i
l
)

[P
1
2
]
=

x
6=

x
:
ls
(x
,n
i
l
)

Fi
gu

re
3.

3:
Si

ng
le

th
re

ad
ed

m
on

ol
ith

ic
se

rv
er

ex
am

pl
e

w
he

re
w

he
re

AG
E

F
(
em

p
)

is
re

pl
ac

ed
by

ϕ
an

d
E

F
(
em

p
)

is
re

pl
ac

ed
by

ψ

3.3. Soundness of CTL system 54

3. if there is a precondition trace (Ψ(E),Ψ′(E)) following the edge (J,J′) then

letting α (β) be the least approximant for which the inductive predicate Ψ(E)

(Ψ′(E)) is interpreted(i.e. (s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E)), then the

following relation holds and it is well-defined: β ≤ α . Moreover β < α when

R is the (Unfold-Pre) rule.

Proof. We proceed by case analysis of the proof rule R.

Soundness of Final

P ⊢ ε ∶final (Final)

Pick an arbitrary program state s,h such that (s,h) ⊧ P. We need to show that

⟨ε,s,h⟩ ⊧ final. Trivial by Definition 2.3.2 (as ⟨ε,s,h⟩C = ε).

Soundness of Skip
P ⊢C ∶ϕ

P ⊢ skip ; C ∶◯ϕ
(Skip)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ P but the program configuration ⟨skip ; C,s,h⟩ /⊧ ◯ϕ . By Def-

inition 2.3.2, if ⟨skip ; C,s,h⟩ /⊧ ◯ϕ then there exists a configuration γ such that

⟨skip ; C,s,h⟩ ↝ γ and γ /⊧ ϕ . By the operational semantics of our programming

language we know that γ = ⟨C,s,h⟩ since ⟨skip ; C,s,h⟩ ↝ ⟨C,s,h⟩. Consequently,

since by our assumption (s,h) ⊧ P and γs = s and γh = h then (γs,γh) ⊧ P. On the

other hand, since γ /⊧ ϕ then it is the case that the premise of the rule is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ AGψ , then by Defi-

nition 2.3.2 we know that there exists a configuration γ¬ such that ⟨C,s,h⟩ ↝∗ γ¬

and γ¬ /⊧ ψ . Finally, since by the operational semantics there is a single pos-

sible transition from ⟨skip ; C,s,h⟩, namely ⟨skip ; C,s,h⟩ ↝ ⟨C,s,h⟩, then every

execution path π ′ starting from ⟨C,s,h⟩ is a subpath of a path π starting from

⟨skip ; C,s,h⟩. Consequently letting π = ⟨skip ; C,s,h⟩↝∗ γ¬ and π ′ = ⟨C,s,h⟩↝∗ γ¬

then length(π ′) < length(π).

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ EGψ , then by Def-

3.3. Soundness of CTL system 55

inition 2.3.2 we know that for all paths π starting from ⟨C,s,h⟩ there exists a

configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there is a finite tree

κ ′ with root in ⟨C,s,h⟩ whose all leaves γ¬ /⊧ ψ . Finally, since by the opera-

tional semantics there is a single possible transition from ⟨skip ; C,s,h⟩, namely

⟨skip ; C,s,h⟩ ↝ ⟨C,s,h⟩, then every tree κ ′ with root in ⟨C,s,h⟩ is a subtree of a

tree κ with root in ⟨skip ; C,s,h⟩, hence for all leaves γ¬ ∈ κ then γ¬ ∈ κ ′. Therefore

height(κ ′) < height(κ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Assign

x = E[x′/x],P[x′/x] ⊢C ∶ϕ
P ⊢ (x ∶= E ; C) ∶◯ϕ

(Assign)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ P but the program configuration ⟨x ∶= E ; C,s,h⟩ /⊧ ◯ϕ . By

Definition 2.3.2, if ⟨x ∶= E ; C,s,h⟩ /⊧ ◯ϕ then there exists a configuration γ such

that ⟨x ∶= E ; C,s,h⟩ ↝ γ and γ /⊧ ϕ . By the operational semantics of our pro-

gramming language we know that γ = ⟨C,s[x↦ JEKs],h⟩ since ⟨x ∶= E ; C,s,h⟩ ↝

⟨C,s[x↦ JEKs],h⟩.

By construction and Lemma 2.2.7 we know that (s[x↦ JEKs],h) ⊧ x = E[x′/x]

and by our assumption that (s,h) ⊧ P and Lemma 2.2.7 we know that (s[x ↦

JEKs],h) ⊧ P[x′/x]. Consequently, since (s[x ↦ JEKs],h) ⊧ x = E[x′/x] ∧P[x′/x]

but ⟨C,s[x↦ JEKs],h⟩ /⊧ ϕ then it is the case that the premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ =

AGψ . Furthermore, by our previous invalidity result ⟨C,s,h⟩ /⊧ AGψ , then

by Definition 2.3.2 we know that there exists a configuration γ¬ such that

⟨C,s[x↦ JEKs],h⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally, since by the operational se-

3.3. Soundness of CTL system 56

mantics there is a single possible transition from ⟨x ∶= E ; C,s,h⟩, namely

⟨x ∶= E ; C,s,h⟩ ↝ ⟨C,s[x↦ JEKs],h⟩, then every path starting from

⟨C,s[x↦ JEKs],h⟩ is a subpath of a path starting from ⟨x ∶= E ; C,s,h⟩. Conse-

quently letting π = ⟨x ∶= E ; C,s,h⟩ ↝∗ γ¬ and π ′ = ⟨C,s[x↦ JEKs],h⟩ ↝∗ γ¬ then

length(π ′) < length(π).

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,s[x↦ JEKs],h⟩ /⊧EGψ , then

by Definition 2.3.2 we know that for all paths π starting from ⟨x ∶= E ; C,s,h⟩

there exists a configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there

is a finite tree κ ′ with root in ⟨x ∶= E ; C,s,h⟩ whose all leaves γ¬ /⊧ ψ . Fi-

nally, since by the operational semantics there is a single possible transition from

⟨x ∶= E ; C,s,h⟩, namely ⟨x ∶= E ; C,s,h⟩ ↝ ⟨C,s[x↦ JEKs],h⟩, then every tree κ ′

with root in ⟨C,s[x↦ JEKs],h⟩ is a subtree of a tree κ with root in ⟨x ∶= E ; C,s,h⟩

and for all leaves γ¬ ∈ κ then γ¬ ∈ κ ′. Therefore height(κ ′) < height(κ).

If there is a precondition trace following the edge, then since the precondition

for both conclusion and premise is the same (modulo the substitution of variables

P[x′/x]), then the inductive predicates Ψ(E) in P for both conclusion and premise

are defined by the same least approximant. Hence α = β .

Soundness of Read

x = E ′∧(P∗E ↦ E ′)[x′/x] ⊢C ∶ϕ
P∗E ↦ E ′ ⊢ (x ∶= [E] ; C) ∶◯ϕ

(Read)

Assume the conclusion of the rule is invalid. Pick an arbitrary program

state s,h such that (s,h) ⊧ P ∗ E ↦ E ′ but ⟨x ∶= [E] ; C,s,h⟩ /⊧ ◯ϕ . By Defi-

nition 2.3.2, if ⟨x ∶= [E] ; C,s,h⟩ /⊧ ◯ϕ then there exists a configuration γ such

that ⟨x ∶= [E] ; C,s,h⟩ ↝ γ and γ /⊧ ϕ . By the operational semantics of our pro-

gramming language, since JEKs ∈ dom(h), we know that ⟨x ∶= [E] ; C,s,h⟩ ↝

⟨C,s[x↦ h(JEKs]),h⟩ so γ = ⟨C,s[x↦ h(JEKs)],h⟩.

By construction we know that (s[x↦ h(JEKs)],h) ⊧ x =E ′ and by Lemma 2.2.7

and our assumption that (s,h) ⊧ P∗E ↦ E ′ we know that (s[x↦h(JEKs)],h) ⊧ (P∗

3.3. Soundness of CTL system 57

E ↦ E ′)[x′/x]. Consequently, since (s[x↦ h(JEKs)],h) ⊧ x = E ′,(P∗E↦E ′)[x′/x]

but ⟨C,s[x↦ h(JEKs)],h⟩ /⊧ ϕ then it is the case that the premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s[x↦ h(JEKs)],h⟩ /⊧ AGψ ,

then by Definition 2.3.2 we know that there exists a configuration γ¬ such that

⟨C,s[x↦ h(JEKs)],h⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally, since by the operational se-

mantics there is a single possible transition from ⟨x ∶= [E] ; C,s,h⟩, namely

⟨x ∶= [E] ; C,s,h⟩ ↝ ⟨C,s[x↦ h(JEKs)],h⟩, then every path starting from

⟨C,s[x↦ h(JEKs)],h⟩ is a subpath of a path starting from ⟨x ∶= [E] ; C,s,h⟩. Con-

sequently letting π = ⟨x ∶= E ; C,s,h⟩ ↝∗ γ¬ and π ′ = ⟨C,s[x↦ JEKs],h⟩ ↝∗ γ¬ then

length(π ′) < length(π).

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ =

EGψ . Furthermore, since by our previous invalidity result ⟨C,s[x↦ h(JEKs)],h⟩ /⊧

EGψ , then by Definition 2.3.2 we know that for all paths π starting from

⟨C,s[x↦ JEKs],h⟩ there exists a configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other

words, there is a finite tree κ ′ with root in ⟨C,s[x↦ JEKs],h⟩ whose all leaves

γ¬ /⊧ ψ . Finally, since by the operational semantics there is a single possible tran-

sition from ⟨x ∶= [E] ; C,s,h⟩, namely ⟨x ∶= [E] ; C,s,h⟩ ↝ ⟨C,s[x↦ JEKs],h⟩, then

every tree with root in ⟨C,s[x↦ JEKs],h⟩ is a subtree of a tree κ with root in

⟨x ∶= [E] ; C,s,h⟩ and for all leaves γ¬ ∈ κ then γ¬ ∈ κ ′. Therefore height(κ ′) <

height(κ).

If there is a precondition trace following the edge then since the precondition

for both conclusion and premise is the same (modulo the substitution of variables

P[x′/x]), then the inductive predicates Ψ(E) in P for both conclusion and premise

are defined by the same least approximant. Hence α = β .

Soundness of Write

P∗E ↦ E ′ ⊢C ∶ϕ
P∗E ↦−⊢ ([E] ∶= E ′ ; C) ∶◯ϕ

(Write)

Assume the conclusion of the rule is invalid. Pick an arbitrary program

3.3. Soundness of CTL system 58

state s,h such that (s,h) ⊧ P ∗ E ↦ − but ⟨[E] ∶= E ; C,s,h⟩ /⊧ ◯ϕ . By Defini-

tion 2.3.2, if ⟨[E] ∶= E ; C,s,h⟩ /⊧ ◯ϕ then there exists a configuration γ such that

⟨[E] ∶= E ; C,s,h⟩ ↝ γ and γ /⊧ϕ . By the operational semantics of our programming

language, since JEKs ∈ dom(h), then ⟨[E] ∶= E ′ ; C,s,h⟩ ↝ ⟨C,s,h[JEKs↦ JE ′Ks])⟩,

hence we know that γ = ⟨C,s,h[JEKs↦ JE ′Ks]⟩.

By construction we know that (s,h[JEKs↦ JE ′Ks]) ⊧ E ↦ E ′ and by our as-

sumption that (s,h) ⊧ P∗E ↦− we know that (s,h[JEKs↦ JE ′Ks]) ⊧ (P∗E ↦ E ′).

Consequently, since (s,h[JEKs↦ JE ′Ks]) ⊧P∗E↦E ′ but ⟨C,s,h[JEKs↦ JE ′Ks])⟩ /⊧

ϕ then it is the case that the premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h[JEKs↦ JE ′Ks])⟩ /⊧

AGψ , then by Definition 2.3.2 we know that there exists a configuration γ¬

such that ⟨C,s,h[JEKs↦ JE ′Ks])⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally, since by the op-

erational semantics there is a single possible transition from ⟨[E] ∶= E ′ ; C,s,h⟩,

namely ⟨[E] ∶= E ′ ; C,s,h⟩ ↝ ⟨C,s,h[JEKs↦ JE ′Ks])⟩, then every path starting from

⟨C,s,h[JEKs↦ JE ′Ks])⟩ is a subpath of a path starting from ⟨[E] ∶= E ′;C,s,h⟩. Con-

sequently letting π = ⟨x ∶= E ; C,s,h⟩ ↝∗ γ¬ and π ′ = ⟨C,s[x↦ JEKs],h⟩ ↝∗ γ¬ then

length(π ′) < length(π).

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ =

EGψ . Furthermore, since by our previous result ⟨C,s,h[JEKs↦ JE ′Ks])⟩ /⊧

EGψ , then by Definition 2.3.2 we know that for all paths π starting from

⟨C,s,h[JEKs↦ JE ′Ks])⟩ there exists a configuration γ¬ ∈ π such that γ¬ /⊧ψ . In other

words, there is a finite tree κ ′ with root in ⟨C,s,h[JEKs↦ JE ′Ks])⟩ whose all leaves

γ¬ /⊧ψ . Finally, since by the operational semantics there is a single possible transi-

tion from ⟨[E] ∶= E ′ ; C,s,h⟩, namely ⟨[E] ∶= E ′ ; C,s,h⟩ ↝ ⟨C,s,h[JEKs↦JE ′Ks])⟩,

then every tree with root in ⟨C,s,h[JEKs↦JE ′Ks])⟩ is a subtree of a tree κ

with root in ⟨[E] ∶= E ′ ; C,s,h⟩ and for all leaves γ¬ ∈ κ then γ¬ ∈ κ ′. Therefore

height(κ ′) < height(κ).

If there is a precondition trace following the edge then since the precondition

for both conclusion and premise is the same (modulo the separate conjunct E ↦−),

3.3. Soundness of CTL system 59

then the inductive predicates Ψ(E) in P for both conclusion and premise are defined

by the same least approximant. Hence α = β .

Soundness of If

B,P ⊢C1 ; C3 ∶ϕ ¬B,P ⊢C2 ; C3 ∶ϕ
P ⊢ (if B then C1 else C2 fi ; C3) ∶◯ϕ

(If)

Case ◯ = ◻.

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ P but γ = ⟨if B then C1 else C2 fi ; C3,s,h⟩ /⊧ ◻ϕ . By Defini-

tion 2.3.2, if γ /⊧ ◻ϕ then there exists a configuration γ ′ such that γ ↝ γ ′ and γ ′ /⊧ ϕ .

By the operational semantics of our programming language we know that either

γ ′ = ⟨C2 ; C3,s,h⟩ or γ ′ = ⟨C1 ; C3,s,h⟩. We show the details of the foremost while

omitting the latter due to their similarity.

Subcase γ ′ = ⟨C1 ; C3,s,h⟩:

By our assumption we know that (s,h) ⊧ P. Moreover, by the side condition

of the operational semantics JBKs holds, then it is the case that (s,h) ⊧ B. Conse-

quently, since (s,h) ⊧ B,P but ⟨C1 ; C3,s,h⟩ /⊧ ϕ then it is the case that the left-most

premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ =AGψ . Fur-

thermore, since by our previous invalidity result γ ′ /⊧ AGψ , then by Definition 2.3.2

we know that there exists a configuration γ¬ such that γ ′↝∗ γ¬ and γ¬ /⊧ψ . Finally,

since by the operational semantics γ ↝ γ ′, then every path starting from γ ′ is a sub-

path of a path starting from γ . Consequently letting π = γ ↝∗ γ¬ and π ′ = γ ′ ↝∗ γ¬

then length(π ′) < length(π).

By the structure of the temporal formula in the conclusion (◻ϕ), there cannot

be a ◇-trace following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same (modulo the addition of formula B to the pure part

of the symbolic heap), then the inductive predicates Ψ(E) and Ψ′(E) in both con-

3.3. Soundness of CTL system 60

clusion and premise are interpreted by the same least approximant. Hence α = β .

Subcase γ ′ = ⟨C2 ; C3,s,h⟩:

Similar to above.

Case ◯ =◇.

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ P but γ = ⟨if B then C1 else C2 fi ; C3,s,h⟩ /⊧ ◇ϕ . By Defini-

tion 2.3.2, if γ /⊧ ◇ϕ then for all configurations γ ′ such that γ ↝ γ ′ then γ ′ /⊧ ϕ . By

the operational semantics of our programming language we know that there are two

possible transitions: γ ′ = ⟨C2 ; C3,s,h⟩ and γ ′ = ⟨C1 ; C3,s,h⟩. Consequently, since

(s,h) ⊧ P but ⟨C2 ; C3,s,h⟩ /⊧ ϕ and ⟨C1 ; C3,s,h⟩ /⊧ ϕ then it is the case that either

one of the premises is invalid, depending on which of JBKs or J¬BKs holds.

By the structure of the temporal formula in the conclusion (◇ϕ), there cannot

be a ◻-trace following the edge.

If there is a ◇-trace following the left-most edge, then by Definition 3.2.7,

ϕ =EGψ . Furthermore, since by our previous invalidity result ⟨C1 ; C3,s,h⟩ /⊧EGψ ,

then by Definition 2.3.2 we know that for all paths π starting from ⟨C1 ; C3,s,h⟩

there exists a configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there is a

finite tree κ ′ with root in ⟨C1 ; C3,s,h⟩ whose all leaves γ¬ /⊧ ψ . Finally, since by

the operational semantics ⟨if B then C1 else C2 fi ; C3,s,h⟩ ↝ ⟨C1 ; C3,s,h⟩, then, by

definition, every tree κ ′ with root in ⟨C1 ; C3,s,h⟩ is a subtree of a tree κ with root

in ⟨if B then C1 else C2 fi ; C3,s,h⟩. Hence height(κ ′) ≤ height(κ) and for all leaves

γ¬ ∈ κ ′ then γ¬ ∈ κ .

The case for a ◇-trace following the right-most edge is similar, accounting for

configuration ⟨C2 ; C3,s,h⟩ in place of ⟨C1 ; C3,s,h⟩.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the left-most edge,

where (s,h) ⊧Ψα(E) and (s′,h′) ⊧Ψ′β (E), then, since the precondition for both

conclusion and premise is the same (modulo the addition of formula B to the pure

part of the symbolic heap), then the inductive predicates Ψ(E) and Ψ′(E) in both

conclusion and premise are interpreted by the same least approximant. Hence α =β .

The same argument applies to the case where the precondition trace follows the

3.3. Soundness of CTL system 61

right-most edge, with the only difference of the pure formula ¬B, in place of B

added to the pure part of the symbolic heap precondition formula.

Soundness of Wh

B,P ⊢ (C1 ; while B do C1 od ; C2) ∶ϕ ¬B,P ⊢C2 ∶ϕ
P ⊢ (while B do C1 od ; C2) ∶◯ϕ

(Wh)

Case ◯ = ◻.

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ P but ⟨while B do C1 od ; C2,s,h⟩ /⊧ ◻ϕ . By Definition 2.3.2,

if ⟨while B do C1 od ; C2,s,h⟩ /⊧ ◻ϕ then there exists a configuration γ such that

⟨while B do C1 od ; C2,s,h⟩ ↝ γ and γ /⊧ ϕ . By the operational semantics of our

programming language we know that either γ = ⟨(C1 ; while B do C1 od ; C2),s,h⟩

or γ = ⟨C2,s,h⟩.

Subcase γ = ⟨(C1 ; while B do C1 od ; C2),s,h⟩:

By our assumption we know that (s,h) ⊧ P. Moreover, by the side condition

of the operational semantics JBKs holds, then it is the case that (s,h) ⊧ B,P. Conse-

quently, since (s,h) ⊧ B,P but ⟨(C1 ; while B do C1 odC2 ;),s,h⟩ /⊧ ϕ then it is the

case that the left-most premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous result ⟨(C1 ; while B do C1 od ; C2),s,h⟩ /⊧

AGψ , then by Definition 2.3.2 we know that there exists a configuration

γ¬ such that ⟨(C1 ; while B do C1 od ; C2),s,h⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally,

since by the operational semantics ⟨while B do C1 od ; C2,s,h⟩ ↝

⟨(C1 ; while B do C1 od ; C2),s,h⟩, then every path π ′ starting from

⟨(C1 ; while B do C1 od ; C2),s,h⟩ is a subpath of a path π starting from

⟨while B do C1 od ; C2,s,h⟩. Consequently length(π ′) < length(π).

By the structure of the temporal formula in the conclusion (◻ϕ), there cannot

be a ◇-trace following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

3.3. Soundness of CTL system 62

clusion and premise is the same (modulo the addition of formula B to the pure part

of the symbolic heap), then the inductive predicates Ψ(E) and Ψ′(E) in both con-

clusion and premise are interpreted by the same least approximant. Hence α = β .

Subcase γ = ⟨C2,s,h⟩:

By our assumption we know that (s,h) ⊧P. Moreover, by the side condition of

the operational semantics ¬JBKs holds, then it is the case that (s,h) ⊧ ¬B,P. Conse-

quently, since (s,h) ⊧ ¬B,P but ⟨C2,s,h⟩ /⊧ ϕ then it is the case that the right-most

premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ =

AGψ . Furthermore, since by our previous invalidity result ⟨C2,s,h⟩ /⊧ AGψ ,

then by Definition 2.3.2 we know that there exists a configuration γ¬ such

that ⟨C2,s,h⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally, since by the operational semantics

⟨while B do C1 od ; C2,s,h⟩ ↝ ⟨C2,s,h⟩, then every path starting from ⟨C2,s,h⟩ is

a subpath of a path starting from ⟨while B do C1 od ; C2,s,h⟩. Consequently letting

π = ⟨while B do C1 od ; C2,s,h⟩ ↝∗ γ¬ and π ′ = ⟨C2,s,h⟩ ↝∗ γ¬ then length(π ′) <

length(π).

By the structure of the temporal formula in the conclusion (◻ϕ), there cannot

be a ◇-trace following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same (modulo the addition of formula ¬B to the pure

part of the symbolic heap), then the inductive predicates Ψ(E) and Ψ′(E) in both

conclusion and premise are interpreted by the same least approximant. Hence α =β .

Case ◯ =◇.

Assume the conclusion of the rule is invalid. Pick an arbitrary program

state s,h such that (s,h) ⊧ P but ⟨while B do C1 od ; C2,s,h⟩ /⊧ ◇ϕ . By Defini-

tion 2.3.2, if ⟨while B do C1 od ; C2,s,h⟩ /⊧ ◇ϕ then for all configuration γ such

that ⟨while B do C1 od ; C2,s,h⟩ ↝ γ then γ /⊧ ϕ . By the operational semantics of

our programming language we know that there are two possible transitions: γ =

⟨(C1 ; while B do C1 od ; C2),s,h⟩ and γ ′ = ⟨C2,s,h⟩. Consequently, since (s,h) ⊧ P

3.3. Soundness of CTL system 63

but ⟨C2 ; C3,s,h⟩ /⊧ ϕ and ⟨C1 ; C3,s,h⟩ /⊧ ϕ then it is the case that either one of the

premises is invalid, depending on which of JBKs or J¬BKs holds.

By the structure of the temporal formula in the conclusion (◇ϕ), there cannot

be a ◻-trace following the edge.

If there is a ◇-trace following the left-most edge, then by Definition 3.2.7,

ϕ = EGψ . Furthermore, since by our previous invalidity result γ ′ /⊧ EGψ , then

by Definition 2.3.2 we know that for all paths π ′ starting from γ ′ there exists a

configuration γ¬ ∈ π ′ such that γ¬ /⊧ ψ . In other words, there is a finite tree κ ′ with

root in γ ′ whose all leaves γ¬ /⊧ψ . Finally, since by the operational semantics γ↝ γ ′,

then, by definition, every tree with root in γ ′ is a subtree of the tree κ with root in

γ . Hence height(κ ′) ≤ height(κ) and for all leaves γ¬ ∈ κ ′ then γ¬ ∈ κ .

If there is a ◇-trace following the rigth-most edge, then by Definition 3.2.7,

ϕ = EGψ . Furthermore, since by our previous invalidity result γ ′ /⊧ EGψ , then

by Definition 2.3.2 we know that for all paths π starting from γ ′ there exists a

configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there is a finite tree κ ′ with

root in γ ′ whose all leaves γ¬ /⊧ψ . Finally, since by the operational semantics γ↝ γ ′,

then, by definition, every tree with root in γ ′ is a subtree of the tree κ with root in

γ . Hence height(κ ′) ≤ height(κ) and for all leaves γ¬ ∈ κ ′ then γ¬ ∈ κ .

If there is a precondition trace (Ψ(E),Ψ′(E)) following the left-most edge,

where (s,h) ⊧Ψα(E) and (s′,h′) ⊧Ψ′β (E), then, since the precondition for both

conclusion and premise is the same (modulo the addition of formula B to the pure

part of the symbolic heap), then the inductive predicates Ψ(E) and Ψ′(E) in both

conclusion and premise are interpreted by the same least approximant. Hence α =β .

The same argument applies to the case where the precondition trace follows the

right-most edge, with the only difference of the pure formula ¬B, in place of B

added to the pure part of the symbolic heap precondition formula.

Soundness of Free

P ⊢C ∶ϕ
P∗E ↦−⊢ (free(E) ; C) ∶◯ϕ

(Free)

3.3. Soundness of CTL system 64

Assume the conclusion of the rule is invalid. Pick an arbitrary program

state s,h such that (s,h) ⊧ P ∗E ↦ − but ⟨free(E) ; C,s,h⟩ /⊧ ◯ϕ . By Defini-

tion 2.3.2, if ⟨free(E) ; C,s,h⟩ /⊧ ◯ϕ then there exists a configuration γ such that

⟨free(E) ; C,s,h⟩ ↝ γ and γ /⊧ ϕ . By the operational semantics of our program-

ming language we know that γ = ⟨C,s,h∣dom(h)∖{JEKs}⟩.

By our assumption (s,h) ⊧ P∗E ↦− we know we can split h into h′ and h′′ so

that (s,h′) ⊧ P and separately (s,h′′) ⊧ E ↦−. Then, by construction we know that

h′ = h∣dom(h)∖{JEKs}. Consequently (s,h∣dom(h)∖{JEKs}) ⊧ P. Finally, since

(s,h∣dom(h)∖{JEKs}) ⊧ P but ⟨C,s,h∣dom(h)∖{JEKs}⟩ /⊧ ϕ then it is the case that

the premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ =AGψ . Fur-

thermore, since by our previous invalidity result ⟨C,s,h∣dom(h)∖{JEKs}⟩ /⊧ AGψ ,

then by Definition 2.3.2 we know that there exists a configuration γ¬ such that

⟨C,s,h∣dom(h)∖{JEKs}⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally, since by the operational

semantics there is a single possible transition from ⟨free(E) ; C,s,h⟩, namely

⟨free(E) ; C,s,h⟩ ↝ ⟨C,s,h∣dom(h)∖{JEKs}⟩, then every path starting from

⟨C,s,h∣dom(h)∖{JEKs}⟩ is a subpath of a path starting from ⟨free(E);C,s,h⟩.

Consequently letting π = ⟨free(E);C,s,h⟩ ↝∗ γ¬ and π ′ = ⟨C,s,h∣dom(h)∖{JEKs}⟩

↝∗ γ¬ then length(π ′) < length(π).

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h∣dom(h)∖{JEKs}⟩ /⊧

EGψ , then by Definition 2.3.2 we know that for all paths π ′ starting from

⟨C,s,h∣dom(h)∖{JEKs}⟩ there exists a configuration γ¬ ∈ π ′ such that γ¬ /⊧ ψ .

In other words, there is a finite tree κ ′ with root in ⟨C,s,h∣dom(h)∖{JEKs}⟩

whose all leaves γ¬ /⊧ ψ . Finally, since by the operational semantics there is a

single possible transition from ⟨free(E) ; C,s,h⟩, namely ⟨free(E) ; C,s,h⟩ ↝

⟨C,s,h∣dom(h)∖{JEKs}⟩, then every tree κ ′ with root in

⟨C,s,h∣dom(h)∖{JEKs}⟩ is a subtree of a tree κ with root in ⟨free(E) ; C,s,h⟩

and for all leaves γ¬ ∈ κ then γ¬ ∈ κ ′. Therefore height(κ ′) < height(κ).

If there is a precondition trace following the edge then since the precondi-

3.3. Soundness of CTL system 65

tion for both conclusion and premise is the same (modulo the removal of separate

conjunct E ↦ −), then the inductive predicates Ψ(E) in P for both conclusion and

premise are defined by the same least approximant. Hence α = β .

Soundness of Alloc◇

P[x′/x]∗x↦ v ⊢C ∶ϕ v ∈Val
P ⊢ (x ∶= alloc() ; C) ∶◇ϕ

(Alloc◇)

Assume the conclusion of the rule is invalid. Pick an arbitrary pro-

gram state s,h such that (s,h) ⊧ P but ⟨x ∶= alloc() ; C,s,h⟩ /⊧. By Defini-

tion 2.3.2, if ⟨x ∶= alloc() ; C,s,h⟩ /⊧ ◇ϕ then for all configurations γ such that

⟨x ∶= alloc() ; C,s,h⟩ ↝ γ it is the case that γ /⊧ ϕ . By the operational seman-

tics of our programming language we know that every such γ takes the shape of

⟨C,s[x↦ l],h[l↦ v]⟩ where l /∈ dom(h) (where only the values of l and v change in

each configuration).

Because l /∈ dom(h) we can split γh into two subheaps so that γh = h⊎ l ↦ v

for a given l and v. By construction we know that (s[x ↦ l], l ↦ v) ⊧ x ↦ v.

Moreover, by our assumption that (s,h ⊧ P) and Lemma 2.2.7 we know that

(s[x↦ l],h) ⊧ P[x′/x]. Consequently, since h⊎ l ↦ v is defined, then we know that

(s[x↦ l],h[l↦ v]) ⊧P[x′,x]∗x↦ v. Finally, since (s[x↦ l],h[l↦ v) ⊧P[x′/x]∗x↦

v but ⟨C,(s[x↦ l],h[l↦ v])⟩ /⊧ ϕ then it is the case that the premise is invalid.

By the structure of the temporal formula in the conclusion (◇ϕ), there cannot

be a ◻-trace following the edge.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,(s[x↦ l],h[l↦ v])⟩ /⊧

EGψ , then by Definition 2.3.2 we know that for all paths π ′ starting from

⟨C,(s[x↦ l],h[l↦ v])⟩ there exists a configuration γ¬ ∈ π ′ such that γ¬ /⊧ ψ . In

other words, there is a finite tree κ ′ with root in ⟨C,(s[x↦ l],h[l↦ v])⟩ whose

all leaves γ¬ /⊧ ψ . Finally, since by the operational semantics there is a sin-

gle possible transition from ⟨x ∶= alloc() ; C,s,h⟩, namely ⟨x ∶= alloc() ; C,s,h⟩ ↝

⟨C,(s[x↦ l],h[l↦ v])⟩, then every tree κ ′ with root in ⟨C,(s[x↦ l],h[l↦ v])⟩ is a

3.3. Soundness of CTL system 66

subtree of a tree κ with root in ⟨x ∶= alloc() ; C,s,h⟩ and for all leaves γ¬ ∈ κ then

γ¬ ∈ κ ′. Hence height(κ ′) ≤ height(κ).

If there is a precondition trace following the edge then since the precondition

for both conclusion and premise is the same (modulo the substitution of variables

P[x′/x] and the addition of separate conjunct x↦ v), then the inductive predicates

Ψ(E) in P for both conclusion and premise are defined by the same least approxi-

mant. Hence α = β .

Soundness of Alloc◻

P[x′/x]∗x↦ v ⊢C ∶ϕ
P ⊢ (x ∶= alloc() ; C) ∶◻ϕ

v fresh (Alloc◻)

Assume the conclusion of the rule is invalid. Pick an arbitrary pro-

gram state s,h such that (s,h) ⊧ P but ⟨x ∶= alloc() ; C,s,h⟩ /⊧ ◻ϕ . By Defini-

tion 2.3.2, if ⟨x ∶= alloc() ; C,s,h⟩ /⊧ ◻ϕ then there exists a configuration γ such

that ⟨x ∶= alloc() ; C,s,h⟩ ↝ γ and γ /⊧ ϕ . By the operational semantics of our

programming language we know that γ = ⟨C,s[x↦ l],h[l↦ v]⟩ where l /∈ dom(h).

Because l /∈ dom(h) we can split γh into two subheaps so that γh = h⊎ l↦ v. By

construction we know that (s[x↦ l], l ↦ v) ⊧ x↦ v. Moreover, by our assumption

that (s,h⊧P) and Lemma 2.2.7 we know that (s[x↦ l],h) ⊧P[x′/x]. Consequently,

since h⊎ l ↦ v is defined, then we know that (s[x↦ l],h[l ↦ v]) ⊧ P[x′,x]∗ x↦ v.

Finally, since (s[x↦ l],h[l ↦ v) ⊧ P[x′/x] ∗ x↦ v but ⟨C,(s[x↦ l],h[l↦ v])⟩ /⊧ ϕ

then it is the case that the premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,(s[x↦ l],h[l↦ v])⟩ /⊧AGψ ,

then by Definition 2.3.2 we know that there exists a configuration γ¬ such that

⟨C,(s[x↦ l],h[l↦ v])⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally, since by the operational se-

mantics there is a single possible transition from ⟨x ∶= alloc() ; C,s,h⟩, namely

⟨x ∶= alloc() ; C,s,h⟩ ↝ ⟨C,(s[x↦ l],h[l↦ v])⟩, then every path starting from

⟨C,(s[x↦ l],h[l↦ v])⟩ is a subpath of a path starting from ⟨x ∶= alloc();C,s,h⟩.

Consequently letting π = ⟨x ∶= alloc();C,s,h⟩ ↝∗ γ¬ and π ′ = ⟨C,(s[x↦ l],h[l↦ v])⟩

3.3. Soundness of CTL system 67

↝∗ γ¬ then length(π ′) < length(π).

By the structure of the temporal formula in the conclusion (◇ϕ), there cannot

be a ◻-trace following the edge.

If there is a precondition trace following the edge then since the precondition

for both conclusion and premise is the same (modulo the substitution of variables

P[x′/x] and the addition of separate conjunct x↦ v), then the inductive predicates

Ψ(E) in P for both conclusion and premise are defined by the same least approxi-

mant. Hence α = β .

Soundness of If*◇1

P ⊢C1 ; C3 ∶ϕ
P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶◇ϕ

(If*◇1)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ P but γ = ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩ /⊧ ◇ϕ . By Defini-

tion 2.3.2, if γ /⊧◇ϕ then for all configurations γ ′ such that γ ↝ γ ′ it is the case that

γ ′ /⊧ ϕ . By the operational semantics of our programming language we know that

there are two possible transitions from the current configuration γ ↝ ⟨C1 ; C3,s,h⟩

and γ↝⟨C2 ; C3,s,h⟩. Hence, we know that ⟨C1 ; C3,s,h⟩ /⊧ϕ and ⟨C2 ; C3,s,h⟩ /⊧ϕ .

Hence, since by our assumption (s,h) ⊧ P but ⟨C1 ; C3,s,h⟩ /⊧ ϕ then it is the case

that the premise is invalid.

Given the structure of the temporal formula ϕ/◇ϕ , there cannot be a ◻-trace

following the edge.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C1 ; C3,s,h⟩ /⊧ EGψ , then by

Definition 2.3.2 we know that for all paths π ′ starting from ⟨C1 ; C3,s,h⟩ there ex-

ists a configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there is a finite tree

κ ′ with root in ⟨C1 ; C3,s,h⟩ whose all leaves γ¬ /⊧ ψ . Finally, since by the oper-

ational semantics ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩ ↝ ⟨C1 ; C3,s,h⟩, then, by defini-

tion, every tree κ ′ with root in ⟨C1 ; C3,s,h⟩ is a subtree of the tree κ with root

in ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩. Hence height(κ ′) ≤ height(κ) and for all leaves

3.3. Soundness of CTL system 68

γ¬ ∈ κ ′ then γ¬ ∈ κ .

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of If*◇2

P ⊢C2 ; C3 ∶ϕ
P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶◇ϕ

(If*◇2)

Similar to above, accounting for configuration ⟨C2 ; C3,s,h⟩ in place of

⟨C1 ; C3,s,h⟩.

Soundness of If*◻

P ⊢C1 ; C3 ∶ϕ P ⊢C2 ; C3 ∶ϕ
P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶◻ϕ

(If*◻)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configuration

γ = ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩ does not satisfy the temporal property ◻ϕ . By

Definition 2.3.2, if γ /⊧ ◻ϕ then there exists a configuration γ ′ such that γ ↝ γ ′ and

γ ′ /⊧ ϕ . By the operational semantics of our programming language we know that

there are two possible transitions from the current configuration γ ′ = ⟨C1 ; C3,s,h⟩

and γ ′ = ⟨C2 ; C3,s,h⟩. Hence, either ⟨C1 ; C3,s,h⟩ /⊧ ϕ or ⟨C2 ; C3,s,h⟩ /⊧ ϕ . We

show the details of the foremost, omitting the latter due to uts similarity.

Case γ ′ = ⟨C1 ; C3,s,h⟩ /⊧ ϕ:

By our assumption (s,h) ⊧ P and invalidity result γ ′ /⊧ ϕ then it is the case that

the left-most premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ =AGψ . Fur-

thermore, since by our previous invalidity result γ ′ /⊧ AGψ , then by Definition 2.3.2

we know that there exists a configuration γ¬ such that γ ′↝∗ γ¬ and γ¬ /⊧ψ . Finally,

3.3. Soundness of CTL system 69

since by the operational semantics γ ↝ γ ′, then every path π ′ starting from γ ′ is a

subpath of a path π starting from γ . Consequently length(π ′) < length(π).

Given the structure of the temporal formula ϕ/◻ϕ , there cannot be a ◇-trace

following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Case γ ′ = ⟨C2 ; C3,s,h⟩ /⊧ ϕ:

Similar to above, accounting for configuration ⟨C2 ; C3,s,h⟩ in place of

⟨C1 ; C3,s,h⟩.

Soundness of Wh*◻

P ⊢ (C1 ; while B do C1 od ; C2) ∶ϕ P ⊢C2 ∶ϕ
P ⊢ (while B do C1 od ; C2) ∶◻ϕ

(Wh*◻)

Assume the conclusion of the rule is invalid. Pick an arbitrary program

state s,h such that the precondition is satisfied (s,h) ⊧ P but the program con-

figuration ⟨while B do C1 od ; C2,s,h⟩ does not satisfy the temporal property

◻ϕ . By Definition 2.3.2, if ⟨while B do C1 od ; C2,s,h⟩ /⊧ ◻ϕ then there ex-

ists a configuration γ such that ⟨while B do C1 od ; C2,s,h⟩ ↝ γ and γ /⊧ ϕ . By

the operational semantics of our programming language we know that either

γ = ⟨(C1 ; while B do C1 od ; C2),s,h⟩ or γ = ⟨C2,s,h⟩.

Case γ = ⟨(C1 ; while B do C1 od ; C2),s,h⟩:

By our assumption we know that (s,h) ⊧ P but since γ /⊧ ϕ then it is the case

that the left-most premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous result ⟨(C1 ; while ∗ do C1 od ; C2),s,h⟩ /⊧

AGψ , then by Definition 2.3.2 we know that there exists a configuration

γ¬ such that ⟨(C1 ; while ∗ do C1 od ; C2),s,h⟩ ↝∗ γ¬ and γ¬ /⊧ ψ . Finally,

3.3. Soundness of CTL system 70

since by the operational semantics ⟨while ∗ do C1 od ; C2,s,h⟩ ↝

⟨(C1 ; while ∗ do C1 od ; C2),s,h⟩, then every path π ′ starting from

⟨(C1 ; while ∗ do C1 od ; C2),s,h⟩ is a subpath of a path π starting from

⟨while ∗ do C1 od ; C2,s,h⟩. Consequently length(π ′) < length(π).

Given the structure of the temporal formula ϕ/◻ϕ , there cannot be a ◇-trace

following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Case γ = ⟨C2,s,h⟩:

By our assumption we know that (s,h) ⊧P but since ⟨C2,s,h⟩ /⊧ ϕ then it is the

case that the right-most premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous result ⟨C2,s,h⟩ /⊧ AGψ , then by Definition 2.3.2

we know that there exists a configuration γ¬ such that ⟨C2,s,h⟩ ↝∗ γ¬ and γ¬ /⊧ ψ .

Finally, since by the operational semantics ⟨while ∗ do C1 od ; C2,s,h⟩ ↝ ⟨C2,s,h⟩,

then every path π ′ starting from ⟨C2,s,h⟩ is a subpath of a path π starting from

⟨while ∗ do C1 od ; C2,s,h⟩. Consequently length(π ′) < length(π).

Given the structure of the temporal formula ϕ/◻ϕ , there cannot be a ◇-trace

following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Wh*◇1

P ⊢ (C1 ; while B do C1 od ; C2) ∶ϕ
P ⊢ (while ∗ do C1 od ; C2) ∶◇ϕ

(Wh*◇1)

3.3. Soundness of CTL system 71

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion γ = ⟨while ∗ do C1 od ; C2,s,h⟩ does not satisfy the temporal property ◇ϕ .

By Definition 2.3.2, if γ /⊧ ◇ϕ then for all configurations γ ′ such that γ ↝ γ ′ it

is the case that γ ′ /⊧ ϕ . By the operational semantics of our programming lan-

guage we know that there are two possible transitions from the current configu-

ration, γ ′ = ⟨(C1 ; while ∗ do C1 od ; C2),s,h⟩ and γ ′ = ⟨C2,s,h⟩. Hence, we know

that ⟨(C1 ; while B do C1 od ; C2),s,h⟩ /⊧ ϕ and ⟨C2,s,h⟩ /⊧ ϕ . Consequently, since

by our assumption (s,h) ⊧P but γ ′ /⊧ ϕ then it is the case that the premise is invalid.

Given the structure of the temporal formula ϕ/◇ϕ , there cannot be a ◻-trace

following the edge.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result γ ′ /⊧ EGψ , then by Defini-

tion 2.3.2 we know that for all paths π ′ starting from γ ′ there exists a configuration

γ¬ ∈ π such that γ¬ /⊧ψ . In other words, there is a finite tree κ ′ with root in γ ′ whose

all leaves γ¬ /⊧ ψ . Finally, since by the operational semantics γ ↝ γ ′, then, by defi-

nition, every tree κ ′ with root in γ ′ is a subtree of the tree κ with root in γ . Hence

height(κ ′) ≤ height(κ) and for all leaves γ¬ ∈ κ ′ then γ¬ ∈ κ .

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Wh*◇2

P ⊢C2 ∶ϕ
P ⊢ (while ∗ do C1 od ; C2) ∶◇ϕ

(Wh*◇2)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨while ∗ do C1 od ; C2,s,h⟩ does not satisfy the temporal property ◇ϕ . By

3.3. Soundness of CTL system 72

Definition 2.3.2, if ⟨while ∗ do C1 od ; C2,s,h⟩ /⊧ ◇ϕ then for all configurations

γ such that ⟨while ∗ do C1 od ; C2,s,h⟩ ↝ γ it is the case that γ /⊧ ϕ . By the op-

erational semantics of our programming language we know that there are two

possible transitions from the current configuration, ⟨while ∗ do C1 od ; C2,s,h⟩ ↝

⟨(C1;while ∗ do C1 od;C2),s,h⟩ and ⟨while ∗ do C1 od;C2,s,h⟩ ↝ ⟨C2,s,h⟩. Hence,

by our assumption we know that ⟨(C1 ; while ∗ do C1 od ; C2),s,h⟩ /⊧ ϕ and

⟨C2,s,h⟩ /⊧ ϕ

Consequently, since by our assumption (s,h) ⊧P but ⟨C2,s,h⟩ /⊧ϕ then it is the

case that the premise is invalid.

Given the structure of the temporal formula ϕ/◇ϕ , there cannot be a ◻-trace

following the edge.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C2,s,h⟩ /⊧ EGψ , then by Def-

inition 2.3.2 we know that for all paths π starting from ⟨C2,s,h⟩ there exists a con-

figuration γ¬ ∈ π such that γ¬ /⊧ψ . In other words, there is a finite tree κ ′ with root

in ⟨C2,s,h⟩ whose all leaves γ¬ /⊧ ψ . Finally, since by the operational semantics

⟨while ∗ do C1 od ; C2,s,h⟩ ↝ ⟨C2,s,h⟩, then, by definition, every tree with root in

⟨C2,s,h⟩ is a subtree of the tree κ with root in ⟨while ∗ do C1 od ; C2,s,h⟩. Hence

height(κ ′) ≤ height(κ) and for all leaves γ¬ ∈ κ ′ then γ¬ ∈ κ .

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of R�
P∗E ↦− /⊧ �

P ⊢ x ∶= [E] ; C ∶◯error (R�)

Pick an arbitrary program state s,h such that the precondition P is satisfied

(s,h) ⊧ P. As per the side condition of the rule P∗E ↦ − /⊧ �, it is possible to

compose any model of the precondition with a model of E ↦− then we know that

JEKs /∈ dom(h). Therefore, by the operational semantics of our programming lan-

3.3. Soundness of CTL system 73

guage we know that ⟨x ∶= [E] ; C,s,h⟩ ↝ fault. Consequently, by Definition 2.3.2

we know that ⟨x ∶= [E] ; C,s,h⟩ ⊧ ◯error.

Soundness of W�
P∗E ↦− /⊧ �

P ⊢ [E] ∶= E ′ ; C ∶◯error (W�)

Pick an arbitrary program state s,h such that the precondition P is satisfied

(s,h) ⊧ P. As per the side condition of the rule P∗E ↦ − /⊧ �, it is possible to

compose any model of the precondition with a model of E ↦− then we know that

JEKs /∈ dom(h). Therefore, by the operational semantics of our programming lan-

guage we know that ⟨[E] ∶= E ′ ; C,s,h⟩ ↝ fault. Consequently, by Definition 2.3.2

we know that ⟨[E] ∶= E ′ ; C,s,h⟩ ⊧ ◯error.

Soundness of Free �

P∗E ↦− /⊧ �
P ⊢ free(E) ; C ∶◯error (Free�)

Pick an arbitrary program state s,h such that the precondition P is satisfied

(s,h) ⊧ P. As per the side condition of the rule P∗E ↦ − /⊧ �, it is possible to

compose any model of the precondition with a model of E ↦− then we know that

JEKs /∈ dom(h). Therefore, by the operational semantics of our programming lan-

guage we know that ⟨free(E) ; C,s,h⟩ ↝ fault. Consequently, by Definition 2.3.2

we know that ⟨free(E) ; C,s,h⟩ ⊧ ◯error.

Soundness of Check
P ⊧Q

P ⊢C ∶Q (Check)

Pick an arbitrary program state s,h such that the precondition P is satisfied.

Formally (s,h) ⊧ P. We need to show that when an arbitrary program C is executed

in the given state, the such configuration would satisfy Q. Formally ⟨C,s,h⟩ ⊧Q.

Proving that ⟨C,s,h⟩ ⊧Q is trivial since by the side condition of the proof rule

we have that every model of P is a model of Q (i.e. P ⊧Q) and since (s,h) ⊧ P then

by Definition 2.3.2 we have ⟨C,s,h⟩ ⊧Q.

3.3. Soundness of CTL system 74

Soundness of Ex.Falso

� ⊢C ∶ϕ (Ex.Falso)

Pick an arbitrary program state s,h such that the precondition P is satisfied

(s,h) ⊧ �. As by Definition 2.2.2 (s,h) ⊧ � never, proving that ⟨C,s,h⟩ ⊧ ϕ is trivial

as anything follows from false.

Soundness of Split
Ω1 ⊢C ∶ϕ Ω2 ⊢C ∶ϕ

Ω1∨Ω2 ⊢C ∶ϕ (Split)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state s,h

such that the precondition is satisfied (s,h) ⊧Ω1∨Ω2 but the program configuration

⟨C,s,h⟩ does not satisfy the temporal property ϕ . If (s,h) ⊧Ω1∨Ω2 then we know

that either (s,h) ⊧Ω1 or (s,h) ⊧Ω2.

Case (s,h) ⊧Ω1. Let s′ = s and h′ = h. Since by our assumption (s′,h′) ⊧Ω1 but

⟨C,s′,h′⟩ /⊧ ϕ1 then it is the case that the left-most premise is invalid.

Case (s,h) ⊧Ω2. Let s′ = s and h′ = h. Since by our assumption (s′,h′) ⊧Ω2 but

⟨C,s′,h′⟩ /⊧ ϕ1 then it is the case that the right-most premise is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧AGψ , then by Defini-

tion 2.3.2 we know that there exists a configuration γ¬ such that ⟨C,s,h⟩ ↝∗ γ¬ and

γ¬ /⊧ψ . Finally, since ⟨C,s,h⟩ = ⟨C,s′,h′⟩, then the length of the path ⟨C,s,h⟩ ↝∗ γ¬

is the same as the length of the path ⟨C,s′,h′⟩ ↝∗ γ¬.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ EGψ , then by Defi-

nition 2.3.2 we know that for all paths π starting from ⟨C,s,h⟩ there exists a config-

uration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there is a finite tree κ with root in

⟨C,s,h⟩ whose all leaves γ¬ /⊧ψ . Finally, since by construction ⟨C,s,h⟩ = ⟨C,s′,h′⟩,

the execution tree κ with root in ⟨C,s,h⟩ is the same as κ ′ and for all leaves γ¬ ∈ κ

then γ¬ ∈ κ ′.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

3.3. Soundness of CTL system 75

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Substitution

x /∈ vars(C) P ⊢C ∶ϕ
P[E/x] ⊢C ∶ϕ[E/x] (Subst)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h[JEKs↦] such that the precondition is satisfied (s,h[JEKs↦]) ⊧ P[E/x] but

the program configuration ⟨C,s,h[JEKs↦]⟩ does not satisfy the temporal property

ϕ[E/x]. By Lemma 2.2.7 we know that (s,h) ⊧ P and moreover, since by the side

condition of the rule x /∈ vars(C) then we know that whenever ⟨C,s,h[JEKs↦]⟩ ⊧

ϕ[E/x] then ⟨C,s,h⟩ ⊧ ϕ . Alternatively whenever ⟨C,s,h[JEKs↦]⟩ /⊧ ϕ[E/x] then

⟨C,s,h⟩ /⊧ ϕ . Finally, since (s,h) ⊧ P but ⟨C,s,h⟩ /⊧ ϕ then the premise of the rule is

invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ AGψ , then by Def-

inition 2.3.2 we know that there exists a configuration γ¬ such that ⟨C,s,h⟩ ↝∗ γ¬

and γ¬ /⊧ψ . Finally, since x /∈ vars(C) then we know that ⟨C,s,h⟩ ↝∗ γ¬ follows the

same path as ⟨C,s,h[JEKs↦]⟩ ↝∗ γ¬, then the length of the path ⟨C,s,h⟩ ↝∗ γ¬ is

the same as the length of the path ⟨C,s,h[JEKs↦]⟩↝∗ γ¬.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ EGψ , then by Defi-

nition 2.3.2 we know that for all paths π starting from ⟨C,s,h⟩ there exists a config-

uration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there is a finite tree κ with root in

⟨C,s,h⟩ whose all leaves γ¬ /⊧ψ . Finally, since x /∈ vars(C) the execution tree κ with

root in ⟨C,s,h⟩ follows the same execution paths as κ ′ and for all leaves γ¬ ∈ κ then

γ¬ ∈ κ ′.

If there is a precondition trace following the edge then since the precondi-

tion for both conclusion and premise is the same (modulo the variable substitution

3.3. Soundness of CTL system 76

P[x′/x]), then the inductive predicates Ψ(E) in P for both conclusion and premise

are defined by the same least approximant. Hence α = β .

Soundness of Conj
P ⊢C ∶ϕ1 P ⊢C ∶ϕ2

P ⊢C ∶ϕ1∧ϕ2
(Conj)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨C,s,h⟩ does not satisfy the temporal property ϕ1 ∧ϕ2. By Definition 2.3.2,

if ⟨C,s,h⟩ /⊧ ϕ1∧ϕ2 then either ⟨C,s,h⟩ /⊧ ϕ1 or ⟨C,s,h⟩ /⊧ ϕ2.

Case ⟨C,s,h⟩ /⊧ϕ1. Since by our assumption (s,h) ⊧P but ⟨C,s,h⟩ /⊧ϕ1 then it is the

case that the left-most premise is invalid.

Case ⟨C,s,h⟩ /⊧ϕ2. Since by our assumption (s,h) ⊧P but ⟨C,s,h⟩ /⊧ϕ2 then it is the

case that the right-most premise is invalid.

Given the temporal property with formula ϕ1 ∧ϕ2, there cannot be a ◻- or a

◇-trace following the path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of ∨1
P ⊢C ∶ϕ1

P ⊢C ∶ϕ1∨ϕ2
(∨1)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨C,s,h⟩ does not satisfy the temporal property ϕ1 ∨ϕ2. By Definition 2.3.2,

if ⟨C,s,h⟩ /⊧ ϕ1∨ϕ2 then ⟨C,s,h⟩ /⊧ ϕ1 and ⟨C,s,h⟩ /⊧ ϕ2. Consequently, since by our

assumption (s,h) ⊧ P but ⟨C,s,h⟩ /⊧ ϕ1 then it is the case that the premise is invalid.

Given the temporal property with formula ϕ1 ∨ϕ2, there cannot be a ◻- or a

◇-trace following the path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

3.3. Soundness of CTL system 77

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of ∨2
P ⊢C ∶ϕ2

P ⊢C ∶ϕ1∨ϕ2
(∨2)

Similar to soundness of ∨1.

Soundness of EF
P ⊢C ∶ϕ ∨◇EFϕ

P ⊢C ∶EFϕ
(EF)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨C,s,h⟩ does not satisfy the temporal property EFϕ . By Definition 2.3.2, if

⟨C,s,h⟩ /⊧ EFϕ then for all γ such that ⟨C,s,h⟩ ↝∗ γ it is the case that γ /⊧ ϕ .

By the reflexivity of ↝ we know that ⟨C,s,h⟩ ↝0 ⟨C,s,h⟩. Therefore by our

assumption it is the case that (i)⟨C,s,h⟩ /⊧ ϕ . Moreover, by the transitivity of ↝ we

know that for all γ if ⟨C,s,h⟩ ↝+ γ then γ /⊧ ϕ . In other words there does not exist a

one step transition for which eventually ϕ will hold. Formally (ii)⟨C,s,h⟩ /⊧◇EFϕ .

Consequently, by our assumption (s,h) ⊧ P and results (i) and (ii) the premise of

the rule must be invalid.

Given the temporal property with formula (◇)EFϕ , there cannot be a ◻- or a

◇-trace following the path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of EG
P ⊢C ∶ϕ P ⊢C ∶◇EGϕ

P ⊢C ∶EGϕ
(EG)

3.3. Soundness of CTL system 78

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨C,s,h⟩ does not satisfy the temporal property EGϕ . By Definition 2.3.2, if

⟨C,s,h⟩ /⊧ EGϕ then for all paths pi starting from ⟨C,s,h⟩ there exist γ ∈ π such that

γ /⊧ ϕ .

Since γ ∈ π then it must be the case that ⟨C,s,h⟩ ↝0 γ or ⟨C,s,h⟩ ↝+ γ . If

⟨C,s,h⟩ ↝0 γ then we know that (i)⟨C,s,h⟩ /⊧ ϕ . If ⟨C,s,h⟩ ↝+ γ then we know that

(ii)⟨C,s,h⟩ /⊧ ◇EGϕ . Letting s′ = s and h′ = h, by our assumption (s′,h′) ⊧ P and

results (i) and (ii), then either one of the premises of the rule is invalid.

Given the structure of the temporal formula ϕ/◇ϕ , there cannot be a ◻-trace

following the edge.

If there is a ◇-trace following the edge of the right hand premise, then by

Definition 3.2.7, ϕ = EGψ . Furthermore, since by our previous invalidity result

⟨C,s,h⟩ /⊧ EGψ , then by Definition 2.3.2 we know that for all paths π starting from

⟨C,s,h⟩ there exists a configuration γ¬ ∈ π such that γ¬ /⊧ ψ . In other words, there

is a finite tree κ ′ with root in ⟨C,s,h⟩ whose all leaves γ¬ /⊧ ψ . Finally, since by

construction ⟨C,s,h⟩ = ⟨C,s′,h′⟩, then every tree κ with root in ⟨C,s,h⟩ is the same

tree κ ′ with root in ⟨C,s′,h′⟩. Hence height(κ ′) = height(κ) and for all leaves γ¬ ∈κ ′

then γ¬ ∈ κ .

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of EU
P ⊢C ∶ψ ∨(ϕ ∧◇E(ϕUψ))

P ⊢C ∶E(ϕUψ) (EU))

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configuration

⟨C,s,h⟩ does not satisfy the temporal property E(ϕUψ). By Definition 2.3.2, if

⟨C,s,h⟩ /⊧ E(ϕUψ) then for all paths π starting from ⟨C,s,h⟩ and for all i ≥ 0 either

3.3. Soundness of CTL system 79

πi /⊧ψ or there exists j ∶ 0 ≤ j ≤ i such that π j /⊧ ϕ .

In other words, for i = 0, since there does not exists j ∶ 0 ≤ j < 0 then it must be

the case that (i)⟨C,s,h⟩ /⊧ ψ . For i > 0 it must be the case that (ii)⟨C,s,h⟩ /⊧ ϕ or

⟨C,s,h⟩ ↝+ γ ′ and for all paths π ′ starting from γ ′ and for all i′ ≥ 0 either π ′i′ /⊧ψ or

there exists j′ ∶ 0 ≤ j′ < i′ such that π j′ /⊧ϕ . In other words (iii)⟨C,s,h⟩ /⊧◇E(ϕUψ).

Consequently, by our assumption (s,h) ⊧ P and results (i), (ii) and (iii) the

premise of the rule is invalid.

Given the temporal property, there cannot be a ◻- or a ◇-trace following the

path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of AF
P ⊢C ∶ϕ ∨◻AFϕ

P ⊢C ∶AFϕ
(AF)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨C,s,h⟩ does not satisfy the temporal property AFϕ . By Definition 2.3.2, if

⟨C,s,h⟩ /⊧ AFϕ then there exists a path π starting from ⟨C,s,h⟩ where for all γ ∈ π it

is the case that γ /⊧ ϕ .

Under this assumption, since by definition ⟨C,s,h⟩ ∈ π then we know that

(i)⟨C,s,h⟩ /⊧ ϕ . Moreover, by the existence of a path π where for all γ ∈ π it is

the case that γ /⊧ ϕ then we also know that (ii)⟨C,s,h⟩ /⊧ ◻AFϕ . Consequently, by

our assumption (s,h) ⊧ P and results (i) and (ii) the premise of the rule is invalid.

Given the temporal property with formula (◻)AFϕ , there cannot be a ◻- or a

◇-trace following the path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

3.3. Soundness of CTL system 80

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of AG
P ⊢C ∶ϕ P ⊢C ∶◻AGϕ

P ⊢C ∶AGϕ
(AG)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨C,s,h⟩ does not satisfy the temporal property AGϕ . By Definition 2.3.2, if

⟨C,s,h⟩ /⊧ AGϕ then there exist γ such that ⟨C,s,h⟩ ↝∗ γ and γ /⊧ ϕ .

Since ⟨C,s,h⟩ ↝∗ γ then it must be the case that ⟨C,s,h⟩ ↝0 γ or ⟨C,s,h⟩ ↝+ γ .

If ⟨C,s,h⟩ ↝0 γ then we know that (i)⟨C,s,h⟩ /⊧ ϕ . If ⟨C,s,h⟩ ↝+ γ then we know

that for all paths π starting from ⟨C,s,h⟩ there does not exists a configuration γ

such that γ ⊧ ϕ . Formally (ii)⟨C,s,h⟩ /⊧ ◻AGϕ . Letting s′ = s and h′ = h, by our

assumption (s′,h′) ⊧ P and results (i) and (ii), then either one of the premises of

the rule is invalid.

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧AGψ , then by Defini-

tion 2.3.2 we know that there exists a configuration γ¬ such that ⟨C,s,h⟩ ↝∗ γ¬ and

γ¬ /⊧ψ . Finally, since by construction ⟨C,s,h⟩ = ⟨C,s′,h′⟩, then every path π starting

from ⟨C,s,h⟩ is the same path as the path π ′ starting from ⟨C,s′,h′⟩. Consequently

length(π ′) = length(π).

Given the structure of the temporal formula ϕ/◻ϕ , there cannot be a ◇-trace

following the edge.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of AU
P ⊢C ∶ψ ∨(ϕ ∧◻A(ϕUψ))

P ⊢C ∶A(ϕUψ) (AU)

3.3. Soundness of CTL system 81

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configuration

⟨C,s,h⟩ does not satisfy the temporal property A(ϕUψ). By Definition 2.3.2, if

⟨C,s,h⟩ /⊧ A(ϕUψ) then there exists a path π starting from ⟨C,s,h⟩ where for all

i ≥ 0 either πi /⊧ψ or there exists j ∶ 0 ≤ j ≤ i such that π j /⊧ ϕ .

In other words, for i = 0, since there does not exists j ∶ 0 ≤ j < 0 then it must be

the case that (i)⟨C,s,h⟩ /⊧ ψ . For i > 0 it must be the case that (ii)⟨C,s,h⟩ /⊧ ϕ or

⟨C,s,h⟩ ↝+ γ ′ and there exists a path π ′ starting from γ ′ where for all i′ ≥ 0 either

π ′i′ /⊧ψ or there exists j′ ∶ 0 ≤ j′ < i′ such that π j′ /⊧ ϕ . In other words (iii)⟨C,s,h⟩ /⊧

◻A(ϕUψ).

Consequently, by our assumption (s,h) ⊧ P and results (i), (ii) and (iii) the

premise of the rule is invalid.

Given the temporal property, there cannot be a ◻- or a ◇-trace following the

path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of EG-Finite

P ⊢ ε ∶ϕ
P ⊢ ε ∶EGϕ

(EG-Finite)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configura-

tion ⟨ε,s,h⟩ does not satisfy the temporal property EGϕ . By Definition 2.3.2, if

⟨ε,s,h⟩ /⊧ EGϕ then for all paths pi starting from ⟨C,s,h⟩ there exist γ ∈ π such that

γ /⊧ ϕ .

Since by the operational semantics there are no possible transitions from the

current configuration, then it must be the case that all paths are comprised of the

3.3. Soundness of CTL system 82

single configuration ⟨ε,s,h⟩ (i.e. for all paths π,π = ⟨ε,s,h⟩↝0 ⟨ε,s,h⟩). Therefore,

as a consequence of our argument, if ⟨ε,s,h⟩ /⊧ EGϕ then it must be the case that

⟨ε,s,h⟩ /⊧ ϕ . Finally, since by our assumption (s,h) ⊧ P but ⟨ε,s,h⟩ /⊧ ϕ then the

premise of the rule is invalid.

Given the temporal property, there cannot be a ◻- or a ◇-trace following the

path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Cons

P ⊢Q Q ⊢C ∶ψ ψ ⊢ ϕ

P ⊢C ∶ϕ (Cons)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that the precondition is satisfied (s,h) ⊧ P but the program configuration

⟨C,s,h⟩ does not satisfy the temporal property ϕ . By the side condition of the

rule, since P ⊢ Q, we have (s,h) ⊧ Q. Moreover, since by the side condition of

the rule ψ ⊢ ϕ then if a configuration γ ⊧ ψ then it should be the case that γ ⊧ ϕ .

Alternatively, if γ /⊧ ϕ then is must be the case that γ /⊧ψ . Consequently, following

the reasoning of our argument ⟨C,s,h⟩ /⊧ϕ . Finally, since by our assumption (s,h) ⊧

Q but ⟨C,s,h⟩ /⊧ψ then the premise of the rule is invalid.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = ψ =

EGϕ ′. Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ EGϕ ′, then

by Definition 2.3.2 we know that for all paths π starting from ⟨C,s,h⟩ there exists a

configuration γ¬ ∈π such that γ¬ /⊧ϕ ′. In other words, there is a finite tree κ with root

in ⟨C,s,h⟩ whose all leaves γ¬ /⊧ϕ ′. Finally, since P⊢Q then every tree κ ′ with root

in ⟨C,s′,h′⟩ is the same tree as κ with root in ⟨C,s,h⟩. Hence height(κ ′) = height(κ)

and for all leaves γ¬ ∈ κ ′ then γ¬ ∈ κ .

3.3. Soundness of CTL system 83

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ =ψ =AGϕ ′.

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ AGϕ ′, then by Def-

inition 2.3.2 we know that there exists a configuration γ¬ such that ⟨C,s,h⟩ ↝∗ γ¬

and γ¬ /⊧ϕ ′. Finally, since P⊢Q then every path π starting from ⟨C,s,h⟩ is the same

path as the path π ′ starting from ⟨C,s′,h′⟩. Consequently length(π ′) = length(π).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, by Definition 3.2.8 the precondition

for both conclusion and premise is the same, then the inductive predicates Ψ(E)

and Ψ′(E) in both conclusion and premise are interpreted by the same least approx-

imant. Hence α = β .

Soundness of Unfold-Pre

(Π∪Π′
i ∶Σ∗Σ′i ⊢C ∶ϕ)1≤i≤k

Π∶Ψ(E)∗Σ ⊢C ∶ϕ (Unfold-Pre)

Assume the conclusion of the rule is invalid. Pick an arbitrary program

state s,h such that the precondition is satisfied (s,h) ⊧ Π ∶Ψ(E)∗Σ but the pro-

gram configuration ⟨C,s,h⟩ does not satisfy the temporal property ϕ . By Defi-

nition 2.2.2 we can split h into two disjoint subheaps h = h′ ⊎ h′′ so that (s,h′) ⊧

Π ∶Ψ(E) and (s,h′′) ⊧ Π ∶Σ. Since (s,h′) ⊧ Π ∶Ψ(E) then by Definition 2.2.2

we know that (JEKs,h′) ∈ JΨK. Moreover, by Definition 2.2.4 we know that the

program state (s,h′) is in the semantic definition of Ψ for some approximant α

(i.e. (s,h′) ∈ JΨKα). Let h′1 . . .h
′
n be disjoint heaps so that h′ = h′1 ⊎ . . .⊎ h′n and

(s,h′1 ⊎h′′) ⊧ (Π∪Π′
i ∶Σ∗Σ′i)1≤i≤k (where k is the size of the set of inductive rules

as per Definition 2.2.3). Since h = h′⊎h′′ and h′ = h′1⊎ . . .⊎h′n then, any path starting

from ⟨C,s,h′⊎h′′⟩ is a path starting from ⟨C,s,h′i ⊎h′′⟩ for some 1 ≤ i ≤ k. Conse-

quently, since (s,h′i ⊎h′′) ⊧Π∪Π′
i ∶Σ∗Σi

′ but ⟨C,s,h′i ⊎h′′⟩ /⊧ ϕ then a premise of

the rule (Π∪Π′
i ∶Σ∗Σ′i ⊢C ∶ϕ)1≤i≤k is invalid for some i.

If there is a ◇-trace following the edge, then by Definition 3.2.7, ϕ = EGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ EGψ , then by Def-

inition 2.3.2 we know that for all paths π starting from ⟨C,s,h⟩ there exists a con-

3.3. Soundness of CTL system 84

figuration γ¬ ∈ π such that γ¬ /⊧ψ . In other words, there is a finite tree κ of height,

say n, with root in ⟨C,s,h⟩ whose all leaves γ¬ /⊧ ψ . Finally, since h = h′ ⊎h′′ and

h′ = h′1⊎ . . .⊎h′n then every tree κ ′i with root in ⟨C,s,h′i ⊎h′′⟩ is a subtree of κ , hence

the height of κ ′i is at most n. Consequently height(κ ′i) ≤ height(κ).

If there is a ◻-trace following the edge, then by Definition 3.2.7, ϕ = AGψ .

Furthermore, since by our previous invalidity result ⟨C,s,h⟩ /⊧ AGψ , then by Def-

inition 2.3.2 we know that there exists a configuration γ¬ such that ⟨C,s,h⟩ ↝∗ γ¬

and γ¬ /⊧ψ . Finally, since h = h′⊎h′′ and h′ = h′1⊎ . . .⊎h′n then every path π starting

from ⟨C,s,h⟩ is the same path as a path π ′ starting from ⟨C,s,h′i ⊎h′′⟩ for some i.

Consequently length(π ′) = length(π).

If there is a precondition trace following the edge then by our previous, since

(s,h′) ⊧Π ∶Ψ(E) and h′ = h′1⊎ . . .⊎h′n and (s,h′i ⊎h′′) ⊧Π∪Π′
i ∶Σ∗Σ′i for inductive

rule Π′
i ∶Σ′i ⇒ Ψ(E), where Ψ(E) is the predicate being unfolded, then (s,h′i) ∈

JΨKβ<α . Hence the condition holds.

Finally, global soundness is obtained by extending the properties established

in Lemma 3.3.1 to paths in a pre-proof, as follows.

Theorem 3.3.2 (Soundness). If P ⊢C ∶ϕ is provable, then it is valid.

Proof. Suppose for contradiction that there is a cyclic proof P of J = P ⊢C ∶ϕ but J

is invalid. That is, for some stack s and heap h, we have (s,h) ⊧ P but ⟨C,s,h⟩ /⊧ ϕ .

Then, by local soundness of the proof rules, we can construct an infinite path (Pi ⊢

Ci ∶ϕi)i≥0 in P of invalid sequents. Since P is a cyclic proof, by Definition 3.2.10

there exists an infinitely progressing trace following some tail (Pi ⊢Ci ∶ϕi)i≥n of the

path.

If this trace is a ◻-trace, by Definition 3.2.7 we know that for each pair of

conclusion and premise (Jk,Jk+1), for some ψ , Jk is of the form AGψ and Jk+1 is

of the form ◻AGψ , or viceversa. Moreover by condition 1 of Lemma 3.3.1 we

know there is a well-defined suffix of the path π ′ starting from ⟨Jk+1C ,Jk+1s,Jk+1h⟩

such that π ′m /⊧ ψ and π ′ is a subpath of a path π starting from ⟨JkC ,Jks,Jkh⟩. Since

an infinite numer of symbolic execution rules are applied along the path (as this is

3.3. Soundness of CTL system 85

the only way to discharge a sequents of the form ⊢ ∶◻), then, the length of the

path decreases infinitely often. This contradicts the well-foundedness of the natural

numbers, which invalidates our assumption. Consequently, J must indeed be valid.

If this trace is a ◇-trace, by Definition 3.2.7 we know that for each pair of

conclusion and premise (Jk,Jk+1), for some ψ , Jk is of the form EGψ and Jk+1 is of

the form ◇EGψ , or viceversa. Moreover by condition 2 of Lemma 3.3.1 we know

there is a smallest finite execution subtree κ ′ with root in ⟨Jk+1C ,Jk+1s,Jk+1h⟩, each

of whose leaves γ satisfies γ /⊧ψ and κ ′ is a subtree of κ with root in ⟨JkC ,Jks,Jkh⟩.

Since an infinite numer of symbolic execution rules are applied along the path (as

this is the only way to discharge a sequents of the form ⊢ ∶◇), then, the heigth of

the subtree decreases infintely often. This contradicts the well-foundedness of the

natural numbers, which invalidates our assumption. Consequently, J must indeed

be valid.

If this trace is a precondition trace, by Definition 3.2.8 we know that for each

sequent Jk, there exists an inductive predicate formula Ψk(E)which is a subformula

of JkP . Moreover, by condition 3 of Lemma 4.2.1 we know that for each pair of

conclusion and premise (Jk,Jk+1) the inductive predicates Ψk(E) and Ψk+1(E) have

a least-fixed point interpretation which can be constructed as the union of a chain

of ordinal-indexed approximations α and β respectively, where α ≤ β . Since by

Definition 3.2.8 the trace following the path progresses infinitely often, we know

that this chain of approximants decreases infinitely often, which contradicts the

well-foundedness of the ordinals, in turn invalidating our assumption. Consequently

J must indeed be valid.

Readers familiar with Hoare-style proof systems might wonder about relative

completeness of our system, i.e., whether all valid judgements are derivable if all

valid entailments between formulas are derivable. Typically, such a result might

be established by showing that for any program C and temporal property ϕ , we

can (a) express the logically weakest precondition for C to satisfy ϕ , say wp(C,ϕ),

and (b) derive wp(C,ϕ) ⊢C ∶ ϕ in our system. Relative completeness then follows

3.4. Related work 86

from the rule of consequence, (Cons). Unfortunately, it seems certain that such

weakest preconditions are not expressible in our language. For example, in [19],

the multiplicative implication of separation logic, −−∗, is needed to express weakest

preconditions, whereas it is not present in our language due to the problems it poses

for automation (a compromise typical of most separation logic analyses). Indeed, it

seems likely that we would need to extend our precondition language well beyond

this, since [19] only treats termination, whereas we treat arbitrary temporal proper-

ties. Since our focus in this dissertation is on automation, we leave such an analysis

to future work.

3.4 Related work

Automated verification of temporal properties of programs can be classified into two

main schools: model checking and deductive verification, of which model checking

has gathered more attention in recent years. Although finite-state transition systems

were the focus of earlier works (e.g. [34, 86]), recent advances such as restric-

tions on the explored state-space [12], precondition synthesis [38], counterexample-

guided refinement [41], bounded model checking [32] and automata-theoretic ap-

proaches [39] have enabled the treatment of infinite transition systems.

Here, we instead take the deductive verification approach, and therefore the

main differences between our work and model checking are mainly inherited ones.

On the one hand, we do not rely on program transformations or overapproximations,

which could result in potentially unsound procedures; indeed, the formal soundness

of our system(s) eliminates the possibility of false positives. On the other hand, we

might fail to terminate, and we do not produce counterexamples in case of failure.

(However, it is possible in principle that counterexamples could be produced from

failed proofs.)

A common limitation of early proof systems for different (fragments of) tem-

poral logics is their focus on finite state transition systems [56, 61, 13]. Contrary

to these systems, our proof system can handle infinite state, non-terminating pro-

grams. In the realm of infinite state systems, previous proof systems for verifying

3.4. Related work 87

temporal properties of arbitrary transition systems [75, 93] have shed some light on

the soundness and relative completeness of deductive verification. Unfortunately,

these early systems have typically relied upon complex verification conditions that

raise the question of whether full automation is achievable, arguably the most cited

argument against deductive verification.

Of particular relevance here are those proof systems for temporal properties

based on cyclic proof. Our work can be seen as an extension of the cyclic termi-

nation proofs in [19] to arbitrary temporal properties. In [13], a procedure for the

verification of CTL* properties is developed that employs a cyclic proof system for

LTL as a sub-procedure. A subtle but important difference when compared to our

work is the lack of cut/consequence rule (used e.g. to generalise precondition for-

mulas or to apply intermediary lemmas). A side benefit of such restriction is the

greatly simplified global soundness condition required to check the validity of their

proofs.

A cyclic proof system for the verification of CTL* properties of infinite-state

transition systems is presented in [93]. Focusing on generality, this system avoids

considering details of state formulas and their evolution throughout program execu-

tion by assuming an oracle for a general transition system. The system relies on a

soundness condition that is similar to Defn. 3.2.10, but does not track progress in

the same way, imposing extra conditions on the order in which rules are applied.

The success criterion for validity of a proof also presents some differences; it relies

on finding ranking functions, intermediate assertions and checking for the validity

of Hoare triples, and it is far from clear that such checks can be fully automated. In

contrast, we rely on a relatively simple ω-regular condition, which is decidable and

can be automatically checked by CYCLIST [91, 16, 22].

Chapter 4

Adaptation to LTL

In this chapter we reconfigure our cyclic proof system for CTL, described previ-

ously, to handle linear time (LTL) temporal properties of programs. Contrary to

CTL, where computation is viewed as a tree of executions, LTL treats the execution

of programs as a collection of traces.

The subtle difference between CTL and LTL semantics has been previously

discussed in Section 2.3. A similar example of these differences can be seen in the

following program.

Example 4.0.1. Assume the following program starts its execution from an initial

program state where y = f alse.

while(*) {

y:=true;

}

y:=false;

while(true) {

y:=true;

}

Under these circumstances, we can demonstrate the LTL property F(y = true∧

XX(y = true)) stating that in every execution path, we will eventually reach a point

where y = true and y = true will also hold after two computation steps. On the other

hand, it is not possible to show that the analogous CTL property AF(y = true∧◻◻

(y = true)) given that at every starting point of the execution of the loop at the top,

4.1. LTL cyclic proofs 89

there exists a branch (the one that exits the loop) on the execution tree on which

◻◻(y = true) does not hold. Proving the property AF(y = true∧◇◇(true)) can

be done, but this property is too weak to convey the same meaning as the analogous

LTL property.

Even if these previous examples are handcrafted to demonstrate the difference

between CTL and LTL, the reality is the view of time as linear, where each state has

a single possible successor, requires a slightly different handling of the constructs

of our programming language that induce the possibility of different futures. To

this effect, and following the common approach of determinising the execution of

nondeterministic while programs, we introduce prophecy variables (cf. [40]) that

predict the outcome of nondeterministic choices in the program. Such determin-

isation of branching commands induces a linearisation of time, in the sense that,

at any point during a program execution, there is a single possible successive state

(future). Such semantics form the basis of our cyclic proof system for LTL, whose

details are described in this chapter.

The rest of this chapter is structured as follows. In Section 4.1 we review the

concept of prophecy variables for determinising the execution of nondeterministic

programs. We then present the proof rules of our system, emphasizing the intro-

duction of new rules to handle nondeterminism. We then introduce the concept of

LTL traces and present the global soundness condition of our system based on these

traces. We finish the section by presenting some examples to demonstrate the apli-

cability of our proof system. Finally, in Section 4.2 we demonstrate soundness of

our LTL cyclic proof system.

4.1 LTL cyclic proofs
To account for prophecy variables, we define a special set Proph of prophecy vari-

ables (disjoint from Var), and extend our memory states so that the stack compo-

nent maps variables to values and prophecy variables to prophecy values defined

as s ∶ (Var→ Val)×(Proph→ N∪{�,?}). Roughly speaking, each prophecy vari-

able is associated with a nondeterministic branching command, where initially, all

4.1. LTL cyclic proofs 90

J∗iKs =? n ∈N∪{�}
⟨while ∗i do C od ; C′,s,h⟩ ↝ ⟨C ; while ∗i do C od,s[∗i↦ n],h⟩

J∗iKs = �
⟨while ∗i do C od ; C′,s,h⟩ ↝ ⟨C ; while ∗i do C od,s,h⟩

J∗iKs = 0
⟨while ∗i do C od ; C′,s,h⟩ ↝ ⟨C′,s[∗i↦?],h⟩

J∗iKs > 0
⟨while ∗i do C od,s,h⟩ ↝ ⟨C ; while ∗i do C od,s[∗i↦ J∗iKs−1],h⟩

J∗iKs ∈ {?,0}
⟨if ∗i then C else C′ fi ; C′′,s,h⟩ ↝ ⟨C ; C′′,s[∗i↦ 1],h⟩

J∗iKs = 1
⟨if ∗i then C else C′ fi ; C′′,s,h⟩ ↝ ⟨C′ ; C′′,s[∗i↦ 0],h⟩

Figure 4.1: Small-step operational semantics for nondeterminism in LTL.

prophecy variables hold an uninitialised value (?). For while commands, the value

of the prophecy variable determines the number of times the loop is executed; either

an infinite (�) or a finite (N) number of times. In case of if commands, the value of

the prophecy value alternates between 0 and 1, which in turn causes the execution

to follow the first or second branch. The corresponding operational semantics of

our language with prophecy variables is shown in Figure 4.1.

Judgements in the LTL system are of the form P ⊢C ∶ ϕ , where: P is a sym-

bolic heap formula as per Definition 2.2.1; C is a sequence of commands as per

Definition 2.1.1 (i.e. a computer program); and ϕ is a temporal assertion written in

the LTL language described in Definition 2.3.3.

The interpretation of judgements for LTL is as follows:

Definition 4.1.1 (LTL validity). An LTL judgement P ⊢C ∶ϕ is valid if and only

if, for all memory states (s,h) such that s,h ⊧ P and for all paths π starting from

⟨C,s,h⟩, we have π ⊧ ϕ , according to Definition 2.3.4.

The proof rules for LTL judgements are shown in Figure 4.2. Roughly speaking,

4.1. LTL cyclic proofs 91

these are obtained from the CTL proof rules by:

1. removing the symbolic execution rules for ◇ formulas and all rules for the

CTL temporal operators;

2. replacing ◻ by the “next” operator X in all remaining rules;

3. adding specific proof rules for determinised symbolic execution rules; and

4. adding specific proof rules for LTL temporal operators.

Similarly to Chapter 3, proofs in our LTL system are cyclic proofs, where every

leaf node of the derivation tree are matched to an interior node of the proof graph.

The global soundness condition for LTL, needed to qualify pre-proofs as proofs,

requires modified auxiliary definitions, as described next.

Definition 4.1.2 (LTL Trace). Let (Ji = Pi ⊢Ci∶ϕi)i≥0 be a path in a pre-proof P .

The sequence of temporal formulas (ϕi)i≥0 is an LTL trace following (Ji)i≥0 if there

exists a ψ such that for all i ≥ 0 the following holds:

• the formula ϕi is of the form Gψ and the formula ϕi+1 is of the form XGψ ,

or vice versa;

• ϕi = ϕi+1 whenever Ji is the conclusion of either the consequence rule (Cons)

or the (Unfold-Pre) rule.

We say that an LTL trace progresses whenever (ϕi,ϕi+1) is the temporal compo-

nent of a pair of sequents which are, respectively, the conclusion and premise of a

symbolic execution rule. An LTL trace is infinitely progressing if it progresses at

infinitely many points.

As in the case of the CTL cyclic proof system, we account for precondition

traces, which are the same as in Definition 3.2.8 with some minor modifications:

Definition 4.1.3 (Precondition trace). Let (Ji =Pi ⊢Ci∶ϕi)i≥0 be a path in a pre-proof

P . The sequence of symbolic heap formulas along the path, (Ψi)i≥0, is a precondi-

tion trace following that path (Ji)i≥0 if:

4.1. LTL cyclic proofs 92

Symbolic execution rules:

P ⊢C ∶final
(Final)

P ⊢C ∶ϕ

P ⊢ (skip ; C) ∶Xϕ
(Skip)

x = E[x′/x],P[x′/x] ⊢C ∶ϕ

P ⊢ (x ∶= E ; C) ∶Xϕ
(Assign)

x = E′[x′/x],(P∗E ↦ E′)[x′/x] ⊢C ∶ϕ

P∗E ↦ E′ ⊢ (x ∶= [E] ; C) ∶Xϕ
(Read)

P∗E ↦ E′ ⊢C ∶ϕ

P∗E ↦−⊢ ([E] ∶= E′ ; C) ∶Xϕ
(Write)

P ⊢C ∶ϕ

P∗E ↦−⊢ (free(E) ; C) ∶Xϕ
(Free)

P[x′/x]∗x↦ v ⊢C ∶ϕ

P ⊢ (x ∶= alloc() ; C) ∶Xϕ
v fresh (Alloc◻)

B,P ⊢C1 ; C3 ∶ϕ ¬B,P ⊢C2 ; C3 ∶ϕ

P ⊢ (if B then C1 else C2 fi ; C3) ∶◯ϕ
(If)

B,P ⊢ (C1 ; while B do C1 od ; C2) ∶ϕ ¬B,P ⊢C2 ∶ϕ

P ⊢ (while B do C1 od ; C2) ∶◯ϕ
(Wh)

i = 1,P ⊢C1 ; C3 ∶ϕ

i = 0,P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶Xϕ
(If-Z)

i = 0,P ⊢C2 ; C3 ∶ϕ

i = 1,P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶Xϕ
(If-N)

i = �,P ⊢ (C1 ; while ∗i do C1 od ; C2) ∶ϕ

i = �,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ
(Wh-�)

i = ?,P ⊢C2 ∶ϕ

i = 0,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ
(Wh-Z)

i = n−1,P ⊢ (C1 ; while ∗i do C1 od ; C2) ∶ϕ n > 0

i = n,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ
(Wh-N)

i = �,P ⊢ (C1 ; while ∗i do C1 od) ∶ϕ i = n,P ⊢ (C1 ; while ∗i do C1 od) ∶ϕ
i = ?,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ

(Det.)

Faulting execution rules:

P∗E ↦ nil /⊧ �

P ⊢ (x ∶= [E] ; C) ∶Xerror
(R�)

P∗E ↦ nil /⊧ �

P ⊢ ([E] ∶= E′ ; C) ∶Xerror
(W�)

P∗E ↦ nil /⊧ �

P ⊢ (free(E) ; C) ∶Xerror
(Free�)

Logical rules:

P ⊧Q
P ⊢C ∶Q

(Check)
� ⊢C ∶ϕ

(Ex.Falso)
Ω1 ⊢C ∶ϕ Ω2 ⊢C ∶ϕ

Ω1 ∨Ω2 ⊢C ∶ϕ
(Split)

P ⊢C ∶ϕ x /∈ vars(C)

P[E/x] ⊢C ∶ϕ[E/x]
(Subst)

P ⊢C ∶ϕ1 P ⊢C ∶ϕ2

P ⊢C ∶ϕ1 ∧ϕ2
(Conj)

P ⊢C ∶ϕi i ∈ {1,2}
P ⊢C ∶ϕ1 ∨ϕ2

(∨)

P ⊢C ∶ϕ ∨XFϕ

P ⊢C ∶Fϕ
(F)

P ⊢C ∶ϕ P ⊢C ∶XGϕ

P ⊢C ∶Gϕ
(G)

P ⊢C ∶ψ ∨(ϕ ∧X(ϕUψ))

P ⊢C ∶(ϕUψ)
(U)

P ⊢Q Q ⊢C ∶ψ ψ ⊢ ϕ

P ⊢C ∶ϕ
(Cons)

(Π∪Π
′

i ∶Σ∗Σ
′

i ⊢C ∶ϕ)1≤i≤k

Π ∶Ψ(E)∗Σ ⊢C ∶ϕ

⎛

⎜
⎜

⎝

Π1 ∶ Σ1⇒Ψ(E1), . . . ,Πk ∶ Σk⇒Ψ(Ek)

Π
′

i ∶ Σ
′

i =Πi ∶ Σi with existential variables freshened and

arguments E substituted for parameters Ei

⎞

⎟
⎟

⎠

(Unfold-Pre)

Figure 4.2: LTL proof rules.

4.1. LTL cyclic proofs 93

(i) Whenever Ji is the conclusion of the (Unfold-Pre) rule, the predicate Ψi(E)

is the predicate in the spatial formula of Pi being unfolded and Ψi+1 =Ψ′(E),

where Ψ′(E) is obtained in the premise Ji+1 by unfolding Ψ(E); and

(ii) Ψi = Ψi+1 (modulo any rewriting done by rules (Assign), (Read), (Alloc),

(Subst)) for all other rules.

We say that a precondition trace progresses whenever (Unfold-Pre) is applied. A

precondition trace is infinitely progressing if it progresses at infinitely many points.

Definition 4.1.4 (LTL proof). A pre-proof P is an LTL proof if, for every infinite

path (Ji)i≥0 in P , there is an infinitely progressing LTL or precondition trace fol-

lowing some tail (Ji)i≥n of the path.

We revisit Example 2.3.5 to illustrate the formation of backlinks and the global

soundness condition for the LTL system.

Example 4.1.5. Consider the following (labelled) program:

1: while(*i) {

2: x:=true;

}

3: x:=false;

4: x:=true;

5: while (x=x) {

6: skip;

}

Based on the semantics of nondeterminism described in Figure 4.1, there are

three possible program behaviours:

1. The program never leaves the nondeterministic loop. Such program be-

haviour is the result of assigning the prophecy value � to the prophecy vari-

able that is associated to the nondeterministic loop.

2. The program executes the nondeterministic loop a number of times (say n)

before exiting. This program behaviour arises from assigning an arbitrary

prophecy value n ∈N∖{0} to the prophecy variable; and

4.1. LTL cyclic proofs 94

3. The program never enters the loop, as the result of assigning 0 to the prophecy

variable associated with the nondeterministic loop.

Under these conditions, it can be seen that all program executions satisfy the LTL

property FG(x = true), that is, for every program execution, x will eventually be-

come true and remain unchanged from that point onwards. Figure 4.1.5 shows the

proof of this property using the cyclic proof system described in this chapter.

The proof graph at the bottom of the figure is the result of the derivations where

the prophecy variable i is assigned a prophecy value � by the (Det) proof rule; as

such, this proof graph corresponds to those program executions that never enter the

loop. Note that along the infinite path induced by the backlink, all sequents have

a temporal formula of the form Gψ or XGψ , where ψ = x = true, forming a path

(Gψ,XGψ,Gψ,XGψ,Gψ, . . .) along the path. Moreover, due to the application of

symbolic execution rules (Wh-�) and (Assign) along the path, the trace progresses

infinitely often.

The proof graph at the top of the figure is the result of the derivations where

the prophecy variable i is assigned a prophecy value n ∈N by the (Det) proof rule;

as such, this proof graph corresponds to those program executions that execute the

body of the loop and then exit the loop after a number of iterations.

Taking advantage of the use of cyclic proofs, we can denote the prophecy vari-

able as an inductive predicate N(i) that characterises the natural numbers. We can

then apply a case-split rule on the inductive predicate N(i). The case where n ≠ 0 is

handled on the right hand side of the proof graph whereas the n = 0 case is handled

on the left hand side of the proof graph.

Note that along the infinite path induced by the backlink on the right hand

side, all sequents have a precondition formula that contains the inductive predicate

N(i). Moreover, along the path there are infinitely many applications of the proof

rule (Unfold-Pre), and, therefore there is an infinite progressing precondition trace

along the path as per Definition 3.2.8. Similarly, along the infinite path induced by

the backlink on the left hand side proof graph, all sequents have a temporal formula

of the form Gψ or XGψ , where ψ = x = true, forming an LTL trace of the form

4.1. LTL cyclic proofs 95

(C
h
e
ck

)

i
=
?
∧

x
=

tr
u
e
`
C

5
:
x
=

tr
u
e

(E
x
F
a
ls
o
)

i
=
?
∧

x
=

tr
u
e

∧
x
6=

x
`
ε
:
G

x
=

tr
u
e

(C
h
e
ck

)

i
=
?
∧

x
=

tr
u
e
`
C

6
:
x
=

tr
u
e

i
=
?
∧

x
=

tr
u
e
`
C

5
:
G

x
=

tr
u
e

(S
k
ip
)

i
=
?
∧

x
=

tr
u
e
`
C

6
:
X
G

x
=

tr
u
e

(G
)

i
=
?
∧

x
=

tr
u
e
`
C

6
:
G

x
=

tr
u
e

(W
h
)

i
=
?
∧

x
=

tr
u
e
`
C

5
:
X
G

x
=

tr
u
e

(G
)

i
=
?
∧

x
=

tr
u
e
`
C

5
:
G

x
=

tr
u
e

(F
)

i
=
?
∧

x
=

tr
u
e
`
C

5
:
F
G

x
=

tr
u
e

(A
ss
ig
n
)

i
=
?
∧

x
=

fa
ls
e
`
C

4
:
X
F
G

x
=

tr
u
e

(F
)

i
=
?
∧

x
=

fa
ls
e
`
C

4
:
F
G

x
=

tr
u
e

(A
ss
ig
n
)

i
=
?
∧

x
=

tr
u
e
`
C

3
:
X
F
G

x
=

tr
u
e

(F
)

i
=
?
∧

x
=

tr
u
e
`
C

3
:
F
G

x
=

tr
u
e

(W
h
-Z

)
i
=

0
∧

x
=

tr
u
e
`
C

1
:
X
F
G

x
=

tr
u
e

x
=

tr
u
e
:
N

(i
)
`
C

1
:
F
G

x
=

tr
u
e

(A
ss
ig
n
)

x
=

tr
u
e
:
N

(i
)
`
C

2
:
X
F
G

x
=

tr
u
e

(F
)

x
=

tr
u
e
:
N

(i
)
`
C

2
:
F
G

x
=

tr
u
e

(W
h
-N

)

i
=

si
′
∧

x
=

tr
u
e
:
N

(i
′)

`
C

1
:
X
F
G

x
=

tr
u
e

(C
a
se

-
N
)

x
=

tr
u
e
:
N

(i
)
`
C

1
:
X
F
G

x
=

tr
u
e

(F
)

x
=

tr
u
e
:
N

(i
)
`
C

1
:
F
G

x
=

tr
u
e

x
=

tr
u
e
:
N

(i
)
`
C

1
:
F
G

x
=

tr
u
e

(C
h
e
ck

)

i
=

⊥
∧

x
=

tr
u
e
`
C

1
:
x
=

tr
u
e

(C
h
e
ck

)

i
=

⊥
∧

x
=

tr
u
e
`
C

2
:
x
=

tr
u
e

i
=

⊥
∧

x
=

tr
u
e
`
C

1
:
G

x
=

tr
u
e

(A
ss
ig
n
)

i
=

⊥
∧

x
=

tr
u
e
`
C

2
:
X
G

x
=

tr
u
e

(G
)

i
=

⊥
∧

x
=

tr
u
e
`
C

2
:
G

x
=

tr
u
e

(W
h
-⊥

)
i
=

⊥
∧

x
=

tr
u
e
`
C

1
:
X
G

x
=

tr
u
e

(G
)

i
=

⊥
∧

x
=

tr
u
e
`
C

1
:
G

x
=

tr
u
e

(F
)

i
=

⊥
∧

x
=

tr
u
e
`
C

1
:
F
G

x
=

tr
u
e

(D
e
t)

x
=

tr
u
e
`
C

1
:
X
F
G

x
=

tr
u
e

(F
)

x
=

tr
u
e
`
C

1
:
F
G

x
=

tr
u
e

Fi
gu

re
4.

3:
LT

L
ex

am
pl

e.
T

he
pr

oo
ft

re
e

at
th

e
bo

tto
m

co
rr

es
po

nd
s

to
th

os
e

pr
og

ra
m

ex
ec

ut
io

ns
th

at
ne

ve
re

xi
tt

he
fir

st
lo

op
.T

he
pr

oo
ft

re
e

at
th

e
to

p
(c

on
ne

ct
ed

to
th

e
le

ft
-m

os
ts

eq
ue

nt
of

th
e

bo
tto

m
tr

ee
)c

or
re

sp
on

ds
to

th
os

e
pr

og
ra

m
ex

ec
ut

io
ns

th
at

ex
ec

ut
e

th
e

fir
st

lo
op

a
fin

ite
nu

m
be

r
of

tim
es

an
d

ev
en

tu
al

ly
ex

it
it.

4.2. Soundness of LTL system 96

(Gψ,XGψ,Gψ,XGψ,Gψ, . . .) along the path. Moreover, due to the application of

rules (Wh) and (Skip) along the path, the LTL trace progresses infinitely often.

As established in Definition 4.1.4, since along every infinite path in the proof

graph there is an infinitely progressing LTL or precondition trace following some

tail of the path, then our pre-proof is a valid proof. Strictly speaking, there is yet

another infinite path in our proof graph. This infinite path results from the combi-

nation of a finite number of “iterations” along the cycle with a precondition trace,

followed by an infinite number of “iterations” along the cycle with an LTL trace

in the top proof graph. This infinite path is nevertheless handled by our previous

cases since its tail corresponds to an infinite path along which there is an infinitely

progressing LTL trace.

4.2 Soundness of LTL system
In this section we show that our LTL proof system is sound. We first show local

soundness of the proof rules along with the trace properties that are maintained by

all derivation rules, as established in Definitions 3.2.7 and 3.2.8. For each proof

rule, we show: (1) soundness from conclusion to premises by assuming that the

conclusion is invalid (by Definition 4.1.1) and proceeding to establish the invalidity

(of at least one) of the premise(s); and (2) the trace property regarding the length

of paths is preserved by each rule by either maintaining or reducing the length of

the path. In the case of the axioms, we show that the conclusion is a tautology.

Finally we show the global soundness of our system, essentially, by extending the

properties established for local soundness to paths in a pre-proof.

Lemma 4.2.1. Let J = (P ⊢C∶ϕ) be the conclusion of a proof rule R. If J is invalid

under program state (s,h), then there exists a premise of the rule J′ = (P′ ⊢C′ ∶ ϕ ′)

and a memory state (s′,h′) such that

1. the sequent J′ is not valid under (s′,h′)

2. if there is an LTL trace (ϕ,ϕ ′) following the edge (J,J′) then, letting ψ be

the unique formula given by Definition 4.1.2, there exists a k such that πk /⊧ψ ,

4.2. Soundness of LTL system 97

and the finite path π ′
def= ⟨C′,s′,h′⟩ . . .π[k] is a subpath of π

def= ⟨C,s,h⟩ . . .π[k].

Therefore length(π ′) ≤ length(π). Moreover, length(π ′) < length(π) when R

is a symbolic execution rule.

3. if there is a precondition trace (Ψ(E),Ψ′(E)) following the edge (J,J′)

then letting α(β) be the least approximant for which the inductive predicate

Ψ(E)(Ψ′(E)) is interpreted (i.e. (s,h) ⊧ Ψα(Ψ′β)), then the following re-

lation holds and it is well-defined: β ≤ α . Moreover β < α when R is the

(Unfold-Pre) rule.

Proof. We proceed by case analysis of the proof rule R, only showing the proof of

the rules specific to LTL; all the remaining cases are similar to the local soundness

proof of Chapter 3.

Soundness of F
P ⊢C ∶ϕ ∨XFϕ

P ⊢C ∶Fϕ
(F)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧P but for some execution path π starting from ⟨C,s,h⟩, the path

π does not satisfy the temporal property Fϕ . By Definition 2.3.4, if π /⊧ Fϕ then

for all k ≥ 0,πk /⊧ ϕ .

Under this assumption, since there exists a path π starting from ⟨C,s,h⟩ where

for all k ≥ 0,πk /⊧ ϕ , then we know that, in particular (i)π0 /⊧ ϕ . Moreover, it is also

the case that, in particular, π1 /⊧ Fϕ . Hence (ii)π0 /⊧ XFϕ . Consequently, by our

assumption (s,h) ⊧ P and results (i) and (ii), the premise of the rule is invalid.

Given the temporal property with formula (X)Fϕ , there cannot be an LTL-

trace following the path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

4.2. Soundness of LTL system 98

Soundness of G
P ⊢C ∶ϕ P ⊢C ∶XGϕ

P ⊢C ∶Gϕ
(G)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧P but for some execution path π starting from ⟨C,s,h⟩, the path

π does not satisfy the temporal property Gϕ . By Definition 2.3.4, if π /⊧ Gϕ then

there exists k ≥ 0 such that πk /⊧ ϕ .

Case k = 0: It follows from our assumptions that (i)π /⊧ ϕ , where π[0] = ⟨C,s,h⟩.

Hence the left hand premise is invalid.

Case k > 0: Let γ = π[1] so that ⟨C,s,h⟩ ↝ γ ↝ By our assumption we know that

there exists k > 0 such that πk /⊧ ϕ , then we know that for all paths π ′ starting from

γ , π ′ /⊧Gϕ . Consequently, (ii)π /⊧ XGϕ . Hence the right hand premise is invalid.

Therefore, letting s′ = s and h′ = h, by our assumption (s′,h′) ⊧ P and results

(i) and (ii), then either one of the premises of the rule is invalid.

If there is an LTL-trace following the edge, then by Definition 4.1.2, said trace

must be following the right hand edge and ψ = ϕ . Furthermore, since by our pre-

vious invalidity result π /⊧Gψ , then by Definition 2.3.4 we know that there exists a

k > 0 such that πk /⊧ ψ . Finally, since by construction ⟨C,s,h⟩ = ⟨C,s′,h′⟩, then ev-

ery path τ starting from ⟨C,s,h⟩ is the same path τ ′ as that starting from ⟨C,s′,h′⟩.

Consequently length(τ ′) = length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of U
P ⊢C ∶ψ ∨(ϕ ∧X(ϕUψ))

P ⊢C ∶(ϕUψ) (U)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧P but for some execution path π starting from ⟨C,s,h⟩, the path

π does not satisfy the temporal property (ϕUψ). By Definition 2.3.4, if π /⊧ (ϕUψ)

4.2. Soundness of LTL system 99

then either for all i ≥ 0,πi /⊧ψ (i.e. the property ψ is never satisfied along the path)

or there exists j ∶ 0 ≤ j ≤ i such that π j /⊧ϕ (i.e. the property ψ is eventually satisfied,

but there exists a configuration in the path that does not satisfy ϕ).

Case for all i ≥ 0,πi /⊧ψ: By construction ⟨C,s,h⟩ = π[0]. Then it follows from our

assumption that there exists a path π starting from ⟨C,s,h⟩ such that (i)π /⊧ψ .

Case for all i ≥ 0, there exists j ∶ 0 ≤ j ≤ i such that π j /⊧ ϕ Assume the property ψ

is eventually satisfied in suffix i > 0 of π such that πi ⊧ψ . Then, since π /⊧ (ϕUψ),

then it must be the case that there exists j ∶ 0 ≤ j ≤ i such that π j /⊧ ϕ .

Subcase j = 0: since by construction ⟨C,s,h⟩ = π[0] then it must be the case

that there is path π starting from ⟨C,s,h⟩ such that (ii)π /⊧ ϕ .

Subcase j > 0: Let γ = π[1] so that ⟨C,s,h⟩ ↝ γ ↝ Then we know that there

exists a path π ′ starting from γ where for all i′ ≥ 0 either π ′i′ /⊧ ψ or there exists

j′ ∶ 0 ≤ j′ < i′ such that π j′ /⊧ ϕ . In other words (iii)π /⊧ X(ϕUψ). Consequently,

by our assumption (s,h) ⊧ P and results (i), (ii) and (iii) the premise of the rule is

invalid.

Given the temporal property of the sequents, there cannot be an LTL-trace

following the path.

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Det.

i = �,P ⊢ (C1 ; while ∗i do C1 od) ∶ϕ i = n,P ⊢ (C1 ; while ∗i do C1 od) ∶ϕ
i = ?,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ

(Det.)

Assume the conclusion of the rule is invalid. Pick an arbitrary pro-

gram state s,h so that (s,h) ⊧ i = ?,P but for some execution path π starting

from ⟨while ∗i do C1 od ; C2 ; C2,s,h⟩, the path π does not satisfy the tempo-

ral property Xϕ . By Definition 2.3.4 if π /⊧ Xϕ then π1 /⊧ ϕ . By the op-

4.2. Soundness of LTL system 100

erational semantics we know there are two possible execution paths: π[1] =

⟨C1 ; while ∗i do C1 od,s[∗i↦�],h⟩ or π[1] = ⟨C1 ; while ∗i do C1 od,s[∗i↦ n],h⟩.

We show the details of the foremost while omitting the latter due to their similarity.

Case γ ′ = ⟨C1 ; while ∗i do C1 od ; C2,s[∗i↦�],h⟩: By construction we know that

J∗iKs[∗i ↦ �] = �, moreover, by our assumption that (s,h) ⊧ i = ?,P we know that

(s[∗i ↦ �],h),⊧ i = �,P. Since by our previous finding, there exists a path π ′ = π1

starting from γ ′ such that π ′ /⊧ ϕ then the left-most premise of the rule is invalid.

If there is an LTL trace following the edge, then by Definition 4.1.2, ϕ =Gψ .

Furthermore, since by our previous result π1 /⊧ Gψ , then by Definition 2.3.4 we

know that there exists k ≥ 1 such that πk /⊧ ψ . Finally, since by the operational

semantics ⟨while ∗i do C1 od ; C2 ; C2,s,h⟩ ↝ ⟨C1 ; while ∗i do C1 od,s[∗i↦�],h⟩,

then every execution path τ ′ starting from ⟨C1 ; while ∗i do C1 od,s[∗i↦�],h⟩ is a

subpath of an execution path τ starting from ⟨while ∗i do C1 od ; C2 ; C2,s,h⟩. Con-

sequently length(τ ′) < length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same (modulo the subformula concerning prophecy vari-

ables, which are not part of inductive predicate definitions), then the inductive pred-

icates Ψ(E) and Ψ′(E) in both conclusion and premise are interpreted by the same

least approximant. Hence α = β .

Soundness of Wh-�

i = �,P ⊢ (C1 ; while ∗i do C1 od ; C2) ∶ϕ
i = �,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ

Wh-�

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ i = �,P but there exists a path π starting from the program

configuration γ = ⟨while ∗i do C1 od ; C2,s,h⟩ such that the path π does not satisfy

the temporal property Xϕ . By Definition 2.3.4 if π /⊧ Xϕ then π1 /⊧ ϕ . By the

operational semantics we know there is a single possible path with root in γ where

π[1] = ⟨C1 ; while ∗i do C1 od ; C2,s,h⟩. Since by our assumption (s,h) ⊧ i = �,P

4.2. Soundness of LTL system 101

but there exists a path π ′ = π1 starting from ⟨C1 ; while ∗i do C1 od,s,h⟩ such that

π ′ /⊧ ϕ then the premise of the rule must be invalid.

If there is an LTL trace following the edge, then by Definition 4.1.2, ϕ =Gψ .

Furthermore, since by our previous result π1 /⊧ Gψ , then by Definition 2.3.4 we

know that there exists k ≥ 1 such that πk /⊧ ψ . Finally, since by the operational se-

mantics ⟨while ∗i do C1 od ; C2,s,h⟩ ↝ ⟨C1 ; while ∗i do C1 od,s,h⟩, then every ex-

ecution path τ ′ starting from ⟨C1 ; while ∗i do C1 od,s,h⟩ is a subpath of an execu-

tion path τ starting from ⟨while ∗i do C1 od ; C2,s,h⟩. Consequently length(τ ′) <

length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same, then the inductive predicates Ψ(E) and Ψ′(E) in

both conclusion and premise are interpreted by the same least approximant. Hence

α = β .

Soundness of Wh-N

i = n−1,P ⊢ (C1 ; while ∗i do C1 od ; C2) ∶ϕ n > 0
i = n,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ

(Wh-N)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ i = n,P but there exists a path π starting from the program

configuration γ = ⟨while ∗i do C1 od ; C2,s,h⟩, such that the path π does not satisfy

the temporal property Xϕ . By Definition 2.3.4 if π /⊧ Xϕ then π1 /⊧ ϕ . By the

operational semantics we know there is a single possible path with root in γ where

π[1] = ⟨C1 ; while ∗i do C1 od ; C2,s[∗i↦ n−1],h⟩. By construction, we know that

(s[∗i ↦ n−1],h) ⊧ i = n−1. Moreover, by our assumption that (s,h) ⊧ i = n,P then

(s[∗i↦ n−1],h) ⊧ i = n−1,P. On the other hand, since π1 /⊧ ϕ then the premise of

the rule must be invalid.

If there is an LTL trace following the edge, then by Definition 4.1.2, ϕ =Gψ .

Furthermore, since by our previous result π1 /⊧ Gψ , then by Definition 2.3.4 we

know that there exists k ≥1 such that πk /⊧ψ . Finally, since by the operational seman-

4.2. Soundness of LTL system 102

tics ⟨while ∗i do C1 od ; C2,s,h⟩ ↝ ⟨C1 ; while ∗i do C1 od ; C2,s[∗i↦ n−1],h⟩,

then every path τ ′ starting from ⟨C1 ; while ∗i do C1 od ; C2,s[∗i↦ n−1],h⟩ is a

subpath of an execution path τ starting from ⟨while ∗i do C1 od ; C2,s,h⟩. Conse-

quently length(τ ′) < length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same (modulo the subformula concerning prophecy vari-

ables, which are not part of inductive predicate definitions), then the inductive pred-

icates Ψ(E) and Ψ′(E) in both conclusion and premise are interpreted by the same

least approximant. Hence α = β .

Soundness of Wh-Z

i = ?,P ⊢C2 ∶ϕ
i = 0,P ⊢ (while ∗i do C1 od ; C2) ∶Xϕ

(Wh-Z)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ i = 0,P but there exists an execution path π starting from the

program configuration γ = ⟨while ∗i do C1 od ; C2,s,h⟩ such that the path π does not

satisfy the temporal property Xϕ . By Definition 2.3.4 if π /⊧ Xϕ then π1 /⊧ ϕ . By

the operational semantics we know there is a single possible path with root γ where

π[1] = ⟨C2,s[∗i↦ ?],h⟩. By construction (s[∗i ↦ ?],h) ⊧ i = ?. Moreover, by our

assumption that (s,h) ⊧ i = 0,P then (s[∗i↦ ?],h) ⊧ i =?,P. On the other hand, since

π1 /⊧ ϕ then the premise of the rule must be invalid.

If there is an LTL trace following the edge, then by Definition 4.1.2, ϕ =Gψ .

Furthermore, since by our previous result π1 /⊧ Gψ , then by Definition 2.3.4 we

know that there exists k ≥ 1 such that πk /⊧ ψ . Finally, since by the operational se-

mantics ⟨while ∗i do C1 od ; C2,s,h⟩ ↝ ⟨C2,s[∗i↦ ?],h⟩, then every execution path

τ ′ starting from ⟨C2,s[∗i↦ ?],h⟩ is a subpath of an execution path τ starting from

⟨while ∗i do C1 od ; C2,s,h⟩. Consequently length(τ ′) < length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

4.2. Soundness of LTL system 103

clusion and premise is the same (modulo the subformula concerning prophecy vari-

ables, which are not part of inductive predicate definitions), then the inductive pred-

icates Ψ(E) and Ψ′(E) in both conclusion and premise are interpreted by the same

least approximant. Hence α = β .

Soundness of If-Z

i = 1,P ⊢C1 ; C3 ∶ϕ
i = 0,P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶Xϕ

(If-Z)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ i = 0,P but there exists a path π starting from the program

configuration γ = ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩, such that the path π does not sat-

isfy the temporal property Xϕ . By Definition 2.3.4 if π /⊧ Xϕ then π1 /⊧ ϕ . By the

operational semantics we know there is a single possible path with root in γ where

π[1] = ⟨C1 ; C3,s[∗i↦ 1],h⟩. By construction, we know that (s[∗i ↦ 1],h) ⊧ i = 1.

Moreover, by our assumption that (s,h) ⊧ i = 0,P then (s[∗i ↦ 1],h) ⊧ i = 1,P. On

the other hand, since π1 /⊧ ϕ then the premise of the rule must be invalid.

If there is an LTL trace following the edge, then by Definition 4.1.2, ϕ =Gψ .

Furthermore, since by our previous result π1 /⊧ Gψ , then by Definition 2.3.4 we

know that there exists k ≥1 such that πk /⊧ψ . Finally, since by the operational seman-

tics ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩ ↝ ⟨C1 ; C3,s[∗i↦ 1],h⟩, then every execution

path τ ′ starting from ⟨C1 ; C3,s[∗i↦ 1],h⟩ is a subpath of an execution path τ start-

ing from ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩. Consequently length(τ ′) < length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same (modulo the subformula concerning prophecy vari-

ables, which are not part of inductive predicate definitions), then the inductive pred-

icates Ψ(E) and Ψ′(E) in both conclusion and premise are interpreted by the same

least approximant. Hence α = β .

4.2. Soundness of LTL system 104

Soundness of If-N

i = 0,P ⊢C2 ; C3 ∶ϕ
i = 1,P ⊢ (if ∗ then C1 else C2 fi ; C3) ∶Xϕ

(If-N)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state

s,h such that (s,h) ⊧ i = 1,P but there exists a path π starting from the program

configuration γ = ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩, such that the path π does not sat-

isfy the temporal property Xϕ . By Definition 2.3.4 if π /⊧ Xϕ then π1 /⊧ ϕ . By the

operational semantics we know there is a single possible path with root in γ where

π[1] = ⟨C2 ; C3,s[∗i↦ 0],h⟩. By construction, we know that (s[∗i ↦ 0],h) ⊧ i = 0.

Moreover, by our assumption that (s,h) ⊧ i = 1,P then (s[∗i ↦ 0],h) ⊧ i = 0,P. On

the other hand, since π1 /⊧ ϕ then the premise of the rule must be invalid.

If there is an LTL trace following the edge, then by Definition 4.1.2, ϕ =Gψ .

Furthermore, since by our previous result π1 /⊧ Gψ , then by Definition 2.3.4 we

know that there exists k ≥1 such that πk /⊧ψ . Finally, since by the operational seman-

tics ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩ ↝ ⟨C2 ; C3,s[∗i↦ 0],h⟩, then every execution

path τ ′ starting from ⟨C2 ; C3,s[∗i↦ 0],h⟩ is a subpath of an execution path τ start-

ing from ⟨if ∗ then C1 else C2 fi ; C3,s,h⟩. Consequently length(τ ′) < length(τ).

If there is a precondition trace (Ψ(E),Ψ′(E)) following the edge, where

(s,h) ⊧ Ψα(E) and (s′,h′) ⊧ Ψ′β (E), then, since the precondition for both con-

clusion and premise is the same (modulo the subformula concerning prophecy vari-

ables, which are not part of inductive predicate definitions), then the inductive pred-

icates Ψ(E) and Ψ′(E) in both conclusion and premise are interpreted by the same

least approximant. Hence α = β .

Theorem 4.2.2. If P ⊢C ∶ ϕ is provable in the LTL system then it is valid.

Proof. Suppose for contradiction that there is a cyclic proof P of J = P ⊢C∶ϕ but J

is invalid. That is, for some stack s and heap h, we have (s,h) ⊧ P but there exists

a path π starting from ⟨C,s,h⟩ such that π /⊧ ϕ . Then, by local soundness of the

proof rules, we can construct an infinite path (Ji = Pi ⊢Ci∶ϕi)i≥0 of invalid sequents,

so that for each Ji there exists a memory state (si,hi) such that (si,hi) ⊧ JiP but

4.2. Soundness of LTL system 105

there exists an execution path π starting from ⟨JiC ,si,hi⟩ such that π /⊧ ϕ . Since P

is a cyclic proof, by Definition 4.1.4 there must be an infinitely progressing LTL or

precondition trace following some tail (Pi ⊢Ci∶ϕi)i≥n of the path.

If this trace is an LTL trace, by Definition 4.1.2 we know that for each pair

of conclusion and premise (Jk,Jk+1), for some ψ , Jkϕ
is of the form Gψ and Jk+1ϕ

is of the form XGψ , or vice versa. Moreover, by condition 2 of Lemma 4.2.1 we

know there is a well-defined suffix of the path π ′ starting from ⟨Jk+1C ,Jk+1s,Jk+1h⟩

such that π ′m /⊧ ψ and π ′ is a subpath of a path π starting from ⟨JkC ,sk,hk⟩. Since

by Definition 4.1.2 the trace following the path progresses infinitely often, we know

that the length of the suffix path decreases infinitely often. This contradicts the

well-foundedness of the natural numbers, which invalidates our assumptions. Con-

sequently J must indeed be valid.

If this trace is a precondition trace, by Definition 3.2.8 we know that for each

sequent Jk, there exists an inductive predicate formula Ψk(E)which is a subformula

of JkP . Moreover, by condition 3 of Lemma 4.2.1 we know that for each pair of

conclusion and premise (Jk,Jk+1) the inductive predicates Ψk(E) and Ψk+1(E) have

a least-fixed point interpretation which can be constructed as the union of a chain

of ordinal-indexed approximations α and β respectively, where α ≤ β . Since by

Definition 3.2.8 the trace following the path progresses infinitely often, we know

that this chain of approximants decreases infinitely often, which contradicts the

well-foundedness of the ordinals, in turn invalidating our assumption. Consequently

J must indeed be valid.

Previously in this chapter we have shown a practical example of the application

of our LTL cyclic proof system to demonstrate that all possible executions of a pro-

gram exhibit a behaviour described by a temporal property. While the relatively low

complexity of the example program resulted in a proof graph of manageable size, it

is easy to estimate that larger, more complex programs would result in larger proofs

that could be considered challenging to construct by hand and, more importantly,

hard to manually check the global soundness condition that validates its soundness.

Overcoming this problem is the focus of our attention in Chapters 6 and 7, where

4.2. Soundness of LTL system 106

we present an implementation of our CTL and LTL cyclic proof systems presented

so far, capable of automatically discovering temporal proofs of programs. We run

this automated tool on a range of practical examples to demonstrate the viability of

our approach to the verification of temporal properties.

Chapter 5

Fairness

An important component in the verification of reactive systems is a set of fairness

constraints to guarantee that no computation is neglected forever. These fairness

constraints are usually categorised as weak and strong fairness [68]. Since weak

fairness requirements are usually related to parallel composition of processes, a

property that our programming language lacks, we limit ourselves to the treatment

of strong fairness. In this chapter we describe how our cyclic proof systems can be

modified to treat (strong) fairness constraints.

In Section 5.1 we introduce our fairness constraint mechanism that guaran-

tees that no computation is neglected forever. Then, in Section 5.2 we modify our

CTL cyclic proof system to account only for fair paths; we establish the fair global

soundness condition and prove its decidability. Finally, in Section 5.3 we show that

a similar approach can be used to adapt our LTL cyclic proof system to introduce

fairness constraints.

5.1 Fair program executions
The use of nondeterminism in our programming language in particular, and in static

analysis in general, allows us to model program behaviour under unknown infor-

mation introduced by external agents, such as user input, process schedulers and

external procedures. Using nondeterministic loops we can, say, model the execu-

tion of a task while the user does not input a stop signal; or model a simple process

scheduler that will alternate between two tasks by using nondeterministic branching

5.1. Fair program executions 108

commands. But the semantics of nondeterminism could be too relaxed, introducing

program behaviour that was not intended by always choosing to execute one branch

of a nondeterministic command while never executing the other possible branches.

Fairness constraints are, intuitively, a condition imposed on the execution of

nondeterministic programs. They are commonly used as a mechanism to strengthen

the semantics of nondeterminism by requiring that no computation is neglected for-

ever. Hence, at every decision point where multiple possible executions are realis-

able, one must be fair in the selection of the subsequent execution.

Fairness constraints are commonly stated as a finite set of pairs of program

points (C1,C2). Each of these pairs require that program location C1 is executed

infinitely often, if and only if program location C2 is executed infinitely often.

Whereas it is possible to have arbitrary program points for each fairness constraint,

we limit their use to pairs of commands (Ci,C j) for each nondeterministic com-

mand of the form if ∗ then Ci else C j fi or while ∗ do Ci od C j. For this purpose, we

consider program commands to be uniquely labelled, to avoid confusion between

different instances of the same command.

Definition 5.1.1 (Fair Execution). Let C be a program command and π = (πi)i≥0 a

program execution. We say that π visits C infinitely often if there are infinitely many

distinct i ≥ 0 such that πi = ⟨C, , ⟩.

An execution π is fair under fairness constraint (Ci,C j) if it is the case that π

visits Ci infinitely often if and only if π visits C j infinitely often.

Furthermore, π is fair for a program C if it is fair for all fairness constraints

(Ci,C j) such that C contains a command of the form if ∗ then Ci else C j fi or

while ∗ do Ci od C j.

Note that, according to Definition 5.1.1, every finite execution is trivially fair.

Fairness constraints allow us to identify fair and unfair program executions,

but they do not prevent the existence of unfair execution paths. To this effect, we

restrict the satisfaction definition of temporal properties to consider only the set of

fair executions as follows:

5.1. Fair program executions 109

Definition 5.1.2 (Fair CTL Satisfaction Relation). A program execution π is a

model of a CTL temporal formula ψ under fairness constraints if the relation π ⊧ f ψ

holds, defined by structural induction on ψ:

γ ⊧ f P ⇔ γs,γh ⊧ P

γ ⊧ f error ⇔ γ = fault

γ ⊧ f final ⇔ γC = ε

γ ⊧ f ϕ1∧ϕ2 ⇔ γ ⊧ f ϕ1 and γ ⊧ f ϕ2

γ ⊧ f ϕ1∨ϕ2 ⇔ γ ⊧ f ϕ1 or γ ⊧ f ϕ2

γ ⊧ f ◇ϕ ⇔ ∃γ ′. γ ↝ γ ′ and γ ′ ⊧ f ϕ

γ ⊧ f ◻ϕ ⇔ ∀γ ′. γ ↝ γ ′ implies γ ′ ⊧ f ϕ

γ ⊧ f EFϕ ⇔ ∃ fair π starting from γ. ∃γ ′ ∈ π.γ ′ ⊧ f ϕ

γ ⊧ f AFϕ ⇔ ∀ fair π starting from γ. ∃γ ′ ∈ π.γ ′ ⊧ f ϕ

γ ⊧ f EGϕ ⇔ ∃ fair π starting from γ. ∀γ ′ ∈ π.γ ′ ⊧ f ϕ

γ ⊧ f AGϕ ⇔ ∀ fair π starting from γ. ∀γ ′ ∈ π.γ ′ ⊧ f ϕ

γ ⊧ f E(ϕ1Uϕ2) ⇔ ∃ fair π starting from γ. ∃i ≥ 0. πi ⊧ f ϕ2

and ∀ j∶0 ≤ j < i.π j ⊧ f ϕ1

γ ⊧ f A(ϕ1Uϕ2) ⇔ ∀ fair π starting from γ. ∃i ≥ 0. πi ⊧ f ϕ2

and ∀ j∶0 ≤ j < i.π j ⊧ f ϕ1

Example 5.1.3. To demonstrate the effect of fairness constraints on program anal-

ysis, consider a nonterminating program C that executes a given task (say setting a

flag program variable x to true) a nondeterministic number of times while resetting

the flag to f alse after each execution of the loop:

1:while(true) {

2: while(*) {

3: x:=true;

}

4: x:=false;

}

From the operational semantics of our language (Figure 2.1) we know there

5.2. Fair CTL cyclic proof system 110

exists an execution path π on which the body of the nondeterministic loop is exe-

cuted forever, hence, never setting the value of program variable x to f alse. Given

such an execution path, it is not true that for every execution path of our pro-

gram we will eventually reach a program state (s,h) where x = f alse (i.e. for all

(s,h),⟨C,s,h⟩ /⊧ AF(x = f alse)). On the other hand, it is easy to see that π is not a

fair execution path according to Definition 5.1.1.

Suppose we know that, regardless of the number of iterations, the nondetermin-

istic loop will always terminate (i.e. the loop guard depends on unknown but finite

information). In this case, we can impose a condition on our program as a fairness

constraint (C3,C4) to guarantee that if we execute the body of the loop infinitely

often, we will also exit the loop infinitely often, effectively limiting the execution of

the inner loop to a finite number of iterations on each iteration of the outer loop.

Under this condition, we can easily see that for every path that meets our imposed

condition (i.e. fair paths), we will eventually reach a program state (s,h) where

x = f alse. In conclusion, under fairness constraint (C3,C4), program C satisfies the

property AF(x = f alse) (i.e. for all (s,h),⟨C,s,h⟩ ⊧ f AF(x = f alse)).

In the following section, we will show the cyclic proof of this example in

an adaptation to our cyclic CTL proof system which restricts its analysis to fair

execution paths.

5.2 Fair CTL cyclic proof system
Considering program executions under fairness constraints, we can adapt our CTL

cyclic proof system to consider only fair executions by lifting the definition of fair-

ness to proof graphs, and modifying our notion of validity and global soundness

condition to consider only fair executions. Under these considerations, the interpre-

tation of judgements is adapted as follows:

Definition 5.2.1 (Fair CTL Judgement). A fair CTL judgement P ⊢ f C ∶ϕ is valid

if and only if, for all memory states (s,h) such that s,h ⊧ P, we have ⟨C,s,h⟩ ⊧ f ϕ .

We lift the definition of fairness from program executions to paths in a pre-

proof in the expected way.

5.2. Fair CTL cyclic proof system 111

Definition 5.2.2 (Fair Path). A path in a pre-proof (Ji = Pi ⊢ f Ci ∶ϕi)i≥0 is said to

visit C infinitely often if there are many distinct i ≥ 0 such that JiC =C. A path in

a pre-proof is fair under fairness constraints (Ci,C j) if it is the case that (Ji)i≥0
visits Ci infinitely often if and only if (Ji)i≥0 visits C j infinitely often. Furthermore,

(Ji)i≥0 is fair for a program C if it is fair for fairness constraints (Ci,C j) such that C

contains a command of the form if ∗ then Ci else C j fi or while ∗ do Ci od C j.

Intuitively, to account for fairness constraints, we simply need to restrict the

global soundness condition of our CTL cyclic proof system so that it quantifies over

all fair infinite paths in a pre-proof, ignoring unfair paths. However, as it stands,

this intuition is not quite correct. Consider the program

1:while(true) {

2: if(*) {

3: x:=1;

} else

4: x:=2;

} }

This program has the CTL property EG(x = 1) owing precisely to the unfair

execution that always favours the first branch of the nondeterministic if. We can

witness this using a cyclic proof with a single loop that invokes the rule (If*◇1)

infinitely often. The infinite path created by this loop is unfair and thus such a

proof should not count as a fair cyclic proof. However, if we simply ignore this

infinite path, the only one in the pre-proof, then the global soundness condition is

trivially satisfied. Our answer is to take a more subtle view of the roles played by

existential (EG/EF/◇) and universal (AG/AF/◻) properties; unfair paths created

by the former must be disallowed, whereas unfair paths created by the latter can

simply be disregarded.

Definition 5.2.3 (Bad Pre-proof). A pre-proof P is bad if there is an infinite path

(Ji = Pi ⊢ f Ci ∶ϕi)i≥0 in P such that, given a program point C, the rule (Wh*◇

1)/(If*◇1) is applied to infinitely many distinct Ji such that JiC =C and (Wh*◇

2)/(If*◇2) is applied to finitely many distinct Ji such that JiC =C, or vice versa.

5.2. Fair CTL cyclic proof system 112

Definition 5.2.4 (Fair Cyclic CTL Proof). A pre-proof P is a fair cyclic CTL proof

if

1. it is not bad, according to Definition 5.2.3 above, and

2. for every infinite fair path (Pi ⊢ f Ci ∶ϕi)i≥0 in P , there is an infinitely progress-

ing ◻-trace, ◇-trace or precondition trace following some tail (Pi ⊢ f Ci ∶ϕi)i≥n
of the path.

To exemplify the concepts introduced in this section, we show a fair cyclic

CTL proof of Example 5.1.3.

Example 5.2.5. Assume the following labelled program C starts its execution from

in initial program state (s,h), such that (s,h) ⊧ x = true.

1:while(true) {

2: while(*) {

3: x:=true;

}

4: x:=false;

}

Under fairness constraint (C3,C4), we can verify that along every fair program

execution in C there will always eventually be a program state in which x = f alse.

Figure 5.1 shows a reduced version of the proof of this property in our fair cyclic

CTL proof system, where the premise of each (AF) rule has been replaced by the

corresponding subsequent application of a (∨) rule (omitted for brevity). Note the

formation of a cycle on the leftmost branch of the tree, along which there is no

trace following the path. Whereas such cycle would result in an invalid proof in

our CTL cyclic proof system, in the case of a fair CTL cyclic proof, such a cycle

does not affect the validity of the proof as the path in question visits C3 infinitely

often but it does not visit C4 infinitely often; hence the proof path is unfair as per

Definition 5.2.2. Hence, the global soundness condition is trivially satisfied as there

are only finite fair paths in the pre-proof. Consequently, the pre-proof qualifies as a

fair CTL cyclic proof.

5.2. Fair CTL cyclic proof system 113

x
=

tr
u
e
`
C

2
:
w
h
i
l
e
∗

d
o
C

3
:
.
.
.
o
d
;
C

4
:
.
.
.
:
A
F

x
=

fa
ls
e

(A
ss
ig
n
)

x
=

tr
u
e
`
C

3
:
x
:=

tr
u
e
;
C

2
:
.
.
.
:
�
A
F

x
=

fa
ls
e

(A
F
)

x
=

tr
u
e
`
C

3
:
x
:=

tr
u
e
;
C

2
:
.
.
.
:
A
F

x
=

fa
ls
e

(C
h
e
ck

)
(A

F
)

x
=

fa
ls
e
`
C

1
:
w
h
i
l
e
x
=

x
d
o
C

2
:
.
.
.
o
d
:
x
=

fa
ls
e

x
=

fa
ls
e
`
C

1
:
w
h
i
l
e
x
=

x
d
o
C

2
:
.
.
.
o
d
:
A
F

x
=

fa
ls
e

(A
ss
ig
n
)

x
=

tr
u
e
`
C

4
:
x
:=

fa
ls
e
;
C

1
:
.
.
.
:
�
A
F

x
=

fa
ls
e

(A
F
)

x
=

tr
u
e
`
C

4
:
x
:=

fa
ls
e
;
C

1
:
.
.
.
:
A
F

x
=

fa
ls
e

(W
h
*
[]
)

x
=

tr
u
e
`
C

2
:
w
h
i
l
e
∗

d
o
C

3
:
.
.
.
o
d
;
C

4
:
.
.
.
:
�
A
F

x
=

fa
ls
e

(A
F
)

x
=

tr
u
e
`
C

2
:
w
h
i
l
e
∗

d
o
C

3
:
.
.
.
o
d
;
C

4
:
.
.
.
:
A
F

x
=

fa
ls
e

(E
x
F
a
ls
o
)

x
=

tr
u
e

x
6=

x
`
ε
:
A
F

x
=

fa
ls
e

(W
h
-[
])

x
=

tr
u
e
`
C

1
:
w
h
i
l
e
x
=

x
d
o
C

2
:
.
.
.
o
d
:
�
A
F

x
=

fa
ls
e

(A
F
)

x
=

tr
u
e
`
C

1
:
w
h
i
l
e
x
=

x
d
o
C

2
:
.
.
.
o
d
:
A
F

x
=

fa
ls
e

Fi
gu

re
5.

1:
Fa

ir
C

T
L

cy
cl

ic
pr

oo
fe

xa
m

pl
e

5.2. Fair CTL cyclic proof system 114

On a more realistic example, we return to our server program from Exam-

ple 1.1.1. In Chapter 3, we have used our CTL cyclic proof system to prove that

it is always possible for the heap to become empty, i.e. AGEF(emp) (see Exam-

ple 3.2.12 for full details). Whereas the possibility of freeing the heap is undoubt-

edly preferred over never freeing the heap, this property implicitly tells us that there

might exist a possible program execution where the heap will never be empty, which

is undesirable. Ideally, we would like to prove a stronger property stating that the

heap will always eventually become empty, i.e. AGAF(emp). Our server program

in fact does not satisfy this property, because (i) the program can always choose to

execute the second branch of the nondeterministic if command, always choosing to

accept more job requests; and (ii) the program can always choose to execute the sec-

ond inner loop infinitely often, adding job requests to the list forever. But suppose

we have more information about our server; suppose we know that

1. our server is guaranteed to always alternate between accepting job requests

and processing the list of accepted requests, never choosing the same task

every time; and

2. our server only accepts a finite number of job requests at the time, in other

words, the nondeterministic loop always terminates.

Under this assumptions, we could impose a fairness constraint in our server pro-

gram of the form {(C3,C7),(C8,C1)} to prove that the heap will always eventually

become empty, i.e. AGAF(emp).

Example 5.2.6. Consider our server program listed in previous examples.

1: while(true){

2: if(*) {

3: while(x!=nil) {

4: temp:=x.next;

5: free(x);

6: x:=temp;

}

5.2. Fair CTL cyclic proof system 115

} else {

7: while(*) {

8: y:=new();

9: y.next:=x;

10: x:=y;

} } }

Moreover, assume the fairness constraint {(C3,C7),(C8,C1)} imposed on the

analysis of this program under the assumptions listed above.

Figure 5.2 shows a fair CTL cyclic proof of the property AGAF(emp). Note

that the imposition of fairness constraints relaxes the conditions under which back-

links can be formed. In particular, this relaxed condition can be seen in back-links

on sequents labelled with [C] as they yield an infinite path with no valid trace. Yet,

because these infinite paths are unfair, they are not considered in the global sound-

ness condition. Another case worth mentioning are those paths on which there is a

valid precondition trace following (i.e. those formed by back-links on sequents la-

belled with [A]) as these, too, are unfair; this is because they visit only one branch of

the nondeterministic if command infinitely often but they only visit the other branch

finitely many times. A similar case happens with those infinite paths on which there

is a valid ◻-trace following the path; every infinite iteration of these cycles (and

their respective combinations) are unfair. Hence, they are not considered in the

global soundness condition.

The only infinite fair path arises from following a combination of the previously

discussed back-links. Following this fair path, we are guaranteed that the memory

will always eventually be emptied, satisfying the property AGAF(emp). Hence, this

pre-proof qualifies as a valid cyclic proof since along every infinite fair path, there

is a ◻- and precondition trace following the path.

The demonstration of soundness of our fair CTL cyclic proof system follows

closely the approach presented in Section 3.3. We first show local soundness of

the proof rules along with the trace properties that are maintained by all derivation

rules. This lemma is very similar to that of the CTL cyclic proof system, with slight

5.2. Fair CTL cyclic proof system 116

(E
x
F
a
ls
o
)

◦

(C
h
e
ck

)
· · · ·(

A
F
)

[A
] · · · ·(
C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

· · · ·(
F
re
e
)

· · · ·(
A
F
)

· · · ·(
L
o
a
d
)

· · · ·(
A
F
)

(W
h
�
)

· · · ·A
F

[A
]

[F
]

[C
]

· · · ·(
C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

· · · ·(
S
to

re
)

· · · ·(
A
F
)

· · · ·(
N
e
w
)

· · · ·(
A
F
)

(W
h
*
�
)

· · · ·A
F

[C
]
(I
f*
�
)

· · · ·A
F

(W
h
�
)

· · · ·A
F

[B
]

(E
x
F
a
ls
o
)

◦

[C
][
A
]
(I
f*
�
)

· · · ·A
F

[A
]

[B
] · · · ·(
C
o
n
s)

[A
]

· · · ·(C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

· · · ·(
F
re
e
)

· · · ·(
A
F
)

· · · ·(
L
o
a
d
)

· · · ·(
A
F
)

[A
]

· · · ·(C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

· · · ·(
F
re
e
)

· · · ·(
A
F
)

[A
]

· · · ·(C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

[D
] · · · ·(
C
o
n
s)

· · · ·(
A
ss
ig
n
)

(A
G
)

· · · ·(
F
re
e
)

(A
G
)

· · · ·(
L
o
a
d
)

(A
G
)

· · · · · ·

(W
h
�
)

· · · ·

(A
G
)

[D
]

[C
]

[C
]

[C
]

· · · ·(
C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

· · · ·(
S
to

re
)

· · · ·(
A
F
)

[C
]

· · · ·(
C
o
n
s)

· · · ·(
A
ss
ig
n
)

· · · ·(
A
F
)

[E
] · · · ·(
C
o
n
s)

· · · ·(
A
ss
ig
n
)

(A
G
)

· · · ·(
S
to

re
)

(A
G
)

· · · ·(
N
e
w
)

(A
G
)

[E
]

[F
]
(W

h
*
�
)

◦
(A

G
)

◦
(I
f*
�
)

◦
(A

G
)

◦
(W

h
�
)

◦
(A

G
)

[F
]

[A
]
=

ls
(x
,n

il
)
`
w
h
i
l
e
x
6=

n
il
d
o
..
.o
d
:
A
F
(e
m
p
)

[D
]
=

ls
(x
,n

il
)
`
w
h
i
l
e
x
6=

n
il
d
o
..
.o
d
:
A
G
A
F
(e
m
p
)

[B
]
=

ls
(x
,n

il
)
`
w
h
i
l
e
x
=

x
d
o
..
.o
d
:
A
F
(e
m
p
)

[E
]
=

ls
(x
,n

il
)
`
w
h
i
l
e
∗d

o
..
.o
d
:
A
G
A
F
(e
m
p
)

[C
]
=

ls
(x
,n

il
)
`
w
h
i
l
e
∗d

o
..
.o
d
:
A
F
(e
m
p
)

[F
]
=

ls
(x
,n

il
)
`
w
h
i
l
e
x
=

x
d
o
..
.o
d
:
A
G
A
F
(e
m
p
)

Fi
gu

re
5.

2:
Si

ng
le

th
re

ad
ed

m
on

ol
ith

ic
se

rv
er

ex
am

pl
e

5.2. Fair CTL cyclic proof system 117

adaptations to consider only fair paths. Intuitively, the major difference on the proof

of this lemma, in comparison to Lemma 3.3.1, is to demonstrate that the execution

paths (trees) used in the proof are, indeed, fair. This is nonetheless trivial as any

finite path (tree) is fair by Definition 5.1.1 As such, we list the adapted lemma for

completeness, but omit its proof due to its similarity to Lemma 3.3.1.

Lemma 5.2.7 (Local Soundness). Let J = (P ⊢ f C ∶ϕ) be the conclusion of a proof

rule R. If J is invalid under (s,h), then there exists a premise of the rule J′ = P′ ⊢ f

C′ ∶ϕ ′ and a model (s′,h′) such that J′ is not valid under (s′,h′) and, furthermore,

1. if there is a box trace (ϕ,ϕ ′) following the edge (J,J′) then, letting ψ be the

unique formula given by Definition 3.2.7, there is a configuration γ such that

γ /⊧ f ψ , and the finite path π ′ = ⟨C′,s′,h′⟩ . . .γ is well-defined and a subpath of

π = ⟨C,s,h⟩ . . .γ . Therefore length(π ′) ≤ length(π). Moreover, length(π ′) <

length(π) when R is a symbolic execution rule.

2. if there is a diamond trace (ϕ,ϕ ′) following the edge (J,J′) then, letting ψ

be the unique formula given by Definition 3.2.7, there is a smallest finite tree

κ with root ⟨C,s,h⟩, each of whose leaves γ satisfies γ /⊧ f ψ . Moreover, κ

has a subtree κ ′ with root ⟨C′,s′,h′⟩ and whose leaves are all leaves of κ .

Therefore height(κ ′) ≤ height(κ). Moreover, height(κ ′) < height(κ) when R

is a symbolic execution rule.

3. if there is a precondition trace (Ψ(E),Ψ′(E)) following the edge (J,J′) then

letting α (β) be the least approximant for which the inductive predicate Ψ(E)

(Ψ′(E)) is interpreted, then the following relation holds and it is well-defined:

β ≤ α . Moreover β < α when R is the (Unfold-Pre) rule.

As for our previous systems, global soundness is obtained by extending the

properties established in Lemma 5.2.7 to paths in a pre-proof, as follows.

Theorem 5.2.8 (Soundness). If P ⊢ f C ∶ϕ is provable, then it is valid.

Proof. Suppose for contradiction that there is a cyclic proof P of J =P⊢ f C ∶ϕ but J

is invalid. That is, for some stack s and heap h, we have (s,h) ⊧P but ⟨C,s,h⟩ /⊧ f ϕ .

5.2. Fair CTL cyclic proof system 118

By local soundness of the proof rules, we can construct an infinite path Π = (Pi ⊢ f

Ci ∶ϕi)i≥0 in P of invalid sequents. We first show that Π is a fair path (we limit

ourselves to the treatment of nondeterministic branching commands as all other

commands are naturally fair).

Suppose therefore that Π is unfair under fairness constraint (Ci,C j), say.

We consider the case in which C contains command if ∗ then Ci else C j fi

and Π visits Ci infinitely often and C j only finitely often; the case for com-

mand while ∗ do Ci od ; C j is similar. Using Definition 5.2.2 we know that

if ∗ then Ci else C j fi itself is symbolically executed infinitely often on Π. It cannot

be the case that (If*◇1) is applied infinitely often and (If*◇2) only finitely often

on Π, otherwise Π would be a bad path, which is specifically excluded by Defini-

tion 5.2.4. Nor it can be that both rules are applied finitely often, since in that case

Π would be fair under constraint (Ci,C j), contrary to our assumption.

The only remaining possibility is that (If*◻) is applied infinitely often on Π.

In that case, it must be the case that Π contains infinitely many occurrences of

the left premise of the rule and only finitely many instances of the right premise

of the rule (or vice versa). Hence the program execution underlying the pre-proof

path Π is also unfair. Since the satisfaction relation ⊧ f is restricted to fair program

executions, this contradicts the assumption that ⟨C,s,h⟩ /⊧ f ϕ (The full justification

of this last step requires the observation that, in order to produce a ◻ infinitely often,

ϕ must be of the form AFψ/AGψ). Consequently Π must be a fair path.

By Definition 5.2.4 we know that for every infinite fair path there exists an

infinitely progressing trace following some tail (Pi ⊢ f Ci ∶ϕi)i≥n of the path. If this

trace is a ◻-trace, by condition 1 of Lemma 5.2.7 we can construct an infinite se-

quence of finite paths to a fixed configuration γ of infinitely decreasing length, con-

tradiction. A similar argument related to the height of computation trees applies in

the case of a ◇-trace. A precondition trace yields an infinitely decreasing sequence

of ordinal approximations of some inductive predicate, also a contradiction.

5.2. Fair CTL cyclic proof system 119

5.2.1 Decidable soundness condition

The decidability problem of the global soundness conditions for cyclic proof sys-

tems has been well studied. [91, 16]. The usual approach consists on building

two Büchi automata B1,B2 such that B1 accepts strings that corresponds to infinite

paths in a pre-proof graph, and B2 accepts strings over which infinitely progress-

ing traces following the path are found. Checking the global soundness condition

amounts to check that the language inclusion L(B1) ⊆ L(B2) holds. Nevertheless,

as our fair CTL cyclic proof system, in comparison to previous cyclic proof sys-

tems, strengthens the global soundness condition by admitting only fair paths, we

require a slightly more involved approach to demonstrate the decidability of our

global soundness condition.

Our approach is as follows: we first check that a given pre-proof graph P

is not bad according to Definition 5.2.3. We do so by building two Büchi au-

tomata A f 1 and A f 2 for each fairness constraint (Ci,C j) such that L(A f 1) is

the set of strings of vertices of P such that the rule (Wh*◇1)/(If*◇1) is ap-

plied infinitely often to a sequent of the form P ⊢ f C ∶ϕ along the path, where

C = if ∗ then Ci else C j fi/while ∗ do Ci od ; C j; similarly, L(A f 2) is the set of

strings of vertices of P such that the rule (Wh*◇2)/(If*◇2) is applied in-

finitely often to a sequent of the form P ⊢ f C ∶ϕ along the path, where C =

if ∗ then Ci else C j fi/while ∗ do Ci od ; C j. We can check that P is not bad, accord-

ing to Definition 5.2.3, by checking that L(A f 1) ⊆ L(A f 2) and L(A f 2) ⊆ L(A f 1).

Secondly, we construct a Streett automata AS such that L(AS) is the set of strings

of vertices of P such that the string is fair for all pairs of fairness constraints (Ci,C j)

according to Definition 5.2.2. We then build a Büchi automaton AT such that

L(AT) is the set of strings of vertices of P such that an infinitely progressing trace

can be found on a suffix of the string. We then check that the language inclu-

sion relation L(AS) ⊆ L(AT) holds; this, along with language inclusion relations

L(A f 1) ⊆ L(A f 2) and L(A f 2) ⊆ L(A f 1) guarantee that P is a valid proof.

Following the approach described above, we first check that a pre-proof P is

not bad. Recalling the definition of a Büchi automaton:

5.2. Fair CTL cyclic proof system 120

Definition 5.2.9 (Büchi automaton). A nondeterministic Büchi automaton is a tuple

A= (Σ,Q,q0,∆,F), where:

• Σ is a finite alphabet;

• Q is a set of states;

• q0 ∈Q is the initial state;

• ∆ ⊆Q×Σ×Q is the transition relation;

• F ⊆Q is the set of accepting states

Given an infinite word α = α0α1α2 . . . ∈ Σω , where Σω is the set of all infinite

words over alphabet Σ, a run ofA on α is a sequence of states σ =σ0σ1σ2 such that

σ0 = q0 and ∆(σi,αi,σi+1) for all i ≥ 0. Letting inf(σ) be the set of states occurring

infinitely often in σ (i.e. inf(σ) = {q ∣ ∃ infinitely many i.σi = q}), then a run σ of

A is said to be accepting if some accepting state occurs infinitely often on the run

(i.e. inf(σ)∩F ≠ ∅). The language accepted by A is defined by

L(A) = {α ∈ Σ
ω ∣ there is an accepting run of A on α}

Our first Büchi automaton A f 1, whose language accepts all strings over ver-

tices of our pre-proof graph on which the rule (Wh*◇1)/(If*◇1) is applied

infinitely often to a sequent of the form P ⊢ f C ∶ϕ along the path, where C =

if ∗ then Ci else C j fi/while ∗ do Ci od ; C j, is built according to the following defi-

nition.

Definition 5.2.10 (Fair automaton 1). Let P = (D,L) be a fair CTL cyclic pre-proof.

Then the fair automaton corresponding to P for command C is defined by Fair1 =

(V,Q,q0,∆,F), where

• V is the finite set of vertices in the proof graph GP .

• q0 = (root(D),0)

• Q = {(v, f ∈ {0,1}) ∣ v ∈V}

5.2. Fair CTL cyclic proof system 121

• F = {(v,1) ∣ v ∈V}

• ∆ is defined by

∆((v, f),v′,(v′,1)) where r(v) = (Wh*◇1)/(If*◇1) and s(v)C =C

∆((v, f),v′,(v′,0)) for any other rule

Proposition 5.2.11. Given a program command C, for any w ∈V ω , the fair automa-

ton 1 accepts w if and only if the rule (Wh*◇1)/(If*◇1) is applied infinitely often

to a sequent of the form P ⊢ f C ∶ϕ along some suffix of w.

Proof. Case ⇐. Suppose there is a suffix vivi+1vi+2vi+3 . . . of w such that the rule

(Wh*◇1)/(If*◇1) is applied infinitely along the suffix. Now define a sequence

(σ j) j≥0 by:

σ j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(v j,0) if 0 ≤ j ≤ i−1

(v j,1) if j ≥ i and r(v j) = (Wh*◇1)/(If*◇1) and s(v j)C =C

(v j,0) if j ≥ i and s(v j)C ≠C or r(v j) is any other rule

It is easy to see that (σ j) j≥0 is a run of the trace automaton on w, and moreover,

since the rule (Wh*◇1)/(If*◇1) is applied infinitely, some final state (v,1) must

occur infinitely often in σ . Hence, σ is an accepting run of trace automaton on w.

Case ⇒. Let σ be an accepting run of the trace automaton on w = v0v1v2v3

By definition, some state (v,τ,2) must occur infinitely often in σ . By construction

there must be a suffix σ jσ j+1σ j+2 . . ., where for all j ≥ i, we have σ j = (vi,s j), where

s j ∈ {1,2}. Then, since by our assumption some state (v,τ,2) must occur infinitely

often and for each of those states v,r(v) = (Wh*◇1)/(If*◇1) and s(v j)C =C it is

easy to see that the rule (Wh*◇1)/(If*◇1) is applied infinitely often.

Similarly, our second Büchi automatonA f 2, which language accepts all strings

over vertices of our proof graph on which the rule (Wh*◇2)/(If*◇2) is ap-

plied infinitely often to a sequent of the form P ⊢ f C ∶ϕ along the path, where

5.2. Fair CTL cyclic proof system 122

C = if ∗ then Ci else C j fi/while ∗ do Ci od ; C j, is built according to the following

definition.

Definition 5.2.12 (Fair automaton 2). Same as Definition 5.2.10 except for the tran-

sition relation ∆, defined by

∆((v, f),v′,(v′,1)) where r(v) = (Wh*◇2)/(If*◇2) and s(v)C =C

∆((v, f),v′,(v′,0)) for any other rule

Proposition 5.2.13. Given a program command C, for any w ∈V ω , the fair automa-

ton 2 accepts w if and only if the rule (Wh*◇2)/(If*◇2) is applied infinitely often

to a sequent of the form P ⊢ f C ∶ϕ along some suffix of w.

Proof. Similar to proof of Proposition 5.2.11

Given A f 1 and A f 2, we can check that along every infinite path of a fair CTL

pre-proof P , the rule (Wh*◇1)/(If*◇1) is applied infinitely often if and only if

the rule (Wh*◇2)/(If*◇2) is applied infinitely often by checking that L(A f 1) ⊆

L(A f 2) and L(A f 2) ⊆ L(A f 1). If this condition is satisfied, then we guarantee that

P is not bad.

For the second requirement of the global soundness condition we build an au-

tomaton AS where L(AS) is the set of strings of vertices of a fair CTL pre-proof P

such that the string is fair for all pairs of fairness constraints (Ci,C j) according to

Definition 5.2.2. Recalling the definition of a Streett automaton:

Definition 5.2.14 (Streett automaton). A nondeterministic Streett automaton is a

tuple A= (Σ,Q,q0,∆,F), where:

• Σ is a finite alphabet;

• Q is a set of states;

• q0 ∈Q is the initial state;

• ∆ ⊆Q×Σ×Q is the transition relation;

5.2. Fair CTL cyclic proof system 123

• {(R1,G1),(R2,G2), . . . ,(Rk,Gk)} is a finite set of pairs of states, where

Ri,Gi ∈Q

A run σ of A on an infinite word α is said to be accepting if for all i ∶ 0 ≤ i ≤ k

we have inf(σ)∩{Ri} ≠ ∅⇒ inf(σ)∩{Gi} ≠ ∅.

Our Street automaton As, which language accepts all strings over vertices

of our pre-proof graph that are fair with respect to the set of fairness constraints

{(Ci,C j),(Ci+1,C j+1), . . . ,(Ci+k,C j+k)) of program C is built according to the fol-

lowing definition.

Definition 5.2.15 (Fair Streett automaton). Let P = (D,L) be a fair CTL cyclic

pre-proof and let FC = {(R1,G1),(R2,G2), . . . ,(Rk,Gk)} be the set of fairness con-

straints of program C. Then the Fair Streett automaton corresponding to P is de-

fined by Street = (V,Q,q0,∆,F), where

• V is the finite set of vertices in the proof graph P .

• Q = {(v) ∣ v ∈V}

• q0 = (root(D))

• F = {(v1,v2) ∣ v,v1,v2 ∈ V and r(v) = (Wh*◻)/(If*◻) and v1 = p(1,v) and

v2 = p(2,v) and for some k,s(v1)C = Rk and s(v2)C =Gk

• ∆ is defined by

∆((v),v′,(v′)) where s(v′) = p(k,v) for some k

Proposition 5.2.16. Given a program C and its set of fairness constraints FC =

{(R1,G1),(R2,G2), . . . ,(Rk,Gk)}, for any w ∈ V ω , the fair Sttreet automaton ac-

cepts w if and only if w is fair under FC.

Proof. Case ⇐. Suppose there is a suffix vivi+1vi+2vi+3 . . . of w which is fair un-

der the set of fairness constraints FC = {(R1,G1),(R2,G2), . . . ,(Rk,Gk)}. That is,

for all 0 ≤ i ≤ k, if there exists an infinite number of states v1 such that s(v1)C = Ri,

5.2. Fair CTL cyclic proof system 124

then there exists an infinite number of states v2 such that s(v2)C = Gi. Now de-

fine a sequence (σ j) j≥0 by σ j = v j. It is easy to see that (σ j) j≥0 is a run of the

trace automaton on w, and moreover, since for all 0 ≤ i ≤ k, if there exists an in-

finite number of states v1 such that s(v1)C = Ri (i.e. inf(σ) ∩Ri ≠ ∅), then there

exists an infinite number of states v2 such that s(v2)C = Gi (i.e. inf(σ)∩Gi ≠ ∅).

Consequently, σ is an accepting run of the fair Sttreet automaton with acceptance

condition {(R1,G1),(R2,G2), . . . ,(Rk,Gk)} on w.

Case⇒. Let σ be an accepting run of the trace automaton on w = v0v1v2v3 By

definition, for all fairness constraints (Ci,C j) in the acceptance condition F of the

automaton, inf(σ)∩Ci ≠∅⇒ inf(σ)∩C j ≠∅ (i.e if there exists an infinite number of

states v1 such that s(v1)C =Ci, then there must be an infinite number of states v2 such

that s(v2)C =C j). Then, since for all pair of commands in the acceptance condition

(C1,C j) ∈ F, the pair (Ci,C j) is in the set of fairness constraints FC (i.e. (Ci,C j) ∈

FC), it is easy to see that the run w is fair under fairness constraints FC.

Before introducing our trace automaton, we first introduce some auxiliary def-

initions that aid its construction.

Definition 5.2.17 (Trace value relation). Let T be a finite set, and let TVal ⊆ T ×

Seqs be the relation that maps each sequent S ∈ Seqs to its (finitely many) trace

values τ ∈ T such that TVal(S,τ).

Definition 5.2.18 (Trace pair function). A trace pair function TPair ∶ (T ,T) →

(Seqs×Rules×Seqs) → {0,1,2} for any pre-proof P = (D = {V,s,r, p},L) is de-

fined as:

TPair(τ,τ ′)(s,r,s′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if TVal(τ,s) and TVal(τ ′,s′) and

(τ,τ ′) is a trace following (s,s′)

2 if TVal(τ,s) and TVal(τ ′,s′) and

(τ,τ ′) is a progressing trace following (s,s′)

0 otherwise

5.2. Fair CTL cyclic proof system 125

Our last Büchi automaton AT , whose language is the set of strings of vertices

of P such that an infinitely progressing trace can be found on a suffix of the string

is built according to the following definition.

Definition 5.2.19 (Trace Automaton). Let P = (D,L) be a fair CTL cyclic pre-

proof. Then the trace automaton corresponding to P is defined by Trace =

(V,Q,q0,∆,F), where

• V is the finite set of vertices in the proof graph P .

• q0 = (root(D))

• Q = {q0}∪{(v,τ, p) ∣ v ∈V,TVal(s(v),τ), p ∈ {1,2}}

• F = {(v,τ,2) ∣ v ∈V,TVal(s(v),τ)}

• ∆ is defined by

∆(q0,v,(v,τ,1)) where TVal(s(v),τ)

∆((v,τ, p),v′,(v′,τ ′,1)) if TPair(τ,τ ′)(s(v),r(v),s(v′)) = 1

∆((v,τ, p),v′,(v′,τ ′,2)) if TPair(τ,τ ′)(s(v),r(v),s(v′)) = 2

Proposition 5.2.20. For any w ∈V ω , the trace automaton accepts w if and only if

there is an infinitely progressing trace following some suffix of w.

Proof. Case⇐. Suppose there is a suffix vivi+1vi+2vi+3 . . . of w such that there is an

infinitely progressing trace τ = τiτi+1τi+2τi+3 . . . following the suffix. Now define a

sequence (σ j) j≥0 by:

σ j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q0 if 0 ≤ j ≤ i−1

(v j,τ j,1) if j ≥ i and j is not a progressing point of τ

(v j,τ j,2) if j ≥ i and j is a progressing point of τ

5.2. Fair CTL cyclic proof system 126

It is easy to see that (σ j) j≥0 is a run of the trace automaton on w, and moreover,

as τ has infinitely many progressing points, some final state (v,τ,2) must occur

infinitely often in σ . Hence, σ is an accepting run of trace automaton on w.

Case ⇒. Let σ be an accepting run of the trace automaton on w = v0v1v2v3

By definition, some state (v,τ,2) must occur infinitely often in σ . As state q0 is

not reachable from such state, there must be a suffix σ jσ j+1σ j+2 . . ., where for all

j ≥ i, we have σ j = (vi,τi,s j), where s j ∈ {1,2}. Then, it is easy to see that the trace

τ = τiτi+1τi+2 . . . is a trace following the suffix vivi+1vi+2 Moreover, as some state

(v,τ,2) occurs infinitely often, this trace progresses infinitely often.

Given AS and AT , checking that along every infinite fair path of a fair CTL

pre-proof P there is an infinitely progressing trace along the path, according to

Definition 5.2.4, amounts to checking that L(AS) ⊆ L(AT).

Proposition 5.2.21 (Decidable Soundness Condition). It is decidable whether a fair

pre-proof is a valid fair cyclic proof.

Proof. For the first requirement (i.e. the pre-proof is not bad), letA f 1 be a Büchi au-

tomaton built according to Definition 5.2.10. Moreover, letA f 2 be a Büchi automa-

ton built according to Definition 5.2.12. Checking that the rule (Wh*◇1)/(If*◇1)

is applied infinitely often if and only if the rule (Wh*◇2)/(If*◇2) is applied in-

finitely often along all paths in P is reduced to checking that the following re-

lation holds of the languages accepted by both automata: L(AB2) ⊆ L(AB1) and

L(AB1) ⊆ L(AB2). Since language inclusion of Büchi automata is decidable, then

our first requirement for the soundness condition is decidable.

For the second requirement, letAS be a Fair Streett automaton with acceptance

condition formed of conjuncts of the form (Fin(i)∨ Inf(j))∧(Fin(j)∨ Inf(i)) for

each pair of fairness constraints (i, j) according to Definition 5.2.15. Moreover, let

AT be a Büchi automata that accepts all infinite paths in P such that an infinitely

progressing trace exists along the path, as per Definition 5.2.19. P is valid if and

only if AS accepts all strings accepted by AT (i.e. L(AS) ⊆ L(AT)). Since Streett

automata can be transformed into Büchi automata [69] and inclusion between Büchi

5.3. Fair LTL cyclic proof system 127

automata is decidable, then our second requirement for the soundness condition is

decidable.

Consequently, since both requirements are decidable, the global soundness

condition for fair cyclic proofs is decidable.

5.3 Fair LTL cyclic proof system
In this section, we show how to adapt our LTL cyclic proof system introduced in

Chapter 4 to account only for fair paths. Following the approach introduced in the

previous section, we first restrict the satisfaction relation of Linear Temporal Logic

to consider only the set of fair execution paths as follows:

Definition 5.3.1 (Fair LTL Satisfaction Relation). A program execution π is a

model of a LT L temporal formula ψ under fairness constraints if the relation π ⊧ f ψ

holds, defined by structural induction on ψ:

π ⊧ f Q ⇔ (π[0]s,π[0]h) ⊧Q

π ⊧ f error ⇔ π[0] = fault

π ⊧ f final ⇔ π[0]C = ε

π ⊧ f ψ1∧ψ2 ⇔ π ⊧ f ψ1 and π ⊧ f ψ2

π ⊧ f ψ1∨ψ2 ⇔ π ⊧ f ψ1 or π ⊧ f ψ2

π ⊧ f Xψ ⇔ π1 ⊧ f ψ

π ⊧ f Fψ ⇔ ∃k ≥ 0.πk ⊧ f ψ

π ⊧ f Gψ ⇔ π is fair and ∀k ≥ 0.πk ⊧ f ψ

π ⊧ f ψ1Uψ2 ⇔ ∃k ≥ 0.πk ⊧ f ψ2 and ∀0 ≤ j ≤ k.π j ⊧ f ψ1

Note that only G properties explicitly require the programming execution path to be

fair. Models of all other formulas are implicitly finite hence they are fair.

We then can adapt our LTL cyclic proof system to consider only fair executions

paths by lifting the definition of fairness to proof graphs and by modifying our

notion of validity and global soundness condition to consider only fair executions.

Under this considerations, the interpretation of judgements is adapted as follows:

5.3. Fair LTL cyclic proof system 128

Definition 5.3.2 (Fair LTL Judgement). A fair LTL judgement P ⊢ f C ∶ϕ is valid if

and only if, for all memory states (s,h) and for all fair execution paths π starting

from ⟨C,s,h⟩ we have s,h ⊧ P implies π ⊧ f ϕ .

Since we are only concerned with proofs about fair executions, we modify the

definition of a valid cyclic LTL proof.

Definition 5.3.3 (Fair Cyclic LTL Proof). A pre-proof P is a fair cyclic LTL proof

if, for every infinite fair path (Ji)i≥0 in P , there is an infinitely progressing LTL or

precondition trace following some tail (Ji)i≥n of the path.

To exemplify the concepts introduced in this section, we show a fair cyclic LTL

proof of the following example.

Example 5.3.4. Assume the following labelled program C starts its execution from

in initial program state (s,h), such that (s,h) ⊧ x = true.

1: while(x!=nil) {

2: if(*) {

3: skip;

} else {

4: free(x);

}

}

5: y:=true

6: while(true) {

7: skip

}

Under fairness constraint (C3,C4), we can verify that along every fair program

execution in C there will always eventually be a program state from which y = true

holds onwards. Figure 5.3 shows a reduced version of the proof of this property

in our fair cyclic LTL proof system, where the premise of each (F) rule has been

replaced by the corresponding subsequent application of a (∨) rule, which in turn

has been omitted from the proof for brevity.

5.3. Fair LTL cyclic proof system 129

Note the formation of a cycle on the leftmost branch of the three. Infinite iter-

ations of this path visit C3 infinitely often, but they do not visit C4 at all. Given that

this path is unfair, it is in fact not considered in the validity of the proof. On the

other hand, the cycle on the top of the pre-proof is, in fact, fair, as it does not visit

C3 or C4 infinitely often. Given that along this path there is an LTL trace following

the path, our global soundness condition is satisfied. Consequently, the pre-proof

qualifies as a fair LTL cyclic proof.

The demonstration of soundness of our fair LTL cyclic proof system follows

closely the approach presented in Section 4.2, with slight adaptations to consider

only fair paths, similarly done in Section 5.2. As such, we list the adapted lemma

for completeness, but omit its proof due to its similarity to Lemma 4.2.1 and to

Lemma 5.2.7.

Lemma 5.3.5. Let J = (P⊢ f C ∶ϕ) be the conclusion of a proof rule R. If J is invalid

under (s,h), then there exists a premise of the rule J′ = (P′ ⊢ f C′ ∶ϕ ′) and a model

(s′,h′) such that J′ is not valid under (s′,h′) and, furthermore,

1. if there is an LTL trace (ϕ,ϕ ′) following the edge (J,J′) then, letting ψ be

the unique formula given by Definition 4.1.2, there exists a k such that πk /⊧

ψ , and the finite path π ′
def= ⟨C′,s′,h′⟩ . . .πk is a subpath of π

def= ⟨C,s,h⟩ . . .πk.

Therefore length(π ′) ≤ length(π). Moreover, length(π ′) < length(π) when R

is a symbolic execution rule.

2. if there is a precondition trace (Ψ(E),Ψ′(E)) following the edge (J,J′) then

letting α (β) be the least approximant for which the inductive predicate Ψ(E)

(Ψ′(E)) is interpreted, then the following relation holds and it is well-defined:

β ≤ α . Moreover β < α when R is the (Unfold-Pre) rule.

As for our previous systems, global soundness is obtained by extending the

properties established in Lemma 5.3.5 to paths in a pre-proof, as follows.

Theorem 5.3.6 (Soundness). If P ⊢ f C ∶ϕ is provable, then it is valid.

5.3. Fair LTL cyclic proof system 130

x
7→

x
′
`
C

1
:
F
G

y
=

tr
u
e

(S
k
ip
)

x
7→

x
′
`
C

3
:
�
F
G

y
=

tr
u
e

(F
)

x
7→

x
′
`
C

3
:
F
G

y
=

tr
u
e

(E
x
F
a
ls
o
)

x
!
=

n
il

x
=

n
il

`
C

2
:
F
G

y
=

tr
u
e

(C
h
e
ck

)

y
=

tr
u
e

x
=

n
il

`
C

6
:
y
=

tr
u
e

(C
h
e
ck

)

y
=

tr
u
e

x
=

n
il

`
C

7
:
y
=

tr
u
e

y
=

tr
u
e

x
=

n
il

`
C

6
:
G

y
=

tr
u
e

(S
k
ip
)

y
=

tr
u
e

x
=

n
il

`
C

7
:
�
G

y
=

tr
u
e

(G
)

y
=

tr
u
e

x
=

n
il

`
C

7
:
G

y
=

tr
u
e

(E
x
F
a
ls
o
)

fa
ls
e
`
ε
:
G

y
=

tr
u
e

(W
h
-[
])

y
=

tr
u
e

x
=

n
il

`
C

6
:
�
G

y
=

tr
u
e

(G
)

y
=

tr
u
e

x
=

n
il

`
C

6
:
G

y
=

tr
u
e

(F
)

y
=

tr
u
e

x
=

n
il

`
C

6
:
F
G

y
=

tr
u
e

(A
ss
ig
n
)

x
=

n
il

`
C

5
:
�
F
G

y
=

tr
u
e

(F
)

x
=

n
il

`
C

5
:
F
G

y
=

tr
u
e

(W
h
-[
])

x
=

n
il

`
C

1
:
�
F
G

y
=

tr
u
e

(F
)

x
=

n
il

`
C

1
:
F
G

y
=

tr
u
e

(F
re
e
)

x
7→

x
′
`
C

4
:
�
F
G

y
=

tr
u
e

(F
)

x
7→

x
′
`
C

4
:
F
G

y
=

tr
u
e

(I
f*
[]
)

x
7→

x
′
`
C

2
:
�
F
G

y
=

tr
u
e

(F
)

x
7→

x
′
`
C

2
:
F
G

y
=

tr
u
e

(E
x
F
a
ls
o
)

x
7→

x
′

x
=

n
il

`
C

5
:
y
:=

tr
u
e
;
C

6
.
.
.
:
F
G

y
=

tr
u
e

(W
h
-[
])

x
7→

x
′
`
C

1
:
�
F
G

y
=

tr
u
e

(F
)

x
7→

x
′
`
C

1
:
F
G

y
=

tr
u
e

Fi
gu

re
5.

3:
Fa

ir
LT

L
cy

cl
ic

pr
oo

fe
xa

m
pl

e

5.3. Fair LTL cyclic proof system 131

Proof. Suppose for contradiction that there is a fair cyclic LTL proof P of J = P ⊢ f

C ∶ϕ but J is invalid. That is, for some stack s and heap h, we have (s,h) ⊧ P but

for some execution path π starting from ⟨C,s,h⟩, π /⊧ f ϕ . By local soundness of

the proof rules, we can construct an infinite path (Pi ⊢ f Ci ∶ϕi)i≥0 in P of invalid

sequents. We first show that such an infinite path is a fair path.

Suppose, for contradiction, that such an infinite unfair path is the only invalid

path. Since the path is unfair, then by Definition 5.2.2 the underlying execution path

is also unfair. Since by our assumption π /⊧ f ϕ , then there must be a fair path along

which ϕ is not satisfied. This contradicts our assumption that the unfair path is the

only invalid path. Consequently there must be another invalid infinite path in the

pre-proof which is fair.

By Definition 5.3.3 we know that for every infinite fair path there exists an

infinitely progressing LTL trace following some tail (Pi ⊢ f Ci ∶ϕi)i≥n of the path. By

condition 1 of Lemma 5.3.5 we can construct an infinite sequence of finite paths to a

fixed configuration γ of infinitely decreasing length, contradiction. A precondition

trace yields an infinitely decreasing sequence of ordinal approximations of some

inductive predicate, also a contradiction.

In this chapter we have discussed how to adapt our cyclic proof systems to

handle fairness constraints for both our CTL and LTL cyclic proof systems. Along

the discussion we have presented proof figures of simple example programs which

were mainly designed to exemplify the concepts introduced in the chapter, as sim-

ilarly done in previous Chapter 3 and Chapter 4. Despite the relative simplicity of

the examples, the proofs are quite large, and would require great care when pro-

duced by hand. On the other hand, due to the nature of our approach, we have the

advantage of a natural way to automate the elaboration of these proofs by means of

a proof search algorithm. An automated implementation of the cyclic proof systems

presented so far is the subject of the following chapter.

Chapter 6

Implementation

In this chapter we discuss the implementation details of the cyclic proof systems

presented earlier in this thesis. Throughout this chapter, we focus on the CTL cyclic

proof system as the basis of the discussion and point out the LTL and fairness adap-

tations only when the specifics deviate from the main implementation.

We implement our proof systems on top of the CYCLIST theorem prover [22].

As a generic cyclic theorem prover, CYCLIST provides an interface to instanti-

ate user-defined cyclic proof systems as OCaml functors parameterised over user-

defined datatypes that describe the desired logic and its set of axioms and rules of

inference. Once the logic has been instantiated, CYCLIST provides the capability to

define and/or extend the proof strategy with user-defined tactics. Finally, CYCLIST

also provides an interface to a custom model checker based for the automated ver-

ification of the global soundness condition. With these user-defined modules in

place, cyclist manipulates the cyclic proof structure and performs the proof search

algorithm, resulting in a valid cyclic-proof structure in case one is found.

The rest of this chapter is structured as follows: in Section 6.1 we introduce the

code structures and concepts used throughout the implementation as the basis for

our proof structures. We then introduce our proof rules as functions that transform

a conclusion sequent to a list of premise sequents and keeps track of the traces

following the path. These structures constitute the instantiation of our logic and its

axioms and rules of inference that are feed to CYCLIST for its manipulation. Later

on, in Section 6.2, we discuss the details of tactics defined to extend CYCLIST proof

6.1. Fundamentals 133

search algorithm. We conclude this chapter with the details of the extension for the

automated soundness check of our fair cyclic proofs. The implementation’s source

code and benchmarks are publicly available at [45].

6.1 Fundamentals
The entry point of our implementation is a command line program that receives an

input file as its parameter. This file is required to have the following structure

• fields: <list of fields>;

• precondition : <symbolic heap formula>;

• property: <temporal logic formula>;

• <list of commands>

where list of fields is a list of the record names to which data structures point. sym-

bolic heap formula is a precondition formula as per Defn. 2.2.1 that describes the

initial state of the program memory before its execution. temporal logic formula is

a CTL (LTL) temporal logic formula as per Defn. 2.3.1 (Defn. 2.3.3) that expresses

the temporal behaviour to prove of the given program. Finally, list of commands is

a program written in the language defined in Section 2.1.

The implementation parses the input and generates a SEQUENT struc-

ture: an OCaml module that defines a tuple with type (SymbolicHeap *

CommandList * TemporalFormula), along with utility functions that op-

erate on this type. When generating a SEQUENT, a pre-processing step is triggered

where the inductive predicates in the SymbolicHeap formula are individually

annotated with (distinct) identifiers to distinguish the traces that arise from them;

a similar annotation pre-processing is done for the temporal subformulas that give

rise to traces (i.e. AG and EG subformulas for CTL and G for LTL formulas). Once

the first pre-processing step is done, a proof NODE is created by extending the SE-

QUENT structure with two extra types to facilitate the tracking of traces, resulting in

a tuple of type (SymbolicHeap * CommandList * TemporalFormula

6.1. Fundamentals 134

* TagsList * TagPairsList), where TagsList is simply a list of the

identifiers used to annotate distinct inductive predicates and temporal subformulas

during the first pre-processing step, and TagPairList is a list of pairs of tags (i.e.

each element of the list has type (Tag * Tag)) that represent the progressing

step of the traces that arise from the annotated formulas. These annotated sequents

are the basis of our proof rules, which in turn transform one NODE goal to a list

of NODE premises according to the definitions of the rules in our proof systems

described earlier.

6.1.1 Proof Rules

Proof rules are functions that operate on proof NODE structures. In the case of

axioms, the functions receive a proof NODE as an argument and return an Option

monad, depending on whether the sequent is an axiom of our proof system. As per

Figure 3.1, the axioms in our CTL system are implemented as follows:

l e t symex check axiom e n t a i l s =

Rule . mk axiom (fun (s f , , t f) −> Opt ion . mk

(T l fo r m . i s c h e c k a b l e t f &&

Opt ion . i s s o m e (e n t a i l s s f (T l fo r m . e x t r a c t s l f o r m u l a t f))) ” Check ”)

l e t e x f a l s o a x i o m =

Rule . mk axiom (fun (s f , ,) −> Opt ion . mk

(S l f o r m . i n c o n s i s t e n t s f) ”Ex F a l s o ”)

l e t symex empty axiom =

Rule . mk axiom (fun (, cmd , t f) −> Opt ion . mk

(Cmd . i s e m p t y cmd && T l fo r m . i s b o x t f) ” Empty ”)

In the case of inference rules, the functions return a list of tuples, each of

type NODE (along with a descriptor that identifies each rule name). Each entry in

the list represents a sequent premise of the inference rule along with bookkeeping

information about the tagpairs of the sequent and the progressing tagpairs that result

of the application of the rule. We abstract this bookkeeping in the auxiliary function

fix tpswhich receives a SEQUENT as a parameter and returns the corresponding

proof NODE by computing the tags of the sequent and the progressing tagpairs from

conclusion to premise.

6.1. Fundamentals 135

l e t f i x t p s p r e m i s e l i s t =

B l i s t . map

(fun (g o a l s , d e s c r i p t i o n) −> B l i s t . map (fun s e q u e n t −>

(s e q u e n t , t a g p a i r s s e q u e n t , p r o g p a i r s s e q u e n t)) g o a l s , d e s c r i p t i o n) l i s t

Then each rule simply produces its corresponding list of premise sequents and

passes its result to fix tps to do the tags and traces bookkeeping.

The following code snippet illustrates the implementation of our inference

rules, showing the details of our (AG) rule source code. The rule first obtains

the precondition (sf), program command (cmd) and temporal formula (tf) com-

ponents of the sequent seq. Then, the temporal formulas tf1 and tf2 for the

corresponding premise sequents are computed. Finally a list of two SEQUENTS

(each corresponding to a premise of the rule) is passed to the auxiliary function

fix tps for tagpair bookkeeping. The body of the function is surrounded by a

try . . .catch statement in case the temporal formula in question is not of the

correct form, in which case an empty list is returned.

l e t a g r u l e =

l e t r l seq =

t r y

l e t (s f , cmd , t f) = Seq . d e s t seq in

l e t (t f 1 , t f 2) = T l fo r m . u n f o l d a g t f in

f i x t p s

[[([s f] , cmd , t f 1) ; ([s f] , cmd , t f 2)] , ”AG”]

with WrongTf −> [] in

wrap r l

As for the symbolic execution rules, their logic embeds the symbolic execution

engine needed in our system. Roughly speaking, all symbolic execution rules follow

a similar pattern in their operation by performing the following steps:

1. Modify the symbolic heap formula in the precondition according to the oper-

ational semantics of the command being executed;

2. Replace the command list component of the sequent with the next command

to be executed (its continuation);

3. Modify the temporal formula postcondition, removing the prepending ◇ or

Box subformula.

6.1. Fundamentals 136

We abstract steps 2 and 3 in an auxiliary function mk symex that computes

the continuation cont of the program command and the corresponding temporal

formula tf’ of the premises as follows:

l e t mk symex f =

l e t r l seq =

t r y

l e t (, cmd , t f) = Seq . d e s t seq in

l e t c o n t = Cmd . g e t c o n t cmd in

l e t t f ’ = T l fo r m . s t e p t f in

f i x t p s (B l i s t . map

(fun (g , d) −> B l i s t . map (fun h ’ −> ([h ’] , con t , t f ’)) g , d)

(f seq))

with WrongCmd , WrongTf −> []

in wrap r l

Where the auxiliary function wrap attempts to simplify the resulting sequent by

removing unnecessary equalities in the precondition symbolic heap formula.

l e t wrap r =

Rule . m k i n f r u l e

(S e q t a c t i c s . compose r (S e q t a c t i c s . a t t e m p t s i m p l i f y s e q r l))

Then each symbolic execution rule is simply a function from a SEQUENT to

a list of symbolic heap formulas, which are the result of symbolically executing a

program. This list of symbolic execution formulas is then passed to the auxiliary

mk symex function to finish the construction of the premise sequents.

Modifying the symbolic heap formula in the precondition has a similar pattern

for most rules: they first obtain the precondition and the command components from

the SEQUENT argument, disregarding the temporal formula component. Then,

the expressions and variables involved in the command are obtained. Finally, the

new symbolic formula that reflects the change in the program state as result of the

symbolic execution is computed.

The next code snippet illustrates these steps, showing the details of the (Free)

rule. In this rule, the precondition heap formula and the program command are

stored in variables sf and cmd respectively. Then, the expression representing the

memory location to be freed is obtained and stored in local variable e. A call to an

auxiliary function is made to obtain the symbolic heap subformula pertaining to the

6.1. Fundamentals 137

memory location to be freed; this subformula is stored in variable pto. The func-

tion returns the symbolic heap formula that results from removing the subformula

pto from the original sequent precondition sf or an empty list in case any of the

previous operations raises an exception.

l e t s y m e x f r e e r u l e =

l e t r l seq =

t r y

l e t (s f , cmd ,) = d e s t s h s e q seq in

l e t e = Cmd . d e s t f r e e cmd in

l e t p t o = f i n d p t o o n s f e in

[[SH . d e l p t o s f p t o] , ” F ree ”]

with Not symheap | WrongCmd | Not found −> [] in

mk symex r l

All other symbolic execution rules are implemented in a similar way to this

example, with the exception of the branching commands, whose implementation is

slightly more complex as the result depends on whether a universally or existentially

quantified path formula is present and whether the branching condition holds of one

execution path or the other.

The following code snippet shows the implementation of the (While) rule. In

this rule, the precondition heap formula sf, the program command cmd and the

temporal property tf of the sequent are stored in local variables. The guard condi-

tion cond and the body of the loop cmd’ are computed, followed by the continua-

tion cont of the while loop. Then, the two symbolic heaps resulting from extend-

ing the precondition formula sf with a symbolic heap that satisfies(invalidates) the

condition cond are computed and stored in variables sf’(sf’’). Then, the cor-

responding temporal property formula tf’ for the premise(s) is calculated. Next,

we proceed to compute the appropriate premise sequent(s) depending on whether

we are exploring a ◻ or a ◇ formula.

In case of a ◻ formula, we return a list of two SEQUENT structures. The

first one is composed of (1) a precondition formula sf’ that satisfies the condition

of the loop; (2) a program component comprised of the sequence of the body of

the loop followed by the execution of the loop (3) a temporal property tf’. The

second SEQUENT structure is composed of (1) a precondition formula sf’’ that

6.1. Fundamentals 138

invalidates the condition of the loop; (2) a program component cont that is the

continuation of the loop (the next command in the original sequence of commands)

(3) a temporal property tf’.

In case of a ◇ formula, we always return a single premise SEQUENT depend-

ing on whether the precondition formula validates the condition of the loop or not.

In case it does, we return a sequent corresponding to the execution of the body of

the loop. On the contrary, we return a sequent corresponding to the execution of the

next command in the original sequence of commands.

l e t s y m e x w h i l e r u l e =

l e t r l seq =

t r y

l e t (s f , cmd , t f) = d e s t s h s e q seq in

l e t (cond , cmd ’) = Cmd . d e s t w h i l e cmd in

l e t c o n t = Cmd . g e t c o n t cmd in

l e t (s f ’ , s f ’ ’) = Cond . f o r k s f cond in

l e t t f ’ = T l fo r m . s t e p t f in

i f Tl fo r m . i s b o x t f then

f i x t p s

[[([s f ’] , Cmd . mk seq cmd ’ cmd , t f ’) ; ([s f ’ ’] , con t , t f ’)] , ” While−Box”]

e l s e i f Tl fo r m . i s d i a m o n d t f then

i f Cond . v a l i d a t e d b y s f cond then

f i x t p s [[([s f ’] , Cmd . mk seq cmd ’ cmd , t f ’)] , ” While−<>1”]

e l s e

f i x t p s [[([s f ’ ’] , con t , t f ’)] , ” While−<>2”]

e l s e

[]

with Not symheap | WrongCmd −> [] in

wrap r l

Even though not technically a proof rule in our systems, backlinks are encoded

as a proof rule in the implementation, in the sense that they are functions from

proof NODES to previously discovered NODES in our proof search. The following

code snipet shows the details of the backlink function. Backlinking differs from

all other proof rules in that not only receives a proof node as its parameter, but

also the whole pre-proof structure explored so far, prf. From these parameters,

we first obtain the SEQUENT structure src seq of the open NODE and the list

of all target NODES, targets, from the proof object. We then compute a list

of those nodes that syntactically match our src seq, either directly, by substitu-

6.1. Fundamentals 139

tion of existentially quantified variables, or by the result of the (Cons) rule. These

nodes are stored in apps. Depending on whether (Cons) and variable substitu-

tion are needed, we return a sequence of these rules preceding the application of

Rule.mk backrule which will trigger the soundness procedure to verify that

the resulting proof is a valid cyclic proof.

l e t d o b a c k l node p r f =

l e t s r c s e q = P r o o f . g e t s e q node p r f in

l e t t a r g e t s = Rule . a l l n o d e s node p r f in

l e t apps =

B l i s t . b ind

(fun node ’ −>

B l i s t . map

(fun r e s −> (node ’ , r e s))

(matches s r c s e q (P r o o f . g e t s e q node ’ p r f))

)

t a r g e t s in

l e t f (t a r g n o d e , (t h e t a , t a g p a i r s)) =

l e t t a r g s e q = P r o o f . g e t s e q t a r g n o d e p r f in

l e t (s f t a r g s e q , c m d t a r g s e q , t f t a r g s e q) = t a r g s e q in

l e t t a r g s e q ’ = (S l f o r m . s u b s t t a g s

t a g p a i r s s f t a r g s e q , c m d t a r g s e q , t f t a r g s e q) in

l e t s u b s t s e q = Seq . s u b s t t h e t a t a r g s e q ’ in

Rule . s e q u e n c e [

i f Seq . e q u a l s r c s e q s u b s t s e q

then Rule . i d e n t i t y

e l s e Rule . m k i n f r u l e (cons s u b s t s e q) ;

i f S l t e r m . Map . f o r a l l S l t e r m . e q u a l t h e t a

then Rule . i d e n t i t y

e l s e Rule . m k i n f r u l e (s u b s t r u l e t h e t a t a r g s e q ’) ;

Rule . m k b a c k r u l e

f a l s e

(fun −> [t a r g n o d e])

(fun −>

(T a g P a i r s . r e f l e c t t a g p a i r s) , ” Backl ”])

] in

l e t r u l e l i s t = (B l i s t . map f apps) in

Rule . f i r s t r u l e l i s t node p r f

6.2. Proof Search Algorithm 140

6.2 Proof Search Algorithm
The proof rules are the building blocks of the proof tactics used in our proof search

algorithm. These tactics are esentially a strategy that define the order in which the

proof rules should be applied. In implementation terms, these tactics are functions

from a list of proof rules to a proof rule. For example, Rule.first tries each

rule in its list of arguments one at the time, in the order they appear, until a rule

succeeds. Once a rule succeeds, no other rules down the list will be applied. Using

this rule, we build a generic unfold gs tactic to group (AG) and (EG) rules as

they induce a common pattern in our proof search.

l e t u n f o l d g s =

Rule . f i r s t [

a g r u l e ;

e g r u l e ;

]

A slightly more involved tactic is symex, which not only groups all the sym-

bolic execution rules but also makes use of Rule.compose and Rule.attempt

tactics to optimise the application of branching rules. Rule.compose applies the

rule in the first argument and immediately applies the tactic in the second argu-

ment to (all of) the premise(s) that result from the application of the first tactic.

Rule.attempt, as its name implies, attempts to apply a rule; in case the applica-

tion is unsuccessful, the proof search is able to backtrack instead of failing. Using

these two tactics, we optimise the application of branching commands as one of

their premises usually results in an unsatisfiable state, which is easily discharged by

our (Ex.Falso) axiom.

l e t symex =

Rule . f i r s t [

s y m e x s k i p r u l e ;

s y m e x a s s i g n r u l e ;

s y m e x l o a d r u l e ;

s y m e x s t o r e r u l e ;

s y m e x f r e e r u l e ;

symex new ru le ;

(Rule . compose s y m e x i f e l s e r u l e (Rule . a t t e m p t e x f a l s o a x i o m)) ;

(Rule . compose s y m e x w h i l e r u l e (Rule . a t t e m p t e x f a l s o a x i o m)) ;

]

6.2. Proof Search Algorithm 141

Tactics like these form the basis of the core of the automated verification tool:

a proof search algorithm whose main goal is to close all open nodes in the proof

graph. This is done by first checking if the open node is an instance of an axiom, in

which case the node is marked as closed. Otherwise we attempt to find a successful

application of an inference rule using the following tactic:

r u l e s := Rule . f i r s t [

s p l i t ;

s i m p l i f y ;

Rule . c h o i c e [

d o b a c k l ;

Rule . c o m p o s e p a i r w i s e u n f o l d g s

[Rule . a t t e m p t ! axioms ; (Rule . f i r s t [symex ; symex empty axiom])] ;

u n f o l d f s ;

symex ;

(Rule . compose (u n f o l d p r e) (Rule . a t t e m p t e x f a l s o a x i o m)) ;

d i s j u n c t i o n r u l e ;

c o n j u n c t i o n r u l e ;

] ;

]

We first attempt to apply the (Split) rule to break left-hand side disjunction

formulas. We then attempt to simplify the precondition to remove any redundant

equalities. We then choose between

• Attempting to form a backlink by matching the sequent to a previously dis-

covered syntactically identical sequent;

• Applying EG/AG unfolding rules;

• Applying EF/AF unfolding rules;

• Applying a symbolic execution rule;

• Unfold an inductive predicate on the symbolic heap formula;

• Applying (∨) rule;

• Applying (Conj) rule.

As a small optimisation of the proof search algorithm, we speed up the proof

search by exploiting common patterns that arise from the structure of the rules. For

6.2. Proof Search Algorithm 142

example, in the application of rules (AG) and (EG), the sequent in the left-hand

premise strips the preceding AG/EG temporal operator in the CTL formula. This

usually leads to a sequent whose temporal property is simply a symbolic heap for-

mula, which we usually discharge by the use of (Check) axiom. On the other hand,

the sequent on the right-hand premise prepends a ◻ or ◇ operator to the temporal

formula. Sequents like this require the use of a symbolic execution rules to dis-

charge them. Such optimisation is reflected in our proof tactic listed in the previous

code snippet.

A second optimisation arises in the application of unfolding an inductive pred-

icate in the symbolic heap formula. Since such unfolding can lead to inconsis-

tencies in the precondition formula, we attempt to discharge the premise of the

(Unfold-Pre) rule via the (Ex. Falso) axiom.

Other common patterns that could lead to optimisations arise on specific sce-

narios, specifically in the formation of backlinks, which tend to occur at the start of

while loops. As forming backlinks is an expensive operation, one can be tempted

to limit their application to parts of the the proof search that involve a while loop.

Nevertheless, in doing so, we would also lose the capability of performing lemma

discovery in other parts of the program. Consequently, adding specific optimisa-

tions could be beneficial in speeding up some proof searches but would hinder per-

formance in some other cases. Allowing the user to choose between different proof

search heuristics, or better yet define their own, is a potential idea for future work,

but falls out of the scope of this work.

6.2.1 Automated Soundness Check

When cycles are formed in the proof search the implementation automatically

checks for the soundness of the resulting proof graph. In performing this opera-

tions, CYCLIST first simplifies the proof graph by stripping each node of its se-

quent structure, keeping only the information related to the tagpairs in each sequent

along with a unique identifier for each NODE in the graph. From this graph, two

Büchi automata are built to check for the global soundness of the proof graph: the

first one accepts all infinite strings over node ids. The second one accepts all infi-

6.2. Proof Search Algorithm 143

nite strings over node ids such that a progressing trace exists along the path. For

the details of this construction and its soundness proof we refer the reader to Sec-

tion 5.2.1. CYCLIST then relies on the SPOT [52] model checker tool to verify that

the language accepted by the first Büchi automata is a sublanguage of the language

accepted by the second Büchi automata.

Both the CTL and LTL implementations of our proof systems were able to

make use of the CYCLIST infrastructure to automatically check the global sound-

ness of the proof graph, but the implementation of the systems aware of fairness

constraints required to make some changes to properly check for soundness.

Recall from Definition 5.2.4 that a fair cyclic proof meets two conditions: (i)

not to be bad (according to Definition 5.2.3) and (ii) for every infinite fair path

(Pi ⊢ f Ci ∶ϕi)i≥0 in P , there is an infinitely progressing ◻-trace, ◇-trace or precon-

dition trace following some tail (Pi ⊢ f Ci ∶ϕi)i≥n of the path.

Checking the validity of condition (i) requires a very similar approach to that

of a standard cyclic proof system, in that it requires to check for a relation of lan-

guages between two Büchi automata. As such, we omit the details of its implemen-

tation.

Checking for the validity of condition (ii) requires a more involved approach.

To check for it, we construct a Streett automaton that accepts all infinite strings over

node ids such that whenever the rule ((Wh*◇1))/(If*◇1) is applied infinitely often

to some command occurrence, then the rule (Wh*◇2)/(If*◇2) is applied infinitely

often, or viceversa. To this effect, we keep a set of fairness constraints (tuples of

node Ids) for each pair of rule applications (Wh*◇1,Wh*◇2) or (If*◇1,If*◇2)

respectively as follows:

vo id F a i r P r o o f : : s e t f a i r n e s s c o n s t r a i n t (c o n s t V e r t ex & v1 ,

c o n s t V e r t e x & v2 ,

i n t c1 , i n t c2) {

a s s e r t (v e r t i c e s . f i n d (v1) != v e r t i c e s . end ()) ;

a s s e r t (v e r t i c e s . f i n d (v2) != v e r t i c e s . end ()) ;

a c c s e t m a p [v1] . i n s e r t (c1) ;

a c c s e t m a p [v2] . i n s e r t (c2) ;

f a i r n e s s c o n s t r a i n t s . i n s e r t (F a i r n e s s C o n s t r a i n t (c1 , c2)) ;

}

6.2. Proof Search Algorithm 144

Using this set, we establish the accepting condition of the Street automata by

conjuncts of the form (Fin(i)∨ Inf(j))∧(Fin(j)∨ Inf(i)) for each pair of fairness

constraints (i, j).

vo id F a i r P r o o f A u t o m a t o n : : s e t a c c e p t a n c e c o n d i t i o n () {

s t d : : s t r i n g s t r e a m a c c e p t a n c e c o n d i t i o n ;

s t d : : u n o r d e r e d s e t <F a i r n e s s C o n s t r a i n t > f a i r n e s s c o n s t r a i n t s =

g e t f a i r n e s s c o n s t r a i n t s () ;

f o r (a u t o elem = f a i r n e s s c o n s t r a i n t s . b e g i n () ;

elem != f a i r n e s s c o n s t r a i n t s . end () ; ++elem) {

i f (elem != f a i r n e s s c o n s t r a i n t s . b e g i n ()) {

a c c e p t a n c e c o n d i t i o n << ” & ” ;

}

a c c e p t a n c e c o n d i t i o n << ” (F in (” << (s t d : : ge t< 0 >(* elem))

<< ”) | I n f (” << (s t d : : ge t< 1 >(* elem))

<< ”)) & (Fin (” << (s t d : : ge t< 1 >(* elem))

<< ”) | I n f (” << (s t d : : ge t< 0 >(* elem))

<< ”))” << s t d : : f l u s h ;

}

s e t a c c e p t a n c e (g e t m a x a c c e l e m () ,

s p o t : : acc cond : : a c c c o d e (a c c e p t a n c e c o n d i t i o n . s t r ())) ;

}

Using this Streett automaton, we can check that its accepted language is a

subset of the language accepted by the Büchi automata that accepts infinite strings

over node ids such that a progressing trace exists along the path. The following

code snippet shows the body of our procedure that checks the soundness of our fair

CTL proof system.

e x t e r n ”C” v a l u e c h e c k f a i r s o u n d n e s s s e c o n d c o n d i t i o n () {

CAMLparam0 () ;

CAMLlocal1 (v r e s) ;

/ / B u i l d a S t r e e t t a u t o m a t a and s e t i t s a c c e p t a n c e c o n d i t i o n

proof−>s e t a c c e p t a n c e c o n d i t i o n () ;

s p o t : : t w a g r a p h p t r s t r e e t g r a p h = copy (p roof , s p o t : : twa : : p r o p s e t : : a l l ()) ;

/ / B u i l d a t r a c e a u t o m a t a from t h e p r o o f g raph

s p o t : : c o n s t t w a p t r t r a c e a u t = s t d : : make shared<TraceAutomaton>(* p r o o f) ;

s p o t : : t w a g r a p h p t r t g r a p h = copy (t r a c e a u t , s p o t : : twa : : p r o p s e t : : a l l ()) ;

/ / Trans form t h e S t r e e t t t o a g e n e r a l i s e d b u c h i au tomata

s p o t : : t w a g r a p h p t r p r o o f s g b a = t o g e n e r a l i z e d b u c h i (s t r e e t g r a p h) ;

6.2. Proof Search Algorithm 145

/ / B u i l d t h e complement o f t h e t r a c e automata

/ / and t r a n s f o r m i t t o a g e n e r a l i z e d b u c h i au tomata

s p o t : : t w a g r a p h p t r p r o o f t g b a = t o g e n e r a l i z e d b u c h i (

d twa complement (t g b a d e t e r m i n i z e (

t g r a p h , f a l s e , t r u e , t r u e ,

s p o t : : c h e c k s t u t t e r i n v a r i a n c e (graph) . i s t r u e ()))) ;

/ / Compute t h e p r o d u c t o f bo th g e n e r a l i s e d Buchi au tomata

s p o t : : c o n s t t w a p t r p r o d u c t =

s t d : : make shared<s p o t : : t w a p r o d u c t >(p r o o f s g b a , p r o o f t g b a) ;

/ / Check f o r e m p t i n e s s o f t h e a c c e p t a n c e language o f t h e p r o d u c t au tomata

s p o t : : c o u v r e u r 9 9 c h e c k ec (p r o d u c t) ;

s t d : : s h a r e d p t r<s p o t : : e m p t i n e s s c h e c k r e s u l t > r e s = ec . check () ;

/ / R e t u rn r e s u l t

boo l r e t v a l = (r e s == 0) ;

v r e s = V a l b o o l (r e t v a l) ;

CAMLreturn (v r e s) ;

}

In this chapter we have discussed the implementation details of the CTL cyclic

proof system. The implementation is built on top of the CYCLIST theorem prover

and it mainly consists of a symbolic execution engine (embedded in the logic of our

symbolic execution rules) and a proof search algorithm, whose main goal is to close

all open nodes in the proof graph and to automatically verify the soundness of the

proof. The source code is freely available at [45].

In the following chapter, we use our automated verification tool in proving

temporal properties of common benchmarks found in the literature, showing the

suitability of our approach for verifying temporal properties of programs with ac-

cess to the heap.

Chapter 7

Experimental Results

In this chapter we evaluate the implementation of our cyclic proof systems on hand-

crafted nondeterministic and nonterminating programs similar to Example 1.1.1.

Our test suite can be seen as an adaptation of the common model checking bench-

marks presented in [40, 41] for the verification of temporal properties of nonde-

terministic programs, where operations/iterations on integer variables in the origi-

nal benchmarks are replaced in favour of operations/iterations on heap data struc-

tures. Figure 7 demonstrates the adaptation of a particular program example, where

the original implementation of the acquire-release example from [40] is compared

to our heap manipulation adaptation. In particular, some of the changes include:

(i) stack variables A and R are replaced in favour of heap pointers; (ii) iteration over

integer variables is replaced in favour of iteration over heap structures (in this par-

ticular adaptation, the inside loop iterates over a nil terminating list (i.e. ls(x,nil))

of nondeterministic length); (iii) assignment of nondeterministic values that control

the exit of the loops is replaced in favour of nondeterministic control structures that

determine the value of the loop guards.

In the remainder of this chapter we describe the full set of program adaptations,

similar to the example aforementioned, that compose our full benchmark suite. The

details of the experiments for our CTL cyclic proof system, as well as its adapta-

tion to fairness executions, are the subject of discussion in Section 7.1. We then

presents the details of the experiments for our LTL cyclic proof system, along with

its fairness adaptation, in Section 7.2.

7.1. CTL cyclic proof system experiments 147

Listing 7.1: Original implementation

r h o 1 = no nd e t () ;
dob reak = r h o 1 ;
whi le (1) {

i f (dob reak > 0) b r e a k ;
A = 1 ;
A = 0 ;

r h o 1 = no nd e t () ;
n = r h o 1 ;
whi le (1) {

i f (! (n>0)) b r e a k ;
n−−;

}
R = 1 ;
R = 0 ;

r h o 1 = no nd e t () ;
dob reak = r h o 1 ;

}
whi le (1) {

dummy=dummy ;
}

Listing 7.2: Adaptation

whi le (f l a g != n i l) {
i f (*) {

f r e e (f l a g) ;
e l s e {

A:= new () ;
f r e e (A) ;
whi le (x != n i l) {

temp := x ;
x := x . n e x t ;
f r e e (temp) ;

}
R:= new () ;
f r e e (R) ;

} ;
} ;
whi le (f l a g = f l a g) {

dummy:=dummy ;
}

Figure 7.1: Comparison between the original implementation of a sample program and our
heap manipulation adaptation used in the experiments

7.1 CTL cyclic proof system experiments
Our test suite for our CTL cyclic proof system comprises the following programs:

(i) Examples discussed in this thesis are named EXMP;

(ii) FIN-LOCK is a finite program that acquires a lock and, once obtained, pro-

ceeds to free from memory the elements of a list and reset the lock;

(iii) INF-LOCK wraps the previous program inside an infinite loop;

(iv) ND-IN-LOCK is an infinite loop that nondeterministically acquires a lock,

then proceeds to perform a nondeterministic number of operations before re-

leasing the lock;

(v) INF-LIST is an infinite loop that nondeterministically adds a new element to

the list or advances the head of the list by one element on each iteration;

(vi) INSERT-LIST has a nondeterministic if statement that either adds a single

elements to the head of the list or deletes all elements but one, and is followed

by an infinite loop;

7.1. CTL cyclic proof system experiments 148

Program Precondition Property Fairness Time

EXMP ls(x,nil) AGEF emp No 2.43

EXMP ls(x,nil) AGAF emp Yes 4.29

EXMP ls(x,nil) AGAF (ls(x,nil)) No 0.26

EXMP ls(x,nil) AGEG (ls(x,nil)) No 0.44

EXMP ls(x,nil) AF emp Yes 0.77

EXMP ls(x,nil) AFEG emp Yes 0.86

FIN-LOCK lock↦0 * ls(x,nil) AF (lock↦1 * emp) No 0.20

FIN-LOCK lock↦0 * ls(x,nil) AGAF (lock↦1 * emp) No 0.62

FIN-LOCK lock↦0 * ls(x,nil) AGAF (lock↦1 * emp ∧ ◇lock↦0) No 0.24

INF-LOCK lock↦0 * ls(x,nil) AGAF (lock↦1 * emp) No 1.52

INF-LOCK lock↦0 * ls(x,nil) AGAF (lock↦1 * emp ∧ ◇lock↦0)) No 3.26

INF-LOCK del=false : lock↦0 * ls(x,nil) AG (del!=true ∨ AF (lock↦1)) No 3.87

ND-INF-LOCK lock↦0 AF(lock↦1) Yes 0.15

ND-INF-LOCK lock↦0 AGAF (lock↦1) Yes 0.25

INF-LIST ls(x,nil) AG ls(x,nil) No 0.21

INF-LIST ls(x,nil) AGEF x=nil No 4.39

INF-LIST ls(x,nil) AGAF x=nil Yes 8.10

INSERT-LIST ls(three,zero) EF ls(five,zero) No 0.14

INSERT-LIST ls(three,zero) AF ls(five,zero) Yes 0.26

INSERT-LIST ls(n,zero) AGAF n!=zero Yes 17.21

APPEND-LIST ls(y,x) * ls(x,nil) AF (ls(y,nil)) No 12.67

CYCLIC-LIST cls(x,x) AG cls(x,x) No 0.88

CYCLIC-LIST cls(x,x) AGEG cls(x,x) No 0.34

INF-BINTREE x!=nil : bintree(x) AGEG x!=nil No 0.72

AFAG BRANCH x↦zero AFAG x↦one No 1.80

EGAG BRANCH x↦zero EGAG x↦one No 0.23

EGAF BRANCH x↦zero EGAF x↦one No 15.48

EG⇒ EF BRANCH p=zero ∧ q=zero : ls(zero,n) EG(p!=one ∨ EF q=one) No 1.60

EG⇒ AF BRANCH p=zero ∧ q=zero : ls(zero,n) EG(p!=one ∨ AF q=one) Yes 5.33

AG⇒ EG BRANCH p=zero ∧ q=one : ls(zero,n) AG(p!=one ∨ EG q=one) No 0.36

AG⇒ EF BRANCH p=zero ∧ q=one : ls(zero,n) AG(p!=one ∨ EF q=one) No 1.53

ACQ-REL ls(zero,three) AG(acq=0 ∨ AF rel!=0) No 1.25

ACQ-REL ls(zero,three) AG(acq=0 ∨ EF rel!=0) No 1.25

ACQ-REL ls(zero,three) EF acq!=0 ∧ EF AG rel=0 No 0.33

ACQ-REL ls(zero,three) AF AG rel=0 Yes 0.42

ACQ-REL ls(zero,three) EF acq!=0 ∧ EF EG rel=0 No 0.25

ACQ-REL ls(zero,three) AF EG rel=0 Yes 0.33

POSTGRESQL w=true ∧ s=s’ ∧ f=f’ : emp AGAF w=true ∧ s=s’ ∧ flag=f’ No 0.27

POSTGRESQL w=true ∧ s=s’ ∧ f=f’ : emp AGEF w=true ∧ s=s’ ∧ flag=f’ No 0.26

POSTGRESQL w=true ∧ s=s’ ∧ f=f’ : emp EFEG w=false ∧ s=s’ ∧ flag=f’ No 0.44

POSTGRESQL w=true ∧ s=s’ ∧ f=f’ : emp EFAG w=false ∧ s=s’ ∧ flag=f’ No 0.77

WIN UPDATE W!=nil : ls(W,nil) AGAF W!=nil : ls(W,nil) No 1.50

WIN UPDATE W!=nil : ls(W,nil) AGEF W!=nil : ls(W,nil) No 1.00

WIN UPDATE W!=nil : ls(W,nil) EFEG W=nil : emp No 3.60

WIN UPDATE W!=nil : ls(W,nil) AFEG W=nil : emp Yes 3.70

WIN UPDATE W!=nil : ls(W,nil) EFAG W=nil : emp No 3.15

WIN UPDATE W!=nil : ls(W,nil) AFAG W=nil : emp Yes 4.16

Table 7.1: Experimental results for (fair) CTL system.

7.2. LTL cyclic proof system experiments 149

(vii) APPEND-LIST appends the second argument to the end of the first argument;

(viii) CYCLIC-LIST is a nonterminating program that iterates through a non-empty

cyclic list;

(ix) INF-BINTREE is an infinite loop that nondeterministically inserts nodes to a

binary tree or performs a random walk of the tree;

(x) The programs named with BRANCH define a somewhat arbitrary nesting of

nondeterministic if and while statements, aimed at testing the capability

of the tool in terms of lines of code and nesting of cycles;

(xi) Finally we also cover adaptations from sample programs taken from the

Windows Update system (WIN UPDATE), the back-end infrastructure of the

PostgreSQL database server (POSTGRESQL) and an implementation of the

acquire-release algorithm (ACQ-REL) taken from the aforementioned bench-

marks.

We show the results of the evaluation of the CTL system and its extension to

consider fairness constraints in Table 7.1. For each test, we report whether fairness

constraints were needed to verify the desired property and the time taken in seconds.

The tests were carried out on an Intel x-64 i5 system at 2.50GHz.

7.2 LTL cyclic proof system experiments
Our test suite for our LTL cyclic proof system comprises the following programs:

(i) Examples discussed in this thesis are named EXMP;

(ii) Benchmarks obtained from model checking tools for Windows components

are named WIN;

(iii) PG BUFFER and PG ARCH are modules of the PostgreSQL database

backend

(iv) Finally APACHE is a component of the web server in charge of serving con-

nection requests.

7.2. LTL cyclic proof system experiments 150

Program Precondition Property Fairness Time

EXMP2 x=true FG x=true No 0.02

EXMP2 FAIR x=true FG x=true Yes 0.04

EXMP4 x=y FG x=y No 0.05

EXMP4 FAIR x=y FG x=y Yes 0.15

EXMP5.3.4 y=false ∧ x↦x’ FG x=true Yes 0.06

WIN1 acq ↦ false * rel ↦ false G(acq ↦ true⇒ F rel ↦ true) No 355.62

WIN2 flag ↦ false G(flag ↦ true⇒ F flag ↦ false) No 183.46

WIN3 flag ↦ false * stored ↦ zero FG(stored ↦ zero) No 0.05

WIN4 acq ↦ false * rel ↦ false G(acq ↦ true⇒ F rel ↦ true) No 17.91

WIN4 FAIR acq ↦ false * rel ↦ false G(acq ↦ true⇒ F rel ↦ true) Yes 15.02

WIN4 SIMPL acq ↦ false * rel ↦ false F(acq ↦ true) ∨ F(rel ↦ true) No 0.04

WIN6 dll(zero,five) * W↦ nil,nil FG W=0 No 0.05

WIN6 FAIR dll(zero,five) * W↦ nil,nil FG W=0 Yes 0.55

WIN7 dll(zero,five) * W↦ nil,nil GF W>1 No 0.04

WIN8 ls(zero,five) * count=0 G(count>0⇒ count=0) No 827.63

PG BUFFER istemp ↦ false * acq ↦ false G(istemp ↦ true⇒ acq ↦ false) No 0.88

PG ARCH w↦zero GF w↦one No 0.28

PG ARCH FAIR w↦zero GF w↦one Yes 0.35

APACHE dnow ↦ false * acc ↦ false G(dnow ↦ false⇒ F acc=true) No 6.35

Table 7.2: Experimental results for (fair) LTL system.

In Table 7.2 we show the results of the verification of temporal properties of

these programs in our LTL cyclic proof system implementation. For each test, we

report whether fairness constraints were needed to verify the desired property and

the time taken in seconds. The tests were carried out on an Intel x-64 i5 system at

2.50GHz.

Our experiments demonstrate the viability of our approach: our runtimes are

mostly in the range of milliseconds and show similar performance to existing tools

for the model checking benchmarks. Overall, the execution times in the evaluation

are quite varied as they depend on factors such as the complexity of the program

and the temporal property, but sources of potential slowdown can be witnessed by

different test cases.

Even at the level of pure memory assertions, the base case rule (Check) has

to check entailments of the form P ⊧ Q between symbolic heaps, which involves

calling an inductive theorem prover; this is reasonably fast in some cases, but very

costly in others (e.g. the APPEND-LIST example). A possible improvement to our

implementation could attempt to reduce the cost of this operation by use of a cache

7.2. LTL cyclic proof system experiments 151

of entailment checks. In this way, if during the proof search, some entailment has

been previously checked, we can instantly obtain the result from memory and avoid

recomputing the result. This feature is nonetheless out of the scope of this work,

and it is left for future work.

Another source of slowdown is in attempting to form back-links too eagerly

(e.g. when encountering the same command at two different program locations);

since we check soundness when forming a back-link, which involves calling a

model checker (cf. [22]), this too is an expensive operation, as can be seen in the

runtimes of test cases with suffix BRANCH. One can be tempted to limit the appli-

cation of backlinks to parts of the proof search that involve program iterations, but

by doing so we also limit the capability of lemma discovery for other parts of the

program. Allowing the user to choose between different proof search heuristics, or

better yet define their own, is a potential idea for future work, but falls out of the

scope of this work.

Finally, note that despite the encouraging results, the implementation is not

without limitations; it might, in some cases, fail to terminate and produce a valid

proof. Generalising, our proof search tends to fail either when the temporal prop-

erty in question does not hold, or when we fail to establish a sufficiently general

“invariant” to form backlinks in the proof. The addition of counterexamples when a

temporal property does not hold is another feature that could improve the usability

of our implementation, and presents the opportunity for further work.

Chapter 8

General Conclusions

The aim of this thesis has been to devise a sound and fully automated temporal ver-

ification framework for infinite heap-aware programs. The main body of this work

was dedicated to describing in detail our formulation, soundness, implementation

and evaluation of this framework. In this chapter, we will recapitulate how our aim

was fulfilled in line with the list of objectives outlined in Chapter 1. Then we will

propose some possible lines of work for further developing the ideas presented in

this thesis.

8.1 Contributions
Generality. Our proof system has been designed to handle arbitrary safety, liveness

and fairness properties of heap-manipulating programs. As such, the present work

could be seen as a generalisation of the cyclic proof system for proving termina-

tion of heap-manipulating programs proposed by Brotherston, Bornat and Calgano

in [19]. Compared to this previous work, our judgement structure is expanded to

include arbitrary temporal properties and the notion of proof traces is expanded to

account for the progress induced by the analysis of temporal operators.

Moreover, our temporal verification framework includes specific instances tai-

lored to both LTL and CTL temporal logics. The formulation of these instances

aided our coverage of the full range of temporal logics, namely linear and branch-

ing time logics, but it naturally leaves other temporal logics out of the scope of this

work.

8.1. Contributions 153

Soundness. A benefit of using a deductive verification approach at the core of our

framework is that the soundness of our system is reduced to:

1. checking for local soundness of each rule separately (along with properties

on traces following the path, as was done in Lemma 3.3.1 and Lemma 4.2.1,

and

2. checking the global soundness condition of pre-proofs to validate that each in-

finite cycle in the proof is, indeed, a valid cycle, as was done in Theorem 3.3.2

and Theorem 4.2.2.

Verifying the soundness of the cyclic temporal verification framework is, we would

argue, quite reasonable.

One of the advantages of our approach is that we never obtain false positive

results. This advantage is, as expected, not exclusive to deductive verification, as

some automata-theoretic model checking approaches are also sound [96]. Nonethe-

less, when compared to such approaches, we believe our treatment of the temporal

verification problem to be more natural, as we avoid both the translation of tem-

poral formulas into complex automata [97] and the instrumentation of the original

program with auxiliary constructs [39].

Memory awareness. The decision to rely on separation logic for the handling of

heap-manipulating programs served two purposes. First, the use of an established

and well-studied framework significantly lowered the effort of formulating our

symbolic-execution proof rules, as they are mostly adaptations of similar rules used

on previous proof systems for separation logic verification.

Second, thanks to the combined use of separation logic and a deductive proof

system, our approach does not need to apply approximation or transformations to

the program before attempting to verify it. This direct treatment of the original pro-

gram and temporal formula has proven beneficial in the treatment of other aspects

of temporal logic verification, say fairness, as we have demonstrated. Most impor-

tantly, the structure of the proof rules and the avoidance of complex side conditions

were also a key factor in the automation of our framework.

8.1. Contributions 154

Infinite state. The common benefits that cyclic proofs bring as an alternative to

traditional proofs by explicit induction made a big impact on various aspects of our

framework. A subtle but important one has been the transfer from a proof system

that would have only capable of handling finite state systems to handling infinite

state.

Moreover, the machinery built into cyclic proofs is the main factor behind

the relative simplicity of the individual proof rules, which, compared to early ap-

proaches [74, 76, 57], do not rely on complex side verification conditions that re-

quire the computation of program invariants and ranking functions. In its place,

the notion of traces embed the notion of a ranking function within the proof itself,

allowing for its discovery as the proof is carried out.

In our particular proof systems, such notion corresponds to the progress made

by the symbolic execution of the program under analysis. At each point where a

symbolic execution rule is applied we say that our trace progresses. The global

soundness conditions then guarantees that every infinite loop is indeed progressing

infinitely often, leading to a proof that can be read as a proof by infinite descent

à la Fermat. We note that this notion of progress is not unique, having a similar

notion based on the infinite unfolding of a fixpoint operator along infinite paths,

similar to our precondition traces. This is based on the premise that temporal for-

mula AGϕ(EGϕ) can be characterised as the greatest fixpoint operator of the form

νZ.ϕ ∩AXZ(νZ.ϕ ∩EXZ). Then since along our ◻−(◇−) trace an AG(EG) for-

mula is unfolded infinitely often, this infinite unfolding would too lead to a proof

by infinite descent. A similar argument applies to the case of LTL G formulas and

their corresponding LTL-traces.

The switch from explicit induction proofs to cyclic proofs also played an im-

portant role in the automation of our proof systems, mostly due to the generic cyclic

theorem prover CYCLIST . This framework provided the tools required for the proof

search algorithm, as well as the basis for the implementation of the decision proce-

dure to check the decidability of our fair global soundness condition. We also note

that, to the best of our knowledge, we are the first automated cyclic proof theorem

8.2. Future work 155

prover to address fairness conditions.

Full automation. Throughout this thesis we have mentioned a few related works

that have previously addressed deductive verification to the temporal verification

problem. In particular, the present thesis could be seen as a specialisation of the

work by Sprenger in [93] where we favour the analysis of heap-manipulating pro-

grams written in a specific programming language rather than allowing arbitrary

transition system constructs. This resolution played a critical role in the ability to

produce a fully automated implementation of a cyclic deductive verification tool

for verification of arbitrary temporal properties of programs. To the best of our

knowledge, we are the first to produce a system with this characteristics.

8.2 Future work
The vast number of proposed temporal logics for the verification of programs, of

which LTL and CTL comprise only a small part, could be an indication for a pos-

sible line of future work: the enrichment of our temporal logic to other temporal

logics. In particular, due to their higher level of expressiveness, CTL* [54] and

µ-calculus [46] are prime candidates for such an undertaking.

In terms of CTL*, the structure of its formulas and their respective classifica-

tion into path and state subformulas suggest a possible combination of our LTL and

CTL systems to produce a proof object composed of smaller proof structures as was

suggested in [13, 93]. The encoding of CTL* into µ-calculus[46] and the applica-

bility of cyclic proofs for the verification of µ-calculus properties (see e.g. [88])

suggest the feasibility of such an extension.

If someone were to follow our approach, combining CTL* / µ-calculus with

the expressivity of separation logic to handle the analysis of heap-aware programs,

a second natural direction for extending our work is to consider larger classes of

programs for which both logics have been successfully applied. In particular, pro-

gramming languages with concurrency constructs are suggested as a very interest-

ing direction for future work. At first sight it would seem that most of the challenge

would be to provide appropriate constructs/restrictions on parallel program com-

8.2. Future work 156

position mainly due to the lack of compositionality of temporal logic. One could,

for example, be tempted to build on the parallel composition rule of concurrent

separation logic as shown in [94], which roughly takes the form of

P1 ⊢C1 ∶Q1 P2 ⊢C2 ∶Q2

P1∗P2 ⊢C1∣∣C2 ∶Q1∗Q2
(Par)

with some side conditions that restrict the variables accessed by each separate pro-

gram component. Unfortunately, it is not clear which operator (if any) would allow

for such composition of arbitrary temporal formulas ϕ1/ϕ2 in place of separation

logic assertions Q1/Q2.

A third major piece of future work that would be of great advantage is related

to the manual construction of the proofs required to demonstrate the soundness of

our system. One could argue that the manual elaboration of such proofs is in itself

error prone. Whereas we took great care in our soundness proof and feel strongly

confident about their correctness, we also appreciate there is room for improvement

in terms of proof mechanisation. A possible implementation of this kind could

directly translate each proof rule into a proposition in a mechanised proof assistant.

The elaboration of their corresponding proofs could be carried out by a suitable

set of tactics based on the semantics of both the programming language and the

temporal logic in question (one would expect, following a very similar structure to

the proofs produced by hand). Most of the technical difficulty of this task, perhaps,

would be the representation of the structures needed in cyclic proofs (i.e. pre-proofs,

directed acyclic graphs, proof traces) as explicit datatypes to aid in proving the

global soundness condition of cyclic proofs. Therefore, it is important to ponder the

increased level of confidence one would gain when compared to the effort required.

Finally, regarding automation, our implementation has opened the door to en-

hancements that would improve its performance and increase its feature set. The

heavy use of entailment checks in our system, along with the expensive cost of this

operation, suggest that adding a cache of entailment checks to avoid recomputing

known results might improve the performance of the automated tool. A second

line of work to increase the performance of our proof search algorithm involves de-

8.2. Future work 157

veloping improved mechanised techniques, such as generalisation / abstraction, to

allow re-use of previously discovered cyclic proofs as lemmas. In terms of adding

features to the implementation, conceivably the most desirable missing feature is

the ability to produce counterexamples in case the program in question does not

meet its desired temporal specification. This feature could be of great benefit for

troubleshooting and finding software bugs.

Appendix A

Colophon

This document was created using LATEX and BibTEX, composed with Emacs editor.

The figures appearing in this thesis were produced with gastex package and

the proofs were produced using Paul Taylor’s prooftree package.

Bibliography

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-

sis of hybrid systems. THEORETICAL COMPUTER SCIENCE, 138:3–34,

1995.

[2] R. Alur, T.A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verifica-

tion of embedded systems. Software Engineering, IEEE Transactions on,

22:181–201, 1996.

[3] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded

model checking of software using smt solvers instead of sat solvers. Int. J.

Softw. Tools Technol. Transf., 11:69–83, 2009.

[4] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-Peter

Wirth. How to prove inductive theorems? QuodLibet! In Franz Baader,

editor, Proceedings of CADE-19, number 2741 in LNAI, pages 328–333.

Springer, 2003.

[5] Domagoj Babic and Alan J. Hu. Calysto: scalable and precise extended static

checking. In 30th International Conference on Software Engineering (ICSE

2008), Leipzig, Germany, May 10-18, 2008, pages 211–220, 2008.

[6] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker

for boolean programs. In Proceedings of the 7th International SPIN Work-

shop on SPIN Model Checking and Software Verification, pages 113–130.

Springer-Verlag, 2000.

BIBLIOGRAPHY 160

[7] Thomas Ball and Sriram K. Rajamani. The slam project: Debugging system

software via static analysis. In Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’02,

pages 1–3. ACM, 2002.

[8] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable frag-

ment of separation logic. In Proceedings of FSTTCS-24, pages 97–109.

Springer-Verlag, 2004.

[9] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Mod-

ular automatic assertion checking with separation logic. In Proceedings of

the 4th International Conference on Formal Methods for Components and

Objects, FMCO’05, pages 115–137. Springer-Verlag, 2006.

[10] Josh Berdine, Byron Cook, Distefano, and W. O’Hearn. Automatic termi-

nation proofs for programs with shape-shifting heaps. In Computer Aided

Verification, 18th International Conference, CAV, pages 386–400. Springer,

2006.

[11] Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for

systems-level code. In Proceedings of CAV-23, pages 178–183. Springer-

Verlag, 2011.

[12] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The

software model checker BLAST: Applications to software engineering. Int.

J. Softw. Tools Technol. Transf., 9:505–525, 2007.

[13] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model check-

ing for CTL*. In Proceedings of LICS-10, pages 388–397. IEEE, 1995.

[14] Ahmed Bouajjani, Jean-Claude Fernandez, and Nicolas Halbwachs. Mini-

mal model generation. In Proceedings of the 2Nd International Workshop

on Computer Aided Verification, CAV ’90, pages 197–203. Springer-Verlag,

1991.

BIBLIOGRAPHY 161

[15] Julian Bradfield and Colin Stirling. Local model checking for infinite state

spaces. Theoretical Computer Science, 96:157 – 174, 1992.

[16] James Brotherston. Sequent Calculus Proof Systems for Inductive Defini-

tions. PhD thesis, University of Edinburgh, November 2006.

[17] James Brotherston. Formalised inductive reasoning in the logic of bunched

implications. In Proceedings of SAS-14, volume 4634 of LNCS, pages

87–103. Springer-Verlag, 2007.

[18] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of

program termination in separation logic. In Proceedings of the 35th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’08, pages 101–112. ACM, 2008.

[19] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of

program termination in separation logic. In Proceedings of POPL-35, pages

101–112. ACM, 2008.

[20] James Brotherston, Dino Distefano, and Rasmus L. Petersen. Automated

cyclic entailment proofs in separation logic. In Proceedings of CADE-23,

volume 6803 of LNAI, pages 131–146. Springer, 2011.

[21] James Brotherston, Carsten Fuhs, Juan A. Navarro Pérez, and Nikos Goro-

giannis. A decision procedure for satisfiability in separation logic with

inductive predicates. In Proceedings of the Joint Meeting of the Twenty-

Third EACSL Annual Conference on Computer Science Logic (CSL) and the

Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS), CSL-LICS ’14, pages 25:1–25:10. ACM, 2014.

[22] James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A generic

cyclic theorem prover. In Proceedings of APLAS-10, LNCS, pages 350–367.

Springer, 2012.

BIBLIOGRAPHY 162

[23] Randal E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Transactions on Computers, 35:677–691, 1986.

[24] Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model checking

of infinite state systems using presburger arithmetic. In CAV, volume 1254

of Lecture Notes in Computer Science, pages 400–411. Springer, 1997.

[25] Tevfik Bultan, Richard Gerber, and William Pugh. Model-checking concur-

rent systems with unbounded integer variables: Symbolic representations,

approximations, and experimental results. ACM Trans. Program. Lang. Syst.,

21:747–789, 1999.

[26] Doron Bustan and Orna Grumberg. Simulation-based minimization. ACM

Trans. Comput. Logic, 4:181–206, 2003.

[27] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter OHearn, Irene Papakonstantinou, Jim Pur-

brick, and Dulma Rodriguez. Moving fast with software verification. In

Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal

Methods, volume 9058 of Lecture Notes in Computer Science, pages 3–11.

Springer International Publishing, 2015.

[28] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability

and complexity results for a spatial assertion language for data structures. In

Proceedings of the 21st Conference on Foundations of Software Technology

and Theoretical Computer Science, FST TCS ’01, pages 108–119. Springer-

Verlag, 2001.

[29] Sagar Chaki, Edmund Clarke, Alex Groce, and Ofer Strichman. Predicate

abstraction with minimum predicates. In Daniel Geist and Enrico Tronci,

editors, Correct Hardware Design and Verification Methods, volume 2860

of Lecture Notes in Computer Science, pages 19–34. Springer Berlin Heidel-

berg, 2003.

BIBLIOGRAPHY 163

[30] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis.

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’08, pages 247–260. ACM,

2008.

[31] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Au-

tomated verification of shape, size and bag properties via user-defined predi-

cates in separation logic. Sci. Comput. Program., 77:1006–1036, 2012.

[32] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In Proceedings of TACAS, volume 2988 of LNCS, pages

168–176. Springer, 2004.

[33] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency

of C and Verilog programs using bounded model checking. In Proceedings of

the 40th Annual Design Automation Conference, DAC ’03, pages 368–371.

ACM, 2003.

[34] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-

chronization skeletons using branching-time temporal logic. In Logic of Pro-

grams, Workshop, pages 52–71. Springer-Verlag, 1981.

[35] Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. Exploiting symme-

try in temporal logic model checking. In Proceedings of the 5th Interna-

tional Conference on Computer Aided Verification, CAV ’93, pages 450–462.

Springer-Verlag, 1993.

[36] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-guided abstraction refinement. In Proceedings of

the 12th International Conference on Computer Aided Verification, CAV ’00,

pages 154–169. Springer-Verlag, 2000.

[37] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-

ing. MIT Press, 1999.

BIBLIOGRAPHY 164

[38] B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL* verification

for infinite-state systems. In Proceedings of CAV-27, volume 9206 of LNCS.

Springer, 2015.

[39] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and

Moshe Y. Vardi. Proving that programs eventually do something good. In

Proceedings of POPL-07, POPL 07, pages 265–276. ACM, 2007.

[40] Byron Cook and Eric Koskinen. Making prophecies with decision predicates.

In Proceedings of POPL-38, volume 46, pages 399–410. ACM, 2011.

[41] Byron Cook and Eric Koskinen. Reasoning about nondeterminism in pro-

grams. In Proceedings of PLDI-34, pages 219–230. ACM, 2013.

[42] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, POPL ’77, pages 238–252. ACM,

1977.

[43] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine

Miné, David Monniaux, and Xavier Rival. The astrée analyzer. In European

Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes in

Computer Science, pages 21–30. Springer-Verlag, 2005.

[44] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-

straints among variables of a program. In Proceedings of the 5th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

POPL ’78, pages 84–96. ACM, 1978.

[45] CYCLIST: software distribution. https://github.com/

ngorogiannis/cyclist/.

[46] M. Dam. Translating CTL* Into the Modal Mu-calculus. ECS-LFCS-.

https://github.com/ngorogiannis/cyclist/
https://github.com/ngorogiannis/cyclist/

BIBLIOGRAPHY 165

University of Edinburgh, Department of Computer Science, Laboratory for

Foundations of Computer Science, 1990.

[47] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.

In Proceedings of the Theory and Practice of Software, 14th International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems, TACAS’08/ETAPS’08, pages 337–340. Springer-Verlag, 2008.

[48] Giorgio Delzanno and Andreas Podelski. Model checking in CLP. In

Proceedings of the 5th International Conference on Tools and Algorithms

for Construction and Analysis of Systems, TACAS ’99, pages 223–239.

Springer-Verlag, 1999.

[49] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. Who is pointing

when to whom? In FSTTCS 2004: Foundations of Software Technology and

Theoretical Computer Science, volume 3328 of Lecture Notes in Computer

Science, pages 250–262. Springer Berlin Heidelberg, 2005.

[50] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape anal-

ysis based on separation logic. In Proceedings of the 12th International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems, TACAS’06, pages 287–302. Springer-Verlag, 2006.

[51] Dino Distefano and Matthew J. Parkinson J. jStar: Towards practical verifi-

cation for java. In Proceedings of the 23rd ACM SIGPLAN Conference on

Object-oriented Programming Systems Languages and Applications, OOP-

SLA ’08, pages 213–226. ACM, 2008.

[52] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud

Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 — a framework

for LTL and ω-automata manipulation. In Proceedings of the 14th Inter-

national Symposium on Automated Technology for Verification and Analy-

sis (ATVA’16), volume 9938 of Lecture Notes in Computer Science, pages

122–129. Springer, 2016.

BIBLIOGRAPHY 166

[53] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory

and Applications of Satisfiability Testing, 6th International Conference, SAT

2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Pa-

pers, pages 502–518, 2003.

[54] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not never”

revisited: On branching versus linear time temporal logic. J. ACM,

33:151–178, 1986.

[55] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking.

Form. Methods Syst. Des., 9:105–131, 1996.

[56] Limor Fix and Orna Grumberg. Verification of temporal properties. J. Log.

Comput., 6:343–361, 1996.

[57] Dov M. Gabbay and Amir Pnueli. A sound and complete deductive system

for CTL* verification. Logic Journal of the IGPL, 16:499–536, 2008.

[58] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems: An Approach to the State-Explosion Problem. Springer-Verlag New

York, Inc., 1996.

[59] Patrice Godefroid. Model checking for programming languages using

VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’97, pages 174–186. ACM,

1997.

[60] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.

McMillan. Abstractions from proofs. In Proceedings of the 31st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’04, pages 232–244. ACM, 2004.

[61] Hardi Hungar, Orna Grumberg, and Werner Damm. What if model checking

must be truly symbolic. In Proceedings of CHARME, pages 1–20. Springer-

Verlag, 1995.

BIBLIOGRAPHY 167

[62] C. Norris Ip and David L. Dill. Better verification through symmetry. Form.

Methods Syst. Des., 9:41–75, 1996.

[63] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar.

F-soft: Software verification platform. In Proceedings of the 17th Interna-

tional Conference on Computer Aided Verification, CAV’05, pages 301–306.

Springer-Verlag, 2005.

[64] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav

Ashar. Efficient SAT-based bounded model checking for software verifica-

tion. Theor. Comput. Sci., 404:256–274, 2008.

[65] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.

Surv., 41:21:1–21:54, 2009.

[66] Yonit Kesten and Amir Pnueli. A compositional approach to CTL* verifica-

tion. Theor. Comput. Sci., 331:397–428, 2005.

[67] Robert P. Kurshan. Computer-aided Verification of Coordinating Processes:

The Automata-theoretic Approach. Princeton University Press, 1994.

[68] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE

Trans. Software Eng., 3:125–143, 1977.

[69] Christof Löding. Methods for the transformation of ω-automata: Complexity

and connection to second order logic, 2007.

[70] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-

serving abstractions for the verification of concurrent systems. Form. Meth-

ods Syst. Des., 6:11–44, 1995.

[71] Stephen Magill, Josh Berdine, Edmund Clarke, and Byron Cook. Arithmetic

strengthening for shape analysis. In Proceedings of the 14th International

Conference on Static Analysis, SAS’07, pages 419–436. Springer-Verlag,

2007.

BIBLIOGRAPHY 168

[72] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic

numeric abstractions for heap-manipulating programs. In Proceedings of the

37th Annual Symposium on Principles of Programming Languages, POPL

’10, pages 211–222. ACM, 2010.

[73] Z Manna and Amir Pnueli. Verification of concurrent programs: A temporal

proof system. Technical report, Stanford, CA, USA, 1983.

[74] Zohar Manna and Amir Pnueli. How to cook a temporal proof system for

your pet language. In Proceedings of the 10th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, POPL ’83, pages

141–154. ACM, 1983.

[75] Zohar Manna and Amir Pnueli. Completing the temporal picture, 1991.

[76] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-

current Systems. Springer-Verlag New York, Inc., 1992.

[77] Kenneth L. McMillan. Lazy abstraction with interpolants. In Proceedings of

the 18th International Conference on Computer Aided Verification, CAV’06,

pages 123–136. Springer-Verlag, 2006.

[78] Leonardo M. de Moura, Harald Rueß, and Maria Sorea. Lazy theorem prov-

ing for bounded model checking over infinite domains. In Proceedings of the

18th International Conference on Automated Deduction, CADE-18, pages

438–455. Springer-Verlag, 2002.

[79] Madanlal Musuvathi and Dawson R. Engler. Model checking large net-

work protocol implementations. In Proceedings of the 1st Conference on

Symposium on Networked Systems Design and Implementation - Volume 1,

NSDI’04, pages 12–12. USENIX Association, 2004.

[80] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for sys-

tematic testing of multithreaded programs. In Proceedings of the 28th ACM

BIBLIOGRAPHY 169

SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’07, pages 446–455. ACM, 2007.

[81] Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic

modulo theories. In Proceedings of the 11th Asian Symposium on Program-

ming Languages and Systems - Volume 8301, pages 90–106. Springer-Verlag

New York, Inc., 2013.

[82] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL

and abstract DPLL modulo theories. In Proceedings of LPAR 2004, pages

36–50. Springer, 2004.

[83] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium

on Foundations of Computer Science, pages 46–57. IEEE, 1977.

[84] Amir Pnueli and Yonit Kesten. A deductive proof system for CTL*. In CON-

CUR 2002 — Concurrency Theory, pages 24–40. Springer Berlin Heidelberg,

2002.

[85] Andreas Podelski and Andrey Rybalchenko. Armc: The logical choice for

software model checking with abstraction refinement. In Proceedings of the

9th International Conference on Practical Aspects of Declarative Languages,

PADL’07, pages 245–259. Springer-Verlag, 2007.

[86] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in cesar. In Proceedings of the 5th CISP, pages 337–351.

Springer-Verlag, 1982.

[87] Reuben Rowe and James Brotherston. Automatic cyclic termination proofs

for recursive procedures in separation logic. In CPP, pages 53–65. ACM,

2017.

[88] Ulrich Schopp and Alex Simpson. Verifying temporal properties using ex-

plicit approximants: Completeness for context-free processes. In Proceed-

ings of FoSSaCS, pages 372–386. Springer, 2002.

BIBLIOGRAPHY 170

[89] João P. Marques Silva and Karem A. Sakallah. GRASP-a new search algo-

rithm for satisfiability. In Proceedings of the 1996 IEEE/ACM International

Conference on Computer-aided Design, ICCAD ’96, pages 220–227. IEEE

Computer Society, 1996.

[90] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. Smc: A symmetry-

based model checker for verification of safety and liveness properties. ACM

Trans. Softw. Eng. Methodol., 9:133–166, 2000.

[91] Christoph Sprenger and Mads Dam. On global induction mechanisms in a

µ-calculus with explicit approximations. RAIRO - Theoretical Informatics

and Applications - Informatique Thorique et Applications, 37(4):365–391,

2003.

[92] Christoph Sprenger and Mads Dam. On the structure of inductive reasoning:

circular and tree-shaped proofs in the µ-calculus. In Proceedings of FOS-

SACS 2003, volume 2620 of LNCS, pages 425–440. Springer-Verlag, 2003.

[93] Christopher Sprenger. Deductive Local Model Checking - On the Verification

of CTL* Properties of Infinite-State Reactive Systems. PhD thesis, Swiss

Federal Institute of Technology, 2000.

[94] Viktor Vafeiadis. Concurrent separation logic and operational semantics.

Electronic Notes in Theoretical Computer Science, 276:335 – 351, 2011.

[95] Antti Valmari. A stubborn attack on state explosion. Form. Methods Syst.

Des., 1:297–322, 1992.

[96] Moshe Y. Vardi. Verification of concurrent programs: the automata-theoretic

framework. Annals of Pure and Applied Logic, 51(1):79–98, 1991.

[97] Willem Visser and Howard Barringer. Practical CTL* model checking:

Should spin be extended? International Journal on Software Tools for Tech-

nology Transfer, 2(4):350–365, 2000.

BIBLIOGRAPHY 171

[98] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio

Lerda. Model checking programs. Automated Software Engg., 10:203–232,

2003.

[99] Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfi-

ability. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’05, pages 351–363. ACM,

2005.

[100] Eran Yahav, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Verifying

temporal heap properties specified via evolution logic. In In ESOP2003:

European Symp. on Programming, volume 2618 of LNCS, pages 204–222.

Springer, 2003.

[101] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron

Cook, Dino Distefano, and Peter O’Hearn. Scalable shape analysis for sys-

tems code. In Proceedings of the 20th International Conference on Computer

Aided Verification, CAV ’08, pages 385–398. Springer-Verlag, 2008.

	Introduction
	Temporal logic
	Model checking
	Deductive verification
	Current open problems in temporal verification

	Our proposal
	Separation logic
	Cyclic proofs

	Synopsis

	Background
	Programming language
	Memory state assertions.
	Temporal assertions.
	CTL assertions
	LTL assertions

	CTL Proof System
	CTL proof rules
	CTL cyclic proofs
	Soundness of CTL system
	Related work

	Adaptation to LTL
	LTL cyclic proofs
	Soundness of LTL system

	Fairness
	Fair program executions
	Fair CTL cyclic proof system
	Decidable soundness condition

	Fair LTL cyclic proof system

	Implementation
	Fundamentals
	Proof Rules

	Proof Search Algorithm
	Automated Soundness Check

	Experimental Results
	CTL cyclic proof system experiments
	LTL cyclic proof system experiments

	General Conclusions
	Contributions
	Future work

	Appendices
	Colophon
	Bibliography

