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RESEARCH ARTICLE

CO2 abatement goals for international shipping
Michael Traut a, Alice Larkin a, Kevin Andersona, Christophe McGladeb, Maria Sharmina a and
Tristan Smithb

aTyndall for Climate Change Research, University of Manchester, Manchester, UK; bUCL Energy Institute, London, UK

ABSTRACT
The Paris Agreement, which entered into force in 2016, sets the ambitious climate
change mitigation goal of limiting the global temperature increase to below 2°C
and ideally 1.5°C. This puts a severe constraint on the remaining global GHG
emissions budget. While international shipping is also a contributor to
anthropogenic GHG emissions, and CO2 in particular, it is not included in the Paris
Agreement. This article discusses how a share of a global CO2 budget over the
twenty-first century could be apportioned to international shipping, and, using a
range of future trade scenarios, explores the requisite cuts to the CO2 intensity of
shipping. The results demonstrate that, under a wide range of assumptions, existing
short-term levers of efficiency must be urgently exploited to achieve mitigation
commensurate with that required from the rest of the economy, with virtually full
decarbonization of international shipping required as early as before mid-century.

Key policy insights
. Regulatory action is key to ensuring the international shipping sector’s long-term

sustainability.
. For the shipping industry to deliver mitigation in line with the Paris Agreement,

virtually full decarbonization needs to be achieved.
. In the near term, immediate and rapid exploitation of available mitigation

measures is of critical importance.
. Any delay in the transition will increase the risk of stranded assets, or diminish the

chances of meeting the Paris Agreement’s temperature commitments.
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1. Introduction

While the Paris Agreement has entered into force, international shipping emissions are notably absent from it.
The half-century prior to the financial recession of 2007–2008 was a time of unprecedented growth in inter-
national trade, in terms of both value and volume, outstripping growth in global production of goods, gross
domestic product (GDP) and emissions (Le Quéré et al., 2017; World Bank, 2016; WTO, 2015). Reflecting increases
in shipping efficiency, CO2 emissions from international shipping have grown more slowly than trade, broadly in
line with global emissions, reaching 800 Mt in 2012, about 2.2% of the global total (Smith, Jalkanen et al., 2015),
and remaining roughly constant in subsequent years 2013 to 2015 (Olmer, Comer, Roy, Mao, & Rutherford,
2017). Forecasts project a further increase in both seaborne trade and CO2 emissions. Yet, besides an efficiency
standard for new-build ships, there is presently no global mechanism to control the sector’s CO2 emissions. This
raises the question of how emissions from international shipping can be reduced in line with the remaining
global CO2 budgets associated with the Paris Agreement’s goals of ‘Holding the increase in the global
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average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature
increase to 1.5°C’ (Paris Agreement, 2015; Article 2.1(a)).

Following a review of global, cumulative CO2 budgets associated with temperature outcomes (Section 2), the
article discusses how a global CO2 budget over the twenty-first century could be apportioned to international
shipping (Section 3). Using a range of future trade scenarios (presented in Section 4), we explore the requisite
cuts to the CO2 intensity of shipping (Section 5). A discussion is given in Section 6 and conclusions are presented
in Section 7.

2. Global, cumulative CO2 budgets

There is a near-linear relationship between cumulative CO2 emissions and the global temperature response by
the end of the century (Collins et al., 2013). Following the method outlined by Jones et al. (2013), the IPCC’s Fifth
Assessment Report has estimated remaining global CO2 emissions budgets from 2011 to 2100 commensurate
with a range of future temperature outcomes (Collins et al., 2013), using Representative Concentration Pathway
(RCP) scenario runs from 20 models: 15 from CMIP5, and 5 EMICs (Stocker et al., 2013). Emission budgets since
pre-industrial times are calculated for a given probability of staying below a given temperature goal, with the
probability defined as the fraction of models with a temperature rise below the goal at the time the budget is
used up; budgets from 2011 onwards are then calculated by subtracting the estimated emissions since pre-
industrial times until the beginning of 2011. Further subtracting historical emissions from 2011–2016 (Le
Quéré et al., 2017), yields remaining budgets from 2017 onwards.

For a 66% probability (as defined above, capturing only the variability within the set of climate models) of not
exceeding a 2°C increase of average global surface temperature above pre-industrial levels, the cumulative CO2

emissions budget from 2017 onwards is 750 GtCO2, for a 50% probability it is 1050 GtCO2, and for a 33% prob-
ability it is 1250 GtCO2 (Table 1).

By 2018 the world had already warmed by about 1°C (Morice, Kennedy, Rayner, & Jones, 20121); therefore, the
remaining budget for 1.5°C is much closer to the margin of the associated all time emissions budget. For a 66%
probability of not exceeding a 1.5°C temperature increase, the cumulative CO2 emissions budget from 2017
onwards is 150 GtCO2, for a 50% probability it is 300 GtCO2, and for a 33% probability it is 600 GtCO2 (Table 1).

Beyond the uncertainty captured by the variation between models in the ensemble, these numbers depend
on the definition of global average surface temperature (e.g. using either sea surface temperature or surface air
temperature over the oceans), and they are threshold exceedance budgets (TEB) rather than threshold avoid-
ance budgets (TAB).2 They also depend on assumptions about emissions of non-CO2 GHG, although Collins
et al. (2013) show that this dependence is small across the range of RCP scenarios. The numbers are also
subject to uncertainty in the observed temperature increase serving as the reference point. Arguing that the
temperature anomaly to date, as defined in and calculated by the models, is higher than the observed temp-
erature anomaly, and that the models have underestimated emissions to date, Millar et al. (2017) calculate
larger remaining budgets, for instance. At the other extreme, it is possible that GHG emissions to date have
already locked in warming beyond 1.5°C.

The budgets compare with current annual global CO2 emissions of around 41 Gt and include emissions from
deforestation and industrial processes. The following analysis is based on the budgets for a 50% probability of
not exceeding 2°C or 1.5°C, respectively. A higher probability would be preferable, in terms of avoiding climate

Table 1. Cumulative global CO2 budgets associated with a 2°C and 1.5°C temperature increase, respectively, from (including) 2017; global CO2

emissions in 2015 from fossil fuels and industrial processes (ffi), and land use (lu).

Global remaining CO2 budget from 2017 onwards [GtCO2]

Temperature rise Probability of staying below temperature rise

66% 50% 33%
1.5°C 150 300 600
2°C 750 1050 1250

Annual global CO2 emissions (2016)
Incl. ffi & lu 41
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risk; and it would further constrain the remaining budget, as indicated by the large uncertainty in specifying a
CO2 budget for a particular temperature rise.

3. CO2 emissions share for international shipping

Despite emissions from international shipping not being included explicitly within the Paris Agreement, the
Agreement’s temperature goals imply that total emissions from all sources, including international shipping,
need to reduce. Consequently, higher emissions from shipping imply deeper reductions from all other
sectors. Therefore, what role international shipping could play in the global mitigation challenge, and what
share of a global CO2 budget it could take up, are important questions (Anderson & Bows, 2012).

With international shipping activity occurring in international waters, it is difficult, both in principle and prac-
tice, to apportion shipping emissions to individual nations (Gilbert & Bows, 2012). To overcome this issue, emis-
sions from international shipping and aviation are not included in countries’ inventories but reported as
additional memos; and the Kyoto Protocol mandated its parties to work through the International Maritime
Organization (IMO) to reduce emissions from international shipping, and through the International Civil Aviation
Organization (ICAO) to reduce emissions from international aviation (Kyoto Protocol, 1997; Article 2.2). In order
to avoid the difficulties of applying mitigation measures to the two major international transport sectors, inter-
national shipping and aviation have not been explicitly included in the Paris Agreement. However, the question
of who is responsible for emissions is more complicated still for shipping than for aviation. In the latter case,
emissions from a flight may be split between the country of origin and the country of destination, and the avia-
tion sector’s GHG strategy, agreed at ICAO in 2016, discriminates between routes in order to apply the principle
of Common but Differentiated Responsibilities and Respective Capabilities (ICAO, 2016).

For comparison, however, consider the example of a container vessel owned by a Danish company, flying aMar-
shallese flag, chartered by a French shipping company, crewed mainly by Russians and Malaysians, that loads con-
tainers in Shanghai, offloading and then loading containers in Singapore, as well as in ports in many countries in
Northern Europe, making it difficult to apportion emissions from the voyage. Thus, a major barrier to progress at
the IMO has been the conflict between the principle of No More Favourable Treatment, which holds that all ships
be treated the sameway regardless of their flag state, and the concept of Common but Differentiated Responsibilities
and Respective Capabilities maintained in the UN Framework Convention on Climate Change (UNFCCC) and sub-
sequently the Paris Agreement (Kågeson, 2009). The international and mobile nature of international shipping
speaks for a global-level constraint on emissions, which is explicitly preferred by the industry (ICS, 2014). Despite
the merits of a global approach, there may still be scope for complementary action on the regional or national
level (Bows-Larkin, 2015; Doudnikoff, 2013; Gilbert & Bows, 2012); for example, France has enacted regulation
that requires ships transporting cargo or passengers to or from French ports to disclose their fuel consumption
and associated CO2 emissions (Ministry of Ecology, Sustainable Development, Transport and Housing, 2011). Sub-
sequently, the EU has legislated a Monitoring, Reporting and Verification (MRV) scheme, which requires ships
calling on EU ports to report their CO2 emissions for the full year (EU, 2015). In proposing the scheme, the EU
expressed its preference for a global scheme, but in the absence of one, moved ahead unilaterally (EC, 2013).

In April 2016, at the 69th meeting of the IMO’s Marine Environment Protection Committee (MEPC), the Inter-
national Chamber of Shipping (ICS) argued for an ‘Intended IMO Determined Contribution’, in analogy to the
Nationally Determined Contributions (NDCs) in the Paris Agreement (ICS, 2016). Addressing the same issue,
some IMO member states have called on the IMO to define a ‘fair share’ for the international shipping sector
to contribute to GHG mitigation efforts (Belgium et al., 2016). At MEPC 70 in October 2016, the IMO approved
a roadmap for developing an ‘IMO strategy’ for GHG reductions with a view to adoption in 2023 (IMO, 2016). The
wide range of positions on the issue submitted to MEPC 71 and 72 shows how difficult it will be to find agree-
ment on the right ‘level of ambition’. A number of considerations may play into the debate. For instance, the
Paris Agreement holds that countries set their mitigation ambition according to their ‘common but differen-
tiated responsibilities and respective capabilities, in the light of different national circumstances’; parts of the
shipping industry have argued for the sector’s limited responsibility and capabilities, claiming, with respect
to the concept of responsibility, a ‘vital role’ for shipping in serving developing economies and, with respect
to capability, that shipping has less access to decarbonization measures than other sectors (ICS, 2016).
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Ultimately, any consensus to emerge will have to result from a political process, negotiating between the
interests of all the stakeholders involved. Politics is often called the art of the possible. This article does not
pre-empt the political process, or anticipate what may be possible, but informs the debate with a complemen-
tary, and crucially important perspective.

The following analysis is based on the assumption that the international shipping share of the remaining CO2

budget is proportionate to the sector’s current share of global emissions of 2.2%. There are uncertainties associ-
ated with both estimates of global and international shipping emissions. Perhaps more importantly, there are
arguments on both sides – for shipping to claim a higher or a lower share of the remaining emissions
budget, respectively. Higher emissions from the sector would imply that international shipping increases its
share of global emissions, with other sectors achieving relatively deeper cuts to their emissions, or a higher
global temperature increase.

4. Future demand for sea transport

The level of mitigation that shipping must undergo to keep its emissions within a given budget is subject, in
large part, to assumptions about how demand for sea transport will develop in the future. Therefore, to describe
how CO2 intensity may need to reduce in line with holding the global temperature increase below 2°C and 1.5°C,
assumptions about future demand for sea transport, in terms of transport work in tonne-kilometres, are
required.

Forecasts based on rigorous economic models often have short time horizons of a few years. The longest
forecasts based on economic modelling for the shipping sector, ranging from 2018 to 2030 or 2035, are pro-
duced by market intelligence companies.

Projections and scenarios with a longer time horizon, and of relevance to the shipping sector, can be found in
the fields of energy and climate change. For example, the International Energy Agency’s 2015 World Energy
Outlook extends to 2040 (IEA, 2015). Applying the IPCC’s Special Report on Emission Scenarios (SRES) (Nakiće-
nović et al., 2000), Eyring, Köhler, Lauer, and Lemper (2005) used a linear fit to establish the relationship between
world waterborne trade and world GDP to calculate a set of four future trade scenarios based on constant future
GDP growth rates. Mangset, Acciaro, and Eide (2011) took this approach one step further by using regional pro-
jections of GDP growth from the SRES scenarios and employing an economic model to map regionally differ-
entiated economic growth to patterns of trade (in 2020 and 2030). Finally, in a study to estimate the fleet-
wide emissions reduction potential (as a function of cost per tonne of CO2 emitted), a heuristic approach3 to
forecasting fleet growth over a 20-year horizon was taken (Eide, Longva, Hoffmann, Endresen, & Dalsøren, 2011).

This article uses a range of demand scenarios from the 3rd IMO GHG Study (Smith, Jalkanen et al., 2015)
based on the Representative Concentration Pathways (RCP), which provide a range of radiative forcing trajec-
tories over the twenty-first century (van Vuuren et al., 2011), and the complementary Shared Socio-Economic
Pathways (SSP), that form a set of five contrasting narratives of future global socio-economic development
(O’Neill et al., 2015). Using variables from combinations of the RCPs and the SSPs, the 3rd IMO GHG Study
created a range of future demand scenarios for shipping (Smith, Jalkanen et al., 2015). These cover the long
timeframes relevant to climate change, and a range broadly in line with other publicly available scenarios or
forecasts (cf. Figure 1).

In 2012, the three cargo types considered – container, wet and dry bulk – accounted for 69% of total emis-
sions from international shipping (Smith, Jalkanen et al., 2015). Containers have relatively high emissions in
terms of CO2 per tonne-kilometre and are forecasted to experience higher growth rates than the bulk
markets. While the three cargo types do not cover all international shipping activity, they are suited to
explore future growth in sea transport, and the dynamics between different ship types in relation to the emis-
sions reduction challenge.

5. Requisite cuts to CO2 intensity

Together, a demand scenario and a cumulative CO2 budget define the challenge for the international shipping
sector under Paris-based mitigation constraints. To explore the required changes in CO2 intensity (measured as
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the amount of CO2 emitted per unit of transport work) and the consequent timeframe for a transition away from
carbon-intensive fuels, the analysis assumes, in the first instance, a constant year-on-year CO2 intensity improve-
ment. In practice, the specific pathway will depend on the mix of mitigation measures. For example, fleet-wide
savings from low carbon new-builds will depend on the fleet replacement rate whereas retrofit or operational
measures, such as slow steaming, can deliver their impact in the very near term. In calculating the annual
reduction rate for the budgets outlined earlier, demand for sea transport is assumed to remain constant
from 2050 onwards. This assumption is justified by the tightly constrained emissions space: other trajectories
are possible in principle but do not significantly change the conclusions.

The CO2 emission reduction rate r required to lower total emissions so as to stay within budget may be deter-
mined by setting

∑
En equal to the remaining budget, where En = Wn · EEOIn, with En the CO2 emissions from

international shipping in year n, and Wn the total demand for transport work; EEOIn = EEOIbaseline · (1− r)n−2019

is the average CO2 intensity, determined by its baseline value and the reduction rate r. (On the ship level, the indus-
try refers to the Energy Efficiency Operational Indicator, EEOI, a measure of CO2 intensity. The term is used more
broadly in this article to denote average CO2 intensity.) Figure 2 shows the CO2 intensity of international shipping
as it reduces from 2020 onwards, for the range of demand scenarios, under the central budget for 1.5°C and 2°C,
respectively. For comparison, CO2 intensity is also shown in the case of no demand growth.

If the shipping sector is to achieve the same proportional reductions as all other sectors on average, the CO2

intensity reduction rate is 8.0% p.a., in the 2°C case, for the central demand scenario (6.7% and 8.8% in the low
and high demand scenarios, respectively). For a global temperature increase of 1.5°C the reduction rate rises to
23.5% p.a. (with a range of 22.5–24.3%).

However, without a measure to control and reduce emissions from international shipping, it appears plaus-
ible that stringent reductions in CO2 intensity are only realized later. For the central demand scenario, Figure 3
shows the respective trajectories for start dates 2023, in which case the average CO2 intensity is
EEOIn = EEOIbaseline · (1− r)n−2022, and 2030, with EEOIn = EEOIbaseline · (1− r)n−2029. By the latter date, the
budget for 1.5°C is already exhausted.

Figure 3 also shows two alternative scenarios, one in which short term efficiency levers are exploited along-
side other abatement measures from 2023, to effect an immediate reduction in emissions by 25%, subsequently
allowing for slower progress towards decarbonization while remaining within the same budget; and in the
other, CO2 intensity reduces linearly over time. This means that emissions reduce slower initially but reductions

Figure 1. Scenarios of future demand for sea transport. Left: High, central, and low demand scenarios (Smith, Jalkanen et al., 2015); historical data
of transport demand in tonne-kilometres (UNCTAD, 2015), international trade in tonnes (data from (WTO, 2015)), and GDP (data: UNCTAD, 2016,
gross domestic product: total, constant (2005) prices, annual, 1970–2014); a market forecast of transport demand in tonne-kilometres [data: Inter-
national Chamber of Shipping: Shipping, World Trade and the Reduction of CO2 Emissions], and a suite of future scenarios of transport demand in
tonnes from the climate change literature (Eyring et al., 2005). Right: Demand for dry bulk, wet bulk, and unitized cargo in high, central, and low
growth scenarios (Smith, Jalkanen et al., 2015).
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in absolute terms do not slow down over time, with emissions reaching absolute zero in 2045 (2°C) or almost
immediately, in 2025 (1.5°C), respectively.

Following the logic of the IMO demand scenarios and disaggregating into unitized, dry, and wet bulk cargoes
only (Figure 1), the challenge is greater still. Future demand growth is anticipated to be largest for unitized
cargo, the sector currently with the highest CO2 intensity. The average EEOI in 2012 is estimated as
12.1 gCO2/tonne-kilometre for unitized cargo; 5.6 gCO2/tonne-kilometre for dry bulk; and 5.8 gCO2/tonne-kilo-
metre for wet bulk. In this case En =

∑

i
Wn,i · EEOIn,i , summing over years n and cargo categories i. These baseline

(year 2012) values of EEOI are the ratio of: CO2 emissions in 2012 (for containers, oil tankers, and dry and refriger-
ated bulkers) (Smith, Jalkanen et al., 2015); and the transport work supplied in 2012, by the same ship types

Figure 2. Average CO2 intensity, reducing by constant year-on-year factor, from 2020 onwards, in 2°C scenario (less steep) and 1.5°C (steeper
reductions). Shaded areas cover range from low to high demand growth scenario, with central demand scenarios shown as solid lines. Dotted
lines show case of zero demand growth.

Figure 3. Average CO2 intensity, in 2°C scenario (less steep) and 1.5°C (steeper reductions), for central demand scenario. Emissions reduce by
constant year-on-year factor, from 2020, 2023, or 2030 onwards. In the fourth case, there is an additional, immediate one-time reduction of CO2

intensity by 25% in 2023. Finally, shaded lines show a scenario of CO2 reducing linearly over time, amounting to comparatively lower reduction
rates earlier, and higher reduction rates later. Each set of five cases amounts to the same total budget from 2017 onwards, with the exception of
mitigation from 2030, by when the budget for 1.5°C will already be exhausted.
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(Smith, Prakash, Aldous, & Krammer, 2015). Here, too, uncertainties apply that are hard to quantify. Nonetheless,
explicit numbers, in terms of gCO2 emitted per tonne-kilometre, are instructive. The results, however, rest on the
relative reduction rates, which are not subject to these uncertainties (except for the uncertainty in the ratios
between the average EEOI values for the three respective cargo categories). Looking forward from 2020, if all
ship types achieve the same proportional reductions, in the central demand scenario, the CO2 intensity of
the sector must reduce each year by 8.6% in the 2°C case, and 24.2% in the 1.5°C case. By 2030, this analysis
suggests the average EEOI falls to 4.5 gCO2/tonne-kilometre for container carriers, 2.1 gCO2/tonne-kilometre
for dry bulk carriers, and 2.2 gCO2/tonne-kilometre for wet bulk carriers in the 2°C scenario (0.6, 0.3, and
0.3 gCO2/tonne-kilometre, respectively, in the 1.5°C scenario), as shown in Figure 4.

Table 2 presents corresponding numbers in the year 2050. Even under the least challenging assumptions
considered, required cuts to CO2 intensity are deeper than the future potential envisioned by the industry.
The 2nd IMO GHG Study estimates the potential for improvement at 2.1–3.3% p.a. between 2009–2050
(Buhaug et al., 2009); the 3rd IMO GHG Study estimates 2.5% p.a., excluding speed effects and alternative
fuels (Smith, Jalkanen et al., 2015); and a study explicitly considering alternative fuels estimates up to 4.3%
under the most optimistic set of assumptions (Eide, Chryssakis, & Endresen, 2013). Over the timeframe of
decades, the 2nd IMO GHG Study has estimated historical reduction rates of up to 2–3% p.a. (Buhaug et al.,
2009), though in the recent past larger reductions in CO2 intensity have been reported in parts of the container
market (Acciaro & McKinnon, 2015).

6. Discussion

Greenhouse gas emissions from shipping can be cut by reducing either shipping activity (i.e. demand), or its CO2

intensity. Clearly, the latter can be considered preferable from the industry’s perspective. Therefore, this study

Figure 4. Average CO2 emissions per unit of transport work, by ship type, in 2°C scenario (red) and 1.5°C (blue), under central demand growth
scenario.

Table 2. CO2 intensity reduction rates required to reconcile demand for sea transport with climate-constrained emissions budgets, and
benchmark values of CO2 emissions per unit of transport work, by ship type, for central demand scenario.

Average gCO2/t-km by ship type

To avoid 1.5°C warming To avoid 2°C warming

Reduction rate p.a. from 2020 2030 2050 Reduction rate p.a. from 2020 2030 2050

Container Carrier
8.6%

4.5 0.7
24.2%

0.6 0.0
Dry bulk Carrier 2.1 0.3 0.3 0.0
Wet Bulk Carrier 2.2 0.4 0.3 0.0

1072 M. TRAUT ET AL.



focuses on CO2 intensity while noting that demand may also be affected by measures aimed at reducing CO2

intensity, or even actively targeted in order to reduce total emissions.
To achieve the deep intensity cuts that the preceding analysis shows are necessary for the sector to align with

the Paris Agreement clearly amounts to a formidable task. There exist short-term levers of CO2 intensity that may
be exploited, including changes to speed, ship size and utilization, available retro-fit technologies, and other
efficiency measures (Eide et al., 2013; Eide, Endresen, Skjong, Longva, & Alvik, 2009). In the longer term, virtually
full decarbonization is needed (cf. Figure 4), requiring fleet-wide deployment of near-zero carbon ships. This
implies a fundamental change to the system in a very short timeframe, including a switch from fossil fuels to
alternative energy sources.

While some solutions exist in niche markets, there are no technological solutions readily available to be
implemented economically, and at scale. Many alternative fuels may be nearly CO2 emission free in principle
but in practice need to overcome a number of barriers, often upstream in their life-cycle, to fulfil this potential
(Gilbert et al., 2018). Wind propulsion, making use of an emission free, and freely available energy source, has
been identified as one potential piece of the puzzle (Eide et al., 2011; Traut et al., 2014), and in fact was
shown to deliver savings during the 1980s oil crisis (MacAlister, 1985), but has seen only few more recent
demonstration projects, leaving a key barrier to wide-spread uptake in place (Rehmatulla, Parker, Smith, &
Stulgis, 2017). It is difficult, if not impossible, to anticipate which solutions will prove most fruitful. Set
against the scale of the mitigation challenge and fledgling development of truly zero or very low carbon
alternatives for the sector, serious RD&D efforts are of critical importance. Given the long lifetimes and
cost of both ships and the wider marine fuel infrastructure, any delay in implementing low carbon technol-
ogies will increase the risk of stranded assets, or diminish the chances of meeting the Paris Agreement’s 2°C
and 1.5°C commitments.

7. Conclusion

As the international shipping sector is negotiating its GHG strategy at the IMO, what ‘level of ambition’ to include
in the strategy to be finalised in 2023 is one of the main topics of debate. The preceding analysis reveals the
scale of reductions in CO2 intensity implied by the headline commitments of the Paris Agreement if the
sector aspires to achieve the same emission reduction rates as all other sectors on average.

While it is conceivable that shipping be allocated (or assume in practice) an increasing share of global emis-
sions, it is worth noting that other sectors’ ‘levels of ambition’ are generally not on track for keeping the global
temperature increase below 2°C, let alone 1.5°C (Kuramochi et al., 2018), as is also indicated by countries’ pub-
lished NDCs (Rogelj et al., 2016). Moreover, the international aviation sector’s strategy foresees its emissions con-
tinuing to increase (ICAO, 2016). Ultimately, apportioning a ‘fair’ share of the global mitigation burden to
international shipping (or other sectors) inevitably relies on subjective judgements, and the outcome can
only be determined by a political process involving the various stakeholders. The mitigation rates implied by
the Paris Agreement are subject to uncertainty in, for example, the observed global temperature increase
since pre-industrial times, the temperature response to future GHG emissions, and future growth in demand.
However, and not withstanding these uncertainties, the core conclusions drawn here for international shipping
remain essentially unchanged.

For the shipping industry to deliver mitigation in line with the Paris Agreement, virtually full decarbonization
needs to be achieved. In the near term, immediate and rapid exploitation of available mitigation measures is of
critical importance, as any delay in the transition will make the challenge much harder and, with a view to the
Paris Agreement’s ambitious temperature goals, potentially infeasible.

Clearly, any regulatory and/or financial action to pursue mitigation will have to adjudicate between a range of
interests, with the mitigation challenge posing both risks and opportunities. It is therefore paramount to begin
in earnest a debate on how to shape the best possible response. However, the time for such debate is short, and
ways towards meaningful, absolute and sustained emissions reductions need to be found soon, in the interest of
both the shipping industry’s sustainability and our chances of achieving the commitments enshrined in the Paris
Agreement.
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Notes

1. Data from https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html, downloaded 28 January 2018.
2. A threshold exceedance budget (TEB) is defined as the amount of cumulative emissions until the time when the temperature

response reaches a given threshold, with a given probability. A threshold avoidance budget (TAB) is defined as the amount of
cumulative emissions of a scenario that stays below the threshold, with a given probability. To calculate a TAB, a timeframe
needs to be defined. If, for example, the timeframe is the time until peak warming, then both are the same. But in contrast with
a TAB, a TEB can also be calculated from a scenario that exceeds the given temperature threshold.

3. Based on expert judgment and information about order books and the general economic outlook, growth rates are modelled
to first decline and then return to a historical ‘normal’.
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