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Abstract We introduce a simple single-band receiver clock jump and cycle slip (CJCS) 

detection and correction algorithm suitable for a standalone single-frequency Global 

Navigation Satellite System (GNSS) receiver. The real-time algorithm involves using an 

adaptive time differencing technique for the generation of adaptive differenced sequences of 

single-frequency code and phase observations. The sequences are used for determining 

thresholds and for the detection and determination of a receiver clock jump and cycle slips. 

The cycle slip values are fixed by rounding-up float values obtained via weighted least 

squares adjustment, following the elimination of the receiver’s high-order clock drift at every 

epoch. The performance of this new technique was investigated with simulated cycle slip 

values and with different types of receiver clock jumps at millisecond and microsecond 

levels. It achieved 100% detection and correction of all types of receiver clock jumps; 

between 97 to 100% cycle slip detection; and between 96.9 to 100% cycle slip correction 

including cycle slips of ±1 cycle, for different rates of observations acquired by different 

fixed and mobile GNSS receivers. The algorithm thus facilitates precise timing and 

positioning on standalone low-cost single-frequency GNSS devices. 
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Introduction 

Global Navigation Satellite System (GNSS) receivers generate code and phase observations 

that can be affected by clock jumps and cycle slips (CJCS). If the CJCS problem is not 

effectively dealt with, it can result in reduced accuracy, prolonged convergence times and 

                                                           
1 National Space Research and Development Agency (NASRDA), Nigeria; and Department of Electronic and 

Information Engineering, Landmark University, Omu-aran, Nigeria. 

2 Space Geodesy and Navigation Laboratory, Dept. of Civil, Environmental and Geomatic Engineering, 

University College London, United Kingdom.   Email: s.bhattarai@ucl.ac.uk 

3 Space Geodesy and Navigation Laboratory, Dept. of Civil, Environmental and Geomatic Engineering, 

University College London, United Kingdom. 

 

 



unwanted frequent re-initializations, i.e., an overall reduced level of performance. Here, the 

authors present a new algorithm for dealing with this CJCS problem on a single-frequency 

GNSS receiver.  

Several single-frequency cycle slip correction methods, which are either code-phase 

based, phase-only based or doppler-inclusive based, exist. A code-phase method is presented 

in Fath-Allah (2010). This method is limited by the usual code-level errors that often prevent 

the detection of small cycle slip values. Phase-only methods found in Jia and Wu (2001) and 

Cosser et al. (2004) are based on 3rd-order differencing or fitting, which have no means of 

detecting and eliminating receiver clock jumps or achieving reliable detection of cycle slips 

in data sets with low observation rates. The Doppler-inclusive methods, such as found in Ren 

et al. (2011), combine Doppler measurements with phase and/or code observations. One 

drawback with the Doppler-inclusive technique is the inability to detect receiver clock jumps, 

plus the fact that not all single-frequency GNSS chip sets provide Doppler measurements.  

Known single-frequency techniques for addressing clock jumps are found in Momoh 

and Ziebart (2012), which involves phase differencing and code-based thresholding; and in 

Deo and El-Mowafy (2015), which is based on extrapolation and spline fitting of combined 

code and phase observations. These two methods are suitable for homogeneous clock jumps 

where receiver clock jumps are common to both the code and phase observations, but not for 

heterogeneous clock jumps where clock jumps manifest only on either the code or phase 

observation.  The new CJCS algorithm presented uses single-frequency code and phase 

measurements from a standalone single-frequency GNSS receiver such as found in most low-

cost GNSS chipsets.   

 

Phase and Code Observation Models 

As in Momoh and Ziebart (2012), we denote a GPS L1 receiver’s raw code measurement as 

P; the accumulated carrier phase in cycles as Φ; and the functional models for P and the 

carrier phase observations in meters, ψ, as  
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As such, λ is the wavelength given as λ = c ⁄ f, where c = 299792458 m/sec is the speed of 

light; rs is the true geometric range between a receiver and satellite s, in meters; δts and δtr 

are respectively the satellite and receiver clock offsets from the GPS system time in seconds; 

Ts is the tropospheric delay in meters; Is is the f − dependent ionospheric delay in meters; and 

So
s is satellite s orbital position error in the receiver-satellite direction, in meters. Ns is the 

carrier phase integer ambiguity in cycles; dr, br, and ds,bs are the receiver and satellite 

hardware delays in meters;  and sm  and s

P
m  are the errors due to multipath and noise in the 

phase and code observations, respectively.  

 

Types of Receiver Clock Jumps  

Different types of receiver clock jumps, and at different jump magnitudes, exist for different 

receivers (Guo and Zhang 2014). The clock jump on observations can be classified into three 

types. Type 1 is indicated by a jump in the observed satellites’ code observations only; Type 

2 is indicated by a jump in the observed satellites’ phase observations only, and Type 3 is 

indicated by jumps in both the code and phase observations of all observed satellites. The 

effect or manifestation of a clock jump on the observations is either heterogeneous, in the 

case of Types 1 and 2; or homogeneous, in the case of Type 3.  

     The clock jump can be an integer number of either a microsecond-level jump or a 

millisecond-level jump. The jump type and magnitude are usually unknown to users, 

manifesting differently in different receivers. 

 

Impacts of Receiver Clock Jump and Cycle Slip 

In line with Kim and Langley (2002), the contribution in a unit of distance, caused by a clock 

jump at epoch t, can be expressed as 

 
.

( ) s

r r rD t c        (3) 

where ( )rD t  is the change in the observed code and/or phase observation in meters; r  is 

the value of the clock jump; 
s  is the range rate of the true geometric range between a 

receiver and s; and c is the speed of light. Compared to the rc term that is large and common 

across all observed satellites, the 
.

s

r
   term is negligibly small and different for each 



satellite. Thus, a clock jump contribution can be sufficiently represented and simulated by 

adding only the 
r

c  term to (1) and (2). 

On the occurrence of a cycle slip at t, the integer ambiguity changes from ( 1)
s

N t   to 

( ) ( 1)
s s s

N t N t N    , where 
s

N  is the cycle slip magnitude that could be an  integer value 

from 1 to millions of cycles (de Lacey et al. 2011). Thus, considering clock jumps and cycle 

slips, the modified functional models for P and ψ become:  

( ) ( )s s r s s s s r s s

r o PP t r c t c t T I d d S m                    (4)        

  

      ( ) ( )s r s s s r s s s s

r or c t c t T I b b N N S m                       (5)              

A homogenous clock jump would not degrade a positioning solution, but it would be 

necessary, in real time, to detect and correct homogenous clock jumps for receiver clock 

modeling and prediction (Weinbach and Schon 2011; Deo and El-Mowafy 2015). 

Heterogeneous clock jumps can degrade positioning significantly.  

 

Adaptive Time Differencing  

A sequence,
1 2

[ , , .., ]
n

X x x x , which contains phase or code observations from consecutive 

epochs, will sometimes include observations that are affected by clock jumps and/or cycle 

slips. The Adaptive Time Differencing (ATD) technique introduced in Momoh (2013) aids 

the detection of clock jumps and cycle slips in such sequences. To observe how the ATD 

technique works, consider Table 1, where we show mean values and standard deviations for 

30-epoch-length sequences of raw phase observables and their differenced sequences (with 

increasing order of differencing, d), obtained for different GPS satellites observed with 

different receivers.  

 

Table 1 Statistics of phase sequences and their ADSs obtained from receivers with different 

observation rates. 

MBAR, PRN28 u-blox, PRN9 Novatel, PRN14 diff 

s s  



 

τ = 30 seconds τ = 1 second τ = 0.1 second order 

σ 

(m/τd)  

μ 

(m/τd) 

σ 

(m/τd) 

μ 

(m/τd) 

σ 

(m/τd) 

μ 

(m/τd) 

d 

1.20E5 2.14E7 1.13E3 2.0E7 3.22E2 2.2E7 0 

6.30E2 1.41E4 9.21E-1 1.3E2 2.69E-3 3.7E1 1 

2.53E0 7.69E1 3.61E-2 1.1E-1 3.85E-3 -1.4E-5 2 

1.74E-1 -3.27E-1 5.36E-2 2.5E-3 6.64E-3 2.6E-4 3 

2.80E-1 -9.70E-3 9.32E-2 -1.2E-3 11.6E-3 9.5E-4 4 

4.87E-1 2.38E-4 17.3E-2 -4.7E-9 21.3E-3 2.5E-4 5 

 

The symbol   denotes the observation epoch interval in seconds and the statistical 

computations exclude the last index (i.e., the last epoch) values of the sequences. Table 1 

shows the decreasing 1-sigma trend prior to the transition-sigma values (in bold), and the 

increasing 1-sigma trend thereafter. The three differencing orders: 4, 3 and 2 (indicated in 

bold), are the respective optimum orders of differencing  for the 1/30, 1 and 10 Hz data sets 

since they are the orders  corresponding to  the transition-sigma values. The corresponding 

noise-like differenced sequence at an optimum d is here referred to as an Adaptive 

Differenced Sequence (ADS). 

Following from Momoh (2013), the phase ADS value is given as: 

s s sd d ds r s sc t N m                (6) 

while the code ADS value is given  as: 

  s s sd d ds r s

PP c t m    (7) 

where 
s

N and 
r

s
d t denote a cycle slip and the combined receiver high-order clock drift and 

jump, respectively, 
s

s

Pd m  and 
s

s
d m are the levels of the differenced code and phase noise, 

and 
s

s

Pd m 
s

s
d m .  



      Fig. 1 shows the phase ADSs obtained from the first 30-epoch-length 1Hz raw phase 

observations from PRNs 28, 8, 11, 13, 4 and 17, simultaneously observed at static station 

MBAR, on day 170 of 2009. The same 3
s

d   resulted for all six satellites. To depict slip 

signatures of small cycle slip values on an ADS, cycle slips magnitudes of +1, +2 and -1 

cycles were simulated at the last epoch for PRNs 28, 8 and 11 respectively. We presume the 

exhibited correlation is mainly due to the common high-order receiver clock drift, s
d r

clk
c t  

.  

 

 

Fig. 1 Plots of phase ADSs obtained from simultaneously observed PRNs by a single 

receiver. The standard deviations of the ADSs, in units of m/τ3, are 0.064, 0.067, 0.065, 

0.066, 0.065 and 0.066 for PRNs 28, 8, 11, 13, 4 and 17, respectively.    

      Fig. 2 shows the time series of estimated high-order receiver clock drift values for a u-

blox receiver driven by a crystal oscillator; and for the AMC2 reference station receiver (at 

Colorado, USA) that is driven by an external hydrogen maser, which is an atomic frequency 

standard that ensures high frequency stability. The range of values of 
clk
  for the quartz clock 

(
clk

 = 2.82 cm/s3, 3
s

d  ) is larger than that for the atomic clock (
clk

 =1.9 mm/s3, 3
s

d  ). For 

lower rate data sets (i.e. where 30  s) the optimal differencing order is higher, i.e.  3
s

d  , 

and the resulting phase ADSs usually become uncorrelated and unsuitable for estimating 
clk
  

or for detecting small-valued cycle slips.  

 

 



 

 

 

 

Fig. 2 Plots of the estimated high-order receiver clock drifts with τ =1 second for u-blox (top) 

and AMC2 (bottom) 

 

Receiver Clock Jump and Cycle Slip Detection 

The detection procedure of the CJCS algorithm is presented in the following steps: 

(a) For each of the N observed satellites at t, obtain the code and phase M-length sequences, 

each sequence being a time series of CJCS-free observations from the last M-1 epochs, and 

the current epoch’s observation. For reliable statistical inference, M should be between 15 

and 30 consecutive epochs.   

(b) Perform ATD on all phase and code sequences. Determine the optimum order of 

differencing for each sequence and generate the phase and code ADSs.  The optimum order is 

the arithmetic mode of orders of differencing of the phase sequences.  



(c) From each ADS, extract the last value. Use the extracted values to populate two row 

vectors, V


 and,
P

V , both of length N, which contain extracted values from the phase and code 

ADSs, respectively.  Excluding the last values, obtain the 1-sigma 
s


   and 

s

P
  values for each 

phase and code ADS, respectively. Set an epoch-specific threshold value, 
d

T , for phase cycle 

slip detection as  

  d s clk clk
T d

 
     (8) 

where the almost zero-value 
clk

 , and  
clk

 , are the mean and standard deviation of the 

corresponding M -length time series of 
clk
 . 

 (d) With V


, generate the relative-difference matrix, 
D

R , whose ( , )m n  index contains the 

absolute value of the difference between the 
th

m  and 
thn  values of V


, for each 1, 2, ..,m N  

and 1, 2, ..,n N .. As an example, suppose we use the ADSs for PRNs 28, 8, 11, 13, 4 and 17, 

as shown in Fig. 1. In this case, V


 and
D

R  are: 

 
0.074

0.260

0.297

0.121

0.110

0.115

V











 
 
 
 
 
 
 
 
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0 0.186 0.371 0.195 0.184 0.189

0 0.557 0.381 0.371 0.375

0 0.176 0.187 0.182

0 0.011 0.006

0 0.005

0

D
R 

 
 
 
 
 
 
 
 
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where the values in rows 1,2,3,4,5 and 6 of V


 relate to the PRNs 28, 8, 11, 13, 4 and 17 

respectively. 

(e) If the maximum value in  
D

R  is greater than or equal to 0.5λ, i.e. 
max

0.5
D

R  , we suspect 

that at least one cycle slip satellite exists, otherwise we assume there are none. If a cycle slip 

is suspected, we find all entries where ( , ) 0.5
D

R m n   (i.e. ≥0.0951 in our example), then add 

a +1 count to both satellite m and n, and use the final count to populate a slip count vector, S.  

In our example,  [5,5,5,3,3,3]S  indicating a count of 5 for PRNs 28, 8 and 11, and a count of 

3 for PRNs 13, 4 and 17.  



 

(f) When cycle slip values among the slipped satellites are unique, the maximum entry value 

in S  is 1N  , and each of the entries is either the maximum or the minimum value.  The 

minimum value indicates the number of slipped satellites, which are the satellites with the 

maximum-value entries. Thus, [5,5,5,3,3,3]S   indicates the 3 cycle-slipped satellites PRN 

28, 8, and 11. 

(g) Other combinations of entry values, such as [5, 4, 4,3, 2,3,.., 4]S   occur when the cycle slip 

values are not unique, i.e. two or more satellites have the same cycle slip value. In such cases, 

the values in S  would range from a minimum value,  , to a maximum value, 1N   , and 

the slipped satellites are detected in two steps. First, we identify , and collate the satellites 

that correspond to the   maximum values in S  as slipped satellites. As an example, if 

[5, 4, 4,3, 2,3]S   for N = 6, then  = 2 and   = 5, then the three satellites corresponding to 

the 5, 4, 4 entry values are selected as slipped satellites. The second step involves comparing 

the absolute value of each of the values in V


 with the current epoch’s computed threshold 
d

T . 

A cycle slip is suspected on the 
th

k  satellite if ( )
d

V k T


 , for 1,2,..,k N . This step provides 

some more slipped satellites. Thus, the suspected slipped satellites are the combined satellites 

obtained from these two steps. 

(h) When the S  vector contains only maximum value entries, such as [ , , ,.., ]S      , it 

indicates that all satellites, except any that may have ( )
d

V k T


  for 1,2,..,k N , have cycle 

slips. When the vector has at least one zero value entry, it is presumed that there are no cycle 

slip satellites.  

(i) Having identified the cycle-slipped satellites, the remaining K  non-slipped satellites’ 

observables in V


 are then used for testing for a phase clock jump. When no satellite indicates 

cycle slip or for the rare situation when all satellites indicate cycle slips  K N  and all N  

values in V


 are used in the phase clock jump detection. For code observations, all N  values 

in 
P

V  are used for code clock jump detection.  

(j) Fixed thresholds are set for clock jump detection and validation. A clock jump detection 

threshold, 
6

0.75 10
th

D c


   m; and a tolerance threshold, 0.25
th

T  µs for microsecond-level 

and 
3

0.25 10
th

T


 ms for millisecond-level jumps, respectively, are used. Thus, a clock jump 

is detected on the phase and code using  



 1, ( )
( ) , 1, 2,..,

0,

th
if V k D

Jump k k K
otherwise






 




 (9) 

and 

 1, ( )
( ) , 1, 2,..,

0,

P th

P

if V k D
Jump k k N

otherwise


 




 (10) 

respectively, with *  denoting the subscript   or P . 
*
( ) 1Jump k    indicate detection of clock 

jump on the  
th

k  satellite. For every
*
( ) 1Jump k  , we obtain the corresponding 

*
( )V k   

observable as 
* *

( ) ( )
d

J k V k . Thus, we can have detected clock jump observable vectors, 

*
( )

d
J k  .  

 

Validation and Determination of Clock Jumps 

The validation and determination of a clock jump value follow thus:  

     (i) First, we obtain the integer value 
6

* *
{( ) ( ) / ( 10 )}round Jz k k c


  ,  signifying the rounding-

up of {.} to an integer. If 
*
( ) 999z k  , this indicates a millisecond-level jump. In that case, 

*
( )z k is recomputed as 

3

* *
{( ) ( ) / ( 10 )}round Jz k k c


  , for all observables in 

*
( )

d
J k .  

    (ii) Each of the detected clock jump observables in 
*

( )
d

J k  are then validated by checking 

the remainder value,
* * *
( ) ( ) ( )

d
R k J k z k  , against the microsecond or millisecond-level 

th
T  

value. A validated phase or code clock jump is obtained as  

 ( ) ( ), ( )v

thJ k z k if R k T      (11) 

Thus 
*

v
J  is a vector of validated integer numbers of clock jump value(s).  

(iii) If the number of non-zero values in 
*

v
J  is at least half the number of satellites used in the 

clock jump detection, a clock jump is confirmed and its value,
*

J  is computed  as 

 * *( )vJ mode J   (12) 

where mode  is the arithmetic mode operator. Outliers, if any, are excluded from the values in 

*

v
J  before the mode value is computed. There is no clock jump if 

*

v
J  is an empty vector or it 



 

contains zero values more than half of the number of satellites used in the clock jump 

detection.  

      

Cycle Slip Determination 

The clock-jump-free vector, ( )V V cJ t
  

  , where 
6

10


  or 
3

10


  for microsecond or 

millisecond jump respectively, is obtained. If Q is the number of cycle-slipped satellites 

detected at t , the value of ( )
clk

t  is estimated in the three possible cases: 

(i) When 0Q  , ( )
clk

t  is estimated as the weighted average of the values in V


 as 

 1

1

( )

( )

N

k

k
clk N

k

k

w V k

t

w



 








  (13)    

where 
2

(1 / )
k k

w   and 
k

  being the standard deviation of the ADS for the 
th

k  satellite.  

(ii) When 1 Q N  , ( )
clk

t  is estimated from the N-Q non-slipped satellites’ values in V


 as  

 1

1

( )

( )

N Q

k

k
clk N Q

k

k

w V k

t

w


















  (14) 

(iii) When Q N , we compute the mean of the immediate past M -length time series of 
clk
  as 

the estimated value for ( )
clk

t :  

 
0

1

0

1
( ) ( )

t

clk clk

t M

t
M 

  


 

    (15) 

The cycle slip values of the detected 1, 2,..,q Q  cycle-slipped satellites are subsequently 

determined. First, from among the slipped satellites, the highest-elevation satellite is 

identified as the reference satellite, say the satellite corresponding to 1q   with a cycle slip 

value of 
1

N . Then, new sequences, 
1,q

U ,, for 2,3,..,q Q  are formed, where each sequence 

contains the values of the corresponding index-to-index difference between the ADS of 

reference satellite ( 1q  ) and the ADS of the other cycle slip satellites.  

        Defining   
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 ;      and       

1,2
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1, 1

1,

(1)
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( )

Q

Q

U

U

U

U
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V

V Q

V Q

Y 










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 
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 
 
 
 
 
 
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

;  

the relationship  

                                 H X Y                                        (16) 

holds, where 1,qU  is the last value of 
1,q

U  that has a standard deviation 
1,q

 ; 

.

( ) ( ) ( )
clk

V q V q t    ; H is a (2 1)Q Q   matrix; X  is a 1Q  vector of the unknown cycle 

slips; and Y  is a 2 1Q   vector of observables without ( )
clk

t . With a diagonal weight matrix 

2 2 2 2 2 2 2 2 2

1,2 1,3 1, 1 1, 1 2 3 1

1 1 1 1 1 1 1 1 1
[ , ,.., , , , , ,.., , ]

Q Q Q Q

W diag
        

 

        (17)                

the vector 1 2 3 1[ , , , .., , ]
T

Q QX N N N N N        of estimated float values of the unknown cycle 

slips is obtained by the method of weighted least squares (Markovsky and Huffel 2007).  

  

The integer vector, 1 2 3 1[ , , , .., , ]
T

Q QX N N N N N       , is obtained by rounding-up the float 

values in X to the nearest integer values, thus obtaining the cycle slip fixed integer values 

for the slipped satellites as 1N , 2N , …, QN . 

  



 

Receiver Clock Jump and Cycle Slip Correction  

For Type 1 clock jumps detected in past epoch(s), the phase observations of all satellites at 

the current epoch are updated with the accumulated code clock jump (since the th
M  epoch), 

to give ( )
s

t  for each s  as  

                   

0

1

0( ) ( ) ( )
t

s s

P

M

t t c J


  




     (18) 

For Type 2 clock jumps detected in past epoch(s), the code observations of all satellites at the 

current epoch are updated with the accumulated phase clock jump (since the th
M  epoch), to 

give ( )
s

P t  for each s as  

 

0

1

0( ) ( ) ( )
t

s s

M

P t P t c J







     (19) 

A post-detection clock jump correction is subsequently performed at t: for Type 1, the phase 

observation is corrected for the ( )
P

J t  code clock jump as 

                    ( ) ( ) ( )s s

Pt t cJ t                   (20) 

while the time-series of the previous CJCS-corrected phase observables,  (1: 1)t  , is 

corrected with the same ( )
P

J t  as  

 (1: 1) (1: 1) . ( )s s

Pt t c J t       (21) 

for each satellite. For Type 2, the correction on the code is obtained as: 

 ( ) ( ) . ( )s sP t P t c J t    (22) 

 (1: 1) (1: 1) ( )s sP t P t cJ t      (23) 

For Type 3, ( ) ( )
P

J t J t


  and there is no correction required. However, if receiver clock 

modeling is required, updates of the past observations will be necessary.  

The cycle slip on a 
th

q  satellite ( 1, 2,..,q Q ), with cycle slip value qN , is corrected by 

updating the past time series of the clock-jump-corrected phase observable, (1: 1)
q

t  ,  to 

give 



 (1: 1) (1: 1)q q

qt t N         (24) 

as the CJCS-corrected time series phase observable. 

 

Tests, Results and Discussion 

The proposed algorithm was tested under different conditions. The cycle slip and clock jump 

detection and correction capability was investigated by way of simulation, using actual 

single-frequency observations. For the cycle slip tests, known but randomly generated integer 

cycle slip values were applied to the phase observations of a randomly selected number of 

observed satellites at every five epochs observation interval, starting from the first M = 30 

epochs. The responsiveness and accuracy of the ATD algorithm to cycle slip detection and 

determination was investigated by using randomly generated non-zero integer cycle slip 

values between -100 and +100, which include small cycle slip values that are usually more 

challenging to accurately detect and fix. Using different single-frequency phase observations 

at different rates and by different fixed and mobile GNSS receivers set at elevation mask 

angle of 50, the results shown in Table 2 were obtained. 

 

Table 2 Simulated single-frequency cycle slip results using observations from different 

receivers operating at different observation rates  

Receiver Clock 

Type 

Data 

Rate 

(Hz) 

Tested 

No. of 

cycle 

slips 

Quantity 

of cycle 

slips 

Detected 

Quantity 

of cycle 

slips fixed 

Maximum. 

fix error 

(cycles) 

u-blox 

(fixed) 

quartz 1 4480 4480 

(100%) 

4469 

(99.8%) 

+1 

AMC2 

(fixed) 

atomic 

frequency 

standard 

1 4255 4255 

(100%) 

4255 

(100%) 

0 



 

Novatel 

(fixed) 

quartz 10 4471 4471 

(100%) 

4471 

(100%) 

0 

MBAR 

(fixed) 

quartz 1/30 4325 4201 

(97%) 

4150 

(96%) 

±2 

SHIP 

(mobile) 

quartz 1 2781 2780 

(99.7%) 

2695 

(96.9%) 

±2 

 

The u-blox (EVK-6 evaluation kit) is a standard single-frequency receiver driven by a 

quartz crystal oscillator. AMC2, Novatel, MBAR and SHIP have different dual-frequency 

receivers, but only their L1 single-frequency observations are used. For AMC2 and MBAR, 

both IGS stations, we use data from day 170 of 2009. Novatel was fixed and its data was 

obtained on day 90 of 2017 in Abuja, Nigeria. SHIP was mobile and its data was obtained on 

day 122 of 2008 in Harwick Harbor, United Kingdom, on a moving ship. As indicated in 

Table 2, the  AMC2 receiver in Colorado is driven by an external hydrogen maser while the 

rest are driven by quartz crystal oscillators. From each receiver, 3600 epochs of observations 

were processed in real-time kinematic mode. A complete 100% detection and correction of 

all the cycle slips simulated for AMC2 and the Novatel was achieved. There were 107 and 

112 different epochs when all observed satellites were affected with cycle slips for AMC2 

and Novatel respectively. For the other receivers, between 97 to 100% of detection and 

between 96 to 99.8% of correct fixing were achieved, with a maximum fixed error of ±2 

cycles. For the u-blox receiver, all observed satellites were affected with cycle slips at 105 

different epochs. From this, one epoch of N=11 satellites were wrongly fixed by a maximum 

error of +1 cycle each, resulting in the 99.8% correct fix. The ATD technique achieved 97% 

and 99.7% detection for MBAR and SHIP, respectively. The remaining 3% undetected slips 

in MBAR's 30 second-interval data comprised mainly cycle slip values of one or two cycles. 

 The ATD technique did not detect 1 cycle slip with a value of -1 cycle, out of 2781 cycle 

slips simulated for SHIP, possibly due to a destructive combination of the -1 cycle slip value 

with the dynamics of the moving ship. The fixing accuracy for MBAR was possibly affected 

by the relatively high value of the ADSs, resulting in estimated high-value (up to meter level) 



receiver clock drifts. Such large ADS values from low rate observations usually result from 

variations in true geometric range, the ionosphere and receiver clock drift in consecutive 

epochs, preventing small cycle slip detection, especially during geomagnetic storms or 

around the geomagnetic equator. For MBAR and SHIP, most of the incorrect fixes occurred 

in the 110 and 76 distinct epochs, respectively, when all satellites observed had cycle slips. 

For both cases, the fixing errors were less than ±2 cycles. The results indicate that it is easier 

to achieve 100% detection and correction of cycle slips with the ATD technique when the 

high-order receiver clock drift is very small (millimeter level) such as obtained for the AMC2 

receiver driven by an atomic frequency standard (see bottom plot of Fig. 2), or when 

observations are obtained at higher rates (see Table 1) as with the Novatel receiver that 

generated observations at 10 Hz.  

We also investigated the performance of the algorithm in dealing with the three types of 

receiver clock jumps by simulating both millisecond and microsecond-level clock jumps. The 

equivalent magnitudes of randomly selected clock jump values, in a unit of distance, were 

added to the phase and/or code observations of all satellites, depending on the type of clock 

jump simulated. The simulation was done at every 100-epoch interval, beginning from the 

30th epoch of observations from the u-blox single-frequency receiver. In these tests, for which 

the result are shown in Table 3, cycle slip simulation was not done so as to assess the 

performance of the algorithm in dealing with clock jumps only. The accumulated clock jump 

is the sum of the 36 randomly selected clock jump integer values, in the simulation based on 

3600 epochs of observation from the u-blox receiver. Fig. 3 shows the clock jump value at 

every clock jump epoch and the accumulated clock jump at such epochs. 

 

Table 3 Results of simulated millisecond- and microsecond-level clock jumps on the u-blox 

single-frequency receiver. 

Millisecond-level clock jump Microsecond-level clock jump 

Clock 

jump 

type 

∑ 

jump 

 

Jump 

detection 

and 

correction 

Clock 

jump 

range 

Clock 

jump 

type 

∑ 

jump 

 

Jump 

detection 

and 

correction 

Clock 

jump 

range 

Type 1 26 ms Det:100% -10 to Type 1 45 μs Det:100% -10 to 



 

Cor:100% 

False = 0 

10 ms  Cor:100% 

False= 0 

10 μs 

Type 2 

 

47 ms Det:100% 

Cor:100% 

False = 0 

-10 to 

10 ms 

Type 2 

 

48 μs Det:100% 

Cor:100% 

False= 0 

-10 to 

10 μs 

Type 3 

 

72 ms Det:100% 

Cor:100% 

False = 0 

-10 to 

10 ms 

Type 3 

 

64 μs Det:100% 

Cor:100% 

False= 0 

-10 to 

10 μs 

 

  

      The top plot of Fig. 3 shows the millisecond-level Type 1 clock jumps, corresponding to 

the 26 ms accumulated code clock jump in Table 3. The magnitude of the phase clock jump 

was zero in the entire duration. The bottom plot of Fig. 3 shows the microsecond-level Type 

2 clock jumps, corresponding to the 48 µs accumulated phase clock jump in Table 3. The 

magnitude of the code clock jump was zero in the entire duration. Table 3 shows that 100% 

detection and correction of all clock jump types was achieved by the proposed algorithm. The 

algorithm did not produce any false detection in these tests. 

 



 

Fig. 3 Plots of simulated epochs' clock jumps and the cumulated clock jump at different 

epochs: Type 1 millisecond-level clock jump (top); and Type 2 microsecond-level clock jump 

(bottom). 

 

       The performance of the algorithm in handling the simultaneous occurrence of clock 

jumps and cycle slips on satellites’ phase observations was also investigated. For this test, the 

previous cycle slip simulation for the uBlox single-frequency receiver was repeated 

completely, i.e. having the same cycle slip values at the same epochs, while a new set of 

clock jump values were simulated starting from the 30th epoch and at 100-epoch intervals. In 

this way, there were 36 epochs out of the 3600 epochs of observations, where, 

simultaneously, clock jumps and cycle slips occurred on at least 1 or up to N observed 

satellites. Table 4 shows that for a Type 1 clock jump of millisecond-level, the detection and 

correction of clock jumps was 100%, while a 100% detection and 99.8% correct fixing of 

cycle slips, as previously obtained, were recorded. These indicate the independence of code 

clock jumps from phase cycle slips. The Table 4 also shows that the same results were 

obtained when the same millisecond-level but Type 2 clock jump occurred simultaneously 

with cycle slips.  



 

 

Table 4  Results of simulated cycle slips and clock jumps on the u-blox single-frequency 

receiver  

Clock 

jump 

type 

∑ 

jump 

 

Jump 

detection 

and 

correction 

Clock 

jump 

range 

Sim. 

Cycle 

slip 

range 

Quantity 

determined. 

Quantity 

fixed 

Max. 

fix 

error 

(cycles) 

Type 

1 

 

42 ms Det: (100%) 

Cor: (100%) 

False = 0 

-10 to 

10 ms 

-100 

to 

+100 

cycles 

4480 

(100%) 

4469 

(99.8%) 

+1 

Type 

2 

 

42 ms Det: (100%) 

Cor: (100%) 

False = 0 

-10 to 

10ms 

-100 

to 

+100 

cycles 

4480 

(100%) 

4469 

(99.8%) 

+1 

Type 

3 

 

32 μs Det: (100%) 

Cor: (100%) 

False = 0 

-10 to 

10 μs 

-100 

to 

+100 

cycles 

4480 

(100%) 

4469 

(99.8%) 

+1 

Type 

2 

 

8 μs Det: (100%) 

Cor: (100%) 

False = 1 

-10 to 

10 μs 

-1600 

to 

+1600 

cycles 

4482 

(100%) 

4451 

(99.3%) 

+1575 

 

For the microsecond-level Type 3 clock jumps in the presence of cycle slips, the algorithm 

achieved the same detection and correction results. In these tests, the cycle slip values were 

within the range of -100 to 100 cycles. 

      In the final test, we simulated cycle slip values between -1600 to 1600 cycles to create 

cycle slips of similar magnitude, in distance units, to 1 μs clock jumps (1 μs 1575 cycles). 



The result is shown in the last row of Table 4. We observed that the algorithm achieved 100% 

detection and correction of the microsecond-level clock jumps, but with 1 false clock jump 

detection at one of the 115 epochs (see Fig. 4) when all satellites had cycle slips. The 10 

cycle slip values of the 10 slipped satellites at the false-detection epoch were large numbers 

around the equivalent of 1 μs, and the algorithm interpreted it as a clock jump of 1 μs, thus 

leading to 10 common fixed error of +1575 cycles. Also, in 2 of these 115 epochs, the 11 

detected cycle slips in each of the epochs were wrongly fixed by a fixing error of +1 cycle. 

These three occurrences resulted in the achieved 99.3% of correct fixes. However, the 

algorithm was able to detect and fix all cycle slips and clock jumps correctly in the 7 epochs 

when all observed satellites had cycle slips simultaneously with clock jumps. 

 

Fig. 4 Plots of number of cycle-slipped satellites at all epochs when cycle slips were 

simulated in the presence of microsecond-level Type 2 clock jumps. The blue circles indicate 

the 115 epochs that all satellites observed had cycle slips, out of which 113 were correctly 

fixed.  

 

      The results indicate that when there is a wrong fix, which mostly happens when all 

satellites' phase observations have cycle slips, the proposed algorithm may produce a small, 

common fix error, usually between  ±2 cycles on all determined cycle slip values as 
clk
  may 

not have been accurately obtained and eliminated. Moreover, false detection of a clock jump 

of magnitude, say 1 μs, may only happen for a Type 2 (not for Type 1 or 3) clock jump when 

all the satellites' have cycle slips in the range of ±1600 cycles. A false clock detection would 

degrade positioning as much as a missed detection. Undetected or falsely detected 

millisecond-level jumps can cause relatively large positioning errors, but frequent 

microsecond level jumps, if not detected, would also cause smaller, but more frequent 



 

positioning errors. Cycle slips, depending on their magnitude, may interfere with both 

millisecond and microsecond-level clock jump detection. 

 

Conclusion 

We propose an algorithm capable of detecting and correcting cycle slips on phase 

observations and all types of receiver clock jumps on code and phase observations in real-

time. The algorithm, which is designed to be implemented on any one band of a GNSS 

receiver, is essentially targeted at facilitating precise point positioning and timing with a 

single-frequency receiver thus driving a cheaper alternative to the current use of expensive 

dual-frequency receivers for the same purpose. The algorithm is simple; it is based on 

successive differencing, statistical extraction and thresholding, estimation by weighted least 

square adjustment and simple rounding-up of float values. The performance of the algorithm 

was investigated with different ranges of cycle slip values and for different types of receiver 

clock jumps, using data acquired by different GNSS receivers driven by both quartz crystal 

and atomic frequency standard clocks. The results indicated that the algorithm achieves 100% 

detection and correction of all types of clock jumps at both millisecond- and microsecond-

level; between 97 to 100% cycle slip detection; and between 96.9 to 100% cycle slip 

correction, when simulated CJCS were applied on different rates observation acquired by 

different fixed and mobile GNSS receivers. The algorithm shows good performance for both  

high  and low rate data sets using data sets obtained by different receivers driven by an 

atomic frequency standard and quartz crystal oscillators, but achieved better performance 

with high rate data than with low rate data. The results indicate a potential for improving 

precise point positioning cheaply with a single-frequency receiver and not just with an 

expensive multi-frequency one - a driver for low-cost quality positioning with phase 

measurements in cheap single-frequency GNSS devices. Future work would use real-life 

cycle-slip affected data sets obtained by receivers having both millisecond- and microsecond-

level clock jumps. 
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