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Abstract 

This work presents a new model for predicting the evolution of the size of gold nanoparticles 

(GNPs) in the citrate synthesis method. In this method, the precursor is an acid solution of 

tetrachloroauric acid, while the reducing agent is a base solution of sodium citrate. The acid-

base properties of the solutions influence how the size of the particles evolves during the 

synthesis. In the literature, various mechanistic theories have been proposed to explain this 

evolution. Turkevich et al. (1951), who pioneered this synthesis method, suggested the 

“organizer theory” also known as “nucleation-growth” mechanism. Recently, however, 

Wuithschick et al. (2015) proposed a “seed-mediated” mechanism, a nucleation-

aggregation-growth mechanism. In investigating the synthesis, while Turkevich et al. (1951) 

used the conventional techniques such as the transmission electron microscopy (TEM), the 

scanning electron microscopy (SEM) and the UV-vis spectroscopy, Wuithschick et al. (2010) 

used a combination of X-ray absorption near edge spectroscopy (XANES) and small angle 

X-ray scattering (SAXS) along with the conventional techniques. This setup provides time-

resolved in situ information on the formation of GNPs, thereby yielding reliable accounts of 

the synthesis mechanism. Nevertheless, only one mathematical model has been developed, 

that advanced by Kumar et al. (2007), which is based on the nucleation-growth theory 

proposed by Turkevich et al. (1951). This model had not been thoroughly tested.  

In a part of this work, we investigate the model of Kumar et al. (2007) for different conditions 

of pH, temperature and initial reactant concentrations. To solve the model, we use the 

numerical code Parsival, which is developed for solving population balance equations. We 

test the model for different synthesis conditions studied experimentally by various 

researchers, for which experimental data are available in the literature. The model poorly 

predicts these data, because the Turkevich organizer theory does not account for the acid-

base properties of chloroauric acid and sodium citrate. 

Thereafter, we present a novel kinetic model based on the synthesis seed-mediated 

mechanistic description proposed by Wuithschick et al. (2015). In this description, the 

precursor concurrently reduces into gold atoms and hydroxylates into a passive form. The 

gold atoms then aggregate into seed particles, which finally react with the passive form of 

the precursor in a growth step. We validate the model using experimental data from the 

literature obtained for conditions in which the seed-mediated mechanism is valid. The 

predicted GNP final sizes closely agree with those obtained experimentally. 
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Finally, we present a modelling approach for the aggregation process in metal nanoparticles 

syntheses based on the theory proposed by Polte (2015). In this theory, metal atoms formed 

by reducing the precursor solution aggregate to larger sizes due to the Van der Waals’ 

forces of attraction. Then, due to the electrostatic forces of repulsion induced by the 

“potential determining” ions, the nanoparticles eventually stop aggregating and become 

stabilized. Based on this theory, we develop a model for the aggregation process resulting 

from the interplay of the attractive and repulsive forces in the evolution of nanoparticles. 

Using this model, we describe how gold atoms aggregate into seed particle in the citrate 

synthesis method. Then, we couple this aggregation model with the model developed for the 

seed-mediated mechanism. To validate the model predictions, we employ the experimental 

data used to validate the seed-mediated mechanism. In addition to the GNP final sizes, this 

integrated model correctly predicts the size polydispersity and completely describes the final 

GNP particle size distribution.  
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Impact statement 

Nanotechnology is one of the most important fields in contemporary and future science for 

research and development. It involves synthesizing, modifying, and applying nanoparticles. 

Because of its unique characteristics, gold nanoparticles are one of the most applied 

nanoparticles. In producing gold nanoparticles, researchers and industrialists employ the 

citrate synthesis method because it is cheap, simple and environmentally-friendly. However, 

like other nanoparticles syntheses, this synthesis method is poorly understood. Thus, it 

cannot be controlled or optimised, thereby undermining quality and profitability. 

Modelling nanoparticles syntheses would help in improving quality and profitability. Since the 

beginning of nanotechnology 50 years ago, few contributions have been made in modelling 

nanoparticles syntheses. In the citrate synthesis method, for example, only a model 

developed for a batch reactor is available. In this Ph.D. work, we even found that this only 

model fails in describing the synthesis, creating a research gap. 

Before reaching this conclusion, we thoroughly investigated and tested the model. To do so, 

we implemented the model in the commercial numerical code Parsival (this required altering 

the code considerably and was not a simple task), validated the results against experimental 

data, and critically discussed the model performance. We found out that this model failed to 

describe the synthesis satisfactorily. This work has been published in the international peer-

reviewed journal Chemical Engineering Science.   

Following the above findings and conducting extensive literature review, we developed a 

novel model for the citrate synthesis method. Then, we implemented and validated the 

results against experimental data. Our model excellently describes the synthesis. This work 

has also been published in the international peer-reviewed journal Chemical Engineering 

Science.   

Furthermore, we developed a model for the aggregation process, a process that is common 

to most nanoparticles and in general, nanotechnology. We investigated the model in the 

citrate synthesis method. Then, we implemented and validated the results against 

experimental data. The aggregation model performs well. 

In the near future and beyond, this Ph.D. work is therefore expected to make a great impact 

in the field of nanotechnology. The model can be used to investigate and control processes 

as well as design and optimise reactors in nanoparticle synthesis. 
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Chapter 1 

General introduction 

In this chapter, we introduce nanotechnology, and its significance. We also introduce the 

current research in nanotechnology. Thereafter, we introduce the objectives of this PhD 

study. Finally, we report the structure of the thesis. 

1.1 Introduction to nanotechnology and its 
significance 
Nanotechnology is a technology that explores materials with sizes in the range 1 – 100 nm 

for various applications (Liveri, 2006). It involves the synthesis of these materials, called 

nanoparticles, then their modification (or functionalization) and finally their application. It can 

be traced to the Roman Empire in the 4th Century AD. Artefacts from this period show glass 

cups plated with gold nanoparticles. Depending on its interaction with light, this plating 

induced different colours on the cup; red for absorbed light and green for reflected light 

(Leonhardt, 2007). One of the early laboratory investigations in nanotechnology was 

conducted in the 1850s by Michael Faraday (Faraday, 1857). In his work, Faraday 

inadvertently synthesized a ruby red solution of gold nanoparticles by reducing a solution of 

gold chloride with phosphorus. Notice that the colour of this solution is different from the 

bright yellow of bulk gold. Furthermore, more than 150 years after, the solution of gold 

nanoparticles synthesized by Faraday and kept at the Royal Institution in London remains 

ruby red and stable (Anonymous author @Royal Institution, 2014). Because of the difference 

in the properties of nanoparticles from those of the bulk material and their stability, 

nanotechnology offers a novel way of producing materials with selected physico-chemical 

properties that can be exploited in different applications. 

Intrigued by the prospect of nanotechnology, at an American Physical Society meeting in 

1959, Richard Feyman delivered a lecture titled: “There’s Plenty of Room at the Bottom”. As 

substances become smaller, they exhibit properties and functionalities different from those of 

the same material in the bulk state as well as from those of isolated atoms and molecules. 

This lecture, widely applauded by the audience, stimulated further research in 

nanotechnology (Feyman, 1959; Majumder et al., 2007). This research has been helped by 

three important things: the awareness of nanotechnology through conferences (such as 

those organised by the Foresight Institute of the USA), inventions of powerful techniques to 
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probe materials at the nano level (such as the scanning tunnelling microscope (STM) 

invented by Gerd Binning and Heinrich Rohrer of the IBM) and recognition of the work in 

nanotechnology (such as the Nobel prizes in Physics awarded to the inventors of STM in 

1986, the Nobel prize in Chemistry awarded to the trio of Harry Kroto, Richard Smalley and 

Robert Curl in 1996, for discovering fullerene, and the Nobel Prize in Physics awarded to the 

duo of Andre Geim and Konstantin Novoselov in 2010, for discovering graphene). 

Today, various consumer products come from nanotechnology. From the work of Vance et 

al. (2015) on data collection of the consumer product inventory in 24 countries in 2014, 1814 

consumer products come from nanotechnology, up from only 54 consumer products in 2005. 

More than 40% of these products find applications in health care; the remaining 60% find 

applications in home and garden, electronics and computers, food and beverage, 

automotive, appliances and products for children. In the US, the worth of these products is 

estimated to be over $32 B. See Figure 1.1 for the pie chart on the applications of 

nanotechnology. 

 

Figure 1.1 A pie chart showing the applications of nanotechnology in consumer products. 

Data from Vance et al. (2015). 

Vance et al. (2015) further classified these products according to the type of nanoparticles 

used in them. Out of the inventory of products, however, Vance et al. reported information of 

the type of nanoparticles for only 51% of the products. The companies did not provide the 

type of nanoparticles used in the remaining 49% of the products. Out of the 51% consumer 

products (i.e. 923 out of 1814), consumer products from metal nanoparticles account for 

more than 70%; those from carbon, silicon and other nanoparticles account for the remaining 



 

3 
 

30%. Figure 1.2 shows the classification of the consumer products based on the 

nanoparticle type. 

 

Figure 1.2 The classification of 1814 consumer products based on the nanoparticle type 

(49% of the consumer products do not present the composition or a detailed description of 

the type of nanoparticles). Data from Vance et al. (2015). 

As shown, silver nanoparticles are the most frequently used nanoparticles. Apart from silver 

nanoparticles, the order of the most frequently used metal nanoparticles is titanium, zinc and 

gold. Notice that silver and gold belong to the same group in the periodic table called noble 

metals. Thus, bulk silver and gold may be interchanged. However, at the scale of 

nanoparticles, considering the difference in properties from the bulk, one needs research to 

justify interchanging silver and gold nanoparticles. 

1.2 Current research in nanotechnology 
Nanotechnology is one of the research areas identified by the US department of Commerce 

and the National Science Foundation as of national priority; others are biotechnology, 

information technology and cognitive science (Roco and Bairnbridge, 2002, Gutierrez, 2005). 

Nanotechnology through the National Nanotechnology Initiative, an initiative established in 

2000 by the US government, to advance research and development in nanotechnology, 

received nearly $10 billion between 2000 and 2009 (Porter and Youtie, 2009). Thereafter, its 

yearly budget allocation increased. For example, in 2012 it received $3.7 billion (ANUI, 

2012). Other developed countries are also investing in nanotechnology. Also in 2012, the 

European Union invested $1.2 billion, and Japan invested $750 million (ANUI, 2012). In 
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2015, the European Union through the European Physical Science Research Council 

awarded a £2.5M research grant to develop manufacturing technologies for the synthesis of 

nanoparticles for use in healthcare related applications (for example, antimicrobial materials, 

diagnostics, and cancer hyperthermia). This research, led by the Department of Chemical 

Engineering, University College London, comprises experts from the academia and industry. 

Other applications include catalysis, electronics and energy. 

Recent studies have focused on the toxicity of nanoparticles on life. For example, Vazquez-

Muñoz et al. (2017) investigated the effect of silver nanoparticles on various organisms for 

the lethal concentrations. In humans, Vazquez-Muñoz et al. found out that the lethal 

concentration of silver nanoparticles is 10 𝜇𝑔/𝑚𝑙. In another research study, Yah (2013) also 

investigated the effect of gold nanoparticles on humans. At a concentration of 450 𝜇𝑔/𝑚𝑙, he 

reported that gold nanoparticles are nontoxic. Furthermore, Giassudin et al. (2012) reported 

gold nanoparticles as nontoxic. Thus, in this work, we focus on gold nanoparticles as better 

substitutes than silver nanoparticles for health care related applications. 

Gold nanoparticles (GNPs) have applications in many fields. In biomedicine, for example, 

they are used in cancer diagnosis and biological imaging. GNPs demonstrate excellent 

catalytic properties and high conductivity, which can be tuned by particle size, surface 

functionality, intraparticle separation and are influenced by the chemical environment. Such 

properties are exploited in various electrochemical and electrocatalytic sensors. These 

optical, optoelectronic, electrochemical and electrocatalytic properties are utilised for 

detection of biomolecules such as proteins, DNA, oligonucleotides, pathogens but also 

whole cancer cells which are important for healthcare applications (Yang et al., 2015; 

Dreaden et al., 2012; Zheng et al., 2014; Lane et al., 2015; Matias et al., 2017; Zhou et al., 

2015). Even though bulk gold is inert, in the form of nanoparticles it displays high catalytic 

activity for a variety of reactions. These include oxidations of olefins, alcohols and alkanes, 

hydrogenations, and aminations (Corma and Garcia, 2008; Daniel and Astruc, 2004; 

Stratakis and Garcia, 2012). Geometrical properties, such as size and shape, determine how 

GNPs perform. When the size of Au nanoparticles approaches the Fermi wavelength of 

electrons (<2nm), molecule-like optical properties and size-dependent fluorescence appear 

(Zhou et al., 2015; Yang et al., 2015). Large GNPs have a longer electromagnetic field 

decay length, and provide higher sensitivity; hence, they are more efficient at enhancing 

Raman signals (Yang et al., 2015). For GNPs used in catalysis, size influences their 

performance. Catalytic activity of GNPs typically increases substantially as size decreases 

below 5 nm (e.g. CO oxidation). However, selectivity to desired products can increase or 

decrease with nanoparticle size, depending on the particular reaction (Hvolbæk et al., 2007; 

Hashmi and Hutchings, 2006). 
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Spherical GNPs with sizes from 10 to 150 nm can be produced via a synthetic route known 

as the citrate method. Many authors have explored this method for different applications and 

have investigated how the nanoparticles form when the precursor (a tetrachloroauric acid 

solution) reacts with the reducing agent (a trisodium citrate solution). However, the GNPs 

produced are usually polydisperse and irreproducible. Sometimes, the polydispersity (also 

known as the coefficient of variation – the ratio of standard deviation to the mean size – of 

the particle size distribution) can be ~ 40% (Ji et al., 2007), therefore undermining product 

quality. 

Hypothetically, one can imagine that the synthesis involves mass transfer by mixing, 

reduction of the precursor by citrate, nucleation, growth, aggregation, and possibly breakage 

(Liveri, 2006; Pong et al., 2007; Ji et al., 2007). Ji et al. (2007) proposed two mechanisms, 

which can occur depending on the pH of the solution (dictated by the composition of the 

reagents). At low pH (i.e. a pH value in the range 3.0 – 6.5 when measured at 250 C), the 

dominant mechanism, after the reactions have taken place, is nucleation, aggregation, and 

intraparticle ripening, while at high pH (i.e. a pH value in the range 6.5 – 8.0 when measured 

at 250 C) it is nucleation and growth. The former is similar to the nucleation-aggregation-

growth mechanism, which is gaining popularity, especially after the work by Polte et al. 

(2010) was published. In their work, these researchers used small angle X-ray scattering 

(SAXS) and X-ray absorption near-edge spectroscopy (XANES) to study the synthesis 

experimentally. They claimed that the number of particles reduces in the synthesis, which 

suggests aggregation; they thus advanced a nucleation-aggregation-growth mechanism. 

Conversely, the pioneering work of Turkevich et al. (1951) supported the second mechanism 

(nucleation-growth), and this is why this mechanism is also referred to as the Turkevich 

organizer theory. A mathematical model for the GNPs synthesis would help considerably to 

test these theories, and in particular whether only one mechanism really exists or more than 

one is possible depending on the solution pH. A model would also assist to design and 

optimise the reactors for the nanoparticle synthesis.  

Kumar et al. (2007) developed such a model, basing it on the Turkevich organizer theory. In 

the model, the presence of dicarboxy acetone (DCA), which is formed during the synthesis, 

causes nucleation. However, according to the model, DCA decomposes in the presence of 

GNPs, and therefore eventually the nucleation process stops. The model involves material 

balance equations (for all reactants) and a population balance equation (for the 

nanoparticles), and assumes that the system is perfectly mixed. The material balance 

equations account for the reactions, while the population balance equation accounts for 

nucleation, growth and aggregation. Kumar et al. (2007) included aggregation so as to 

reflect the observation by Chow and Zukoski (1994) that particles aggregate when the 
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concentration of the precursor is very high. The assumptions of this model have been 

criticised (Doyen et al., 2010; Wuithschick et al., 2015). Gammon et al. (1997) proposed a 

nucleation step that does not require DCA. Doyen et al. (2010) confirmed that the amount of 

DCA, detected with the nuclei magnetic resonance, is insignificant and cannot cause 

nucleation. Wuithschick et al. (2015) reported that DCA does not promote nucleation. Also, 

the model does not account for the role played by the pH. It is important to further test the 

model of Kumar et al. (2007) and develop another mathematical model based on the 

nucleation-aggregation-growth mechanism. 

1.3 Research objectives and questions 
We aim to develop a robust mathematical model for the citrate synthesis method of gold 

nanoparticles able to describe the experimental observations reported in the literature and to 

correctly predict both the mean particle size and the particle size distribution of GNPs. We 

will develop a model based on the work of Polte et al (2010) (this work was later refined by 

Wuithschick et al. (2015)) assuming perfect mixing. We will start with perfect mixing 

because, modelling-wise, it is reasonable to start simple. Also, this synthesis is usually 

carried out in a batch system where perfect mixing is assumed. However, in reality, fluid 

dynamics affect the process. The developed model for perfect mixing can then be integrated 

with fluid dynamics. In this thesis, however, we will not do so. Therefore, we pursue the 

following objectives: 

1. We intend to test the model developed by Kumar et al. (2007) for different conditions 

to see whether it is accurate, and whether the theory, on which it is based, is always 

applicable. 

2. We will develop a model for the seed-mediated mechanism proposed by Wuithschick 

et al. (2015). At first, we will be using an approximate expression to model the 

aggregation process while we use reaction steps to model the nucleation and growth 

processes. Similarly, we will implement and test the model for different conditions.  

3. Subsequently, we will develop a rigorous model for aggregation from the surface 

energy and surface charge of particles. The model will be a function of both the size 

of particles and the concentration of ions. 

1.4 Structure of the thesis 
In this thesis, we report how these outlined objectives have been achieved. To start with, we 

review the literature in Chapter 2. We review experimental investigations of the citrate 

synthesis method. From these investigations, we focus on the best mathematical approach 
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to model the synthesis. We also review how to solve the model before reporting past 

attempts in modelling the synthesis.  

In Chapter 3, we test the Turkevich organizer theory by investigating the model of Kumar et 

al. (2007). We first review the model and then we test it under new conditions, by comparing 

its predictions to experimental data available in the literature. In testing the model, we 

consider factors such as the initial concentrations of the precursor and reducing agent, the 

initial and final pH of the reaction solution, and the temperature of the latter.  

In Chapter 4, we briefly present the seed-mediated mechanism. Then, we report the 

reactions that occur in the synthesis according to this mechanism, their corresponding rate-

order equations and the balance equations for the components. Finally, we present the 

solutions of the model and discuss the results. 

In Chapter 5, we present a new aggregation model. Then, we employ the citrate synthesis 

as a case study for this aggregation model. This model comprises sub-models for reactions, 

gold atoms formation, aggregation and growth. Finally, we present the solutions of the model 

and discuss the results. 

In Chapter 6, we report the conclusions of this PhD research and future work.   
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Chapter 2 

Literature review 

In this chapter, we review the literature from four perspectives. First, we review the 

experimental synthesis of gold nanoparticles with the focus on the citrate synthesis method 

of forming gold nanoparticles (GNPs) and its peculiar characteristics. As one of these 

characteristics, the synthesis solution involves multiple phases: continuous and 

discontinuous phases. Second, we review the mathematical framework that can handle 

these peculiar characteristics of the synthesis method. Third, we review briefly solution 

methods for the mathematical model. Finally, we review past work on modelling nanoparticle 

syntheses. 

2.1 Experimental synthesis of gold nanoparticles 
In the following, we discuss the significance of gold nanoparticles, and briefly introduce their 

synthesis methods. Then, we focus on the citrate synthesis method and its past 

experimental investigations. These investigations translated into various mechanistic 

descriptions of the synthesis. We then review these mechanistic descriptions. 

2.1.1  Gold nanoparticles 
Gold is present naturally in Earth’s crust, having a relative abundance of 0.004 part per 

million (ppm). In the periodic table of elements, gold belongs to group 11 and period 6, 

corresponding to an atomic number of 79 with the electronic structure [𝑋𝑒]5𝑑106𝑠1 (Gimeno, 

2008). The elements above gold in group 11 are copper and silver in periods 4 and 5 

respectively. While period 3 comprises the first set of the transition metals, period 6 

comprises the first set of the inner transition metals, called the lanthanides. Due to this 

electronic structure, gold is one of the least reactive metals, a property that explains why it 

occurs in its element form in bulk. This electronic structure also explains other interesting 

properties of gold: bright-colour, malleability, and ductility. These properties make gold 

useful as jewellery and investments. Although gold does not react under normal conditions, it 

reacts in an aqueous solution of highly oxidising hydrochloric and trioxonitrate acids, to 

produce tetrachloroauric acid. Gold can also react under other extreme conditions to 

produce substances such as gold (III) fluoride, gold (III) sulphide and other derived 

compounds from gold (Hanes et al., 1992). In spite of the applications of gold in bulk, many 
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more applications have continued to emerge for it at the nano level, where particle sizes 

range from 1 to 100 nm. 

GNPs display many interesting characteristics such as colorimetry and reactivity. While bulk 

gold is bright yellow, GNPs display almost all the colours in the visible light from red to violet, 

depending on the size of the particles. GNPs with sizes 16, 25 and 147 nm are orange, red 

and violet, respectively (Frens, 1973). Because of these optical properties, GNPs linked with 

proteins find applications in biosensing. For example, GNPs linked by oligonucleotides 

provoke a red-to-blue colour change that is useful for DNA-sensing (Daniel and Astruc, 

2004). In terms of its toxicity, GNPs linked with some proteins such as lysine are 

considerably non-toxic for biomedical applications (Alkilany and Murphy, 2010). 

Being a relatively unreactive transition metal, GNPs also have applications in catalysis. The 

d-orbital electrons in gold interact with reacting species, to promote electron transfer during 

chemical reactions. Haruta et al. reported in 1989 that GNPs supported on Co3O4, Fe2O3, or 

TiO2 were highly active catalysts, under high dispersion, for CO and H2 oxidation, NO 

reduction, water-gas shift reaction, CO2 hydrogenation, and catalytic combustion of 

methanol. Catalysis with GNPs (Huang et al., 2018), in particular the very active oxide-

supported ones, is now an expanding area, and a large number of new catalytic systems for 

various reactions are now being explored. Other applications of GNPs include electronics, 

photodynamic therapy and therapeutic agent delivery. 

In meeting these growing applications, GNPs can be synthesized by different methods, 

classified as top-down and bottom-up approaches (Liveri, 2006). In the top-down approach, 

bulk gold can be ground in a ball mill. Then, the resulting particles are air classified to 

recover nanoparticles. This method is not cheap and quick to manufacture GNPs; hence, it 

is not suitable for large scale production. For nanoparticles used in electronic applications, 

such as Si nanoparticles, the most widely used top-down method is lithography (Urban et al., 

2010). In this method, a structured photo-resist layer, called the master template, partially 

embeds bulk Si. Under focused light, the exposed Si etches out to form Si nanoparticles. 

While milling can produce nanoparticles of size 100 nm, lithography can produce 

nanoparticles of size 20 nm. Nevertheless, lithography suffers from the same disadvantages 

as milling. Methods such as milling and lithography are also classified as solid-phase 

synthesis of nanoparticles. 

In the bottom-up approach, nanoparticles form from sub-size particles such as atoms and 

molecules. Many gas and liquid-phase synthesis methods fall under this approach. In a 

typical gas-phase method, for example, bulk material evaporates in thermal plasma, which 

operates at 10, 000 K (Boulos, 1991). Then, nanoparticles form while cooling. This method 
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involves a top-down approach when breaking the bulk material to atoms in the plasma and a 

bottom-up approach when fusing the atoms to form nanoparticles during the cooling 

process. Inert-gas condensation operates similarly to the thermal plasma: bulk material 

vaporises in a vacuum chamber and then cools in an inert gas stream to produce gold 

nanoparticles (Belloni et al., 1998). With the gas-phase methods, nanoparticles of sizes 20 – 

100 nm can be produced. However, like the solid-phase methods, these methods require a 

lot of energy. 

Liquid-phase methods offer a one-stop panacea to the synthesis of nanoparticles in general 

and GNPs in particular. They are simple and cheap. They can also produce nanoparticles of 

sizes 1 – 200nm, which can be easily functionalised for potential applications. These 

methods involve many techniques in tuning the nanoparticles size, form and geometry. 

These many techniques are however mostly carried out in a colloidal system. 

2.1.2 Colloidal systems 
A homogeneous solution is formed when two or more substances exist together in a single 

phase. The molecules of the substances mix completely in one another. For example, the 

water-NaCl system forms a homogeneous solution. Conversely, some substances (e.g., 

polymers) are made up of macromolecules which do not dissolve, consequently forming a 

heterogeneous solution (each macromolecule can be identified with a microscope of 

sufficient resolution). These water-polymer systems are called colloids. To an unaided eye, 

these systems appear to be homogeneous, but at the microscale their heterogeneity 

becomes glaring. Hence, colloidal systems are also called micro-heterogeneous systems. 

Some systems are heterogeneous even to an unaided eye; these systems are called 

suspensions (Brady and Senese, 2004). 

Colloidal systems are used in the synthesis of many nanoparticles; their advantages include 

safety, cost effectiveness and low energy requirement. The polymers for the synthesis are 

referred to as surfactants. These form cavities in which nanoparticles can form. They can 

assume various arrangements and can perform many functions, and are consequently used 

in diverse applications in nanotechnology.  

A simple surfactant comprises a functional group head (the polar part) and an alkyl tail (the 

apolar part). The polar part dissolves in a polar medium while the apolar part dissoves in an 

apolar medium. This property makes surfactants assume various arrangements such as a 

film or a micelle of surfactant molecules. Figure 2.1.1 shows a typical surfactant 

(dodecanethiol) and a possible arrangement on a polar surface. 
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Figure 2.1.1: The structure and arrangement of dodecanethiol on a polar surface. A: 

Showing the skeletal structure of dodecanethiol having a polar head and an apolar tail; B: 

Showing a film arrangement of dodecanethiol on a polar surface. 

The arrangement of surfactant molecules can either be formed before nucleation of 

nanoparticles in the reaction medium (Cushing et al. 2004, Liveri 2006) or in-situ along with 

nucleation (Cushing et al. 2004).  

 Before nucleation. The configuration of surfactant molecules is formed before 

nucleation takes place. The produced molecules of the nanoparticles come together 

inside the structure formed by the surfactant molecules and therein nucleate. 

Surfactants in this case act as an ‘organizer’, as proposed by Turkevich et al. (1951). 

The nucleus starts growing and can only reach the space available in the cavity of 

the surfactants, becoming stabilized (Figure 2.1.2). The surfactants do not react in 

the course of the synthesis. An example is the Brust-Schiffrin method, in which 

dodecanethiol acts as the surfactant (Brust et al., 1994). 

 

A B 
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Figure 2.1.2: Showing how a nanoparticle forms, grows, and stabilizes in a pre-formed 

cavity. 

 In-situ. In this case, the nucleus is formed and starts growing while the surfactants 

remain randomly distributed. After a while, the surfactants reach the surface of the 

growing nanoparticles, either by adsorption or by complexation, forming a cavity that 

prevents further growth of the nanoparticles. The latter are therefore stabilized. This 

mechanism is shown in Figure 2.1.3. 

 

 

Figure 2.1.3: Showing how a nanoparticle grows and the surfactants become attached to 

stabilize it. 

In this mechanism, the surfactants are produced in the course of the synthesis. After they 

are formed, they attach and stabilize the particles. An example is the citrate synthesis 

method. In this method, citrate, which is a reactant, or any of its derivatives, which are 

formed in the course of the synthesis, acts as a surfactant, and stabilizes GNPs. This 

synthesis is the focus of this research project. Below, we review the synthesis in detail. 
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2.1.3 Citrate synthesis method 
The citrate synthesis method is commonly used to produce GNPs (Kumar et al., 2007). 

Upon reacting tetrachloroauric acid with sodium citrate in an aqueous solution, Hauser and 

Lynn (1940) reported the synthesis as a synthetic route of producing GNPs. In this synthesis 

method, the precursor is tetrachloroauric acid, the reducing agent is sodium citrate, and the 

solvent is water. In 1951, Turkevich et al. used techniques such as the electron microscopy 

to investigate the synthesis in a batch reactor under different process conditions (i.e. the 

synthesis temperatures and reactants’ concentrations). In their standard synthesis condition, 

where the synthesis temperature is 100 0C and the initial concentrations of tetrachloroauric 

acid and sodium citrate are 0.255 and 1.938 𝑚𝑜𝑙 𝑚3⁄  , respectively, the authors reported in 

the final mixture spherical GNPs of a mean size of 20 nm. Furthermore, based on their 

experimental observation, they proposed a synthesis mechanism, called the organizer 

theory, a nucleation-growth mechanism, which describes how GNPs form in the citrate 

synthesis method. Because of this landmark contribution, the synthesis is otherwise called 

the Turkevich synthesis.  

Many other authors have used this route to produce GNPs of varying sizes. Frens (1973) 

studied this synthesis and demonstrated that different sizes of GNPs can be obtained by 

changing the concentration of sodium citrate while keeping the concentration of chloroauric 

acid at about 0.3 mol m3⁄  at a synthesis temperature of 100 0C. This technique was slightly 

modified by Freund and Spiro (1985) to produce GNPs used for testing size-dependent 

catalytic properties of the particles. Abid (2003) used the synthesis to form different sizes of 

GNPs intended for laser and optical properties. However, unlike Frens (1973), Abid (2003) 

varied the concentration of both chloroauric acid and sodium citrate. Chow and Zukoski 

(1994) also explored the synthesis, this time by varying the concentration of chloroauric acid 

while keeping that of sodium citrate at 1.6 𝑚𝑜𝑙 𝑚3⁄  at a synthesis temperature of 70 0C. 

Recent authors such as Ji et al. (2007), Zabetakis et al. (2012) and Wuithschick et al. (2015) 

have also investigated the synthesis. For authors who kept the initial precursor concentration 

constant at about 0.3 mol m3⁄  at the synthesis temperature of 100 0C, Figure 2.1.4 shows 

how the final particle mean size varies with the initial molar ratio of sodium citrate to 

tetrachloroauric acid. 
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Figure 2.1.4: Final particle mean size of the citrate synthesis method for the initial precursor 

concentration constant at about 0.3 mol m3⁄  at the synthesis temperature of 100 0C from the 

investigations of various authors. Data from Abid (2003), Turkevich et al. (1951), Frens 

(1973), Freund and Spiro (1985), Ji et al. (2007) and Zabetakis et al. (2012). 

As Figure 2.1.4 illustrates, the citrate synthesis method can be used to produce GNPs of 

sizes in the range 10 – 150 nm. This wide range and the spherical particle shape make the 

synthesis a common route for obtaining GNPs in various applications. However, the 

synthesis method is not reproducible and the products are usually polydisperse (i.e. wide 

particle size distribution). While conducting the synthesis, some authors have probed into the 

evolution of the reacting mixture so as to understand the formation of GNPs from the initial 

reactant mixture of tetrachloroauric acid and sodium citrate. For example, the reacting 

mixture changes in colour as the synthesis progresses. According to Frens (1973), after 

adding the reducing agent solution (0.384𝑚𝑜𝑙 𝑚3⁄ ) to the precursor solution (0.294𝑚𝑜𝑙 𝑚3⁄ ) 

at 100 0C, for various initial concentrations, the reacting mixture turns blue in about 25 - 80 s. 

In about 70 - 850 s, it turns brilliant red. Finally, the synthesis completes in a total time of 5 - 

30 mins. The colour of the final mixture varies from red to orange to violet depending on the 

particle size distribution. Because of this colour change and the generation of particles, 

certain techniques have been used to investigate the citrate synthesis method. 

2.1.4 Instrumentation techniques 
Initially, the reacting mixture is an aqueous solution of the precursor and reducing agent. 

These react and produce GNPs in the particle phase as well as other by-products such as 

Cl- (present in the unreacted precursor) in the liquid phase. Because of the many 
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components in the liquid phase, monitoring any of them in isolation would be impossible. On 

the other hand, the particle phase contains only gold particles of varying sizes. Thus, the 

instrumentation techniques employed by past authors to monitor the citrate synthesis 

method can be classified as particles image microscopy and particle radiation spectroscopy. 

2.1.4.1 Particle image microscopy 

Microscopy is the technique of using microscopes to view objects and areas of objects that 

cannot be seen with the naked eye (objects that are not within the resolution range of the 

normal eye). The smallest size the normal eye can recognize is about 0.1 mm. In contrast, 

nanoparticles are 103 − 105 times smaller than this size. To monitor NP syntheses, the 

instrument must be able to magnify the particle size, at least, by about 103 − 105. Usually, 

investigators apply this technique to the reacting mixture ex situ. In this case, they place a 

drop of the mixture on a screen and allow the drop to evaporate leaving behind only 

particles, which are then analysed under the microscope. Examples of microscopy 

instruments applied in NP syntheses include the scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and atomic force microscopy (AFM). Figure 2.1.5 

shows TEM images. In this figure, the particle size has been magnified by about 105. 

 

 

Figure 2.1.5: Time evolution of the TEM images of particles in the citrate synthesis method. 

Data from Ji et al. (2007). 

2.1.4.2 Particle radiation spectroscopy 

Spectroscopy is the technique of monitoring the interaction between matter and 

electromagnetic waves. As illustrated previously, the reacting mixture changes colour as the 
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synthesis progresses. To quantify this trend, investigators apply the radiation spectroscopy. 

As this trend can be observed by the eye, the frequencies (or the wavelengths) of the 

spectra must be in and around the visible light region of the electromagnetic waves; hence, 

the UV-Vis spectroscopy can be used to investigate the synthesis. This instrument 

generates the absorption spectrum of a substance within the visible light and ultra-violet 

wavebands. Using it, Haiss et al. (2007) reported the absorption spectrum of GNPs and the 

variation of the peak of the spectrum with the size of GNPs. Quantitatively therefore, the UV-

Vis spectra can be used to determine the size of GNPs. Figure 2.1.6 shows the time 

evolution of the UV-Vis spectra of the citrate synthesis method.  

 

Figure 2.1.6: Time evolution of the UV-Vis spectroscopy in the citrate synthesis method. 

Data from Ji et al. (2007) 

Also, since its discovery, X-rays have been used to study crystal structures. Since the 

wavelengths of X-rays are in the order of nanometres, they can interact with nanoparticles, 

indicating for example the number concentration of particles. Thus, X-rays can be used to 

investigate NP synthesis. Small-angle X-ray scattering (SAXS) and X-ray absorption near 

edge structure (XANES) are examples of the application techniques of X-rays. 

Using these instrumentation techniques, one can describe the mechanism of the synthesis. 
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2.1.5 Mechanistic descriptions of the citrate synthesis method 
From the investigation of the synthesis using various instrumentation techniques, previous 

authors proposed several (but quite different) mechanistic descriptions for the citrate 

synthesis method. These descriptions can be classified into: Turkevich organizer theory and 

seed-mediated mechanism. We review these mechanisms below. 

2.1.5.1 Turkevich organizer theory 

In their landmark work, Turkevich et al. (1951) investigated the citrate synthesis method to 

understand the mechanism of the synthesis. They carried out the citrate synthesis method at 

temperatures ranging from 15 – 1000C and initial molar ratios of sodium citrate to 

tetrachloroauric acid from 1 to 7.5. For their investigation, they used the electron microscopy 

in combination with other analytical techniques described as the ultra-slit microscopy, 

nephelometry, nuclei isolation, titration and reaction analyses (Turkevich et al., 1951). They 

took portions of the reacting mixture of the citrate synthesis suspected of containing nuclei at 

different times, and transferred them into a growth medium consisting of a solution of 

12 × 10−4 parts of hydroxylamine hydrochloride and 10 × 10−4 parts of tetrachloroauric acid. 

In this growth medium, nucleation did not take place. They relied on the description of a 

number of investigators that hydroxylamine hydrochloride, in slightly acid solution, inhibits 

the nucleation process. In neutral or basic solution, however, it is a nucleating agent. If the 

nuclei were present in the portions, hydroxylamine hydrochloride would reduce 

tetrachloroauric acid causing the nuclei to grow to a size convenient for them to count using 

a slit microscope. In the absence of nuclei and in a dust-free atmosphere, the growth 

medium undergoes no reduction of tetrachloroauric acid (Turkevich et al, 1951). Figure 2.1.7 

shows a typical curve of the nucleation process in this synthesis. 
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Figure 2.1.7 A typical curve of the nucleation process in the citrate synthesis method. The 

data refer to the synthesis studied by Turkevich et al. (1951) at 49 0C. The initial 

concentrations of precursor and reducing agent in the synthesis solution are equal to 

0.255 𝑚𝑜𝑙/𝑚3 and 1.94 𝑚𝑜𝑙/𝑚3, respectively. (% particles per unit volume expresses the 

number of particles per unit volume as a percentage of the final number of particles per unit 

volume). 

The nucleation curve in Figure 2.1.7 can be divided into four regions: an induction period, a 

rapid rise, which indicates the beginning of nucleation, a linear portion and finally a decay 

portion. This general nature of the curve is characteristic of an autocatalytic reaction 

(Turkevich et al., 1951). The cause of nucleation can be said to be absent at the beginning 

of the process, but it is produced in the course of the reaction. During the region of the linear 

portion, nucleation rate is at a maximum because the driving force for nucleation is also at a 

maximum. Thereafter, the nucleation rate starts declining to zero. The nucleation rate is the 

slope of the curve in Figure 2.1.7. If we assume that the nucleation rate is proportional to the 

amount of the substance which causes nucleation (the nucleating agent), the right-skewed 

distribution curve in Figure 2.1.8 shows a possible profile of the nucleating agent. In order to 

determine this substance, Turkevich et al. (1951) analysed the concentration profiles of 

auric, aurous and citrate ions. Excess sodium citrate was used in the experiments; thus, 

citrate could not be the nucleating agent. They measured the amount of the reacted auric 

ions with time by titrating the solution against thiosulphate. By the end of the nucleation 

process, less than 5% of auric ions had been used up. Thus, they concluded that neither 
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auric ions nor their reduced form, aurous ions, could be the nucleating agent. They did not 

report about testing for the presence of dicarboxy acetone. 

 

Figure 2.1.8 Possible profile of the nucleating agent with reaction time, to explain the 

nucleation curve in Figure 2.1.7 

In order to understand the cause of nucleation, Turkevich et al (1951) used dicarboxy 

acetone directly as reducing agent. They assumed dicarboxy acetone to be the oxidation 

product of sodium citrate. Figure 2.1.9 shows the corresponding nucleation curve. In this 

figure, the induction period is much less than 0.1 min.   

 

Figure 2.1.9: Nucleation curve of a gold sol produced by dicarboxy acetone. Data from 

Turkevich et al. (1951). 

Turkevich et al (1951) explained the induction period in Figure 2.1.7 as the time required to 

produce the amount of dicarboxy acetone necessary for nucleation.  
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Also, the region of rapid rise is absent from Figure 2.1.9. The nucleation rate is a maximum 

at the start of nucleation and falls off exponentially. This indicates a first-order kinetic 

mechanism. One is therefore led to conclude that the autocatalytic nature of the nucleation 

reaction is due to the autocatalytic nature of the formation of dicarboxy acetone, while the 

first-order kinetic mechanism results from the unimolecular decomposition of a complex of 

dicarboxy acetone and gold ions (Turkevich et al., 1951).  

Based on the foregoing, Turkevich et al (1951) advanced the ‘organizer’ mechanism for the 

formation of a nucleus. They discredited the possibility of nucleation due to the presence of 

impurities and pointed out that it was difficult to understand the nucleation process from the 

perspective of the fluctuation theory. Fluctuation theory postulates the formation of a 

supersaturated solution of atoms of metallic gold, some of which coalesce into a nucleus 

only when the statistical fluctuation of their concentration brings a sufficiently large amount of 

them together to form a particle size that is thermodynamically stable. This theory also 

explains nucleation due to the presence of impurities. 

In the organizer theory, they claimed that the presence of a polydentate reducing agent (i.e. 

citrate) or its oxidation product provides the mechanism for the nanoparticle precursor 

(atoms) to arrange and nucleate (Turkevich et al., 1951).  Kumar et al (2007) illustrated this 

using Figure 2.1.10. From this Figure, three Au+ ions can be tethered by a minimum of two 

dicarboxy acetone molecules. 

 

Figure 2.1.10 Illustration of complex of aurous species and dicarboxy acetone. Derived from 

Kumar et al. (2007) 

Also, Turkevich et al (1951) observed that while nucleation stopped after about five minutes 

of the synthesis, reactions continued for a further two hours, largely by the growth process 

when conducting the synthesis at 49 0C. Nucleation stopped because the nuclei adsorb 

dicarboxy acetone and decompose it to acetone (Kumar et al., 2007). Turkevich et al (1951) 

supported this idea using an experiment on the growth process. They mixed a solution of 
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sodium citrate and tetrachloroauric acid together. Few minutes after, they added a colloid of 

GNPs. This recipe yielded a particle size distribution (PSD) of one maximum. However, 

when they added the colloid several minutes after the completion of the nucleation step, they 

obtained a PSD of two maxima, one due to nucleation and growth and the other due to the 

added colloid. See Figure 2.1.11 for typical particle size distributions of one maximum and 

two maxima reported by Turkevich et al. (1951), to support their idea. 

 

Figure 2.1.11: Showing typical particle size distributions of one maximum and two maxima 

reported by Turkevich et al. (1951). 

Turkevich et al (1951) also made some findings on the growth process from their various 

experiments such as: 

 The standard deviation of the nanoparticle size distribution does not change with 

growth.  

 The ratio of particle sizes remains constant during growth. 

They put in a growth medium, two colloids of gold whose PSDs have mean sizes of 20 and 

30 nm, respectively, and obtained two PSDs with mean sizes of 40 and 60 nm. The standard 

deviations for both distributions remained almost unchanged. It is only if we assume that the 

growth rate is proportional to the size that the above scenario can hold. 

The evidence outlined above supports the nucleation-growth mechanism proposed by 

Turkevich et al. (1951). Kumar et al. (2007) used this evidence and contributions from other 

authors to come up with the reaction steps for this synthesis although they pointed out that 

some of the steps were still not fully understood. Below, we describe these steps starting 

from tetrachloroauric acid. 

The first step in the synthesis is to heat an aqueous solution of 𝐻𝐴𝑢𝐶𝑙4 to its boiling point. 

Doing so yields auric chloride (Mellor, 1946). Thus, auric chloride becomes the main 

precursor for the reduction process. The chemical expression is:   
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𝐻𝐴𝑢𝐶𝑙4 → 𝐴𝑢𝐶𝑙3 +𝐻𝐶𝑙        (2.1.1) 

At this stage, sodium citrate is introduced into the reactor while the reacting mixture is 

mechanically stirred. Both sodium citrate and auric chloride undergo a redox reaction; citrate 

becomes oxidized to dicarboxy acetone (DCA with the chemical formula: (𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂) 

while auric chloride becomes reduced to aurous chloride according to the following oxidation 

and reduction reactions: 

(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂
− → (𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 + 𝐶𝑂2 +𝐻

+ + 2𝑒−    (2.1.2) 

𝐴𝑢𝐶𝑙3 + 2𝑒
− → 𝐴𝑢𝐶𝑙 + 2𝐶𝑙−         (2.1.3) 

Combining eqs. (2.1.2) and (2.1.3) yields: 

𝐴𝑢𝐶𝑙3 + (𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

− → 𝐴𝑢𝐶𝑙 + 2𝐶𝑙− + (𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 + 𝐶𝑂2 +𝐻
+   

           (2.1.4) 

Thereafter, DCA forms a complex with aurous chloride and facilitates the disproportionation 

of aurous chloride into gold atoms and auric chloride. This is in line with the Turkevich 

organizer theory. An illustration of the complex is shown in Figure 2.1.10.  From this picture, 

a minimum of 2 DCA molecules and 3 aurous ions is required to form the complex. This 

complex continues to increase in the number of aurous ions and DCA molecules until it can 

produce a number of gold atoms sufficient to form a nucleus; hence, we have nucleation. 

The disproportionation reaction is given as: 

3𝐴𝑢𝐶𝑙
𝐷𝐶𝐴
→  2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3         (2.1.5) 

In this reaction, DCA behaves as a catalyst.  

In the Turkevich organizer theory, GNPs grow when gold (I) ions disproportionate on the 

particle surface; the particle surface acts as a catalyst in this case. Kumar et al (2007) stated 

that diffusional resistances are negligible at the length scales of nanoparticles. They stated 

that citrate ions alongside their derivatives easily adsorb unto gold surface to form 

complexes. Unless the surface is sufficiently large and the concentration of gold (I) ions is 

high, the complexes will shield gold (I) ions from adsorbing onto the gold surface. Thus, the 

growth rate is assumed to be proportional to the surface area of the particle and the 

concentration of gold (I) ions; so, the chemical reaction occurs as: 

3𝐴𝑢𝐶𝑙
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
→      2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3        (2.1.6) 

In the standard Turkevich synthesis, nucleation stops after 10 minutes when conducting the 

synthesis at 49 0C. In the previous paragraph, we cited that DCA creates nuclei. Thus, 
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nucleation cannot stop unless either aurous chloride or DCA is exhausted. Turkevich et al 

(1951) reported that DCA decomposes on the gold surface. Similarly, Kumar et al (2007) 

reported that at the synthesis temperature, DCA degrades into acetone according to the 

following reaction step: 

(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 + 2𝐻2𝑂 → (𝐶𝐻3)2𝐶 = 𝑂 + 2𝐶𝑂2 + 2(𝑂𝐻)
−    (2.1.7) 

We can obtain the overall stoichiometry of the reduction reaction as follows: 

Multiply eq. (2.1.4) by 3: 

3𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] → 3𝐴𝑢𝐶𝑙 + 6𝐶𝑙− + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂] + 3𝐶𝑂2 +

3𝐻+           (2.1.8) 

Substitute for 3𝐴𝑢𝐶𝑙 using eq. (2.1.6): 

3𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] → 2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3 + 6𝐶𝑙
− + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂] +

3𝐶𝑂2 + 3𝐻
+          (2.1.9) 

By collecting 𝐴𝑢𝐶𝑙3 on the LHS, the overall stoichiometry is: 

2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] → 2𝐴𝑢0 + 6𝐶𝑙− + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂] + 3𝐶𝑂2 + 3𝐻
+

           (2.1.10) 

This overall stoichiometry suggests that to have a complete reaction, we need three moles of 

citrate and two moles of auric chloride. However, various authors have shown that a 

complete conversion can be obtained at a stoichiometric ratio of 0.43 (ratios below 1.5, 

however, have little or no practical significance because they produce large particles). It 

appears reasonable to conclude that some derivatives of citrate can also reduce auric 

chloride in the synthesis. We derive the additional reduction of auric chloride as follows. 

Davies (1928) reported the reduction of tetrachloroauric acid using acetone. Since DCA 

degrades to acetone according to eq. (2.1.7), we write the reduction reaction as follows: 

(𝐶𝐻3)2𝐶 = 𝑂 + 𝑥𝐴𝑢𝐶𝑙3 → 𝑥𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠      (2.1.11) 

(Kumar et al. (2007) reported ‘products’; they did not report the real substances. In this 

reaction, acetone becomes oxidised while reducing 𝐴𝑢𝐶𝑙3. ‘Products’ would therefore consist 

of the oxidation products of acetone. Evans and Sefton (1922) reported the oxidation 

products of acetone as 𝐶𝐻3𝐶𝑂𝑂𝐻, 𝐻+ and 𝐶𝑂2. Furthermore, for a balance of atoms, 𝐶𝑙− 

would also be produced. Thus, ‘products’ would be a combination of 𝐶𝐻3𝐶𝑂𝑂𝐻, 𝐻+, 𝐶𝑙− and 

𝐶𝑂2.) 
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In Eq. (2.1.11), the stoichiometry of acetone to auric chloride is assumed to be 1: 𝑥. The 

value of 𝑥 can be obtained from the stoichiometric ratio of 0.43 citrate to auric chloride, 

experimentally reported by past authors for a complete conversion of the precursor occurs. 

To do this, we express acetone in terms of citrate and then substitute this expression into 

Eq. (2.1.11) so that the latter would be in terms of citrate rather than acetone. Thereafter, we 

obtain the value of 𝑥 by equating the ratio of citrate to auric chloride to 0.43. To express 

acetone in terms of citrate, we first express acetone in terms of DCA using Eq. (2.1.7) as: 

(𝐶𝐻3)2𝐶 = 𝑂 → (𝐶𝑂𝑂
−𝐶𝐻2)2𝐶 = 𝑂 + 2𝐻2𝑂 − 2𝐶𝑂2 − 2(𝑂𝐻)

−    (2.1.12) 

Then, we substitute for acetone in Eq. (2.1.11) and rearrange as: 

(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 + 2𝐻2𝑂 + 𝑥𝐴𝑢𝐶𝑙3 → 𝑥𝐴𝑢𝐶𝑙 + 2𝐶𝑂2 + 2(𝑂𝐻)
− + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  (2.1.13) 

We can then write Eq. (2.1.13) in terms of citrate by substituting for DCA using Eq. (2.1.10). 

From the latter, we have: 

3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂] → 2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] − 2𝐴𝑢0 − 6𝐶𝑙− − 3𝐶𝑂2 − 3𝐻
+

           (2.1.14) 

We multiply Eq. (2.1.13) by 3 and then substitute for DCA using Eq. (2.1.14). After 

rearranging, we obtain: 

(2 + 3𝑥)𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] + 6𝐻2𝑂 → 2𝐴𝑢
0 + 6𝐶𝑙− + 3𝐶𝑂2 + 3𝐻

+ +

3𝑥𝐴𝑢𝐶𝑙 + 6𝐶𝑂2 + 6(𝑂𝐻)
− + 3𝑝𝑟𝑜𝑑𝑢𝑐𝑡       (2.1.15) 

Also, we can substitute for 3𝑥𝐴𝑢𝐶𝑙 → 2𝑥𝐴𝑢0 + 𝑥𝐴𝑢𝐶𝑙3 in Eq. (2.1.15) and obtain 

(2 + 3𝑥)𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] → 2𝐴𝑢0 + 𝑥(2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3) + 3𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 +

9𝐶𝑂2 + 6(𝑂𝐻)
− + 6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻

+      (2.1.16) 

By re-arranging Eq. (2.1.16), we obtain 

(2 + 2𝑥)𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] → (2 + 2𝑥)𝐴𝑢0 + 3𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 + 9𝐶𝑂2 +

6(𝑂𝐻)− + 6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻
+       (2.1.17) 

Eq. (2.1.17) becomes the final overall reaction, from which 𝑥 can be calculated using 

𝑐𝑖𝑡𝑟𝑎𝑡𝑒 𝑔𝑜𝑙𝑑⁄ = ~0.43. 𝑥 = 2.49. Thus, we explain the stoichiometric ratio of 0.43 by adding 

the following reduction reaction: 

2.5𝐴𝑢𝐶𝑙3 + (𝐶𝐻3)2𝐶 = 𝑂 → 2.5𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠     (2.1.18) 

However, Kumar et al. (2007) reported  

4𝐴𝑢𝐶𝑙3 + (𝐶𝐻3)2𝐶 = 𝑂 → 4𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠      (2.1.19) 
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We think this was a mistake as the calculations above reveal. 

We summarize the chemical reactions that describe the Turkevich organizer theory in Table 

2.1.1. 

Table 2.1.1: The chemical reactions that describe the Turkevich organizer theory (Mellor, 

1946; Kumar et al., 2007) 

𝐻𝐴𝑢𝐶𝑙4 → 𝐴𝑢𝐶𝑙3 +𝐻𝐶𝑙        (2.1.1) 

𝐴𝑢𝐶𝑙3 + (𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

− → 𝐴𝑢𝐶𝑙 + 2𝐶𝑙− + (𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 + 𝐶𝑂2 +𝐻
+   

           (2.1.4) 

3𝐴𝑢𝐶𝑙
𝐷𝐶𝐴
→  2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3         (2.1.5) 

(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 + 2𝐻2𝑂 → (𝐶𝐻3)2𝐶 = 𝑂 + 2𝐶𝑂2 + 2(𝑂𝐻)
−    (2.1.7) 

3𝐴𝑢𝐶𝑙
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
→      2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3        (2.1.6) 

2.5𝐴𝑢𝐶𝑙3 + (𝐶𝐻3)2𝐶 = 𝑂 → 2.5𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠     (2.1.18) 

 

Next, we describe the experimental evidence provided by Wuithschick et al (2015) for the 

seed-mediated mechanism. 

2.1.5.2 Seed-mediated mechanism 

While the Turkevich organizer theory did not report aggregation, the seed-mediated 

mechanism involves nucleation, aggregation and growth in the particle phase. Aggregation 

in the citrate synthesis method was first reported by Chow and Zukoski (1994) while 

investigating the synthesis with a combination of the UV-Vis spectroscopy and electron 

microscopy. Using this set-up as well, Ji et al. (2007) reported a more extensive study, which 

first pointed out the role of pH and illustrated how it affects the effect of aggregation in the 

synthesis. In addition to this set-up, Polte et al. (2010) and Wuithchick et al. (2015) used a 

combination of XANES and SAXS techniques to investigate the synthesis. This equipment 

provides time-resolved in situ information on the size of nanoparticles of about 2 nm or larger 

and of their number concentration, offering a reliable account of the synthesis. Figure 2.1.12 

shows the SAXS evidence for the presence of aggregation in the synthesis. 
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Figure 2.1.12: Evolution of the mean radius and of the percentage number of particles in the 

citrate synthesis method. The values of the initial concentrations of 𝐻𝐴𝑢𝐶𝑙4 and 𝑁𝑎3𝐶𝑡 in the 

synthesis solution are 0.25 𝑚𝑜𝑙 𝑚3⁄  and 2.5 𝑚𝑜𝑙 𝑚3⁄ , respectively. The mixture temperature 

is 75 0𝐶. Data reproduced from Figure 2(d) of Polte et al. (2010). 

From this figure, the number of particles is at the maximum early in the synthesis, declines 

for about one-third of the synthesis time, and remains constant thereafter. In the process, the 

polydispersity reduced (Polte et al., 2010). The maximum number of particles corresponds to 

the nucleated nanoclusters, which coalesce to form the seed particles, reflected in the 

decline of the particle number. Later on, the number of particles remains constant while 

particle size steadily rises. This suggests that particles stop coalescing and start growing. 

Furthermore, in their standard condition, where the molar ratio of citrate-to-gold is 10, the 

initial precursor concentration in the synthesis solution at 100 0𝐶 is 0.25 𝑚𝑜𝑙 𝑚3⁄ , 

Wuithschick et al. observed that particles aggregated into seed particles, which are about 

the same size. Then, these seed particles grew to the final GNPs. In their work, Wuithschick 

et al (2015) drew portions from the reacting mixture at different times and quenched them to 

normal temperature so as to stop the synthesis. They analysed the portions after four days 

and observed that the reactions still reached completion. The particles had slowly grown to 

the final size. The portions drawn after a particular time yielded the same particle mean size 

and polydispersity as the original mixture. These portions were said to have been drawn 

after the seed had been formed. Conversely, the portions drawn before this time yielded 

particles that were much bigger or smaller. Thus, Wuithschick et al (2015) proposed the 
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seed-mediated mechanism where GNPs aggregate until they reach a stable size; thereafter, 

they grow. 

The seed size is determined by the colloidal stability of the mixture. The colloidal stability is a 

measure of aggregation of particles. As colloids become stable, particles aggregate less 

significantly. For the usual range of the Turkevich synthesis, seed size is constant (Polte et 

al., 2010). Polte et al (2010) tested this by adding an unreactive electrolyte 𝑁𝑎𝐶𝑙𝑂3 to the 

mixture. They reasoned as follows. As the ionic strength of the solution increases, the 

charges on particles increase, hence ensuring the colloidal stability of the mixture. In 

increasing the ionic strength, to preserve the chemistry of the synthesis, Polte et al. did not 

want to introduce into the synthesis solution a reactive electrolyte, hence employing 𝑁𝑎𝐶𝑙𝑂3 

in the investigation. 𝑁𝑎𝐶𝑙𝑂3 did not have any effect on the stability (as the seed size 

remained constant) until when its concentration was 120 times more than [𝐴𝑢𝐶𝑙4]
−. This 

observation made them conclude that within the usual range of the Turkevich synthesis, the 

seed size is constant. Subsequently, they explained the mechanism as follows: Au(III) reacts 

in two parallel directions: one forms Au(0) and the other forms the unreactive complex 

[𝐴𝑢𝐶𝑙4−𝑥(𝑂𝐻)𝑥]
−.The ratio of their rate constants is determined by the pH of the system 

which affects the gold equilibrium position. In an acidic pH, Au(III) preferably exists as 

[𝐴𝑢𝐶𝑙4]
−. [𝐴𝑢𝐶𝑙4]

− reacts to form Au(0), gold atoms nucleate into gold nanoclusters. At the 

nanocluster level, particles are unstable so they aggregate to form seeds. [𝐴𝑢𝐶𝑙4−𝑥(𝑂𝐻)𝑥]
− 

slowly begins to release Au atoms on the seeds, followed by a fast release i.e. slow and fast 

growth.  

Also, pH affects the dynamics of this synthesis in a number of ways. For example, it affects 

the colloidal stability and the seed size. Similarly, it affects the precursor and reducing agent 

solutions, either of which can exist in different forms depending on the pH. The normal pH 

range for the synthesis is between 3 and 8. Within this range, the seed particle size is fixed. 

So, if more [𝐴𝑢𝐶𝑙4]
− reacts to form the seed monomers, more seed particles will be formed 

thus reducing the final size. At lower pH than this range, seed particle size increases 

because more ions are present to promote aggregation. In acidic pH, the precursor exists as 

[𝐴𝑢𝐶𝑙4]
− while as the pH increases, it becomes [𝐴𝑢𝐶𝑙4−𝑥(𝑂𝐻)𝑥]

−. Citrate, on the other hand, 

exists as 𝐶𝑡3− in acid, but as 𝐶𝑡𝐻3 in alkaline pH. Thus, pH determines both the state of the 

precursor and that of the reducing agent. 

Polte et al (2010) also considered the role of dicarboxyl acetone (DCA) in the synthesis. 

They carried out experiments (i) with DCA used as the only reducing agent instead of citrate 

(ii) DCA added to a standard synthesis after seed particle formation, and (iii) DCA added to 

𝑁𝑎3𝐶𝑡 before mixing with 𝐻𝐴𝑢𝐶𝑙4. The first experiment produced a more polydisperse 
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mixture; they concluded that 𝐻𝐴𝑢𝐶𝑙4 with DCA does not follow the seed mediated pathway.  

Both 𝐻𝐴𝑢𝐶𝑙4 and DCA are acids; so, while [𝐴𝑢𝐶𝑙4]
− forms [𝐴𝑢𝐶𝑙4−𝑥(𝑂𝐻)𝑥]

−  as a parallel 

reaction to the formation of seeds, DCA directly forms GNPs in no particular order. In the 

second experiment, the final particle size and particle size distribution were similar to the 

results from the standard synthesis; however, the reaction was completed in half of the time. 

DCA promoted the growth process.  In the third experiment, DCA only substantially reduced 

the reaction time. The outcomes further confirmed that DCA actually promotes the synthesis; 

Turkevich et al (1951) said it promotes the nucleation process while Polte et al (2010) said it 

promotes the growth process. Meanwhile, DCA should not produce more particles in 

experiment (ii) as expected by Polte et al (2010). Previous investigations by Turkevich et al 

(1951) confirmed DCA decomposes in the presence of seed particles. A valid argument 

against DCA as an organizer, however, was put forward by Doyen et al (2010). Doyen et al 

(2010) investigated the synthesis using nuclei magnetic resonance and found no evidence of 

DCA as an intermediate in the citrate method. A critical look at their report, however, 

revealed that DCA was present early in the synthesis. However, the strongest claim against 

DCA is the fact that, at the synthesis temperature, it decomposes more rapidly than the 

nuclei take to form so it cannot be available to promote nucleation. Wiig (1928) reported that 

DCA takes 1e-7 s to decompose while Turkevich et al. (1951) reported that it takes about 1 

min. for nucleation to occur. Thus, as soon as DCA forms, it decomposes instantaneously 

before the inception of nucleation process. 

In summary, the work by Polte et al (2010) revealed that the citrate synthesis method follows 

a seed-mediated mechanism. However, unlike the Turkevich organizer theory, we do not 

have the reaction steps for the seed-mediated mechanism. We transform the presented 

experimental evidence of Polte et al. (2010), Wuithschick et al. (2015) and other authors into 

reaction steps in Chapter 4. 

In the following section, we present the mathematical framework to adopt in modelling the 

citrate synthesis method. 

2.2 Mathematical modelling 
We have thus far reviewed the citrate synthesis method, revealing how GNPs form in the 

reaction mixture. The reaction mixture consists of particles (GNPs) dispersed in the aqueous 

solution, to constitute a multiphase system of the liquid (or continuous) phase and the solid 

(or discontinuous) phase. We review modelling approaches for the two phases as follows. 
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2.2.1 Continuous phase 
In chemical processes, the basic governing equations are the laws of the conservation of 

mass, momentum and energy. In deriving these governing equations, we consider a control 

volume. Depending on the state of the control volume, the governing equations can be 

derived from two approaches: Lagrangian and Eulerian. In the former, the control volume 

moves at the same velocity as the local fluid while in the latter, the control volume is fixed. 

We adopt the Eulerian approach in deriving the governing equations in this work. For the 

material balance, we write: 

𝐴𝑐𝑐 = (𝐼𝑛 − 𝑂𝑢𝑡) + 𝐺𝑒𝑛        (2.2.1) 

where 𝐴𝑐𝑐 is the mass accumulation rate (i.e. the rate of change of mass of a component in 

the control volume 𝑉), 𝐼𝑛 − 𝑂𝑢𝑡 is the net mass flow rate of the component entering 𝑉 and 

𝐺𝑒𝑛 is the mass generation rate (i.e. the mass of the component generated within the control 

volume per unit time). By convention, the conservation laws are written in terms of moles 

because in chemical reactions, the combination of reactants is expressed accurately using 

their moles. The mole 𝑀𝑖(𝑡) of component 𝑖 present at time 𝑡 in 𝑉 is: 

𝑀𝑖(𝑡) = ∫ 𝐶𝑖(𝒙, 𝑡)𝑑𝑉𝑉
         (2.2.2) 

where 𝐶𝑖(𝒙, 𝑡) is the molar concentration of component 𝑖 and it is a function of both physical 

space and time. 

By definition, the accumulation term in Eq. (2.2.1) is given as: 

𝐴𝑐𝑐 =
𝑀𝑖(𝑡+𝑑𝑡)−𝑀𝑖(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(∫ 𝐶𝑖(𝒙, 𝑡)𝑑𝑉𝑉

) = ∫
𝜕𝐶𝑖

𝜕𝑡
𝑑𝑉

𝑉
     (2.2.3) 

The last passage in the equation above holds because 𝑉 is fixed; that is, it is not a time-

dependent integration domain. 

The term (𝐼𝑛 − 𝑂𝑢𝑡) in Eq. (2.2.1) is contributed by two processes: convection and diffusion. 

Thus, we have: 

(𝐼𝑛 − 𝑂𝑢𝑡) = (𝐼𝑛 − 𝑂𝑢𝑡)𝑐𝑜𝑛𝑣 + (𝐼𝑛 − 𝑂𝑢𝑡)𝑑𝑖𝑓𝑓     (2.2.4) 

For the term (𝐼𝑛 − 𝑂𝑢𝑡)𝑐𝑜𝑛𝑣, due to the fluid velocity 𝒖𝒇, component 𝑖 flows in and out of the 

control volume 𝑉. This control volume has a physical control surface denoted by 𝑺 and its 

differential surface is denoted by 𝑑𝑺. In terms of the unit vector, 𝑑𝑺 = 𝒏𝑑𝑆. By convention, 

the unit vector is directed outward. Thus, we have: 

(𝐼𝑛 − 𝑂𝑢𝑡)𝑐𝑜𝑛𝑣 = −∫ 𝐶𝑖𝒖𝒇. 𝑑𝑺𝑺
       (2.2.5) 
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Using the Gauss theorem, Eq. (2.2.5) becomes: 

(𝐼𝑛 − 𝑂𝑢𝑡)𝑐𝑜𝑛𝑣 = −∫ 𝛁𝒙. (𝐶𝑖𝒖𝒇)𝑑𝑉𝑉
       (2.2.6) 

For the term (𝐼𝑛 − 𝑂𝑢𝑡)𝑑𝑖𝑓𝑓, component 𝑖 diffuses in and out of the control volume 𝑉. By the 

convention of the unit vector and applying the Gauss theorem, the expression is: 

(𝐼𝑛 − 𝑂𝑢𝑡)𝑑𝑖𝑓𝑓 = −∫ 𝑱𝑖. 𝑑𝑺𝑺
= −∫ 𝛁𝒙. (𝑱𝑖)𝑑𝑉𝑉

     (2.2.7) 

where 𝑱𝑖 is the diffusive flux of component i. In the absence of external forces and 

temperature gradient, 𝑱𝑖 can be expressed using the Fick’s law of diffusion as (Ranade, 

2002): 

𝑱𝑖 = −𝐷𝑖𝑚𝛁𝒙𝐶𝑖          (2.2.8) 

where 𝐷𝑖𝑚 is the diffusion coefficient for component i in the mixture. In terms of the binary 

diffusion coefficient 𝐷𝑖𝑗 of component i relative to component j, 𝐷𝑖𝑚 can be expressed as 

(Ranade, 2002): 

𝐷𝑖𝑚 =
1−𝑦𝑖

∑ 𝑦𝑗 𝐷𝑖𝑗⁄𝑗.𝑗≠𝑖
         (2.2.9) 

𝑦𝑖 is the mole fraction of component i. 

For the last term in Eq. (2.2.1), the generation term, we have: 

𝐺𝑒𝑛 = ∫ 𝑟𝑖(𝒙, 𝑡) 𝑑𝑉𝑉
         (2.2.10) 

where 𝑟𝑖(𝒙, 𝑡) is the rate of generation of component 𝑖 per unit volume from various reactions 

and it is a function of both physical space and time. 

Substituting the equations into Eq. (2.2.1), we have: 

∫
𝑑𝐶𝑖

𝑑𝑡
𝑑𝑉

𝑉
= −∫ 𝛁𝒙. (𝐶𝑖𝒖𝒇)𝑑𝑉𝑉

+ ∫ 𝛁𝒙. (𝐷𝑖𝑚𝛁𝒙𝐶𝑖)𝑑𝑉𝑉
+ ∫ 𝑟𝑖(𝒙, 𝑡) 𝑑𝑉𝑉

   (2.2.11) 

Eq. (2.2.11), when re-arranged, becomes: 

∫ [
𝜕𝐶𝑖

𝜕𝑡
+ 𝛁𝒙. (𝐶𝑖𝒖𝒇) − 𝛁𝒙. (𝐷𝑖𝑚𝛁𝒙𝐶𝑖) − 𝑟𝑖] 𝑑𝑉𝑉

= 0     (2.2.12) 

Since this equation has to be satisfied for an arbitrary control volume, assuming that the 

integrand function is continuous, we conclude that it must be:  

𝜕𝐶𝑖

𝜕𝑡
= −𝛁𝒙. (𝐶𝑖𝒖𝒇) + 𝛁𝒙. (𝐷𝑖𝑚𝛁𝒙𝐶𝑖) + 𝑟𝑖       (2.2.13) 
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We can simplify this equation by imposing some conditions. The synthesis of GNPs in citrate 

synthesis is usually carried out in a batch reactor with good mechanical stirring (Turkevich et 

al., 1951). Consequently, the reactor is well-mixed. By implication, the properties of the fluid 

do not depend on physical space; 𝐶𝑖, 𝒖𝒇 and 𝑟𝑖 only depend on time. Hence, the diffusion 

term in Eq. (2.2.13) vanishes, because no concentration gradients are present. Similarly, the 

convective term also vanishes. The system is a batch reactor with no boundaries through the 

component can enter or leave the reactor. As 𝐶𝑖 only depends on time, Eq. (2.2.13) 

becomes: 

𝑑𝐶𝑖

𝑑𝑡
= 𝑟𝑖           (2.2.14) 

(In Appendix A, we have also derived Eq. (2.2.14) using the averaging theory. For details of 

this derivation, we refer the reader to Appendix A.)  

Eq. (2.2.14) is an ordinary differential equation (ODE) of 𝐶𝑖 with respect to time that 

describes any aqueous component in the citrate synthesis method for a batch reactor. 𝑟𝑖 can 

be expressed in terms of the reactants’ concentrations. Expressions for 𝑟𝑖 would depend on 

the mechanism of the synthesis, which can be the Turkevich organizer theory or the seed-

mediated mechanism. We discuss in detail the expressions for 𝑟𝑖 in these mechanisms in 

Chapters 3 and 4. 

2.2.2 Discontinuous phase 
The discontinuous phase contains GNPs with a number concentration of 6.09 × 1017 1 𝑚3⁄ . 

To estimate the latter, we employ the experimental condition of Turkevich et al. (1951), 

where the initial precursor concentration 𝐶𝐻𝐴𝑢𝐶𝑙4 = 0.255 𝑚𝑜𝑙 𝑚
3⁄  yielded particles with a 

final mean diameter 𝑠𝑓 = 20.0 𝑛𝑚 lying in the interval [18.5 𝑛𝑚, 21.5 𝑛𝑚]. With this narrow 

interval, we assumed the GNP distribution as monodisperse and used the expression: 

𝐶𝐻𝐴𝑢𝐶𝑙4 𝜌𝑚𝑣𝑠𝑓
3⁄  

for the estimate. In this expression, 𝜌 is the molar density of gold, taken as 105  𝑚𝑜𝑙 𝑚3⁄ , 𝑚𝑣 

is the particle volume shape factor (which we set equal to /6, assuming that the particles 

are spherical). 

This system of particles can be modelled at different levels of details. At the most 

fundamental level (or the microscale), the particles are considered individually. This 

approach involves modelling the formation of nuclei and describing how each nucleus grows 

and aggregates. Tracking individual particles (that is, tracking how ~1017 1 𝑚3⁄  particles 

evolve in the synthesis) is computationally extremely demanding and, in most cases, 
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unnecessary. We will not adopt this approach. On the other hand, the macroscale approach 

treats this system of particles effectively as a bulk (a single particle) using their average 

values, such as the mean size of GNPs. However, the quality of GNPs depends not only on 

the mean particle size, but more importantly on the particle size distribution (PSD). The PSD 

or more generally the number density function (NDF) is the framework of the population 

balance equations (PBEs) – the NDF is a mathematical function that describes how these 

particles relate with one another. The PBEs describe how the NDF, under the influence of 

processes such as nucleation, growth and aggregation, evolves in time, internal particle 

space (such as the particle size) and physical space.  

Below, we introduce the concept of the NDF, followed by the derivation of the PBEs. We 

then consider how all the terms in the PBEs representing nucleation, growth and 

aggregation can be expressed under the section treating the problem of closure. 

2.2.2.1 Number density function 

The particle size 𝑠 is assumed to be a continuous variable characterizing the state of the 

nanoparticles. No two nanoparticles have exactly the same size (say, the size of particle A is 

4.12345…  𝑛𝑚 while that of particle B is 4.12344…𝑛𝑚): a (nano)particle size distribution is 

therefore present. This is true in general, for any variable characterizing the nanoparticles. 

The velocity 𝒖 at which each nanoparticle moves in physical space, for instance, differs from 

particle to particle: a (nano)particle velocity distribution is thus also present. The distribution 

of the nanoparticle population over all the variables that characterize the state of each 

particle (here assumed to be size and linear velocity) can be expressed as a number density 

function, denoted as 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡). By definition, 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡) 𝑑𝑠𝑑𝒖𝑑𝒙 represents the number of 

particles at time 𝑡 present in a differential volume 𝑑𝒙 around a point 𝒙 in physical space that 

have size in the range 𝑑𝑠 around 𝑠 and velocity in the range 𝑑𝒖 around 𝒖. Therefore, 

𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡) represents the number of particles per unit phase-space volume, where phase 

space is the abstract space given by the union of size, velocity and physical spaces. Notice 

that the number of particles having size equal to 𝑠 (or having velocity equal to 𝒖) is 

statistically zero. Conversely, the number of particles with size in a given size range is 

nonzero. For instance, the number of particles with size in the range [𝑠1, 𝑠2] per unit velocity-

space volume and physical-space volume is finite and equal to: 

∫ 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝑑𝑠
𝑠2 

𝑠1 
         (2.2.15) 

The number of particles with size in the range [𝑠1, 𝑠2] per unit physical-space volume (with 

any possible velocity) is instead given by: 
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∫ ∫ 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝑑𝑠
𝑠2 

𝑠1 
𝑑𝒖

𝛺𝒖
        (2.2.16) 

where 𝛺𝒖 represents the domain of variation of the particle velocity vector (for each 

rectangular velocity component this domain is assumed to extend from −∞ to +∞).  

The total number of particles per unit physical-space volume (with any possible size and 

velocity) is given by: 

∫ ∫ 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝑑𝑠
 

𝛺𝑠 
𝑑𝒖

𝛺𝒖
        (2.2.17) 

where 𝛺𝑠 represents the domain of variation of the particle size (assumed to extend from 0 

to +∞). 

Finally, the number of particles present in a vessel occupying a region 𝛺𝒙 of physical space 

(with any possible size and velocity) is given by:  

∫ ∫ ∫ 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝑑𝑠
 

𝛺𝑠 
𝑑𝒖

𝛺𝒖
𝑑𝒙

𝛺𝒙
       (2.2.18) 

2.2.2.2 Derivation of the generalized population balance equation 

Following the Eulerian approach previously discussed for the continuous phase, we consider 

a fixed arbitrary control volume 𝜦𝝍 in phase space. 𝜦𝝍 is the union of three disjointed control 

volumes: 𝜦𝑠 in particle size space, 𝜦𝒖 in velocity state space and 𝜦𝒙 in physical space. In 

deriving the number balance equation over this control volume, we follow the balance 

equation previously reported in Eq. (2.2.1). In this case, the accumulation rate 𝐴𝑐𝑐 is the rate 

of change of the number of particles in the control volume; the convective term (𝐼𝑛 − 𝑂𝑢𝑡) is 

the net number flow rate of particles entering the control volume; and the generation rate 

𝐺𝑒𝑛 is the number of particles generated within the control volume per unit time. The number 

𝑁(𝑡) of particles present at time 𝑡 in the control volume 𝜦𝝍 is: 

𝑁(𝑡) = ∫ ∫ ∫ 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝑑𝑠
 

𝜦𝒔 
𝑑𝒖

 

𝜦𝒖 
𝑑𝒙

 

𝜦𝒙 
= ∫ 𝑓𝑛(𝝍, 𝑡)𝑑𝝍

 

𝜦𝝍 
    (2.2.19) 

where 𝝍 is the phase-space position vector that combines 𝑠, 𝒖 and 𝒙. Let us now derive an 

expression for each term of Eq. (2.2.1). First, we can write: 

𝐴𝑐𝑐 =
𝑁(𝑡+𝑑𝑡)−𝑁(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
∫ 𝑓𝑛(𝝍, 𝑡)𝑑𝝍
 

𝜦𝝍 
= ∫

𝜕

𝜕𝑡
𝑓𝑛(𝝍, 𝑡)𝑑𝝍

 

𝜦𝝍
    (2.2.20) 

The last passage in the equation above holds because 𝜦𝝍 is fixed; that is, it is not a time-

dependent integration domain.  

Considering the physical space, the convective flow can be expressed as: 



 

34 
 

(𝐼𝑛 − 𝑂𝑢𝑡)𝒙 = −∫ ∫ ∫ 𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝒖. 𝑑𝑺𝒙
 

𝝏𝜦𝒙 
𝑑𝒖

 

𝜦𝒖 
𝑑𝑠

 

𝜦𝒔 
     (2.2.21) 

where 𝝏𝜦𝒙 denotes the boundary of the physical-space domain 𝜦𝒙. Using the Gauss 

theorem, Eq. (2.2.21) becomes: 

(𝐼𝑛 − 𝑂𝑢𝑡)𝒙 = −∫ 𝛁𝒙. (𝑓𝑛(𝝍, 𝑡)𝒖)𝑑𝝍
 

𝜦𝝍 
      (2.2.22) 

Here, 𝛁𝒙. is the divergence operator in physical space. Being an internal coordinate, 𝒖 can 

be removed from the divergence sign, and the integrand in Eq. (2.2.22) could be rewritten as 

𝒖. 𝛁𝒙𝑓𝑛.  

Similar expressions can be obtained for the convective terms in velocity and size spaces. 

For the former, we obtain: 

(𝐼𝑛 − 𝑂𝑢𝑡)𝒖 = −∫ 𝛁𝒖. (𝑓𝑛(𝝍, 𝑡)𝒖̇)𝑑𝝍
 

𝜦𝝍 
      (2.2.23) 

where 𝒖̇ is the particle acceleration (assumed to be a known function of 𝝍). For the 

contribution related to the particle size space, it is: 

(𝐼𝑛 − 𝑂𝑢𝑡)𝑠 = −∫
∂

𝜕𝑠
(𝑓𝑛(𝝍, 𝑡)𝐺𝑠)𝑑𝝍

 

𝜦𝝍 
      (2.2.24) 

where 𝐺𝑠 is the growth rate (assumed to be a known function of 𝝍).  

The generation term accounts for events such as nucleation, aggregation and breakage. 

These events give rise to sudden appearance of particles as against what happens with the 

convective terms, where particles move gradually into and out of the control volume. We 

express this term as:  

𝐺𝑒𝑛 = ∫ ℎ𝑛(𝝍, 𝑡)𝑑𝝍
 

𝜦𝝍 
         (2.2.25) 

Putting all the terms together, we obtain: 

∫
𝜕

𝜕𝑡
𝑓𝑛(𝝍, 𝑡)𝑑𝝍

 

𝜦𝝍 
= −∫ 𝛁𝒙. (𝑓𝑛(𝝍, 𝑡)𝒖)𝑑𝝍

 

𝜦𝝍
− ∫ 𝛁𝒖. (𝑓𝑛(𝝍, 𝑡)𝒖̇)𝑑𝝍

 

𝜦𝝍 
− ∫

∂

𝜕𝑠
. (𝑓𝑛(𝝍, 𝑡)𝐺𝑠)𝑑𝝍

 

𝜦𝝍 
+

∫ ℎ𝑛(𝝍, 𝑡)𝑑𝝍
 

𝜦𝝍 
          (2.2.26) 

Eq. (2.2.26), when re-arranged, becomes: 

∫ [
𝜕

𝜕𝑡
𝑓𝑛(𝝍, 𝑡) + 𝛁𝒙. (𝑓𝑛(𝝍, 𝑡)𝒖) + 𝛁𝒖. (𝑓𝑛(𝝍, 𝑡)𝒖̇) +

∂

𝜕𝑠
. (𝑓𝑛(𝝍, 𝑡)𝐺𝑠) − ℎ𝑛(𝝍, 𝑡)] 𝑑𝝍

 

𝜦𝝍 
= 0 

           (2.2.27) 

Since this equation has to be satisfied for an arbitrary control volume, assuming that the 

integrand function is continuous, we conclude that it must be:  
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𝜕

𝜕𝑡
𝑓𝑛(𝝍, 𝑡) = −𝛁𝒙. (𝑓𝑛(𝝍, 𝑡)𝒖) − 𝛁𝒖. (𝑓𝑛(𝝍, 𝑡)𝒖̇) −

∂

𝜕𝑠
. (𝑓𝑛(𝝍, 𝑡)𝐺𝑠) + ℎ𝑛(𝝍, 𝑡)  (2.2.28) 

Eq. (2.2.28) is referred to as generalized population balance equation (GPBE). The term 

generalized indicates that the particle velocity is included in the set of independent variables 

that specify the particle state. The solution of Eq. (2.2.28) yields the function 𝑓𝑛, which 

completely characterizes the system, telling how the particles move in physical space, how 

their linear momenta evolve and how their sizes vary (sizes vary from the nucleus size to the 

final size of the particle). The GBPE is an eight-dimensional integro-partial-differential 

equation; thus, it is extremely difficult to solve. To simplify it, we impose some conditions as 

follows.  

2.2.2.3 Simplified population balance equation 

Like we did for the continuous phase, we impose the experimental conditions of a well-mixed 

batch reactor on the GPBE. In addition, the only particle internal coordinate of gold 

nanoparticles of interest in various applications is particle size. We also consider that the 

volume of the reactor is fixed. In the citrate synthesis method, the volume of the reacting 

mixture is fixed. Thus, we simplify the GPBE by imposing the following conditions: 

 Only particle size is considered as the particle internal property.  

 The batch reactor is perfectly mixed. 

 The volume of the reactor is fixed. 

We will consider how these conditions affect the GPBE.  

First, only the particle size s is considered as particle internal property. This condition will 

reduce the dimensionality of eq. (2.2.28) from eight to five (because the three coordinates of 

the particle velocity are no longer considered as variables characterizing the particle state) 

and transform the generalized population balance equation to the more conventional 

population balance equation (PBE) often used to model crystallization processes. The PBE 

is obtained by integrating eq. (2.2.28) over the velocity space. This strategy would produce a 

mean velocity conditioned on the size, which is no longer an independent particle state 

coordinate. We implement this integral transform as follows: 

∫ [
𝜕

𝜕𝑡
𝑓𝑛 + 𝛁𝒙. (𝑓𝑛𝒖) + 𝛁𝒖. (𝑓𝑛𝒖̇) +

∂

𝜕𝑣
. (𝑓𝑛𝐺𝑠) − ℎ𝑛]𝛺𝒖

𝑑𝒖 = 0    (2.2.29) 

The first term in eq. (2.2.29) is transformed as: 

∫
𝜕

𝜕𝑡
𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡)𝛺𝒖

𝑑𝒖 =
𝜕

𝜕𝑡
𝑛(𝑠, 𝒙, 𝑡)       (2.2.30) 
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where 𝑛 is the number of particles per size space volume per physical space volume, 

mathematically expressed as: 

𝑛(𝑠, 𝒙, 𝑡) ≡ ∫ 𝑓𝑛𝛺𝒖
𝑑𝒖         (2.2.31) 

The second term is transformed as: 

∫ 𝛁𝒙. (𝑓𝑛𝒖)𝛺𝒖
𝑑𝒖 = 𝛁𝒙. ∫ (𝑓𝑛𝒖)𝛺𝒖

𝑑𝒖 = 𝛁𝒙. (𝑛(𝑠, 𝒙, 𝑡)〈𝒖〉𝑎𝑣)    (2.2.32) 

where  

〈𝒖〉𝑎𝑣 ≡
∫ (𝑓𝑛𝒖)𝛺𝒖

𝑑𝒖

∫ 𝑓𝑛𝛺𝒖
𝑑𝒖

=
∫ (𝑓𝑛𝒖)𝛺𝒖

𝑑𝒖

𝑛(𝑠,𝒙)
        (2.2.33) 

∫ (𝑓𝑛𝒖)𝛺𝒖
𝑑𝒖 and 𝑛(𝑠, 𝒙) are the first and the zeroth moments respectively of the NDF over 

the velocity space while 〈𝒖〉𝑎𝑣 is an average velocity conditioned on 𝑠. Velocity is no longer 

an independent variable in eq. (2.2.32). 

The third term is transformed by splitting the triple integral into its components as: 

∫ 𝛁𝒖. (𝑓𝑛𝒖̇)𝛺𝒖
𝑑𝒖 = ∫ ∫ ∫ [

𝜕

𝜕𝑢1
(𝑓𝑛𝑢̇1) +

𝜕

𝜕𝑢2
(𝑓𝑛𝑢̇2) +

𝜕

𝜕𝑢3
(𝑓𝑛𝑢̇3)]

+∞

−∞

+∞

−∞
𝑑𝑢1𝑑𝑢2

+∞

−∞
𝑑𝑢3 (2.2.34) 

If we take the innermost integral on the first term on the right-hand side of eq. (2.2.34), we 

have: 

∫
𝜕

𝜕𝑢1
(𝑓𝑛𝑢̇1)𝑑𝑢1

+∞

−∞
= [𝑓𝑛𝑢̇1]−∞

+∞        (2.2.35) 

𝑓𝑛 declines rapidly as we move away from its mean and goes to zero when 𝑢1 diverges. This 

makes eq. (2.2.35), and hence eq. (2.2.34), vanish. 

For the transformation of the fourth term, as we did in eq. (2.2.32), we have  

∫
∂

𝜕𝑠
. (𝑓𝑛𝐺𝑠)𝛺𝒖

𝑑𝒖 =
∂

𝜕𝑠
∫ (𝑓𝑛𝐺𝑠)𝛺𝒖

𝑑𝒖 =
∂

𝜕𝑠
(𝑛〈𝐺𝑠〉)     (2.2.36) 

where 

〈𝐺𝑠〉 ≡
∫ (𝑓𝑛𝐺𝑠)𝛺𝒖

𝑑𝒖

∫ 𝑓𝑛𝛺𝒖
𝑑𝒖

=
∫ (𝑓𝑛𝐺𝑠)𝛺𝒖

𝑑𝒖

𝑛(𝑠,𝒙)
        (2.2.37) 

〈𝐺𝑠〉 is an average growth rate conditioned on 𝑠. It is a function of the particle-size and the 

position in the physical space.  

The fifth term remains the expression for both source and death terms, contributed by 

nucleation and aggregation. It is transformed as: 
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𝐻𝑛 ≡ ∫ ℎ𝑛𝛺𝒖
𝑑𝒖          (2.2.38) 

Now, putting all the terms together, we have:  

𝜕

𝜕𝑡
𝑛 + 𝛁𝒙. (𝑛〈𝒖〉𝑎𝑣) +

∂

𝜕𝑠
(𝑛〈𝐺𝑠〉) − 𝐻𝑛 = 0      (2.2.39) 

Next, we will apply the second assumption: the fluid-particle system is well-mixed. This 

implies that all the functions, including the NDF, do not depend on real-space coordinates: 

nothing changes in space. Thus, we will integrate eq. (2.2.39) over the physical space 𝛺𝒙 as:  

∫ [
𝜕

𝜕𝑡
𝑛 + 𝛁𝒙. (𝑛〈𝒖〉𝑎𝑣) +

∂

𝜕𝑠
(𝑛〈𝐺𝑠〉) − 𝐻𝑛]𝛺𝒙

𝑑𝒙 = 0     (2.2.40) 

The first term, 

∫
𝜕

𝜕𝑡
𝑛(𝑠, 𝒙, 𝑡)

𝛺𝒙
𝑑𝒙 =

𝜕

𝜕𝑡
𝑓̅(𝑠, 𝑡)        (2.2.41) 

where 𝑓 ̅is the number of particles per size space volume, mathematically expressed as: 

𝑓̅(𝑠, 𝑡) ≡ ∫ 𝑛(𝑠, 𝒙, 𝑡)
𝛺𝒙

𝑑𝒙        (2.2.42) 

On the second term, the product 𝑛〈𝒖〉𝑎𝑣 represents the particle flux. We distinguish a portion 

𝝏𝜴𝒙,𝑖𝑛 of the physical boundary 𝝏𝜴𝒙 through which particles enter the physical volume and a 

portion 𝝏𝜴𝒙,𝒐𝒖𝒕 through which particles leave the system. Other parts of the boundary are 

impervious to the transport of particles making the particle flux zero. Thus, the second term 

becomes: 

∫ (𝑛(𝑠, 𝒙)〈𝒖〉𝑎𝑣).𝜕𝛺𝒙
𝑑𝑺𝒙 = ∫ (𝑛(𝑠, 𝒙)〈𝒖〉𝑎𝑣).𝜕𝛺𝒙,𝑖𝑛

𝑑𝑺𝒙 + ∫ (𝑛(𝑠, 𝒙)〈𝒖〉𝑎𝑣).𝜕𝛺𝒙,𝑜𝑢𝑡
𝑑𝑺𝒙 (2.2.43) 

For a batch reactor, since the synthesis is usually carried out in a batch reactor, Eq. (2.2.43) 

is zero. 

The third term: 

∫
∂

𝜕𝑠
(𝑛〈𝐺𝑠〉)𝑑𝒙𝛺𝒙

=
∂

𝜕𝑠
∫ (𝑛〈𝐺𝑠〉)𝑑𝒙𝛺𝒙

=
∂

𝜕𝑠
(𝑓̅〈𝐺𝑠〉𝑎𝑣)     (2.2.44) 

where 

〈𝐺𝑠〉𝑎𝑣 ≡
∫ (𝑛〈𝐺𝑠〉)𝑑𝒙𝛺𝒙

∫ 𝑛𝑑𝒙
𝛺𝒙

=
∫ (𝑛〈𝐺𝑠〉)𝑑𝒙𝛺𝒙

𝑓̅(𝑠)
       (2.2.45) 

〈𝐺𝑠〉𝑎𝑣 has now been averaged over both the velocity space and the physical space; it only 

depends on the particle-size. 
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The fourth term remains the expression for both source and death term, mathematically 

expressed as: 

𝐻̅𝑛 ≡ ∫ 𝐻𝑛𝛺𝒙
𝑑𝒙          (2.2.46) 

Thus, eq. (2.2.40) is written as: 

𝜕

𝜕𝑡
𝑓̅(𝑠) +

∂

𝜕𝑠
(𝑓̅. 〈𝐺𝑠〉𝑎𝑣) − 𝐻̅𝑛 = 0       (2.2.47) 

Next, we divide eq. (2.2.47) by the reacting volume 𝑉, which is fixed, as 

1

𝑉

𝜕

𝜕𝑡
𝑓̅(𝑠, 𝑡) +

1

𝑉

∂

𝜕𝑠
(𝑓̅. 〈𝐺𝑠〉𝑎𝑣) −

1

𝑉
𝐻̅𝑛 = 0      (2.2.48) 

Further, we write eq. (2.2.48) as: 

𝜕

𝜕𝑡
𝑓(𝑠, 𝑡) +

∂

𝜕𝑠
(𝑓. 〈𝐺𝑠〉𝑎𝑣) − 𝐻𝑉 = 0       (2.2.49) 

where 𝑓(𝑠, 𝑡) ≡ 𝑓̅(𝑠, 𝑡) 𝑉⁄  and 𝐻𝑉 ≡ 𝐻̅𝑛 𝑉⁄  

Eq. (2.2.49) is the PBE, which can be employed to describe the size evolution in processes 

such as crystallization and nanoparticle synthesis (for instance, the citrate synthesis 

method). The PBE is unclosed because the growth term 〈𝐺𝑠〉𝑎𝑣 and the net source term 𝐻𝑉 

are unknown. The birth and death terms that can affect GNPs, as revealed by the 

mechanisms, are the nucleation and aggregation processes. One needs to derive 

expressions that relate these terms (that is nucleation, growth and aggregation) to the NDF 

or its moments. Once this has been done, the problem of closure is overcome and the 

equation can be solved. 

2.2.3 The closure problem for particles dispersed on the size 
In this section, we address the closure problem. To do this, we derive the constitutive 

equations for nucleation, growth and aggregation. 

2.2.3.1 Nucleation process 

Nucleation is the generation of the smallest particles from the aqueous phase. These 

particles are called nuclei. If the nuclei do not have single size, being instead continuously 

distributed over the size coordinate, we model the nucleation process by employing a 

probability density function (PDF), denoted as 𝜋𝑁(𝑠|𝒙, 𝑡). By definition, 𝜋𝑁(𝑠|𝒙, 𝑡)𝑑𝑠 gives the 

probability that a nucleus that appears at time 𝑡 in the real-space point 𝑥 have size in the 

differential range 𝑑𝑠 around the point 𝑠. Then, we can write: 

𝐻𝑁(𝑠, 𝒙, 𝑡) = 𝑛𝑁(𝑠, 𝒙, 𝑡)𝜋𝑁(𝑠|𝒙, 𝑡)       (2.2.50) 
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Here 𝐻𝑁(𝑠, 𝒙, 𝑡) and 𝑛𝑁(𝑠, 𝒙, 𝑡) are defined so that 𝐻𝑁(𝑠, 𝒙, 𝑡)𝑑𝑠𝑑𝒙 gives the number of nuclei 

with size in the range 𝑑𝑠 around the point 𝑠 generated per unit time in the real-space region 

𝑑𝒙 around the point 𝒙, while 𝑛𝑁(𝑠, 𝒙, 𝑡)𝑑𝒙 gives the number of nuclei with size 𝑠 formed per 

unit time in the region 𝑑𝒙 around the point 𝒙. If locally all the nuclei have equal size 𝑠𝑁(𝒙, 𝑡), 

it is: 

𝜋𝑁(𝑠|𝒙, 𝑡) = 𝛿[𝑠 − 𝑠𝑁(𝒙, 𝑡)] → 𝐻𝑁(𝑠, 𝒙, 𝑡) = 𝑛𝑁(𝑠, 𝒙, 𝑡)𝛿[𝑠 − 𝑠𝑁(𝒙, 𝑡)]   (2.2.51) 

so that: 

∫ 𝐻𝑁𝑑𝑠
∞

0
= ∫ 𝑛𝑁(𝑠, 𝒙, 𝑡)𝛿[𝑠 − 𝑠𝑁(𝒙, 𝑡)]𝑑𝑠

∞

0
= 𝑛𝑁[𝑠𝑁(𝒙, 𝑡), 𝒙, 𝑡]    (2.2.52) 

This result confirms the physical interpretation of the function 𝑛𝑁(𝑠, 𝒙, 𝑡) given above. The 

closure problem is finding expressions for 𝑛𝑁(𝑠, 𝒙, 𝑡) and 𝜋𝑁(𝑠|𝒙, 𝑡). Often Eq. (2.2.51) is 

employed, so that an expression for 𝑠𝑁(𝒙, 𝑡) is needed instead of the PDF; the nucleus size 

is then often assumed to be uniform and constant. For example, in Kumar et al. (2007) it is 

assumed that 𝑠𝑁(𝒙, 𝑡) = 2 𝑛𝑚. 

The model for 𝑛𝑁(𝑠, 𝒙, 𝑡), on the other hand, depends on the mechanism of nucleation. Here, 

we report the classical nucleation theory model, because this is a classical model that has 

been used often in the literature in modelling nucleation (Mersman, 2001; Jones, 2000; Robb 

and Privman, 2008). However, this model is inconsistent with the mechanistic theories for 

the citrate synthesis of gold nanoparticles. As discussed in Section 2.1.5, these mechanistic 

theories are the organizer theory of Turkevich et al. (1951) and the seed-mediated 

mechanism of Wuithschick et al. (2015)).  The nucleation models based on these theories 

will be presented later in Chapters 3 and 4, respectively. 

The classical nucleation theory model is based on the mechanism of burst-nucleation and 

growth. By this mechanism, popularly called the Lamer model, the concentration of atomic 

gold builds up slowly to the saturation point, and then to a critical supersaturation level. After 

this level, additional increase in concentration leads to burst nucleation that immediately 

lowers the supersaturation level of gold in the solution below the critical supersaturation; 

thus, the nucleation process stops. The nuclei then grow by consuming atomic gold until the 

concentration returns to the saturation point. Lamer model is based on the classical 

nucleation theory; Robb and Privman (2008), for instance, used this approach to model the 

nucleation process in the synthesis. Below, we present the classical nucleation theory. 

Classical nucleation theory (CNT) 
CNT is the most common theoretical model used to understand the nucleation process. CNT 

postulates that nucleation only occurs in a supersaturated solution when statistical 
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fluctuation brings a number of monomers together required to form thermodynamically stable 

clusters, called nuclei. These nuclei grow and eventually appear as a new phase. If the 

nucleation takes place without any existing crystal or foreign object, the process is called 

homogeneous nucleation. If foreign objects or impurities are present, they provide sites that 

promote nucleation. This is called heterogeneous nucleation. Homogeneous and 

heterogeneous nucleation processes are classified as primary nucleation because they 

occur without solution-own crystals. In the presence of solution-own crystals, nucleation is 

even more enhanced. This is called secondary nucleation. 

We discuss homogeneous nucleation below. Turkevich et al (1951) ruled out that the 

presence of impurities caused nucleation in the synthesis of gold nanoparticles by the citrate 

synthesis method. Also, we will not discuss secondary nucleation. The mechanism of 

secondary nucleation requires the crystal to provide a sufficient surface for nucleation to 

occur. Because precipitation crystals are small (order of nanometre), secondary nucleation is 

absent in precipitation (Sohnel and Garside, 1992) and then absent in nanoparticle 

nucleation. 

Homogeneous nucleation 

For molecules to nucleate in solution, their concentration must be higher than the saturation 

concentration 𝐶𝑒𝑞 (also called the equilibrium concentration). 𝐶𝑒𝑞 is the maximum amount of 

solute, at a particular temperature and pressure, that can dissolve in a solvent and form a 

homogeneous solution. In our case, the synthesis is carried out at a constant temperature in 

an aqueous solution. As the reactions progress, the concentration of atomic gold in the 

solution increases. When the concentration of solute 𝐶 is below 𝐶𝑒𝑞, the solution is 

undersaturated; in this case, all solute molecules are in a single phase with the solvent. At 

this stage, the solvent can still dissolve additional solute. When the concentration becomes 

equal to 𝐶𝑒𝑞, the solution cannot dissolve any additional solute. Any additional molecules 

produced will exist in another phase; the solution is said to be supersaturated. These 

molecules fluctuate and form clusters. They can form clusters of two, three or more particles. 

However, these clusters also disintegrate into molecules; the solution is at the metastable 

region. As the concentration increases, fluctuation brings more molecules together and the 

cluster number increases until a stage when nucleation occurs. At this stage, the cluster 

continues to grow rather than disintegrate.  If impurities are present, nucleation is facilitated. 

The supersaturation required for heterogeneous nucleation is lower than that of 

homogeneous nucleation. Even much lower supersaturation is required for nucleation when 

the system contains existing crystals (secondary nucleation). Figure 3.1 shows the separate 

regions of solubility. 
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Figure 2.2.1 Showing the three separate regions of solubility. Figure from Jones (2002) 

These regions are: 

1. Undersaturated region – in this region, the solute concentration is below the 

saturation concentration and the solutes are wholly in solution. 

2. Metastable region – in this region, the solute concentration is larger than the 

saturation concentration. The solution maintains its supersaturation for a certain 

period without nucleation. From the creation of supersaturation to the appearance of 

the first nucleus is the induction period. As supersaturation increases, the induction 

time is reduced. When the supersaturation reaches a certain point, nucleation 

becomes rapid. The gap between this point and the saturation point is referred to as 

the metastable width (Tung et al., 2009).  

3. Labile region – in this region, the solutes nucleate rapidly. This rapid nucleation 

depletes solute concentration in the solution and quickly brings it back to the 

metastable region. The formed nuclei then grow by consuming the solute until the 

concentration returns to the saturation concentration.  

In the following sections, we treat the models for the thermodynamics and kinetics of 

homogeneous nucleation, and use the model to understand how supersaturation affects it. 

Thermodynamics of homogeneous nucleation 

To determine if a solution will undergo homogeneous nucleation, we consider its chemical 

potential difference ∆λ given by (Liveri, 2006): 
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∆λ = λ𝑠𝑎𝑡 − λ𝑠𝑜𝑙 = 𝑏𝑘𝐵𝑇 ln
𝑐𝑒𝑞

𝑐
= 𝑏𝑘𝐵𝑇 ln

1

𝑆̂
= −𝑏𝑘𝐵𝑇 ln 𝑆̂     (2.2.53) 

where 𝑏 is the dissociation number of a monomer (for example in the crystallization of 𝑁𝑎𝐶𝑙, 

𝑏 = 2 as 𝑁𝑎𝐶𝑙 dissociates into 𝑁𝑎+ + 𝐶𝑙−), 𝑘𝐵 Boltzmann constant, 𝑇 the temperature, and 𝑆̂ 

the supersaturation ratio. As 𝑆̂ increases, the chemical potential difference increases. 

The Gibb’s free energy for the nucleation process will be the sum of the energy required to 

form the particle volume (bulk energy – exothermic) and the energy required to form the 

particle surface (surface energy – endothermic); it is given by: 

∆𝐺ℎ𝑜𝑚 = 𝑁∆λ+ 𝐾𝑁𝑁
2
3⁄ 𝛾𝑠         (2.2.54) 

where 𝐾𝑁 ≡ 𝑚𝑎 (
𝑣𝑚

𝑚𝑣
)
2 3⁄

; 𝑚𝑎 and 𝑚𝑣 are the area and volume shape factors; 𝑣𝑚 is the 

monomer volume. 

𝑁 is the number of monomers and 𝛾𝑠 is the interfacial surface energy for the cluster. 

The magnitude of the exothermic term 𝑁∆λ is proportional to 𝑁 and increases with 

increasing 𝑆̂. On the other hand, the magnitude of the endothermic term 𝐾𝑁𝑁
2
3⁄ 𝛾𝑠 is 

proportional to 𝑁
2
3⁄ . As 𝑆̂ increases, 𝑁 increases; the exothermic term increases faster than 

the endothermic term to generate the plot of ∆𝐺ℎ𝑜𝑚 against 𝑁 shown in Figure 2.2.2. 

 

Figure 2.2.2 Dependence of the Gibbs free energy on 𝑁. Figure from Liveri (2006) 
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∆𝐺ℎ𝑜𝑚 is maximum at 𝑁∗, the critical nucleus. This maximum point is obtained by 

differentiating ∆𝐺ℎ𝑜𝑚 in eq. (2.2.54) with respect to  𝑁 and equating the result to zero. We 

have: 

∆𝐺ℎ𝑜𝑚
∗ =

4𝐾𝑁
3𝛾𝑆
3

27∆𝜇2
=

4𝐾𝑁
3𝛾𝑆
3

27(𝑏𝑘𝐵𝑇 ln 𝑆̂)
2         (2.2.55) 

𝑁∗ =
−8𝐾𝑁

3𝛾𝑆
3

27∆𝜇3
=

8𝐾𝑁
3𝛾𝑆
3

27(𝑏𝑘𝐵𝑇 ln 𝑆̂)
3         (2.2.56) 

Eqs. (2.2.55) and (2.2.56) reveal that as the supersaturation increases, the number of 

molecules required to form a thermodynamically stable nucleus decreases; the energy 

barrier similarly decreases. Let us now proceed to the kinetics of nucleation and obtain an 

expression for the rate of homogeneous nucleation. 

Kinetics of homogenous nucleation 

Assuming that a nucleus is formed by the following steps: 

𝐴1 + 𝐴1 → 𝐴2 

𝐴2 + 𝐴1 → 𝐴3 

        ⋮  

𝐴𝑛−1 + 𝐴1 → 𝐴𝑛 (a nucleus) 

This scheme is described by the successive addition of monomers. Aggregation is not 

allowed i.e.  

𝐴𝑖 + 𝐴𝑗 → 𝐴𝑖+𝑗 where 𝑖, 𝑗 ≥ 2.  

The critical nucleus is thermodynamically stable. Once formed, it will grow rather than 

disintegrate if another molecule impinges on it; hence, we have nucleation. The rate of 

nucleation 𝑛𝑁 will be equal to the product of the number concentration of the critical nuclei 

and the rate of impingement of monomers; this is mathematically expressed as (Sohnel and 

Garside, 1992): 

𝑛𝑁 = 𝑘𝑁 ∗ 𝐶𝑁∗ ∗ 𝑍         (2.2.57) 

where 𝐶𝑁∗ is the number concentration of the critical nuclei, 𝑘𝑁 is the impingement rate of 

monomers on the critical nuclei and 𝑍 is the Zeldovich factor. We obtain the expression for 

each term below. 

If we assume that the cluster size distribution 𝐶𝑁 is caused by random collisions of 

monomers and can be described by a Boltzmann distribution, we obtain 
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𝐶𝑁 = 𝐶1 exp (−
∆𝐺ℎ𝑜𝑚𝑁
𝑘𝐵𝑇

)        (2.2.58) 

where 𝐶1 is the number concentration of monomers, ∆𝐺ℎ𝑜𝑚𝑁 is the energy needed to form a 

cluster of 𝑁 monomers. Before the critical nuclei, ∆𝐺ℎ𝑜𝑚𝑁 increases as 𝑁 increases; so, 𝐶𝑁 

decreases following an exponential decay. For the critical nuclei, we have 

𝐶𝑁∗ = 𝐶1 exp (−
∆𝐺ℎ𝑜𝑚

∗

𝑘𝐵𝑇
) = 𝐶1 exp (−

4𝐾𝑁
3𝛾𝑆
3

27𝑘𝐵𝑇(𝑏𝑘𝐵𝑇 ln 𝑆̂)
2)     (2.2.59) 

As expected, this concentration increases with increasing supersaturation. 

𝑘𝑁 is the rate at which monomers impinge on the critical nuclei. If we assume that monomers 

impinge by diffusion, Fick’s law holds. In the radial coordinate, we have: 

𝑘𝑁 = 𝐷0𝐴
𝑑𝐶1

𝑑𝑥
          (2.2.60) 

where 𝐷0 is the diffusion coefficient of monomers, 𝐴 is the area of the critical cluster given as 

4𝜋𝑥2 for a sphere (in this case, 𝑥 is the radial coordinate), and 𝑑𝐶1 𝑑𝑥⁄  is the concentration 

gradient of the monomers as they approach the critical cluster. Before the start of nucleation, 

the concentration of monomer remains the same so we assume their impingement rate 𝑘𝑁 is 

constant. Thus: 

𝑘𝑁 = 𝐷04𝜋𝑥
2 𝑑𝐶1

𝑑𝑥
         (2.2.61) 

Integrating Eq. (2.2.61), we have 

𝐶1 = −
𝑘𝑁

𝐷04𝜋𝑥
+ℳ         (2.2.62) 

ℳ is the constant of integration. Say (as a boundary condition) at 𝑥 = 𝑟 (the radius of the 

cluster), 𝐶1 = 0, by this, we imply that every monomer that hits the critical nuclei is 

incorporated (in other words, the incorporation rate is much larger than the diffusion rate); 

and at 𝑥 = 𝑟 + 𝛿, 𝐶1 = 𝐶1
0 (𝐶1

0 is the bulk concentration of the monomers), by this, we imply 

that diffusion only occurs across 𝛿. Eq. (2.2.62) becomes  

𝑀 = 0 +
𝑘𝑁

𝐷04𝜋𝑟
          (2.2.63) 

𝐶1 =
𝑘𝑁

𝐷04𝜋
[
1

𝑟
−
1

𝑥
]         (2.2.64) 

By the second boundary condition, we have: 

𝐶1 =
𝑘𝑁

𝐷04𝜋
[
1

𝑟
−

1

𝑟+𝛿
]         (2.2.65) 
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For nanoparticles, 𝑟 is small; thus we can assume 𝛿 is much larger than 𝑟. Eq. (2.2.65) 

becomes  

𝑘𝑁 = 𝐷04𝜋𝑟𝐶1          (2.2.66) 

𝑘𝑁 ∗ 𝐶𝑁∗ gives the rate for the interaction between monomer and the critical cluster; it 

calculates the rate at equilibrium.  

𝑍 corrects for the imbalance from equilibrium. Mersmann et al (2001) reported an expression 

for 𝑍 for the critical nucleus 𝑁∗ as 

𝑍 =
1

𝑁∗
√
∆𝐺ℎ𝑜𝑚

∗

3𝜋𝑘𝐵𝑇
          (2.2.67) 

Inserting Eqs (2.2.59), (2.2.66) and (2.2.67) for 𝐶𝑁∗, 𝑘𝑁 and 𝑍 respectively in Eq. (2.2.57), we 

have 

𝑛𝑁 = 𝐷04𝜋𝑟
1

𝑁∗
√
∆𝐺ℎ𝑜𝑚

∗

3𝜋𝑘𝐵𝑇
𝐶1
2 exp (−

4𝐾𝑁
3𝛾𝑆
3

27𝑘𝐵𝑇(𝑏𝑘𝐵𝑇 ln 𝑆̂)
2)     (2.2.68) 

We can as well relate 𝐶1 to the molar concentration of solute, 𝐶 as 

𝐶1 =
𝐶−𝐶𝑒𝑞

𝜌∗
𝜋

6
𝑠0
3
          (2.2.69) 

where 𝐶𝑒𝑞 is the solubility of the solute, 𝜌 is the molar density of the solute and 𝑠0 is the 

diameter of a monomer. When we substitute for 𝐶1 in eq. (2.2.68), we have 

𝑛𝑁 = 𝑘𝑜 exp (
−4𝐾𝑁

3𝛾𝑆
3

27(𝑘𝐵𝑇)
3(𝑏 ln 𝑆̂)2

)         (2.2.70) 

where: 

𝑘𝑜 = 𝐷02𝜋𝑠0√
∆𝐺ℎ𝑜𝑚

∗

3𝜋𝑘𝐵𝑇
(
𝐶−𝐶𝑒𝑞

𝜌∗
𝜋

6
𝑠𝛼
3
)
2

         (2.2.71) 

In the literature, other expressions for 𝑘𝑜 are reported. For example, Sohnel and Garside 

(1992) reported: 

𝑘𝑜 =
𝐷0

𝑠0
5𝑁∗
[
4∆𝐺ℎ𝑜𝑚

∗

3𝜋𝑘𝐵𝑇
]

1

2
          (2.2.72) 

which is simpler than Eq. (2.2.71). Using Eq. (2.2.72), we have 

𝑛𝑁(𝑠, 𝒙, 𝑡) =
𝐷0

𝑠0
5𝑁∗
[
4∆𝐺ℎ𝑜𝑚

∗

3𝜋𝑘𝐵𝑇
]

1

2
exp (

−4𝐾𝑁
3𝛾𝑆
3

27(𝑘𝐵𝑇)
3(𝑏 ln 𝑆̂)2

)      (2.2.73) 
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The dominant effect of the degree of supersaturation on the time required for spontaneous 

nucleation to take place can be calculated using eq. (2.2.73). For a cubic critical nucleus of 

BaSO4 (Sohnel and Garside, 1992), 𝑇 = 250𝐶,  

𝑌 = 0.233 𝑘𝑔/𝑚𝑜𝑙, 𝜌 = 4500 𝑘𝑔𝑚−3, 𝛾𝑠 = 0.136 𝐽𝑚
−2, 𝐷0 = 10

−9𝑚2𝑠−1 and 𝑏 = 1. 

For a cube,  

𝐾𝑁 = 6𝑣0
2
3⁄  ; where the molecular volume, 𝑣0 =

𝑌

𝜌×𝑁𝐴
=

0.233

4500×6.023×1023
= 8.60 × 10−23𝑚3 ; 

𝐾𝑁 = 1.169 × 10
−14  

𝑠0 can be calculated using 𝑠0 = 𝑣0
1
3⁄ = (8.60 × 10−23𝑚3)

1
3⁄ = 4.41 × 10−10𝑚. 

The induction time 𝑡𝑖𝑛𝑑, the time required by the first nucleus to form, is given as (Sohnel 

and Garside, 1992): 

𝑡𝑖𝑛𝑑 =
1

𝑛𝑁𝑉
           (2.2.74) 

where 𝑉 is the volume of the solution and we take it as 1 𝑚3 for this exercise. 

Table 2.2.1: Comparison of the nucleation rates with supersaturation. Data from Sohnel and 

Garside (1992) 

Ŝ ko exp nN tind 

        
 

  

1 0 ∞ 0 ∞   

10 4.48E+36 5.1E-176 2.3E-139 1.40E+131 yrs 

100 1.79054E+37 1.5E-44 2.69E-07 43.08736 days 

120 1.93512E+37 2.82E-41 0.000546 30.52583 mins 

140 2.06E+37 8.73E-39 0.179917 5.558126 sec 

 

Table 2.2.1 shows the nucleation rate of BaSO4 as the supersaturation increases from 1 to 

140. It can be seen that the metastable region would be 1 ≤ 𝑆̂ ≤ 120. Within this region, the 

induction time for the first crystal ranges from infinity to several years and then to days. The 

characteristic time for homogeneous nucleation at 𝑆̂ = 100 is 43 days. One will have to wait 

for that long, mathematically, before nucleation can ever occur. Once the value of 𝑆̂ is 

increased further to 140, the characteristic time is reduced to ~6s. The metastable curve in 

Fig. 2.2.1 (and so the width of the metastable region) depends on the time that one is willing 

to wait, for nuclei to appear. It is a subjective quantity, not an objective one. The saturation 

curve, conversely, is an objective quantity. By further increasing 𝑆̂, nucleation becomes 

spontaneous and uncontrollable. 
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To employ the CNT, we need the solubility curve. For metal nanoparticles synthesis, Polte 

(2015) argued that the solubility of the metal atoms in a solvent such as water is not exactly 

known; their solubility should be extremely small (effectively 𝐶𝑒𝑞 = 0) (Polte, 2015). So, Polte 

(2015) assumed that supersaturation effectively occurs as long as metal atoms are in the 

solution (i.e. as long as all the reduced metal atoms are not part of a cluster or particle). 

Consequently in modelling nucleation in gold nanoparticles synthesis, Kumar et al. (2007) 

(the only past authors to have modelled the citrate synthesis method) employed a different 

approach. This approach involves accounting for the chemical reaction, producing nuclei. As 

this reaction depends on the mechanism, we report the submodels for nucleation when 

modelling the mechanistic theories of the citrate synthesis, in Chapters 3 and 4. 

2.2.3.2 Growth process 

Both Turkevich et al (1951) and Wuithschick et al (2015) proposed the growth process as a 

step in their respective mechanisms. Unlike aggregation, it involves the addition of new 

monomers into the characteristic arrangement of a particle. Growth typically follows an initial 

stage of either homogeneous or heterogeneous (surface catalyzed) nucleation, unless a 

"seed" crystal (secondary nucleation), purposely added to start the growth, is present. The 

presence of available monomers due to supersaturation and of the crystal surface is 

therefore essential for growth to occur. Since it involves the attachment of monomers on the 

surface, certain factors affect the growth rate. Chief amongst these is supersaturation which 

indicates the availability of monomers. Growth models contain terms that show their 

dependence on supersaturation. Other factors are crystal size, temperature, pH, and the 

presence of impurities.  As we will see, crystal size is a common parameter to most growth 

models indicating how size generally affects growth. 

As discussed in the previous section on the classical nucleation theory, following burst-

nucleation, growth would occur by consuming atomic gold until the concentration returns to 

the saturation point. Gold atoms would move from the bulk of the solution unto the particle 

surface either solely by diffusion or a combination of convection and diffusion and then 

integrate into the surface of the particles. Mass transfer or surface integration or a 

combination of both mechanisms can control the growth process. For growth controlled by 

mass transfer (that is, mass transfer limited), the growth rate decreases with size while for 

growth rate controlled by surface integration, the rate is independent of size (Turkevich et al., 

1951; Viswanatha and Sarma, 2007). The experiments by Turkevich et al (1951) revealed 

growth controlled by surface integration while that by Wuithschick et al (2010) revealed that 

both mechanisms (i.e. diffusion and surface-integration controlled) are present at different 

stages of the synthesis. Also, temperature affects the diffusivity of monomers, a term in the 

diffusion-controlled growth models. The activity of a substance can be influenced by pH and 
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the presence of impurities. In the modelling of the seed-mediated mechanism presented in 

Chapter 4, the gold atoms that grow the particles come from 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−. The mixture pH 

determines the amount of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−, hence the growth rate. Similarly, impurities can be 

deposited on the particle surface, preventing further growth.  

In the bulk of the solution, the solute has the maximum concentration, corresponding to the 

supersuration of the solution. Unless the solution is perfectly stagnant, the fluid convection 

transports monomers (solute) from the bulk to around the particle surface, called the 

boundary layer. Outside the boundary layer, convection dominates, while inside the 

boundary layer convection and diffusion are both important (in the direction normal to the 

particle surface diffusion is expected to be dominant). The attachment is enhanced by either 

a high concentration of monomers that gather on the surface or a cavity on the particle 

surface that can easily accommodate monomers, called the kink site. These two processes 

(i.e. mass transport and surface integration) occur in series and affect one another; the 

slower determines the growth rate. Figure 2.2.3 shows how the concentration of solute in the 

solution varies around a growing particle. The driving forces for mass transfer (convection 

and diffusion) and surface integration are 𝑐 − 𝑐′ and 𝑐′ − 𝑐𝑒𝑞, respectively, where 𝑐 = bulk 

concentration, 𝑐′ = concentration at the particle surface, 𝑐𝑒𝑞 = equilibrium concentration 

(Garside and Sohnel, 1992). Curve 1 represents the profile of a surface-integration-

controlled growth. The concentration gradient between the particle surface and the bulk 

solution is so small as to be negligible; the characteristic time for diffusion is very small when 

compared to that of surface integration. In this case, increasing the bulk concentration will 

increase the driving forces for both diffusion and surface integration of monomers thereby 

enhancing the growth process. Curve 2 represents the profile of diffusion-controlled growth. 

The characteristic time of the diffusion process is far larger than that of the surface-

integration process. Curve 3 represents what happens when both processes have 

comparable characteristic times; neither mechanism dominates.  
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Figure 2.2.3 Solute concentration within the boundary layer surrounding a particle when 

growth is controlled by surface reaction (1), by mass transfer in the solution (2) and by both 

mechanisms (3). 𝑐 = bulk concentration, 𝑐′ = concentration at the particle surface, 𝑐𝑒𝑞 = 

equilibrium concentration (Garside and Sohnel, 1992). 

In a solid-liquid system, 𝑐𝑒𝑞 is the maximum amount of solid (usually called the solute) that 

can be in solution at a given temperature and pressure. This concentration is also called the 

solubility; its value can be read from the solubility curve of the solute in solution. For solid-

liquid systems such as NaCl-water, it increases with temperature (Mullin, 2001). For metal 

nanoparticles, however, as previously mentioned, Polte (2015) argued that 𝑐𝑒𝑞 = 0. 

Nevertheless, mass transfer or surface integration or a combination of both mechanisms 

controls the growth process. We consider how to model each growth mechanism below. 

Growth controlled by mass transfer 
Monomers move from the bulk solution to the particle surface through the convection and 

diffusion processes. We can enhance this mass transfer if we stir the solution vigorously as 

in the case of a well-mixed solution, but monomers still have to diffuse through the boundary 

layer before reaching the crystal surface. We report the model for the diffusion-controlled 

process below. 

Diffusion is governed by Fick’s law, which reads: 

j = −𝐷0𝐴
𝜕𝐶

𝜕𝑟
        (diffusive molar flow rate of solute in solution)   (2.2.75) 
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where 𝐷0 is the diffusivity of the solute in the solvent, 𝐴 is the surface area of a single 

spherical particle and 𝜕𝐶 𝜕𝑟⁄  is the partial derivative of the solute concentration with respect 

to the radial coordinate 𝑟. 

In this case, we assume that the boundary layer thickness is much larger than the particle 

radius and that convection is absent within the boundary layer. Thus, monomers move by 

diffusion from the bulk solution to the particle surface. Also, the particle is assumed to be 

spherical, and by symmetry, the concentration of the solute is assumed to depend on the 

radial coordinate only. We can express j as the product of the molar density of the solute in 

the solid phase 𝜌, the particle surface area 𝐴 and growth rate 𝐺𝑠: 

−j = 𝜌𝐴𝐺𝑠          (2.2.76) 

In this equation, the amount of solute diffusing grows the particle.  

Eq. (2.2.75) can be reformulated in terms of the growth rate as: 

𝐺𝑠 = 𝐷0𝑉𝑚
𝜕𝐶

𝜕𝑟
           (2.2.77) 

where 𝑉𝑚 denotes the molar volume of solute, that is, the inverse of 𝜌. The concentration 

profile, and in turn the concentration gradient can be obtained by writing (and solving) a 

mass balance on the solute written in the polar coordinates for only the radial component. In 

this derivation, the term (𝐼𝑛 − 𝑂𝑢𝑡) in Eq. (2.2.1) is only caused by diffusion and the term 

𝐺𝑒𝑛 is zero. The mass balance thus is: 

∫
𝜕𝐶

𝜕𝑡
4𝜋𝑟2𝑑𝑟 = −∫

𝜕

𝜕𝑟
. (𝐷04𝜋𝑟

2 𝜕𝐶

𝜕𝑟
)𝑑𝑟        (2.2.78) 

When re-written, we have: 

𝜕𝐶

𝜕𝑡
= −𝐷0

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝐶

𝜕𝑟
)          (2.2.79) 

Let us assume steady state, so that 𝜕𝐶 𝜕𝑡⁄ = 0. To justify this assumption, we consider the 

time scales of the concentration profile evolution and of the growth process. If the former is 

much smaller than the latter - that is, if the growth process is very slow compared with the 

time the concentration profile takes to change significantly - then the process can be 

modelled using the quasi-steady-state approximation. Then, it is: 

𝑑

𝑑𝑟
(𝑟2

𝑑𝐶

𝑑𝑟
) = 0           (2.2.80) 

In this equation, the concentration is a function of the radius only. 

Integrating Eq. (2.2.80), yields: 
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𝑑𝐶

𝑑𝑟
=
ℳ

𝑟2
           (2.2.81) 

A further integration gives: 

𝐶(𝑟) = 𝒩 −
ℳ

𝑟
          (2.2.82) 

where ℳ and 𝒩 represent integration constants, whose values one finds by introducing 

boundary conditions. 

At 𝑟 = 𝑟𝑐 (particle radius), 𝐶 = 𝐶𝑒𝑞. The assumption here is that the concentration at the 

surface is at equilibrium as the rate of surface integration is very fast. 

At 𝑟 = 𝑟𝑐 + 𝛿, 𝐶 = 𝐶0. Here 𝛿 is the thickness of the boundary layer; its value is much larger 

than the particle radius as previously assumed (mathematically one can take it to be infinite; 

the solution of the differential equation is insensitive to the value chosen for 𝛿, as long as 

𝛿 𝑟𝑐⁄ ≫ 1) and 𝐶0 is the bulk concentration. 

Thus, we have 

𝐶−𝐶𝑒𝑞

𝐶0−𝐶𝑒𝑞
= (1 +

𝑟𝑐

𝛿
) (1 −

𝑟𝑐

𝑟
)         (2.2.83) 

Differentiating gives: 

𝑑𝐶

𝑑𝑟
= (

𝑟𝑐

𝑟2
) (1 +

𝑟𝑐

𝛿
) (𝐶0 − 𝐶𝑒𝑞)         (2.2.84) 

At 𝑟 = 𝑟𝑐 

𝑑𝐶

𝑑𝑟
= (

1

𝑟𝑐
) (1 +

𝑟𝑐

𝛿
) (𝐶0 − 𝐶𝑒𝑞)         (2.2.85) 

Substituting this equation into (2.2.77), we have 

𝐺𝑠 =
𝐷0𝑉𝑚

𝑟𝑐
(1 +

𝑟𝑐

𝛿
) (𝐶0 − 𝐶𝑒𝑞)          (2.2.86) 

Since diffusion layer thicknesses are typically of the order of microns, in the 

case of nanoparticles, 𝛿 ≫ 𝑟𝑐 (Viswanatha and Sarma,  2007). Thus, Eq. (2.2.86) reduces to:  

𝐺𝑠 =
𝐷0𝑉𝑚

𝑟𝑐
(𝐶0 − 𝐶𝑒𝑞)            (2.2.87) 

From eq. (2.2.87), the concentration drops from 𝐶0 to 𝐶𝑒𝑞 over a distance of the order of the 

particle radius. This means that far away from the particle surface (say, at a distance equal 

to ten particle radii) the concentration is almost constant, So, as long as we choose 𝛿 much 

larger than the particle radius, the value of 𝛿 is irrelevant. 



 

52 
 

Eq. (2.2.87) can be used when 𝛿 ≫ 𝑟𝑐. We encounter this situation when either 𝑟𝑐 is very 

small, as in nanoparticles, or 𝛿 is very large, which is the case in a virtually motionless 

medium.  

For other cases, however, 𝛿 takes on a clear physical meaning: it is the thickness of the 

layer within which the solute concentration varies significantly (in other words, it represents 

the length scale of the mass transfer process). Its value, consequently, has to be 

determined. Eq. (2.2.87) can be related to the overall mass transfer coefficient as: 

𝐺𝑠 =
𝐷0𝑉𝑚

𝑟𝑐
(1 +

𝑟𝑐

𝛿
) (𝐶0 − 𝐶𝑒𝑞) ≡ 𝑘𝑀𝑇(𝐶0 − 𝐶𝑒𝑞)𝑉𝑚      (2.2.88) 

From which, 

𝐷0

𝑟𝑐
(1 +

𝑟𝑐

𝛿
) = 𝑘𝑀𝑇          (2.2.89) 

One can estimate the value of 𝑘𝑀𝑇 using the empirical relations available in the literature, 

expressed in terms of the Sherwood (Sh), Reynolds (Re) and Schmidt (Sc) numbers. 

Cussler (2009) reports these relations as: 

𝑆ℎ = 2 + 0.6(𝑅𝑒)1 2⁄ (𝑆𝑐)1 3⁄  where   𝑆ℎ =
2𝑘𝑀𝑇𝑟𝑐

𝐷0
, 𝑅𝑒 =

2𝜌𝑓𝑢𝑓𝑟𝑐

𝜇
 and 𝑆𝑐 =

𝜇

𝜌𝑓𝐷0
  (2.2.90) 

where 𝜌𝑓 and 𝜇, are the fluid density and viscosity, respectively; 𝑢𝑓 is the magnitude of the 

velocity of the fluid flowing around the particle. 

Considering Eqs. (2.2.89) and (2.2.90), when the fluid is stationary i.e. 𝑢𝑓 = 0, 𝑆ℎ will be 

equal to 2 (its minimum value) and 𝛿 will tend to infinity (as expected). Eq. (2.2.87) can 

therefore be used, as suggested before. But for finite values of 𝑢𝑓, and therefore of Re, 𝛿 is 

finite and decreases with Re. When mixing becomes vigorous, the mass transfer coefficient 

𝑘 increases, and so 𝛿 decreases. So, the mass transfer becomes very efficient and the 

bottleneck is now the surface integration. 

Growth controlled by surface integration 
The transportation of solute in solution unto the boundary layer of a crystal is followed by 

surface integration. The growth process is surface integration controlled when the mass 

transfer coefficient is much larger than the surface integration rate constant (in other words, 

the integration reaction is slower than the mass transfer processes). Using the concept of 

resistances, the inverse of rate constants, we quantitatively compare growth controlled by 

mass transfer or surface integration or both in Appendix B. For details about this 

comparison, we refer the reader to Appendix B. Here, we write a material balance assuming 

that the accumulation on the particle is only caused by surface integration. We assume that 
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𝐷0 is very large thereby making the concentration gradient due to mass transfer almost zero. 

The surface integration is proportional to the product of particle surface and concentration 

gradient (usually raised to a number). Eq. (2.2.1) can be written as: 

𝑑

𝑑𝑡
[
4

3
𝜋𝑟3. 𝜌] = 𝑘𝑆𝐼(𝐶0 − 𝐶𝑒𝑞)

𝑚
4𝜋𝑟2       (2.2.91) 

where 𝑘𝑆𝐼 and 𝑚 are the reaction growth rate constant and order of the reaction, 

respectively. 

Simplifying this equation yields: 

𝐺𝑠 = 2
𝑑𝑟

𝑑𝑡
= 2

𝑘𝑆𝐼

𝜌
((𝐶0 − 𝐶𝑒𝑞))

𝑚
       (2.2.92) 

Considering Eq. (2.2.92), 𝐺𝑠 is independent of the real-space, velocity-space, size-space. 

Thus, 𝐺𝑠 = 〈𝐺𝑠〉 = 〈𝐺𝑠〉𝑎𝑣. 

In modelling the growth process for the citrate synthesis method, Kumar et al. (2007) 

employed surface-integration-controlled model, arguing that 𝐷0 is very large for 

nanoparticles synthesis. We report their expression in Chapter 3, on modelling the Turkevich 

organizer theory.  

For the seed-mediated mechanism, on the other hand, we investigate the experimental data 

of Polte et al. (2010) in Chapter 4, to arrive at the growth controlling mechanism and hence 

the corresponding growth model. 

2.2.3.3 Aggregation process 

The work by Polte et al (2010) corroborated previous suggestions by Chow and Zukoski 

(1994) that GNPs aggregate during the synthesis by the citrate reduction method.  

Nanoparticles aggregate when some smaller nanoparticles come together to form a bigger 

nanoparticle. This process leads to both the disappearance of smaller particles (a death 

term) and the appearance of bigger particles (a source term). Although we can imagine that 

any number of particles can come together and aggregate, binary aggregation is the most 

probable. Therefore, we will restrict our model to binary aggregation and consider both 

source and death terms, represented as 𝐻+ and 𝐻− respectively. 

The number of particle pairs where the first particle has size in the range 𝑑𝑠̅ around the size 

𝑠̅ and is located in the region 𝑑𝒙̅ around the point 𝒙̅, and the second particle has size in the 

range 𝑑𝑠̂ around the size 𝑠̂ and is located in the region 𝑑𝒙̂ around the point 𝒙̂ is given by the 

following expression, which is valid if the particles are statistically unrelated: 

𝑓(𝑠̅, 𝒙̅, 𝑡)𝑓(𝑠̂, 𝒙̂, 𝑡)𝑑𝑠̅𝑑𝑠̂𝑑𝒙̅𝑑𝒙̂        (2.2.93) 
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Some of these pairs aggregate. The fraction of this number that on average does so is 

expressed by means of an aggregation frequency and is defined to be: 

𝜔𝐴(𝑠̅, 𝑠̂, 𝒙̅, 𝒙̂, 𝑡)𝑓(𝑠̅, 𝒙̅, 𝑡)𝑓(𝑠̂, 𝒙̂, 𝑡)𝑑𝑠̅𝑑𝑠̂𝑑𝒙̅𝑑𝒙̂      (2.2.94) 

The particles generated by the aggregation process have size in the range 𝑑𝑠 around the 

point 𝑠 and lie in the differential region 𝑑𝒙 around the point 𝒙. If we assume that two particles 

can aggregate solely if they find themselves in the same differential region of real space, as 

physical intuition suggests, then also the particles generated lie in the same real-space 

region, and so it is: 

𝒙̅ ≡ 𝒙̂ ≡ 𝒙 →  𝜔𝐴(𝑠̅, 𝑠̂, 𝒙̅, 𝒙̂, 𝑡) = 𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡)𝛿(𝒙̅ − 𝒙)     (2.2.95) 

The fraction of particle pairs that on average aggregates, the first particle having size in the 

range 𝑑𝑠̅ around 𝑠̅ and the second having size in the range 𝑑𝑠̂ around 𝑠̂, with both particles 

lying in the region 𝑑𝒙 around the point 𝒙, can be expressed as follows: 

𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡)𝑓(𝑠̅, 𝒙̅, 𝑡)𝑓(𝑠̂, 𝒙, 𝑡)𝛿(𝒙̅ − 𝒙)𝑑𝑠̅𝑑𝑠̂𝑑𝒙̅𝑑𝒙     (2.2.96) 

The size of the particles generated can be easily calculated. If we assume that all the 

particles have the same density and shape factor, we can write: 

𝑠3 = 𝑠̅3 + 𝑠̂3          (2.2.97) 

Now, to obtain the total number of particles with size in the range 𝑑𝑠 around the size 𝑠 

located in the region 𝑑𝒙 around the point 𝒙 generated by the aggregation process, we must 

integrate Eq. (2.2.96) over 𝑠̅, letting 𝑠̅ span the interval (0, 𝑠) and making 𝑠̂ vary accordingly 

so as to satisfy Eq. (2.2.97), and over 𝒙̅, letting the latter span the entire space. We then 

need to divide by 2 to eliminate the redundancy in the calculation (the integral considers the 

contribution of each particle pair twice; for more details, we refer to the literature, for instance 

to Ramkrishna, 2000). The result is: 

𝐻𝐴
+(𝑠, 𝒙, 𝑡)𝑑𝑠𝑑𝒙 = (1 2⁄ ) ∫ 𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡)𝑓(𝑠̅, 𝒙, 𝑡)𝑓(𝑠̂, 𝒙, 𝑡)𝑑𝑠̅𝑑𝑠̂𝑑𝒙

𝑠

0
   (2.2.98) 

The left-hand side of this equation is in terms of the variable 𝑠, whereas the right-hand side 

is in terms of the variable 𝑠̂. However, for a fixed value of 𝑠̅, these two variables are related 

via Eq. (2.2.97). We can thus change variable and write Eq. (2.2.98) as follows: 

𝐻𝐴
+(𝑠, 𝒙, 𝑡)𝑑𝑠𝑑𝒙 = (1 2⁄ ) ∫ 𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡)𝑓(𝑠̅, 𝒙, 𝑡)𝑓(𝑠̂, 𝒙, 𝑡)|𝜕𝑠𝑠̂(𝑠, 𝑠̅)|𝑑𝑠̅𝑑𝑠𝑑𝒙

𝑠

0
  (2.2.99) 

Since it is: 

|𝜕𝑠𝑠̂(𝑠, 𝑠̅)| = |(𝑠
3 − 𝑠̅3)−2 3⁄ |𝑠2        (2.2.100) 
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we finally obtain: 

𝐻𝐴
+(𝑠, 𝒙, 𝑡)𝑑𝑠𝑑𝒙 = (𝑠2 2⁄ ) ∫ 𝜔̃𝐴[(𝑠̅, 𝑠̂(𝑠, 𝑠̅), 𝑡)]𝑓(𝑠̅, 𝒙, 𝑡)𝑓[𝑠̂(𝑠, 𝑠̅), 𝒙, 𝑡)](𝑠

3 − 𝑠̅3)−2 3⁄ 𝑑𝑠̅𝑑𝑠𝑑𝒙
𝑠

0
 

           (2.2.101) 

This is again for the particles with size in the range 𝑑𝑠 around 𝑠. A part of these particles, 

however, aggregates; this leads to the following loss: 

𝐻𝐴
−(𝑠, 𝒙, 𝑡)𝑑𝑠𝑑𝒙 = 𝑓(𝑠, 𝒙, 𝑡) ∫ 𝜔̃𝐴[(𝑠̅, 𝑠̂(𝑠, 𝑠̅), 𝑡)]𝑓(𝑠̅, 𝒙, 𝑡)𝑑𝑠̅𝑑𝑠𝑑𝒙

∞

0
   (2.2.102) 

The expression above gives the number of particles with size in the range 𝑑𝑠 around 𝑠 that 

aggregate per unit time in the region 𝑑𝒙 around the real-space point 𝒙. We then write: 

𝐻𝐴(𝑠, 𝒙, 𝑡) =

(𝑠2 2⁄ ) ∫ 𝜔̃𝐴[(𝑠̅, 𝑠̂(𝑠, 𝑠̅), 𝑡)]𝑓(𝑠̅, 𝒙, 𝑡)𝑓[𝑠̂(𝑠, 𝑠̅), 𝒙, 𝑡)](𝑠
3 − 𝑠̅3)−2 3⁄ 𝑑𝑠̅

𝑠

0
−

𝑓(𝑠, 𝒙, 𝑡) ∫ 𝜔̃𝐴[(𝑠̅, 𝑠̂(𝑠, 𝑠̅), 𝑡)]𝑓(𝑠̅, 𝒙, 𝑡)𝑑𝑠̅
∞

0
       (2.2.103)  

This is the number of particles which aggregation forms per unit time and phase-space 

volume. The problem of closure is now finding an expression for the aggregation frequency. 

Expression for aggregation frequency 

Particles of sizes below 1 𝜇𝑚 diffuse and exhibit Brownian motion. Smoluchowski (1917) 

was the first to derive an expression for the aggregation frequency of particles describing 

Brownian motion. From this derivation, Smoluchowski reported the aggregation kernel 

between two particles of sizes 𝑠̅ and 𝑠̂ as (Hunter, 1995):   

𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡) = 2𝜋(𝐷𝑠̅ + 𝐷𝑠̂)(𝑠̅ + 𝑠̂)       (2.2.104) 

From the Stokes-Einstein equation, diffusivity is expressed as (Hunter, 1995): 

𝐷𝑠̅ =
𝑘𝐵𝑇

3𝜋𝑠̅𝜇
          (2.2.105) 

𝑘𝐵, 𝑇 and 𝜇 are the Boltzmann constant, temperature and fluid viscosity.  

Thus, we can express 𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡) as: 

𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡) = 2𝜋(𝐷𝑠̅ + 𝐷𝑠̂)(𝑠̅ + 𝑠̂) =
2𝑘𝐵𝑇

3𝜇
(
1

𝑠̅
+
1

𝑠̂
) (𝑠̅ + 𝑠̂)    (2.2.106) 

Eq. (2.2.106) is the well-known Brownian aggregation kernel. 

If the aggregating particles are about the same size, then a size-independent kernel results: 

𝜔̃𝐴 = 8𝑘𝐵𝑇 3𝜇⁄           (2.2.107) 
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In contrast, particles of disparate sizes have high rate of aggregation because of the 

vigorous diffusion of the smaller particle towards its sluggish larger partner. Smoluchowski 

called Eq. (2.2.106) the fast aggregation kernel. In order to account for the fact that not all 

collisions are successful at producing a new aggregate, 𝜔̃𝐴 is divided by a stability factor 𝑊. 

This stability factor is a number between 1 and ∞. When 𝑊 = 1, fast aggregation is 

obtained; while, when 𝑊 = ∞, no aggregation occurs. There are many factors that can 

impede aggregation. In our case, we consider the effect of surface charges and their electric 

potential. 

The effect of surface charges 

Surface charges can be positive or negative and can induce either attraction or repulsion 

between particles depending on the surrounding charges. Let us consider a positively 

charged GNP. The GNP will attract a layer of tightly-held negative charges around it; this 

layer, in turn, will attract another layer of positive charges. These two layers of opposite 

charges around the initial positively charged GNP are called the electric double layer. This 

second layer is loosely associated with the particle. It is made of free ions that move in the 

fluid under the influence of electric attraction and thermal motion rather than being firmly 

anchored. It is thus called the "diffuse layer". 

Nanoparticles with surface charges will aggregate only if the cumulative effect of both 

diffusion and electrostatic interaction brings the nanoparticles together. Fuch (1960) first 

derived a model for this cumulative effect for monodisperse particles. Subsequently, other 

authors such as Bogush and Zukoski (1991) derived the expression for spherical particles of 

sizes 𝑠̅ and 𝑠̂. The expression for the aggregation kernel with surface charge is (Bogush and 

Zukoski, 1991; Hunter, 1995): 

𝜔̃𝐴

𝑊
=

4𝜋(𝐷𝑠̅+𝐷𝑠̂)

∫
exp[

𝐸𝑇
𝑘𝐵𝑇
⁄ ]

𝑥2
𝑑𝑥

∞
(𝑠̅+𝑠̂) 2⁄

         (2.2.108) 

𝑥 is the distance between the particles, which varies from (𝑠̅ + 𝑠̂) 2⁄ , when the two particles 

are in contact,  to infinity. 𝐸𝑇 is the total interaction energy, taken to be the sum of the energy 

due to the Van der Waal’s force of attraction and that due the charge repulsion (Hunter, 

1995). We review how to model 𝐸𝑇 under the DLVO theory. 

As 𝐸𝑇 increases, 𝜔̃𝐴 𝑊⁄  decreases, therefore Eq. (2.2.108) represents the slow aggregation 

while Eq. (2.2.106) represents the fast aggregation. Substituting Eq. (2.2.106) into Eq. 

(2.2.108) yields the expression for 𝑊 as:  

𝑊 =
(𝑠̅+𝑠̂)

2
∫

exp[
𝐸𝑇

𝑘𝐵𝑇
⁄ ]

𝑥2
𝑑𝑥

∞

(𝑠̅+𝑠̂) 2⁄
       (2.2.109) 
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DLVO theory 

The interaction of colloidal particles due to the forces of attraction and repulsion is described 

in the popular DLVO theory, named after Derjaguin, Landau, Verwey and Overbreek 

(Derjaguin and Landau, 1941; Verwey and Overbreek, 1948). In this theory, the total 

interaction energy 𝐸𝑇 between two particles is the sum of the Van der Waals energy of 

attraction and electrostatic energy of repulsion. We review this theory as follows. 

For the expression of 𝐸𝑇, we write: 

𝐸𝑇 = 𝐸𝐴 + 𝐸𝑅          (2.2.110) 

where 𝐸𝐴 is the Van der Waals energy of attraction and 𝐸𝑅 is the electrostatic energy of 

repulsion. By definition, energy is the ability to do work; it is the energy required to overcome 

a resistance (force) over a distance, mathematically expressed as: 

𝐸 = −∫𝑭. 𝑑𝒙          (2.2.111) 

where 𝑭 is the force along the path 𝑑𝒙 associated with the energy 𝐸. We assume this 

distance to be one-dimensional in the radial direction. Thus, we write: 

𝐸 = −∫𝐹. 𝑑𝑥          (2.2.112) 

For colloidal particles, 𝐹 is caused by the charges on the particles. For two particles of 

charges 𝑞1 and 𝑞2 separated by a distance 𝑥, using the power law, 𝐹 can be expressed as 

(Israelachvili, 2011): 

𝐹 = 𝐵
𝑞1.𝑞2

𝑥𝑛
           (2.2.113) 

where 𝐵 is a constant and 𝑛 is an integer. In the Coulomb’s law, 

𝐵 = 1 4𝜋𝜖0𝜖𝑐⁄            (2.2.114) 

and 𝑛 = 2. In other power laws, 𝑛 is greater than 2. In the Lennard-Jones equation, for 

example, 𝑛 is 7 (for the attractive force) and 𝑛 is 13 (for the repulsive force). Substituting Eq. 

(2.2.113) into Eq. (2.2.112) and integrating, we have: 

𝐸 =
𝐵

𝑛−1

𝑞1.𝑞2

𝑥𝑛−1
          (2.2.115) 

In the Lennard-Jones version of Eq. (2.2.115), (𝑛 − 1) is 6 (for the Van der Waals’ force of 

attraction) and (𝑛 − 1) is 12 (for the electrostatic force of repulsion). Hence, this equation is 

called the “6-12” potential equation (Israelachvili, 2011). 
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These charges 𝑞1 and 𝑞2 can be expressed in terms of the concentrations of electrons on 

the particles and of the particle volumes. We write: 

𝑞1 = ∫ 𝜌𝑒1𝑑𝑣𝑝1𝑣𝑝1
; 𝑞2 = ∫ 𝜌𝑒2𝑑𝑣𝑝2𝑣𝑝2

       (2.2.116) 

where 𝜌𝑒1 and 𝜌𝑒2 are the electron densities due to the ions attached to the particles of 

particle-volumes 𝑣𝑝1 and 𝑣𝑝2, respectively. Substituting Eq. (2.2.116) into Eq. (2.2.115), we 

have: 

𝐸 = 𝑄
∫ 𝜌𝑒1 𝑑𝑣𝑝1𝑣𝑝1

∫ 𝜌𝑒2𝑑𝑣𝑝2𝑣𝑝2

𝑥𝑛−1
        (2.2.117) 

where 

𝑄 =
𝐵

𝑛−1
          (2.2.118) 

We employ Eq. (2.2.117) for an expression for the Van der Waals’ energy of attraction, 

where (𝑛 − 1) = 6. For spherical particles of diameters 𝑠̅ and 𝑠̂, Eq. (2.2.117) becomes 

(Polte 2015): 

𝐸𝐴 = −
𝜋2𝜌𝑒1𝜌𝑒2

6
𝑄 [

2𝑠̅𝑠̂

4𝑞2−(𝑠̅+𝑠̂)2
+

2𝑠̅𝑠̂

4𝑞2−(𝑠̅−𝑠̂)2
+ ln (

4𝑞2−(𝑠̅+𝑠̂)2

4𝑞2−(𝑠̅−𝑠̂)2
)]     (2.2.119) 

where 𝑞 is the centre to centre distance between the two particles. For two identical 

spherical particles, an approximate expression of Eq. (2.2.119) is (Polte, 2015): 

𝐸𝐴 = −
𝜋2𝜌𝑒1𝜌𝑒2𝑄𝑠̅

24𝐷
= −

𝐴𝐻𝑠̅

24𝐷
        (2.2.120) 

where 𝐷 is the particle surface to particle surface distance, given as: 

𝐷 = (𝑞 − 𝑠̅)          (2.2.121) 

and 𝐴𝐻 is the Hamaker constant, given in Eq. (2.2.120) as 𝐴𝐻 = 𝜋
2𝜌𝑒1𝜌𝑒2𝑄. 

Eq. (2.2.120) shows the Van der Waals’ potential energy of attraction for charged particles is 

inversely proportional to the separation distance, whereas for point charges such as the 

electrons, the Van der Waals’ potential energy of attraction is inversely proportional to the 

sixth power of the separation distance as shown in Eq. (2.2.115). 

While the Van der Waals’ energy of attraction brings about aggregation of nanoparticles, the 

electrostatic energy of repulsion stabilizes them. As described before, two layers of opposite 

charges form around nanoparticles in ionic solutions (the electric double layer). Because of 

the electric double layer, nanoparticles repel one another. To describe this repulsion, DLVO 

used the Stern-Gouy-Chapman theory. In this theory, two particles distance 𝐷 apart carry 
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equal negative charges. The surroundings, on the other hand, contain positively-charged 

ions, called counterions. This is illustrated in Figure 2.2.4A. Figure 2.2.4B, on the other hand, 

illustrates (as a function of the distance 𝑥) the distribution of the density of the counterions 

𝜌𝑥, the corresponding electrostatic charge potential 𝜓𝑥 and electric field 𝐄𝑥.  

The electrostatic charge potential at any point is the energy required to bring a unit positive 

charge from infinity to the point; it indicates the energy due to the electric field generated by 

charges around the point. The electric field, on the other hand, is the electric force per unit 

charge; it is directed from a more positive point (or location) to a less negative point (or 

location). From these definitions, the electrostatic charge potential and electric field are 

related by Eq. (2.2.111). By convention, for an isolated unit positive charge, the force is in 

the positive direction (directed outwards the charge) thus making its electrostatic charge 

potential positive, while for an isolated unit negative charge, the force is in the negative 

direction (directed inwards the charge) thus making its electrostatic charge potential 

negative. Therefore, at the surfaces in Figure 2.2.4, the charge is the most negative (the 

surface charge potential 𝜓𝑠) while at the middle (𝐷 2⁄ ), the charge is the least negative (𝜓0). 
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Figure 2.2.4: Two negatively charged surfaces of surface charge density 𝜓𝑠 separated a 

distance D in water. The only ions in the space between them are the counterions that have 

dissociated from the surfaces. The counterion density profile 𝜌𝑥 and electrostatic charge 

potential 𝜓𝑥 are shown schematically in the lower part of the figure. The “contact” values are 

𝜌𝑠, 𝜓𝑠 and 𝐄𝑠 = −[𝑑𝜓 𝑑𝑥⁄ ]𝑠. Figure obtained from Israelachvili (2011). 

Assuming the system in Figure 2.2.4 to be in equilibrium, then the chemical potential λ would 

be the same from point to point. For two points 𝐼  and 𝐼𝐼, we can then write: 

λ𝐼 = λ𝐼𝐼          (2.2.122) 

Using the Nernst equation of thermodynamics, we express the chemical potential as 

Israelachvili (2011): 

λ
𝑥
= 𝑧𝑒𝜓𝑥 + 𝑘𝐵𝑇 ln(𝜌𝑥 𝜌

0⁄ )        (2.2.123) 
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where 𝑧 is the oxidation state of the ions and 𝑒 is the amount of charge on an electron. 𝜌0 is 

the density of counterions in the surroundings before applying the charged surfaces; its 

value can be taken to be the same throughout the surroundings. 

At 𝑥 = 0, we have: 

λ0 = 𝑧𝑒𝜓0 + 𝑘𝐵𝑇 ln(𝜌0 𝜌
0⁄ )        (2.2.124) 

Equating Eqs (2.2.123) and (2.2.124) and rearranging, we have: 

𝜌𝑥 = 𝜌0 exp[− 𝑧𝑒(𝜓𝑥 − 𝜓0) 𝑘𝐵𝑇⁄ ]       (2.2.125) 

In Israelachvili (2011), Eq. (2.2.125) is given as: 

𝜌𝑥 = 𝜌0 exp[− 𝑧𝑒𝜓 𝑘𝐵𝑇⁄ ]        (2.2.126) 

where 𝜓 = 𝜓𝑥 − 𝜓0         (2.2.127)  

Eq. (2.2.126) is the Boltzmann distribution of counterions. The 𝑥 dependence of 𝜓 is 

expressed using the Poisson equation given as: 

𝑧𝑒𝜌𝑥 = −𝜖0𝜖𝑐
𝑑2𝜓

𝑑𝑥2
         (2.2.128) 

Using Eq. (2.2.126) to substitute for 𝜌𝑥; Eq. (2.2.128) when rearranged becomes: 

𝑑2𝜓

𝑑𝑥2
= −

𝑧𝑒

𝜖0𝜖𝑐
𝜌0 exp[− 𝑧𝑒𝜓 𝑘𝐵𝑇⁄ ]       (2.2.129) 

Eq. (2.2.129) is called Poisson-Boltzmann equation. Given one boundary condition, this 

equation can be solved for 𝐅, the electric force. Similarly, given two boundary conditions, this 

equation can be solved for 𝜓 and then the Boltzmann equation in (2.2.126) can be solved for 

𝜌𝑥. 

For solutions with dilute ion concentrations, where 𝜓 is very small, Debye and Hückel 

linearized Eq. (2.2.129) as (Polte, 2015): 

𝑑2𝜓

𝑑𝑥2
=
𝑧2𝑒2𝜌0𝜓

𝜖0𝜖𝑐𝑘𝐵𝑇
−
𝑧𝑒𝜌0

𝜖0𝜖𝑐
         (2.2.130) 

Between the charged surfaces in Figure 2.2.4, we have only one type of charges: unit-

positive charges. In reality, different types of charges are present, some negative and some 

positive. Usually, the charges on the two surfaces or particles result from the attachment of 

some ions in the solution. To account for the different types of charges, Debye and Huckel 

reported the equations as (Polte, 2015): 

𝑑2𝜓

𝑑𝑥2
= 𝜓∑

𝑧𝑖
2𝑒2𝜌0

𝜖0𝜖𝑐𝑘𝐵𝑇
𝑖 − ∑

𝑧𝑖𝑒𝜌0

𝜖0𝜖𝑐
𝑖         (2.2.131) 
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where 𝑖 represents the species of charges. 

In the overall ionic solution, the total positive charges cancel out the total negative charges. 

Thus, the solution is neutral. For this solution, the second term on the right-hand side of Eq. 

(2.2.131) is zero. Thus, Eq. (2.2.131) becomes: 

𝑑2𝜓

𝑑𝑥2
= κ2𝜓          (2.2.132) 

where 

κ = (∑
𝑧𝑖
2𝑒2𝜌0

𝜖0𝜖𝑐𝑘𝐵𝑇
𝑖 )

1 2⁄

         (2.2.133) 

κ is the inverse of the Debye length, also called the thickness of the diffuse layer.  

A simple solution to Eq. (2.2.132) is: 

𝜓 = 𝜓0 exp(−κ𝑥)         (2.2.134) 

with the electrostatic charge potential 𝜓 = 𝜓0 at 𝑥 = 0. (The phrase “simple solution” was 

used by Polte (2015) because Eq. (2.2.132) can have other solutions. For example, another 

solution is 𝜓 = 𝜓0 exp(κ𝑥).) 

This equation gives the profile of the electrostatic charge potential. By definition of 

electrostatic charge potential, the equation refers to the interaction energy of point charges 

such as electrons and positrons. 

For the interaction energy for charged surfaces, we need to account for the surfaces and 

their separation. Israelachvili (2011) reasoned in terms of the pressure of the ions between 

the surfaces, called the osmotic pressure, before obtaining the expression for the interaction 

energy. Assuming ideal gas behaviour and then uniform pressure, Israelachvili (2011) 

derived an expression for the repulsive pressure. We report this expression as: 

𝑃𝑟(𝐷) = 𝑘𝐵𝑇(∑ 𝜌𝑖,𝐷𝑖 − ∑ 𝜌𝑖,∞𝑖 )        (2.2.135) 

where 𝑃𝑟 is the repulsive pressure when the charged surfaces are 𝐷 distance apart. This 

pressure is assumed to be uniform everywhere within the surfaces. ∑ 𝜌𝑖,𝐷𝑖  is the total 

number density of the ions on each surface or particle. This number density is the same for 

identical surfaces or particles. ∑ 𝜌𝑖,∞𝑖  is the total number density of the ions on the surface 

when the charged surfaces are sufficiently far apart. Each number density can be expressed 

in terms of its density in the bulk of the solution 𝜌𝑖,0 using the Boltzmann distribution in Eq. 

(2.2.126). For an ionic solution containing mono-positive and mono-negative ions such as 

NaCl, 𝑧 = +1 for 𝑁𝑎+ and 𝑧 = −1 for 𝐶𝑙−. Thus, Eq. (2.2.135) becomes: 
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𝑃𝑟(𝐷) = 𝑘𝐵𝑇 [(𝜌𝑁𝑎,0 exp[−𝑧𝑒𝜓 𝑘𝐵𝑇⁄ ] + 𝜌𝐶𝑙,0 exp[+ 𝑧𝑒𝜓 𝑘𝐵𝑇⁄ ])|
𝐷
− (𝜌𝑁𝑎,0 exp[− 𝑧𝑒𝜓 𝑘𝐵𝑇⁄ ] +

𝜌𝐶𝑙,0 exp[+ 𝑧𝑒𝜓 𝑘𝐵𝑇⁄ ])|
∞
]        (2.2.136) 

When the distance between the charged surfaces is infinity, Israelachvili (2011) took the 

charges on the surface to be zero (that is 𝜓∞ = 0). Further, Israelachvili (2011) assumed 

that in the bulk, 𝜌𝑁𝑎,0 = 𝜌𝐶𝑙,0 = 𝜌0. Thus, Eq. (2.2.136) becomes: 

𝑃𝑟(𝐷) = 𝑘𝐵𝑇𝜌0[(exp[− 𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ] + exp[+𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ] − 2)]   (2.2.137) 

Eq. (2.2.137) can be expressed as: 

𝑃𝑟(𝐷) = 2𝑘𝐵𝑇𝜌0[cosh(𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ) − 1]      (2.2.138) 

where  

cosh(𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ) =
exp[−𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ]+exp[+𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ]

2
     (2.2.139) 

For solutions with dilute ion concentrations, where 𝜓𝐷 is very small (𝜓𝐷 < 25 𝑚𝑉), 

Israelachvili (2011) used the Taylor series expansion and approximated Eq. (2.2.138) as: 

𝑃𝑟(𝐷) ≈
𝑧2𝑒2𝜓𝐷

2𝜌0

𝑘𝐵𝑇
         (2.2.140) 

where in Eq. (2.2.138), cosh(𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ) has been substituted as: 

cosh(𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ ) ≈ 1 +
(𝑧𝑒𝜓𝐷 𝑘𝐵𝑇⁄ )2

2
       (2.2.141) 

Using Eq. (2.2.134) to substitute for 𝜓𝐷, Eq. (2.2.140) when rearranged becomes: 

𝑃𝑟(𝐷) ≈
𝑧2𝑒2𝜓0

2𝜌0

𝑘𝐵𝑇
 exp(−κ𝐷)        (2.2.142) 

Depending on the geometry of the charged surfaces, Eq. (2.2.142) can be used to obtain the 

electrostatic force of repulsion and then the corresponding electrostatic energy of repulsion. 

For spherical particles, Dejaguin derived the equations for obtaining the force of repulsion 

and its corresponding energy of interaction from the osmotic pressure. These equations are 

based on the Dejaguin approximation. In this approximation, the sizes of the particles are 

considered to be infinity when compared to the distance between them. In other words, the 

surface curvature is neglected and it is regarded as flat. To obtain the equation for the force, 

Eq. (2.2.142) is multiplied by a differential area between the particles. The result is then 

integrated over the charged surfaces and their separation. We report the equation for the 

force of repulsion as (Israelachvili, 2011): 
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𝐹𝑅 =
𝜋𝑠̅𝑠̂

𝑠̅+𝑠̂
∫ 𝑃𝑟(𝑥)𝑑𝑥
∞

𝐷
=
𝜋𝑠̅𝑠̂

𝑠̅+𝑠̂

𝑧2𝑒2𝜓0
2𝜌0

𝑘𝐵𝑇κ
 exp(−κ𝐷)     (2.2.143) 

According to (Israelachvili, 2011), the corresponding energy of interaction can then be 

obtained by a further integration as: 

𝐸𝑅 = ∫ 𝐹𝑅𝑑𝑥
∞

𝐷
=
𝜋𝑠̅𝑠̂

𝑠̅+𝑠̂

𝑧2𝑒2𝜓0
2𝜌0

𝑘𝐵𝑇κ
2  exp(−κ𝐷)      (2.2.144) 

From Eqs (2.2.119) and (2.2.144), we can then substitute in Eq. (2.2.110) for the total 

interaction energy for two spherical particles of sizes 𝑠̅  and 𝑠̂, 𝑥 distance apart as: 

𝐸𝑇 = −
𝜋2𝜌𝑒1𝜌𝑒2

6
𝑄 [

2𝑠̅𝑠̂

4𝑞2−(𝑠̅+𝑠̂)2
+

2𝑠̅𝑠̂

4𝑞2−(𝑠̅−𝑠̂)2
+ ln (

4𝑞2−(𝑠̅+𝑠̂)2

4𝑞2−(𝑠̅−𝑠̂)2
)] +

𝜋𝑠̅𝑠̂

𝑠̅+𝑠̂

𝑧2𝑒2𝜓0
2𝜌0

𝑘𝐵𝑇κ
2  exp(−κ𝑥) (2.2.145) 

This type of expression of 𝐸𝑇 allows calculating 𝑊 using Eq. (2.2.109). For other geometries 

of interacting charged particles, the expression for 𝐸𝑇 is different. However, these different 

expressions yield a similar profile for 𝐸𝑇. Figure 2.2.5 shows this typical profile as the green 

curve; the blue and red curves show the profiles of 𝐸𝐴 and 𝐸𝑅, respectively. The green curve 

characteristically has a maximum point, called the energy barrier. Based on this typical 

profile of 𝐸𝐴, past authors simplified the expression of 𝐸𝑇 and then of 𝑊. We review their 

approach to simplify these expressions as follows. 

 

 

Figure 2.2.5: A typical profile of the total interaction energy with distance 𝑥 between two 

charged particles. 
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Simplified expressions for 𝑬𝑻 and 𝑾 

In terms of energy barrier between two spherical particles of sizes 𝑠̅ and 𝑠̂, Reerink and 

Overbreek (1954) derived an expression for 𝑊. This expression is (Marchisio and Fox, 

2012): 

𝑊 =
2κ
𝑠̅+𝑠̂
exp [

𝐸𝑎𝑔𝑔
𝑘𝐵𝑇
⁄ ]        (2.2.146) 

where 𝐸𝑎𝑔𝑔 is the energy barrier for aggregation (i.e. the maximum value of the green curve 

in Fig. 2.2.5). Since 𝑊(𝑠̅, 𝑠̂) is a dimensionless number, 2κ (𝑠̅ + 𝑠̂)⁄  in Eq. (5.2.4) should be 

dimensionless. However, considering 1 κ⁄  has a dimension of 𝐿, 2κ (𝑠̅ + 𝑠̂)⁄  has the 

dimension of 𝐿−2. Thus, Eq. (2.2.146) is incorrect. In Chapter 5 on modelling the aggregation 

process, we derive the correct expression of Eq. (2.2.146). 

Further, Reerink and Overbreek (1954) reported a simpler expression for 𝑊 than Eq. 

(2.2.146). In doing this, they considered identical spherical particles where 𝑠̅ = 𝑠̂ and 

employed the Taylor series expansion on an expression for 𝐸𝑇 simpler than Eq. (2.2.145) 

about the value of 𝑥 corresponding to the energy barrier 𝐸𝑎𝑔𝑔. This value of 𝑥 is the 

thickness of the electric double layer i.e. 𝑥 = κ−1 (Israelachvili, 2011). The final expression 

is: 

ln𝑊 = −𝑔1 ln 𝐶𝑒 + 𝑔2         (2.2.147) 

where 𝐶𝑒 is the concentration of potential determining ions (these are the ion species that 

induce surface charge on the particles), while 𝑔1 and 𝑔2 are constants. The value of 𝑔1 

depends on the surface potential, while the value of 𝑔2 depends on the physical system only 

(Reerink and Overbreek, 1954). Reerink and Overbreek tested Eq. (2.2.147) using a colloid 

of silver iodide particles in aqueous barium nitrate and then reported almost linear curves of 

ln𝑊 vs ln 𝐶𝑒 thus confirming the linear relationship in Eq. (2.2.147). Thereafter, Kumar et al. 

(2007) employed the expression in Eq. (2.2.147) for 𝑊 in their model for the citrate synthesis 

method. We present their model in Chapter 3. We also present another modelling approach 

for 𝑊 and the aggregation process in Chapter 5. 

However, on reviewing the mathematical derivation of Reerink and Overbreek (1954), we 

observed some inconsistencies with Figure 2.2.5. To support our discussions in Chapters 3 

and 5, we report the inconsistencies as follows. 

First, Reerink and Overbreek (1954) did not start with Eqs. (2.2.109) and (2.2.145). Instead 

of Eq. (2.2.109) for 𝑊, they started with 
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𝑊 = 2∫ exp(𝐸𝑇 𝑘𝑇⁄ )
∞

0

𝑑𝑥𝑠
(𝑥𝑠+2)

2         (2.2.148) 

where  

𝑥𝑠 ≡
2𝐷0

𝑠̅
           (2.2.149) 

where 𝐷0 is the shortest distance between the particles. Based on this definition, 𝐷0 should 

be zero since the particles should be in contact when they aggregate. However, according to 

Reerink and Overbreek (1954), it is finite and nonzero. We think that 𝐷0 should be 𝑥, the 

distance between the particles, not the shortest distance between them. 

Notice that the two particles have equal size 𝑠̅. Notice also two things: the integration in Eq. 

(2.2.148) is from 𝑥𝑠 = 0 to 𝑥𝑠 = ∞, and the denominator of the integral function is (𝑥𝑠 + 2). 

When derived from Eq. (2.2.109) assuming 𝐷0 = 𝑥, the integration should be from 𝑥𝑠 = 2 to 

𝑥𝑠 = ∞, and the denominator should be 𝑥𝑠. 

Also, instead of Eq. (2.2.145), Reerink and Overbreek (1954) started with  

𝐸𝑇 = −
𝐴𝐻

12𝑥𝑠
+ 𝐵𝑟  exp(−κ𝑠𝑥𝑠)         (2.2.150) 

where 𝐵𝑟 = 2.31 × 10
−6𝑠̅

𝛼2

𝑧2
         (2.2.151) 

κ𝑠 = κ𝑠̅ 2⁄           (2.2.152) 

𝛼 =
exp(|𝑧|𝑒𝜓0 2𝑘𝐵𝑇⁄ )−1

exp(|𝑧|𝑒𝜓0 2𝑘𝐵𝑇⁄ )+1
         (2.2.153) 

and |𝑧| is the magnitude of the potential determining ion. 

Next, Reerink and Overbreek (1954) employed the Taylor series expansion on 𝐸𝑇 in Eq. 

(2.2.150) about the value of 𝑥𝑠 corresponding to the energy barrier 𝐸𝑎𝑔𝑔, denoted as 𝑥𝑠𝑚. As 

previously mentioned, this value corresponds to 𝑥 = κ−1. The Taylor series expansion of 𝐸𝑇 

about the point 𝑥𝑠 = 𝑥𝑠𝑚 is: 

 𝐸𝑇(𝑥𝑠) = 𝐸𝑎𝑔𝑔 +
𝑑𝐸𝑇

𝑑𝑥𝑠
|
𝑥𝑠=𝑥𝑠𝑚

(𝑥𝑠 − 𝑥𝑠𝑚) +
1

2

𝑑2𝐸𝑇

𝑑𝑥𝑠
2|
𝑥𝑠=𝑥𝑠𝑚

(𝑥𝑠 − 𝑥𝑠𝑚)
2   (2.2.154) 

where we have neglected higher-order terms (Reerink and Overbreek, 1954). The figure 

reported by Reerink and Overbreek (1954) for 𝐸𝑇(𝑥𝑠) with the peak at 𝑥𝑠 = 𝑥𝑠𝑚 is similar to 

Figure 2.2.5, where the peak is at 𝑥 = κ−1. As in Figure 2.2.5, for 𝑥𝑠 = 𝑥𝑠𝑚 it is: 

𝑑𝐸𝑇

𝑑𝑥𝑠
|
𝑥𝑠=𝑥𝑠𝑚

= 0          (2.2.155) 

Thus, Eq. (2.2.154) becomes: 
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𝐸𝑇(𝑥𝑠) = 𝐸𝑎𝑔𝑔 +
1

2

𝑑2𝐸𝑇

𝑑𝑥𝑠
2|
𝑥𝑠=𝑥𝑠𝑚

(𝑥𝑠 − 𝑥𝑠𝑚)
2      (2.2.156) 

If we use this relation in Eq. (2.2.148), this yields: 

𝑊 =
2

(𝑥𝑠𝑚+2)
2 exp(

𝐸𝑎𝑔𝑔
𝑘𝐵𝑇
⁄ )∫ exp[−𝑝2(𝑥𝑠 − 𝑥𝑠𝑚)

2]
∞

0
𝑑𝑥𝑠    (2.2.157) 

where 𝑝 = (−
1

2𝑘𝐵𝑇

𝑑2𝐸𝑇

𝑑𝑥𝑠
2 |
𝑥𝑠=𝑥𝑠𝑚

)

1 2⁄

       (2.2.158) 

Reerink and Overbreek (1954) replaced the lower limit in the integral in Eq. (2.2.157) by −∞, 

claiming that this replacement introduces only a negligible error. Subsequently, they 

calculated the integral as: 

∫ exp[−𝑝2(𝑥𝑠 − 𝑥𝑠𝑚)
2]

∞

−∞
𝑑𝑥𝑠 =

√𝜋

𝑝
       (2.2.159) 

From this equation, Eq. (2.2.157) becomes: 

𝑊 =
√𝜋

𝑝

1

(𝑥𝑠𝑚+2)
2 exp(

𝐸𝑎𝑔𝑔
𝑘𝐵𝑇
⁄ )       (2.2.160) 

To obtain 𝐸𝑎𝑔𝑔, Reerink and Overbreek (1954) differentiated Eq. (2.2.150) with respect to 𝑥𝑠 

and then equated the derivative to zero at 𝑥𝑠 = 𝑥𝑠𝑚. Doing so yields: 

𝐵𝑟  exp(−κ𝑠𝑥𝑠𝑚) =
𝐴𝐻

12κ𝑠𝑥𝑠𝑚
2        (2.2.161) 

Combining Eqs (2.2.150) and (2.2.161), we have: 

𝐸𝑎𝑔𝑔 = 𝐸𝑇(𝑥𝑠𝑚) =
𝐴𝐻

12𝑥𝑠𝑚
(

1

κ𝑠𝑥𝑠𝑚
− 1)      (2.2.162) 

Furthermore, Reerink and Overbreek (1954) considered a case where 𝐸𝑎𝑔𝑔 = 0. In the figure 

of Reerink and Overbreek (1954), which is similar to Figure 2.2.5, this case occurs when 

𝐸𝑅 = 0 i.e. there is no electrostatic repulsion. As previously mentioned, Reerink and 

Overbreek (1954) employed this case to derive the expression in Eq. (2.2.147), which was 

used in the model of Kumar et al. (2007), discussed in Chapter 3.  

To satisfy this case, Eq. (2.2.162) becomes: 

κ𝑠𝑥𝑠𝑚 = 1          (2.2.163) 

We rewrite Eq. (2.2.163) as: 
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(
1

κ𝑠𝑥𝑠𝑚
− 1) = ± ln κ𝑠𝑥𝑠𝑚        (2.2.164) 

This equation satisfies Eq. (2.2.163). In Eq. (2.2.164), the right-hand side can carry a 

positive or a negative sign. In their derivation, Reerink and Overbreek (1954) employed Eq. 

(2.2.164) with only the negative sign on the right-hand side. However, they did not disclose 

why they employed only this option. 

Following Reerink and Overbreek (1954), we substitute the right-hand side of Eq. (2.2.164) 

(with the negative sign only) into Eq. (2.2.162): 

𝐸𝑎𝑔𝑔 = −
𝐴𝐻

12𝑥𝑠𝑚
ln κ𝑠𝑥𝑠𝑚        (2.2.165) 

𝑊 can then be expressed by substituting Eq. (2.2.165) into (2.2.160). Rearranging the 

results, we have: 

ln𝑊 = ln (
√𝜋

𝑝

1

(𝑥𝑠𝑚+2)
2) −

𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln κ𝑠𝑥𝑠𝑚      (2.2.166) 

We can express Eq. (2.2.166) as a function of the concentration of potential determining 

ions. To do this, we further rearrange Eq. (2.2.166) as: 

ln𝑊 = −
𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln κ𝑠 −

𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln 𝑥𝑠𝑚 + ln (

√𝜋

𝑝

1

(𝑥𝑠𝑚+2)
2)    (2.2.167) 

Further, we substitute κ𝑠 using Eq. (2.2.152) to obtain Eq. (2.2.167) in terms of κ and 𝑠̅. 

Then, we substitute for κ using Eq. (2.2.133), recognising that: 

𝐶𝑒 = √∑ 𝑧𝑖
2𝑒2𝜌0𝑖           (2.2.168) 

After rearranging, these substitutions transform Eq. (2.2.167) as: 

ln𝑊 = −
𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln 𝐶𝑒 −

𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln (

𝑥𝑠𝑚𝑠̅

2√𝜖0𝜖𝑐𝑘𝐵𝑇
) + ln (

√𝜋

𝑝

1

(𝑥𝑠𝑚+2)
2)   (2.2.169) 

Now we substitute back for 𝑝. To do this, first we find 𝑑2𝐸𝑇 𝑑𝑥𝑠
2⁄  using Eq. (2.2.150) and 

then substitute its value at 𝑥𝑠 = 𝑥𝑠𝑚 into Eq. (2.2.158). We differentiate Eq. (2.2.150) twice 

as: 

𝑑2𝐸𝑇

𝑑𝑥𝑠
2 = −

𝐴𝐻

6𝑥𝑠
3 + κ𝑠

2𝐵𝑟  exp(−κ𝑠𝑥𝑠)       (2.2.170) 

Using (2.2.161), Eq. (2.2.170) at 𝑥𝑠 = 𝑥𝑠𝑚 becomes: 

𝑑2𝐸𝑇

𝑑𝑥𝑠
2 |
𝑥𝑠=𝑥𝑠𝑚

= −
𝐴𝐻

6𝑥𝑠𝑚
3 +

𝐴𝐻κ𝑠

12𝑥𝑠𝑚
2 =

𝐴𝐻

12𝑥𝑠𝑚
3
(κ𝑠𝑥𝑠𝑚 − 2)     (2.2.171) 

Substituting this into Eq. (2.2.158), we have: 
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𝑝 = (
𝐴𝐻

24𝑥𝑠𝑚
3𝑘𝐵𝑇

(2 − κ𝑠𝑥𝑠𝑚))

1 2⁄

       (2.2.172) 

Using Eq. (2.2.172), we can now substitute for 𝑝 in Eq. (2.2.169). Doing so, we have: 

ln𝑊 = −
𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln 𝐶𝑒 −

𝐴𝐻

12𝑥𝑠𝑚𝑘𝐵𝑇
ln (

𝑥𝑠𝑚𝑠̅

2√𝜖0𝜖𝑐𝑘𝐵𝑇
) + ln(

√𝜋

(
𝐴𝐻

24𝑥𝑠𝑚
3𝑘𝐵𝑇

(2−κ𝑠𝑥𝑠𝑚))

1 2⁄

1

(𝑥𝑠𝑚+2)
2) 

           (2.2.173) 

Reerink and Overbreek (1954) assumed that apart from 𝐶𝑒, every other term in Eq. (2.2.173) 

is a constant. Thus, they proposed that 𝑊 varies with 𝐶𝑒 according to Eq. (2.2.147). 

However, Eq. (2.2.173) shows that 𝑊 also varies with size 𝑠̅. As previously shown, another 

limitation of this equation is that it assumes 𝐸𝑅 = 0; no stabilization by the repulsion energy. 

In spite of these limitations, Kumar et al. (2007) employed Eq. (2.2.173) to derive an 

expression for the aggregation process in the citrate synthesis method. As we see in chapter 

3, this expression fails to accurately describe the aggregation process.  

In our attempt to model the aggregation process accurately, however, we employ Eq. 

(2.2.109) and derive an equation for 𝑊 in terms of particle size. This equation follows the 

theory proposed by Polte (2015) to describe the aggregation process. We discuss this theory 

and the derived equation that describes it in chapter 5. 

In concluding this section, we have reviewed the mathematical framework to adopt in 

modelling the formation of gold nanoparticles in the citrate synthesis method. In the 

population balance modelling for the particle phase, based on the investigations of past 

authors, we have discussed how to model processes such as nucleation, growth and 

aggregation. 

2.3 Methods of solution 
The reviewed mathematical model comprises the ordinary differential equations (ODEs) in 

the continuous phase (Eq. (2.2.13) and the integro-partial-differential equation in the 

discontinuous phase (the population balance equation in Eq. (2.2.49)). For ODEs, analytical 

solutions are only possible for some cases. These cases include ODEs where the 

dependent and independent variables can be separated to the different sides of an equation, 

and ODEs that are linear and homogeneous. Nonlinear ODEs are solved numerically 

starting from the initial conditions. The numerical methods used for solving ODEs include the 

Euler, modified-Euler and Runge-Kutta methods (Stroud and Booth, 2003; Hornberger and 

Wiberg, 2005). In the Euler method, for example, the domain of the independent variable, 
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which is time 𝑡 in Eq. (2.2.13), is first divided into time steps ∆𝑡. Then, the dependent 

variables, which are the concentrations in Eq. (2.2.13), are calculated using: 

𝐶𝑖(𝑡 + ∆𝑡) = 𝐶𝑖(𝑡) +
𝑑𝐶𝑖

𝑑𝑡
∆𝑡        (2.3.1) 

At the initial condition (i.e. 𝑡 = 0), 𝐶𝑖(0) is specified. Eq. (2.3.1) is therefore iterated until the 

final simulation time 𝑡𝑓. As ∆𝑡 → 0, the results approach the values obtainable if the equation 

were to be solved analytically. Other numerical methods such the modified-Euler and 

Runge-Kutta methods follow a similar procedure as the Euler method. 

The integro-partial-differential equation, as shown in the population balance equation (PBE), 

poses even higher difficulty and complexity than the ODEs. Excluding the aggregation term, 

this equation reduces to a partial differential equation (PDE). For PDEs, analytical solutions 

may be possible using separation of variables, Laplace and Fourier transforms (Kreyzig, 

1999; Stroud and Booth, 2003). For many cases, however, like the ODEs, PDEs are solved 

numerically using numerical techniques such as the finite difference methods. In Appendix 

C, we present some functions employed as solutions in describing experimentally obtained 

particle size distributions. We refer the reader to this appendix for more details. 

For the PBEs in particular, numerical techniques employed such as the method of moments 

first focus on manipulating the NDF so that the PBE is in the form of an ODE. Then, by 

following a similar procedure as the Euler method, the resulting ODE is transformed into 

algebraic equations in the form of Eq. (2.3.1). In the method of moments, the PBE is 

averaged in the particle-size space by multiplying by 𝑠𝑛 and integrating over 𝑠 from zero to 

infinity (Randolph and Larson, 1971). Applying the method of moments to Eq. (2.2.49), we 

have: 

∫ [
𝜕

𝜕𝑡
𝑓(𝑠, 𝑡) +

∂

𝜕𝑠
(𝑓. 〈𝐺𝑠〉𝑎𝑣) − 𝐻𝑉] 𝑠

𝑛𝑑𝑠
∞

0
= 0      (2.3.2) 

Reversing the order of differentiation and integration on the first term, we have: 

𝑑

𝑑𝑡
∫ 𝑓(𝑠, 𝑡)𝑠𝑛𝑑𝑠
∞

0
=
𝑑𝑚𝑛(𝑡)

𝑑𝑡
        (2.3.3) 

where 𝑚𝑛(𝑡) is the nth integer moment of the particle size distribution per unit volume of 

solution, mathematically expressed as 

𝑚𝑛(𝑡) ≡ ∫ 𝑓𝑠𝑛𝑑𝑠
∞

0
          (2.3.4) 

The second term of Eq. (2.3.2) can be integrated by parts as: 

∫
∂

𝜕𝑠
(𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛𝑑𝑠
∞

0
= (𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛|∞ − (𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠
𝑛|0 − ∫ 𝑛(𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛−1𝑑𝑠
∞

0
 (2.3.5) 
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We assume that 𝑓 vanishes faster than any other function as 𝑠 diverges, a property referred 

to as regularity condition (Mazzei, 2008). Thus, the expected number of particles with infinite 

sizes is zero. This makes the first term on the right-hand side of Eq. (2.3.5) vanish. Since the 

size of a nucleus is not zero, for most applications, the second term may also be taken as 

zero at 𝑠 = 0 (Mazzei, 2008). Thus, the second term in Eq. (2.3.2) yields: 

∫
∂

𝜕𝑠
(𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛𝑑𝑠
∞

0
= −∫ 𝑛(𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛−1𝑑𝑠
∞

0
      (2.3.6) 

The form of 〈𝐺𝑠〉𝑎𝑣 determines the final form of Eq. (2.3.6). From the surface-reaction 

controlled growth in Section 2.2.3.2 (Eq. (2.2.92)), 〈𝐺𝑠〉𝑎𝑣 is a constant. Thus, Eq. (2.3.6) 

becomes: 

∫
∂

𝜕𝑠
(𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛𝑑𝑠
∞

0
= −𝑛〈𝐺𝑠〉𝑎𝑣𝑚𝑛−1(𝑡)       (2.3.7) 

While for the diffusion-controlled growth, 〈𝐺𝑠〉𝑎𝑣 is given by (Eq. (2.2.87). Thus, Eq. (2.3.36) 

becomes: 

∫
∂

𝜕𝑠
(𝑓. 〈𝐺𝑠〉𝑎𝑣)𝑠

𝑛𝑑𝑠
∞

0
= −𝑛𝐷0𝑉𝑚(𝐶0 − 𝐶𝑒𝑞)𝑚𝑛−2(𝑡)      (2.3.8) 

The third term in Eq. (2.3.2) can be integrated as: 

∫ 𝐻𝑉𝑠
𝑛𝑑𝑠

∞

0
= 𝐻̅̅𝑉(𝑚𝑘 , 𝑡)   𝑛 = 0,1,2… ≥ 𝑘   (2.3.9)  

In the citrate synthesis method, the growth process is controlled by surface reaction as we 

see in Chapters 3 and 4. Putting all the terms together, for surface reaction controlled 

growth, Eq. (2.3.2) becomes: 

𝑑𝑚𝑛(𝑡)

𝑑𝑡
− 𝑛〈𝐺𝑠〉𝑎𝑣𝑚𝑛−1(𝑡) − 𝐻̅̅𝑉(𝑚𝑘, 𝑡) = 0 𝑛 = 0,1,2… ≥ 𝑘   (2.3.10) 

Eq. (2.3.10) is an ODE that describes the particle phase. Coupling and solving numerically 

Eqs (2.3.2) and (2.3.10) would yield results of concentrations and moments for the fluid-

particle system. From these results, we can derive some properties of the particle size 

distribution. For example, the particles mean size can be obtained in terms of the moments 

from the general expression: 

Mean size, 𝑠𝑗+1,𝑗 =
𝑚𝑗+1

𝑚𝑗
         (2.3.11) 

where 𝑠1,0, 𝑠2,1, 𝑠3,2, and 𝑠4,3 represent the number-mean, length-mean, area-mean and 

weight-mean sizes, respectively. For specific expressions for these mean sizes, we refer the 

reader to Appendix C. 
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Furthermore, the standard deviation 𝜎 of the particle size distribution can be derived from the 

size moments as follows: 

𝜎2 =
∫ (𝑠−𝑠1,0)

2
𝑓𝑑𝑠

∞

0

∫ 𝑓𝑑𝑠
∞

0

=
𝑚2

𝑚0
− (

𝑚1

𝑚0
)
2
       (2.3.12) 

As the set of moments (𝑚𝑛) increases, more information about the particle size distribution 

can be obtained. To completely reconstruct the particles size distribution, however, we need 

to generate an infinite number of size moments. 

Due to increasing computing ability, discretizing the NDF in the PBEs is becoming an 

attractive method of solution. In the quadrature method of moments (QMOM), for example, 

the NDF is discretized into a number of particle classes, each having a weighting function 

and a particular size. These particle classes then replace the NDF in the PBE. As these 

particle classes evolve by the transport equation, the particle classes are obtained for 

various time steps. Usually, the QMOM works with about ten classes of particles (Mazzei, 

2008). Using discretization techniques, Kumar and Ramkrishna (1995) reported a method of 

solving PBEs, called the fixed pivot. In this method, the authors divided the NDF into about 

100 bins. Then, they obtained the zeroth moment of the PBE within each bin, yielding how 

the number concentration of particles within the bin evolves in time, an ODE. This ODE is 

then solved numerically. As the name suggest in the fixed pivot, the sub-region of the 

particle-state space is fixed.  

To make the sub-region dynamic, Wulkow et al. (2001) developed the adaptive Galerkin 

method. The h-p Galerkin method is a finite element scheme that divides the size space into 

a number of nodes h and represents each node with an algebraic equation of order p, hence 

the name h-p. The nodes and the equations, when brought together, yield the particle size 

distribution. The nodes are separated by the size step ∆𝑠. In determining ∆𝑠, the h-p 

Galerkin method adapts to the particle size distribution and refines the number of nodes as 

the simulation progresses. The first node is fixed as the initial minimum size 𝑠𝑚𝑖𝑛 while the 

number of subsequent nodes and their locations are generated by searching the semi-

infinite size space (i.e. from 𝑠𝑚𝑖𝑛 to ∞) for particles. 

The method solves the population balance equation within a time step that guarantees the 

specified accuracy. The accuracy refers to the difference between the solutions (the 

concentrations of the fluid components and PSD) at time 𝑡 and time 𝑡 + ∆𝑡. This time step, 

called the actual time step ∆𝑡𝑎, is obtained using the Rothe method (see Wulkow et al. 

(2001) for details). 
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In this work, to solve the PBE and material balance equations, we used the numerical code 

called Parsival, which is based on the h-p Galerkin method and developed by Wulkow for 

commercial purposes. We test the numerical accuracy of Parsival in Appendix D. We refer 

the reader to this appendix for details. 

2.4 Review of modelling of the synthesis of NPs 
To accurately describe the synthesis of nanoparticles in general and the citrate synthesis 

method in particular, the synthesis model must be derived using the mathematical 

framework discussed previously and must be based on the mechanism of the synthesis. 

Following different (but less fundamental) approaches, however, past authors have 

attempted to model NP synthesis. 

In 1997, Finke and Watzky followed a macroscopic approach for metal nanoparticles 

synthesis and reported a model for calculating the final particle mean diameter. In deriving 

this model, they assumed a two-step mechanism for nanoparticle syntheses. This 

mechanism involves a slow nucleation step, which forms nuclei of a particular size, and an 

autocatalytic growth step, which grows the nuclei to the final diameter. This model requires 

as inputs the initial precursor concentration, rate constants for the nucleation and growth 

steps, and the nucleus size. For most nanoparticles syntheses, Finke and Watzky (1997) 

observed that the time profile of the precursor concentration is sigmoidal, in which the 

concentration remains almost constant at the beginning of the synthesis, then decreases 

rapidly mid-way into the synthesis and finally tails off at the end. Figure 2.4.1 shows the 

typical time profile of the precursor concentration. From the period of constant concentration 

at the beginning, called the induction period, Finke and Watzky obtained the kinetic rate 

constant for the nucleation step while from the mid-way slope of the profile, they obtained 

the kinetic rate constant of the growth step. 
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Figure 2.4.1: A typical time profile of the precursor concentration (𝐶𝐴) in the nanoparticle 

synthesis showing how to determine the induction time (𝑡𝑖𝑛𝑑) and slope. Data from Finke and 

Watzky (1997). 

Schematically, this mechanism is represented as: 

Nucleation:                   𝐴   
𝑘𝑛
→ 𝐵      (2.4.1) 

Growth:    𝐴 + 𝐵
𝑘𝑔
→ 2𝐵      (2.4.2) 

where 𝐴 represents the precursor; 𝐵 represents the particles; 𝑘𝑛 and 𝑘𝑔 are the rate 

constants for the nucleation and growth steps, respectively.  For more information, we refer 

the reader to Finke and Watzky (1997). 

The total material balance at any instant for a well-mixed batch reactor is given as: 

 𝐶𝐴,0 = 𝐶𝐴 + 𝐶𝐵          (2.4.3) 

where per unit volume of the synthesis mixture, 𝐶𝐴,0 is the initial mole of A in the liquid 

phase, 𝐶𝐴 is the mole of A in the liquid phase at any instant, and 𝐶𝐵 is the mole of B in the 

liquid phase at any instant, noting that according to Eq. (2.4.1) one mole of A yields one of B. 

For component A, its time evolution derived from the component material balance equation 

for a well-mixed batch reactor is: 
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−
𝑑𝐶𝐴

𝑑𝑡
= 𝑘𝑛𝐶𝐴 + 𝑘𝑔𝐶𝐴𝐶𝐵           (2.4.4) 

From Figure 2.4.1, 𝑘𝑛 and 𝑘𝑔 can be calculated as (Finke and Watzky, 1997):  

𝑘𝑛 =
1

𝑡𝑖𝑛𝑑
 ; 𝑘𝑔 =

𝑠𝑙𝑜𝑝𝑒

𝐶𝐴,0
2           (2.4.5) 

where 𝑡𝑖𝑛𝑑 is the induction time and  𝐶𝐴,0 is the initial precursor concentration.  

From Eq. (2.4.3), we substitute for 𝐶𝐵 in Eq. (2.2.4) and re-arrange as: 

𝑑𝐶𝐴

𝑘𝑛𝐶𝐴+𝑘𝑔𝐶𝐴(𝐶𝐴,0−𝐶𝐴)
= −𝑑𝑡           (2.4.6) 

The left-hand side of this equation can be resolved as: 

𝑑𝐶𝐴

𝑘𝑛𝐶𝐴+𝑘𝑔𝐶𝐴(𝐶𝐴,0−𝐶𝐴)
= {

1

(𝑘𝑛+𝑘𝑔𝐶𝐴,0)𝐶𝐴
+

𝑘𝑔

(𝑘𝑛+𝑘𝑔𝐶𝐴,0)(𝑘𝑛+𝑘𝑔(𝐶𝐴,0−𝐶𝐴))
} 𝑑𝐶𝐴   (2.4.7) 

Integrating Eq. (2.4.6) and then rearranging, we have: 

ln 𝐶𝐴 (𝑘𝑛 + 𝑘𝑔(𝐶𝐴,0 − 𝐶𝐴))⁄ = (𝑘𝑛 + 𝑘𝑔𝐶𝐴,0)(𝑡 +ℳ)     (2.4.8) 

where ℳ is the constant of integration, calculated from the initial condition, where 𝑡 = 0 and 

𝐶𝐴 = 𝐶𝐴,0 as follows: 

ℳ ≡
ln(𝐶𝐴,0 𝑘𝑛⁄ )

(𝑘𝑛+𝑘𝑔𝐶𝐴,0)
         (2.4.9) 

Substituting for ℳ in Eq. (2.4.8) and then re-arranging, we have: 

𝐶𝐴 =

𝑘𝑛
𝑘𝑔
+𝐶𝐴,0

1+
𝑘𝑛

𝑘𝑔𝐶𝐴,0
exp[−(𝑘𝑛+𝑘𝑔𝐶𝐴,0)𝑡]

        (2.4.10) 

Finke and Watzky (1997) obtained the final mean diameter, 𝑠𝑓 as follows. From Eq. (2.4.10), 

they first obtained the residual concentration of 𝐴 (𝐶𝐴,𝑖𝑛𝑑) at the induction time (𝑡 = 𝑡𝑖𝑛𝑑). 

From this concentration, they reported the equation for the number concentration of nuclei 

as: 

(𝐶𝐴,0−𝐶𝐴,𝑖𝑛𝑑)𝑉

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑛𝑢𝑐𝑙𝑒𝑢𝑠
=

1

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑛𝑢𝑐𝑙𝑒𝑢𝑠

(
𝑘𝑛
𝑘𝑔
+𝐶𝐴,0)𝑉

[1+
𝑘𝑛

𝑘𝑔𝐶𝐴,0
exp[−(𝑘𝑛+𝑘𝑔𝐶𝐴,0)𝑡]]

   (2.4.11) 

where 𝑉 is the volume of the reacting mixture. The mole of A in one nucleus can be 

determined from the number of atoms that form the nucleus 𝑁∗ as: 

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 =
𝑁∗

𝑁𝐴
        (2.4.12) 
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where 𝑁𝐴 is the Avogadro’s number, equal to 6.02 × 1023. 

Then, Finke and Watzky assumed the number concentration of nuclei to be equal to the final 

number concentration of particles. They obtained the latter from the initial precursor 

concentration and final mean diameter as: 

𝐶𝐴,0𝑉

𝑚𝑣𝑠𝑓
3𝜌

           (2.4.13) 

where 𝑚𝑣 is the volume shape factor of the particles and 𝜌 is the molar density of the 

particles. By assuming the shape of the particles to be spherical, Finke and Watzky (1997) 

reported the value of 𝑚𝑣 as 𝜋 6⁄ . 

Finally, they equated Eq. (2.4.11) to Eq. (2.4.13) to obtain the final mean diameter as: 

𝑠𝑓= [
𝑁∗

𝑚𝑣𝜌𝑁𝐴

1

1−
𝑘𝑛+𝑘𝑔𝐶𝐴,0

𝑘𝑔𝐶𝐴,0+𝑘𝑛 exp[−(𝑘𝑛+𝑘𝑔𝐶𝐴,0)𝑡]

]

1
3⁄

      (2.4.14) 

This equation can only yield the final mean diameter; it does not yield information about the 

size distribution of the particles. Also, to predict the final mean diameter, we need the value 

𝑁∗, which was not reported by Finke and Watzky (1997); they did not employ experimental 

data of particle sizes to validate the predictions of their model. Their contribution was only 

reporting the feasibility of transforming this two-step mechanism into a mathematical model. 

Robb and Privmann (2007) also made a similar contribution: the feasibility of modelling the 

LaMer mechanism of burst nucleation and growth for nanoparticle synthesis in solution. This 

model follows the master equation. Like the population balance equation (PBE), the master 

equation is based on the probability density function of particle sizes. However, in the master 

equation, each particle is in a transition state due to the attachment and detachment of 

monomers. The model did not converge and Robb and Privman (2007) did not validate the 

model predictions against experimental data. Instead of employing the master equation, past 

authors have used the PBE equation to describe nanoparticles synthesis. For example, 

Lazarri et al. (2017) used the PBE to describe the synthesis of semiconductor nanoparticles 

(of cadmium and selenium) and then validated their model predictions. Also for other 

nanoparticles, Liu et al. (2014) reported a model for the synthesis of silver nanoparticles 

from silver nitrate. In their model, Liu et al. assumed a two-stage mechanism of nucleation 

and growth and used the PBE to describe the synthesis. All these models are not based on 

first principles and are based on very strong assumptions, which are unlikely to reflect 

reality.  
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For the citrate synthesis method, however, the only predictive model available in the 

literature is that developed by Kumar et al. (2007). The authors used the PBE to describe the 

synthesis based on the Turkevich organizer theory. We review this model in the following 

chapter. 
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Chapter 3 

Mathematical Investigation of the 

Turkevich Organizer Theory 

In this chapter, we investigate and thoroughly test the mathematical model developed by 

Kumar et al. (2007) for the description of the synthesis of gold nanoparticles by the citrate 

method. The model, based on the “Turkevich organizer theory”, is able to predict the 

evolution of the nanoparticle size distribution. In the following introduction, we report the 

motivation and structure of the chapter.  

Parts of this chapter have been published: 

Agunloye, E., Gavriilidis, A., & Mazzei, L., 2017. A mathematical investigation of the 

Turkevich organizer theory in the citrate method for the synthesis of gold nanoparticles. 

Chemical Engineering Science, 173, 275-286. doi:10.1016/j.ces.2017.0 

3.1 Introduction 
In 1951, Turkevich and co-workers pioneered the citrate reduction method, investigating how 

the GNPs evolve during the synthesis using electron microscopy. Their findings made them 

advance the popular “Turkevich organizer theory”. In the synthesis, sodium citrate reduces 

chloroauric acid to aurous ions and concurrently oxidizes to dicarboxy acetone. 

Subsequently, by bringing together (that is, by “organizing”) a sufficient number of aurous 

ions, dicarboxy acetone causes gold nuclei to form. Concurrently, it also decomposes into 

acetone, eventually arresting the nucleation process. Once this has happened, the 

remaining aurous ions make the nuclei grow. This justifies why this theory is also referred to 

as “nucleation-growth” theory. 

Subsequently, Frens (1973) studied this synthesis and demonstrated that different sizes of 

GNPs can be obtained by changing the concentration of sodium citrate while keeping the 

concentration of chloroauric acid at about 0.3 𝑚𝑜𝑙 𝑚3⁄ . This technique was slightly modified 

by Freund and Spiro (1985) to produce GNPs used for testing size-dependent catalytic 

properties of the particles. Abid (2003) used the synthesis to form GNPs of different size 

intended for laser and optical properties. However, unlike Frens (1973), Abid (2003) varied 

the concentration of both chloroauric acid and sodium citrate. Chow and Zukoski (1994) also 

explored the synthesis, this time by varying the concentration of chloroauric acid while 

https://iris.ucl.ac.uk/iris/publication/1413799/1
https://iris.ucl.ac.uk/iris/publication/1413799/1
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keeping that of sodium citrate at 1.6 mol m3⁄ . Unexpectedly, they observed that the particles 

aggregated. In 2007, Kumar and co-workers rationalized these experimental data, 

developing a model for the synthesis based on the mechanism proposed by Turkevich et al. 

(1951). The model predictions fitted reasonably well the data of the latter and of many of the 

other researchers mentioned above [for details, we refer to Kumar et al. (2007)]. 

Recently, nevertheless, with the advent of new techniques such as the small angle X-ray 

scattering and X-ray absorption near edge spectroscopy, many authors have investigated 

the synthesis, stressing the importance of the role played by the pH of the reaction solution. 

Ji et al. (2007), for example, reduced the polydispersity of the particles by increasing the pH 

of the solution. They observed that the nucleation-growth mechanism occurs only when the 

pH is above 6.5. Below, they observed that GNPs evolve by nucleation, aggregation and 

intraparticle ripening. Similarly, when performing the synthesis at 75 0C, for initial pH values 

of the precursor between 3 and 5, Wuithschick et al. (2015) reported that nuclei aggregate 

until forming particles of stable size, which they called seeds. Thereafter, these grow into the 

final GNPs. This description is referred to as “seed-mediated” mechanism. Moreover, in a 

recent publication, Kettemann et al. (2016) discussed the importance of the speciation of the 

precursor and reducing agent at different pH. This aspect of the synthesis is not accounted 

for in the theory of Turkevich et al. (1951) and, consequently, in the model developed by 

Kumar et al. (2007). 

In light of this evidence, in this chapter we intend to test the Turkevich organizer theory by 

investigating the model of Kumar et al. (2007). We first review the model and then we test it 

under new conditions, by comparing its predictions to experimental data available in the 

literature. In testing the model, we consider factors such as the initial concentrations of the 

precursor and reducing agent, the initial and final pH of the reaction solution, and the 

temperature of the latter. 

3.2 Review of the mathematical model 
In this section, we briefly review the mathematical model developed by Kumar et al. (2007) 

for the GNPs synthesis by the citrate method. The model comprises material balance 

equations for the reactants and the products involved in the synthesis and a population 

balance equation (PBE) that describes how the particle size distribution (PSD) of the 

nanoparticles evolves. Before reporting such equations, we first clarify what compounds are 

present and what chemical reactions occur. 
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3.2.1 Chemical reactions 
The components accounted for in the model are auric ions, citrate ions, aurous ions, 

dicarboxy acetone and acetone, represented by T, C, M, S and D, respectively. All the other 

reaction products are lumped in one fictitious component P. Five chemical steps are present: 

Homogeneous reduction: 𝑇 + 𝐶
𝑘𝑐
→𝑀 + 𝑆    (1) 

Nucleation: 3𝑀
𝑘𝑛,𝑆
→  nucleus + 𝑇   (2) 

Heterogeneous disproportionation: 3𝑀
𝑘ℎ,particles
→         𝑇 + particle mass  (3) 

Degradation of dicarboxy acetone: 𝑆
𝑘𝑠
→𝐷     (4) 

Reduction of acetone: 𝐷 + 2.5𝑇
𝑘𝑑
→ 2.5𝑀 + 𝑃   (5) 

Reaction 1 yields the reactants required in the subsequent steps. The reaction rate is 

assumed to be first-order with respect to both reactants (by implication, this step is an 

elementary step). The reaction yields aurous ions and dicarboxy acetone.  

From the Turkevich organizer theory, dicarboxy acetone (S) organizes aurous ions (M) in the 

nucleation step (reaction 2). This step requires two molecules of dicarboxy acetone to 

organize three aurous ions. When a sufficient number of aurous ions are brought together, 

they disproportionate to form a nucleus. The reaction rate is assumed to be third-order and 

second-order with respect to aurous chloride and dicarboxy acetone, respectively. Kumar et 

al. (2007) assumed that the nucleus has a known volume 𝑣0, thus containing 𝜌𝑣0 moles of 

gold, where 𝜌 denotes the molar density of gold. This step stops when either dicarboxy 

acetone or aurous ions are no longer available. 

While step 2 occurs, so does step 3, which leads to particle growth. However, to take place, 

the latter requires the surface of particles. Thus, this step cannot occur before nuclei are 

formed. Steps 2 and 3 compete for aurous ions. For reaction 3, the rate is assumed to be 

first-order with respect to aurous chloride. As we will see in Section 3.4, unless a significant 

particle concentration is present in the system, the consumption rate of aurous ions by step 

3 is negligible compared to that of step 2, the latter step being present until dicarboxy 

acetone (the catalyst for step 2) is fully degraded. This mechanism makes it possible to 

decouple nucleation from particle growth. 
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Reaction 4 represents the degradation of dicarboxy acetone. As mentioned, this step is 

crucial, since it limits nucleation and allows decoupling it from particle growth. The reaction 

rate is assumed to be first-order. 

Reaction 5 occurs when the ratio of citrate to chloroauric acid is below unity. Acetone acts as 

a second reducing agent, converting the precursor into GNPs. The reaction rate is assumed 

to be first-order with respect to both reactants (Kumar et al. (2007) made this assumption for 

this reaction step as it is similar to reaction 1; they are both reducing T to M). In the model of 

Kumar et al. (2007), the stoichiometric coefficient of component T is 4, whereas we have 

used the value 2.5. The reason has been explained in Section 2.1.1. The value 4 reported in 

the original model may be a typo. However, our simulations showed that, for the conditions 

investigated, the change in value of the coefficient does not affect the results significantly (in 

particular, the PSD and the mean size of the particles vary negligibly). As we will see in 

Section 3.4, reactions 2 and 4 determine the mean size. Because reaction 5 is much slower 

than these two reactions, varying the coefficient affects negligibly the mean size. Table 3.2.1 

summarizes the chemical reactions, their corresponding kinetic rate equations and kinetic 

constants (we report in Section 3.4 how the values of these constants were obtained). 

Table 3.2.1. Summary of the chemical reactions, their corresponding kinetic equations and 

rate constants 

Chemical Reactions Kinetic rate equations, 𝑟 Kinetic rate constants, 𝑘 

𝑇 + 𝐶
𝑘𝑐
→𝑀 + 𝑆 𝑟𝑇 = −𝑘𝑐𝐶𝑇𝐶𝐶 𝑘𝑐 = 1.25 𝑚

3 (𝑚𝑜𝑙. 𝑠)⁄  

3𝑀
𝑘𝑛,𝑆
→  nucleus + 𝑇 𝑟𝑀1 = −3𝑘𝑛𝜌𝑣0𝐶𝑀

3𝐶𝑆
2 𝑘𝑛 = 𝑁𝑎𝑣  1.67 × 10

−3 (𝑚3 𝑚𝑜𝑙⁄ )5 1 (𝑚3. 𝑠)⁄  

3𝑀
𝑘ℎ,particles
→         𝑇 + particle mass 𝑟𝑀2 = −3𝑘ℎ𝐶𝑀 ∫ 𝑣

2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0

 𝑘ℎ = 2.5 × 10
−4  𝑚3 (𝑚2. 𝑠)⁄  

𝑆
𝑘𝑠
→𝐷 𝑟𝑆 = −𝑘𝑠𝐶𝑆 𝑘𝑠 = 1𝑠

−1 

𝐷 + 2.5𝑇
𝑘𝑑
→ 2.5𝑀 + 𝑃 𝑟𝐷 = −𝑘𝑑𝐶𝑇𝐶𝐷 𝑘𝑑 = 4 × 10

−1𝑚3 (𝑚𝑜𝑙. 𝑠)⁄  

 

3.2.2 Balance equations 
Assuming that the reaction solution is perfectly mixed (which implies that all intensive 

properties, such as temperature and concentrations, are uniform), we can select as control 

volume the region (of constant volume 𝑉) occupied by the mixture contained in the batch 
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reactor in which the synthesis occurs. The material balance equations of the mixture 

components are then those reported below. 

Auric chloride 

This is reduced by citrate in step 1 and may be reduced by acetone in step 5. On the other 

hand, it is produced when aurous ions disproportionate in the nucleation and in the growth 

steps. The material balance equation is: 

𝑑𝐶𝑇

𝑑𝑡
= −𝑘𝑐𝐶𝑇𝐶𝐶 − 𝑘𝑑𝐶𝑇𝐶𝐷 + 𝑘𝑛𝜌𝑣0𝐶𝑀

3𝐶𝑆
2 + 𝑘ℎ𝐶𝑀 ∫ 𝑣

2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0
 (3.2.1) 

where C denotes the molar concentration of the reactants in 𝑚𝑜𝑙 𝑚3⁄  (the subscript 

indicating which component is being considered), k the reactions rate constants (the 

subscript indicating which reaction is being considered), 𝑣 the nanoparticle volume (notice 

that this is not a constant, but a variable characterizing the internal state of the particles) and 

𝑃(𝑣) the particle size distribution (this, in addition to the independent variable 𝑣 shown 

explicitly, depends on the time as well). (The internal coordinate characterizing particles, as 

used by Kumar et al. (2007), is the particle-volume. In Section 3.3, we revert to the particle-

size and relate terms in this chapter to those in Chapter 2.)  

Citrate 

Citrate appears only in step 1 as a reactant. The material balance equation is: 

𝑑𝐶𝐶

𝑑𝑡
= −𝑘𝑐𝐶𝑇𝐶𝐶 (3.2.2) 

Aurous chloride 

This is produced in steps 1 and 5, when auric chloride is reduced, but is consumed in steps 

2 and 3. Therefore, the material balance equation is: 

𝑑𝐶𝑀

𝑑𝑡
= 𝑘𝑐𝐶𝑇𝐶𝐶 + 𝑘𝑑𝐶𝑇𝐶𝐷 − 3𝑘𝑛𝜌𝑣0𝐶𝑀

3𝐶𝑆
2 − 3𝑘ℎ𝐶𝑀 ∫ 𝑣

2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0
 (3.2.3) 

Dicarboxy acetone 

This is consumed by the reaction in step 4 and generated by the reaction in step 1. Note that 

in the nucleation step dicarboxy acetone acts as a catalyst, and therefore it is not consumed. 

The material balance equation is: 

𝑑𝐶𝑆

𝑑𝑡
= 𝑘𝑐𝐶𝑇𝐶𝐶 − 𝑘𝑠𝐶𝑆 (3.2.4) 

Acetone 

The material balance equation for acetone is obtained similarly and reads: 
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𝑑𝐶𝐷

𝑑𝑡
= 𝑘𝑠𝐶𝑆 −

1

2.5
𝑘𝑑𝐶𝑇𝐶𝐷 (3.2.5) 

Gold nanoparticles 

We describe the particle population using the number density function (NDF) 𝑃(𝑣, 𝑡), which 

is the number of GNPs per unit volume of physical and particle-volume space at time 𝑡. In 

other words, 𝑃(𝑣, 𝑡) is defined so that 𝑃(𝑣, 𝑡) 𝑑𝑣 represents the number of particles per unit 

volume of physical space with volume in the range 𝑑𝑣 around 𝑣 at time 𝑡. The evolution of 

𝑃(𝑣, 𝑡) is governed by the population balance equation and reflects the effects of the 

nucleation, growth and aggregation processes taking place in the mixture. The nucleation 

and growth rates are modelled as follows: 

𝐻𝑁(𝑣) = 2𝑘𝑛𝐶𝑀
3𝐶𝑆

2 𝛿(𝑣 − 𝑣0) (3.2.6) 

𝐺𝑣(𝑣) = 2
𝑘ℎ

𝜌
𝐶𝑀𝑣

2
3⁄  (3.2.7) 

where 𝛿(𝑣 − 𝑣0) is a Dirac delta function centered on the nucleus volume 𝑣0. The factor 2 on 

the right-hand side of the equations above appears because in reactions 2 and 3, for each 

mole of T that forms, two moles of gold atoms generate.  

Although the model is based on a nucleation-growth mechanism, it accounts also for 

aggregation, in light of the experimental results that Chow and Zukoski (1994) found at high 

citrate concentrations. So, the aggregation submodel plays an important role only under 

some process conditions (clarified in Section 3.4), and is given by: 

𝐵(𝑣) − 𝐷(𝑣) =
1

2
∫

𝑞(𝑣 − 𝑣′,𝑣′)

𝑊
𝑃(𝑣 − 𝑣′)

𝑣

𝑣0
𝑃(𝑣′) 𝑑𝑣′ − 𝑃(𝑣) ∫

𝑞(𝑣,𝑣′)

𝑊
𝑃(𝑣′)

∞

𝑣0
𝑑𝑣′ (3.2.8) 

The first and second terms represent particle birth and death caused by aggregation, 

respectively. 𝑞 and 𝑊 are the aggregation kernel and stability factor, respectively. The 

former is given by: 

𝑞(𝑣, 𝑣′) =
2𝐾𝐵𝑇

3𝜇
(
1

𝑣1 3⁄
+

1

𝑣′
1 3⁄ ) (𝑣

1 3⁄ + 𝑣′
1 3⁄
) (3.2.9) 

where 𝐾𝐵, 𝑇 and 𝜇 are the Boltzmann constant, the temperature of the mixture and the 

viscosity of the fluid, respectively. The stability factor is given by the expression reported 

below. We discovered a typo in the equation for 𝑊 reported by Kumar et al. (2007). The 

authors confirmed (via email correspondence) that the correct expression is: 

ln𝑊 =
560

𝜑
log10[(3𝐶𝐶0 + 𝐶𝑇0) × 10] + 27.5 (3.2.10) 
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where 𝐶𝑇0 and 𝐶𝐶0 are the initial molar concentrations of chloroauric acid and sodium citrate, 

respectively, and 𝜑 is the surface charge, given by: 

𝜑 = −90[𝑓𝑎 + 1.5(1 − 𝑓𝑎)]    ;    𝑓𝑎 =
1

1+0.1𝐶𝐶 /(𝐶𝑇+𝐶𝑀)
 (3.2.11) 

Note that 𝑊 depends on 𝐶𝑇0 and 𝐶𝐶0. These are the initial concentrations of T and C, and so 

do not change with time. The only variable in Eq. (3.2.10) is 𝜑, which can assume a 

maximum numerical value of −90 when 𝑓𝑎 = 1 and a minimum numerical value of −135 

when 𝑓𝑎 = 0. Thus, 560 𝜑⁄  varies from −6.22 to −4.15; the order of magnitude does not 

change, and 𝑊 changes little as the synthesis progresses. This is unexpected. Rather, 𝑊 

should increase significantly and tend to infinity with time so as to stabilize the particles and 

prevent them from aggregating indefinitely.  

Furthermore, Kumar et al. (2007) obtained Eq. (3.2.10) based on the expression of Reerink 

and Overbreek (1954), previously reported in Eq. (2.2.147) in Chapter 2. In deriving their 

expression for the aggregation process, Reerink and Overbreek (1954) did not account for 

stabilization by the repulsion energy, prevalent in metal nanoparticles synthesis. Also in this 

expression, they ignored the size dependence, as shown in Eq. (2.2.173). For details of 

these inconsistencies, we refer the reader to Section 2.2.3.3 in Chapter 2. 

Finally, the population balance equation reads: 

𝜕𝑡𝑃(𝑣) = − 𝜕𝑣[𝐺𝑣(𝑣)𝑃(𝑣)] + 𝐻𝑁(𝑣) + 𝐵(𝑣) − 𝐷(𝑣) (3.2.12) 

The first term on the right-hand side of the equation models is, as usual, convection; in this 

case, however, it is convection in particle-volume space (not in real space). The other three 

terms represent generation owing to nucleation and aggregation. For further details about 

the expressions reported above, we refer to Kumar et al. (2007). 

3.3 Model implementation in Parsival 
As shown, the model comprises material balance equations for the reacting species and a 

population balance equation for the GNPs. The former are ordinary differential equations, 

while the latter is an integro-partial-differential equation. Their combination yields a complex 

model that can only be solved numerically. To this end, we employed a commercial code 

called Parsival. This simulation tool is designed for the integration of population balance 

equations in which the number density function representing the particle population, as well 

as any other intensive variable such as concentration, are uniform in space. The form of the 

population balance equation that Parsival solves is shown in Eq. (3.3.1) where it is assumed 

that the system is closed and uniform (that is, perfectly mixed).  
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𝜕𝑡𝑓(𝑠) = −𝜕𝑠[𝐺𝑠(𝑠)𝑓(𝑠)] + 𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 + 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑠𝑖𝑛𝑘 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

           (3.3.1) 

𝑓(𝑠) represents number of particles per unit particle diameter per physical space volume at 

time 𝑡, 𝐺𝑠(𝑠) the corresponding growth rate. 

The equation reveals that in Parsival particle property is described in terms of the diameter 

𝑠; while, in the original model, it is described in terms of the volume 𝑣. We present the 

transformation as follows. We start by writing: 

𝑣 ≡ 𝑚𝑣𝑠
3          (3.3.2) 

where 𝑣 and 𝑠 are the particle volume and diameter, respectively, while 𝑚𝑣 is the volume 

shape factor. Thus, 

𝑑𝑣 = 3𝑚𝑣𝑠
2𝑑𝑠          (3.3.3) 

Next, by definition: 

𝑃(𝑣, 𝑡)𝑑𝑣 ≡ 𝑓(𝑠, 𝑡)𝑑𝑠         (3.3.4) 

where 𝑓(𝑠, 𝑡) is the new NDF (which gives the number of particles per particle length per 

volume of the entire mixture). Substituting for 𝑑𝑣 in eq. (3.3.4), we obtain: 

𝑃(𝑣, 𝑡) = (
1

3𝑚𝑣𝑠
2) 𝑓(𝑠, 𝑡)        (3.3.5) 

Similarly, we can show that: 

𝛿(𝑣 − 𝑣0) = (
1

3𝑚𝑣𝑠
2) 𝛿(𝑠 − 𝑠0)        (3.3.6) 

Next, we substitute in the model expressions in terms of 𝑣 such as:  

∫ 𝑣
2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0
= 𝑚𝑣

2 3⁄ ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
      

 (3.3.7) 

𝛿(𝑣 − 𝑣0)2𝑘𝑛𝐶𝑀
3𝐶𝑆

2 =
𝛿(𝑠−𝑠0)

3𝑚𝑣𝑠
2 2𝑘𝑛𝐶𝑀

3𝐶𝑆
2      (3.3.8) 

2
𝑘ℎ

𝜌
𝐶𝑀

𝜕

𝜕𝑣
. (𝑣2 3⁄ ∗ 𝑃(𝑣, 𝑡)) =

2

9

𝑘ℎ

𝜌
(

1

𝑚𝑣
4 3⁄ )𝐶𝑀

1

𝑠2
𝜕𝑓(𝑠,𝑡)

𝜕𝑠
     (3.3.9) 

𝜕𝑡𝑃(𝑣) = (
1

3𝑚𝑣𝑠
2)𝜕𝑡𝑓(𝑠)        (3.3.10) 

For the aggregation submodel, first we substitute eq. (3.3.2) for 𝑣 in eq. (3.2.9) to finally give:  

𝑞(𝑣, 𝑣′) = 𝜔̃𝐴(𝑠, 𝑠
′) =

2𝑘𝐵𝑇

3𝜇
(
1

𝑠
+
1

𝑠′
) (𝑠 + 𝑠′)      (3.3.11) 
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Similarly for the term 𝑞(𝑣 − 𝑣′, 𝑣′), if we first write: 

 𝑣 − 𝑣′ = 𝑚𝑣℥
3 where         ℥3 ≡ 𝑠3 − 𝑠′

3
      (3.3.12) 

Thus, 

𝜔̃𝐴(℥, 𝑠
′) =

2𝑘𝐵𝑇

3𝜇
(
1

℥
+
1

𝑠′
) (℥ + 𝑠′)       (3.3.13) 

This relation, along with the following ones: 

𝑃(𝑣′) =
𝑓(𝑠′)

3𝑚𝑣𝑠
′2

  ;    𝑃(𝑣 − 𝑣′) =
𝑓(℥)

3𝑚𝑣℥
2   ;    𝑑𝑣

′ = 3𝑚𝑣𝑠
′2𝑑𝑠′    (3.3.14) 

allow us to write:  

1

2
∫

𝑞(𝑣−𝑣′,𝑣′)

𝑊
𝑃(𝑣 − 𝑣′)

𝑣

𝑣0
𝑃(𝑣′) 𝑑𝑣′ =

1

2
∫

𝜔̃𝐴(℥,𝑠
′)

𝑊

𝑓(℥)𝑓(𝑠′)

3𝑚𝑣℥
2

𝑠

𝑠0
𝑑𝑠′    (3.3.15) 

and: 

𝑃(𝑣) ∫
𝑞(𝑣,𝑣′)

𝑊
𝑃(𝑣′)

∞

𝑣0
𝑑𝑣′ =

𝑓(𝑠)

3𝑚𝑣𝑠
2 ∫

𝜔̃𝐴(𝑠,𝑠
′)

𝑊
𝑓(𝑠′)

∞

𝑠0
𝑑𝑠′     (3.3.16) 

By substituting above equations, we obtain the population balance equation implemented in 

Parsival as: 

𝜕𝑓(𝑠,𝑡)

𝜕𝑡
= −

2

3

𝑘ℎ

𝜌
𝐶𝑀 (

1

𝑚𝑣
1 3⁄ )

𝜕𝑓(𝑠,𝑡)

𝜕𝑠
+ 𝛿(𝑠 − 𝑠0)2𝑘𝑛𝐶𝑀

3𝐶𝑆
2 +

1

2
∫

𝜔̃𝐴(℥,𝑠
′)

𝑊

𝑠2

℥2
𝑠

𝑠0
𝑓(℥)𝑓(𝑠′)𝑑𝑠′ −

𝑓(𝑠, 𝑡) ∫
𝜔̃𝐴(𝑠,𝑠

′)

𝑊
𝑓(𝑠′)

∞

𝑠0
𝑑𝑠′        (3.3.17) 

Also, Parsival works on mass basis and expresses the material balances in terms of mass 

per unit time, while the original model is on mole basis and expresses the material balances 

in terms of moles per unit time. These are reported below. In the equations, 𝑌 is the 

molecular weight (the subscript indicating the component being considered). 

 

Auric chloride 

𝑑[𝐶𝑇 𝑌𝑇 𝑉]

𝑑𝑡
= 𝑌𝑇𝑉 [−𝑘𝑐𝐶𝑇𝐶𝐶 − 𝑘𝑑𝐶𝑇𝐶𝐷 + 𝑘𝑛𝜌𝑣0𝐶𝑀

3𝐶𝑆
2 + 𝑘ℎ𝑚𝑣

2 3⁄ 𝐶𝑀 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
] (3.3.18) 

Citrate 

𝑑[𝐶𝐶 𝑌𝐶 𝑉]

𝑑𝑡
= −𝑌𝐶𝑉[𝑘𝑐𝐶𝑇𝐶𝐶] (3.3.19) 
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Aurous chloride 

𝑑[𝐶𝑀 𝑌𝑀 𝑉]

𝑑𝑡
= 𝑌𝑀𝑉 [𝑘𝑐𝐶𝑇𝐶𝐶 + 𝑘𝑑𝐶𝑇𝐶𝐷 − 3𝑘𝑛𝜌𝑣0𝐶𝑀

3𝐶𝑆
2 − 3𝑘ℎ𝑚𝑣

2 3⁄ 𝐶𝑀 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
] (3.3.20) 

Dicarboxy acetone 

𝑑[𝐶𝑆  𝑌𝑆  𝑉]

𝑑𝑡
= 𝑌𝑆𝑉[𝑘𝑐𝐶𝑇𝐶𝐶 − 𝑘𝑠𝐶𝑆] (3.3.21) 

Acetone 

𝑑[𝐶𝐷 𝑌𝐷 𝑉]

𝑑𝑡
= 𝑌𝐷𝑉 [𝑘𝑠𝐶𝑆 −

1

2.5
𝑘𝑑𝐶𝑇𝐶𝐷] (3.3.22) 

All other products 

𝑑[𝐶𝑃 𝑌𝑃 𝑉]

𝑑𝑡
= 𝑌𝑃𝑉 [

1

2.5
𝑘𝑑𝐶𝑇𝐶𝐷] (3.3.23) 

Population balance equation 

𝜕𝑡𝑓(𝑠) = − 𝜕𝑠[𝐺𝑠(𝑠)𝑓(𝑠)] + 𝐻𝑁(𝑠) + 𝐵(𝑠) − 𝐷(𝑠) (3.3.24) 

with: 

𝐻𝑁(𝑠) =  2𝑘𝑛𝐶𝑀
3𝐶𝑆

2𝛿(𝑠 − 𝑠0) (3.3.25) 

𝐺𝑠(𝑠) =
2

3

𝑘ℎ

𝑚𝑣
1 3⁄

𝐶𝑀

𝜌
 (3.3.26) 

𝐵(𝑠) =
1

2
∫

𝜔̃𝐴(℥,𝑠
′)

𝑊

𝑠2

℥2
𝑠

𝑠0
𝑓(𝑠′, 𝑡)𝑓(℥, 𝑡)𝑑𝑠′      with      ℥ ≡ (𝑠3 − 𝑠′3)1/3 (3.3.27) 

𝐷(𝑠) = 𝑓(𝑠, 𝑡) ∫
𝜔̃𝐴(𝑠,𝑠

′)

𝑊
𝑓(𝑠′, 𝑡)

∞

𝑠0
𝑑𝑠′  (3.3.28) 

𝜔̃𝐴(𝑠, 𝑠
′) =

2𝑘𝐵𝑇

3𝜇
(
1

𝑠
+
1

𝑠′
) (𝑠 + 𝑠′) (3.3.29) 

where 𝑚𝑣 is the particle volume shape factor (which we set equal to /6, assuming that the 

particles are spherical). 

Eq. (3.3.24) is a detailed form of Eq. (2.2.49). In association with the other equations written 

above, the closure problem identified for the latter in Chapter 2 has now been resolved. 

Comparing them, 〈𝐺𝑠〉𝑎𝑣 = 𝐺𝑠(𝑠), and 𝐻𝑉 = 𝐻𝑁(𝑠) + 𝐵(𝑠) − 𝐷(𝑠).  

By Eq. (3.3.25), the nucleation model, as it depends on the mechanism of nucleation, 

accounts for the reaction step where 2 molecules of DCA must organize 3 molecules of 
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aurous chloride for nucleation to occur, following the Turkevich organizer theory. See Figure 

2.1.10 for the illustration of the theory. 

By Eq. (3.3.26), the growth model, as it also depends on the mechanism of growth, accounts 

for the heterogeneous disproportionation of auric chloride on the particle surface, as shown 

in reaction 3. The reaction order of this surface reaction is one. 

For the aggregation model, when combined, Eqs. (3.3.27) and (3.3.28) are identical to Eq. 

(2.2.103). Similarly for the aggregation frequency, Eq. (3.3.29) is identical to Eq. (2.2.106). 

The nucleation term in the PBE involves a Dirac delta function. Because of its discontinuity, 

this function cannot be implemented in Parsival; therefore, we resorted to a similar but 

smooth function: a Gaussian distribution with mean equal to 𝑠0 (that is, the size assumed for 

the nuclei) and an extremely small standard deviation. 

In the synthesis no nanoparticles are initially present. We could implement this initial 

condition in Parsival, but an initial NDF that is identically zero may lead to numerical 

convergence problems. So, we initialized the problem employing the same Gaussian 

distribution (a normal) used for modelling nucleation, making sure that the mass (or number) 

of particles initially present was vanishingly small and thus irrelevant. 

We will show that these assumptions (i.e., initial particle mass and initial form of the NDF) do 

not affect the results. 

3.4 Implementation check 
To check that the model had been correctly implemented in Parsival, we reproduced some 

of the results obtained by Kumar et al. (2007). Parsival requires values for the seven 

parameters used in the model, i.e., 𝑘ℎ, 𝑘𝑛, 𝑘𝑠, 𝑘𝑑, 𝑘𝑐, 𝜌 and 𝑣0. Kumar et al. (2007) obtained 

the values for 𝑘ℎ, 𝑘𝑛 and 𝑘𝑠 via best-fit, by requiring that the model results should fit the data 

of Frens (1973). They fixed 𝑘𝑐 to render the synthesis time of the same order of magnitude 

as that experimentally determined at 100 0C. Also, they assumed a value for 𝑘𝑑 smaller than 

𝑘𝑐 to reflect that the time the process takes to complete is larger when a limited amount of 

citrate is present (as opposed to the case in which citrate is in excess). They took the value 

of 𝜌 from the literature and assumed a nucleus size of 2 nm (Turkevich et al. (1951) reported 

this size as the nucleus size based on their experimental investigation). We employed the 

same values in our simulations. These are:  

𝑘𝑐 = 1.25 
𝑚3

𝑚𝑜𝑙. 𝑠
     ;      𝑘𝑛 = 𝑁𝑎𝑣  1.67 × 10

−3  (
𝑚3

𝑚𝑜𝑙
)

5
1

𝑚3. 𝑠
     ;      𝑘𝑠 = 1 

1

𝑠
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𝑘ℎ = 2.5 × 10
−4  

𝑚3

𝑚2. 𝑠
     ;      𝑘𝑑 = 4 × 10

−1
𝑚3

𝑚𝑜𝑙. 𝑠
 

 

𝜌 = 1 × 105  
𝑚𝑜𝑙

𝑚3
     ;      𝑣0 = 4.18 × 10

−27𝑚3    

 

From these values, we can obtain approximate characteristic times for the various reactions 

of the synthesis as follows. 

3.4.1 Reactions characteristic times 
We estimate the characteristic time for each of the five reactions involved in the citrate 

method to determine how the reactions progress relative to each other. The characteristic 

time of a reaction indicates how long the reaction requires to convert a significant amount of 

the limiting reactant. 

Reaction 1 

The synthesis begins with the reduction of chloroauric acid by citrate (reaction 1), which 

produces aurous chloride and dicarboxy acetone. 

Assuming that 𝐶𝑇0 = 𝐶𝐶0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄ , and given the stoichiometry of the reaction, we can 

write (the equality of 𝐶𝑇0 and 𝐶𝐶0, and the stoichiometry of one would help in illustrating this 

concept of characteristic times): 

 
𝑑𝐶𝑇

𝑑𝑡
= − 𝑘𝑐𝐶𝑇𝐶𝐶 = − 𝑘𝑐𝐶𝑇

2        (3.4.1)  

The characteristic time is therefore equal to: 

𝜏𝑐  ~ 
1

𝑘𝑐𝐶𝑇0
=

1

1.25 × 0.3
𝑠 ~ 1 𝑠 

Since this is a second-order reaction, the time that the reaction takes to reduce the 

concentration of component T to 10% of its original value is ca. 10 𝜏𝑐. Over a time 𝜏𝑐 the 

reagent concentration reduces to about 50% of its original value. The characteristic time of 

this reaction is 𝜏𝑐  ~ 10 𝑠.  

Reaction 2 

𝑑𝐶𝑀

𝑑𝑡
= −(3𝑘𝑛𝜌𝑣0𝐶𝑆

2)𝐶𝑀
3        (3.4.2) 
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𝐶𝑀𝑚𝑎𝑥 = 𝐶𝑆𝑚𝑎𝑥 = 0.3 𝑚𝑜𝑙 𝑚
3⁄  are the maximum concentration values for 𝑀 and 𝑆, if we 

assume that reaction 1 is complete. Assuming that 𝑆 does not react (in this reaction it 

behaves as a catalyst, and, for the time being, we do not consider reaction 4, which 

consumes 𝑆), in the equation above the variable 𝐶𝑆 can be replaced with the constant 𝐶𝑆𝑚𝑎𝑥. 

Thus, the reaction is third-order and we can write: 

𝜏𝑛 ~ 
1

(3𝑘𝑛𝜌𝑣0𝐶𝑆𝑚𝑎𝑥
2)𝐶𝑀𝑚𝑎𝑥

2 

𝜏𝑛 =
1

3 × 1.0053 ∙ 1021 × 105 × 4.18 ∙ 10−27 × 0.34
𝑠 = 98.72𝑠 ~ 100 𝑠 

Because this is a third-order reaction, the time that the reaction takes to reduce the 

concentration of component M to 10% of its original value is ca. 50 𝜏𝑛. Over a time 𝜏𝑛 the 

reagent concentration reduces to about 58% of its original value. 

The values reported above hold in the assumption that 𝐶𝑆 is constant. But reaction 4 

depletes component S, reducing its concentration significantly in about one second (see 

below). Accordingly, over this time interval, 𝐶𝑆 decreases, making 𝜏𝑛 increase rapidly. So, 

reaction 2 in the end proceeds for a very short time. 

Reaction 3 

We take the nuclei number density to be equal to 1017  1 𝑚3⁄  (refer to Section 3.4.2). 

Assuming that nucleation and growth are fully decoupled and that, once nucleation is over, 

no aggregation takes place, the particle number density can be taken equal to 1017  1 𝑚3⁄ . 

So, we can estimate the order of magnitude of the particle surface per unit volume of 

physical space as follows: 

  

∫ 𝑣
2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0

~ (4.18 × 10−27)
2
3⁄ × 1017 = 0.26𝑚2 𝑚3⁄  

We can then write: 

𝑑𝐶𝑀

𝑑𝑡
= − (3𝑘ℎ ∫ 𝑣

2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0
)𝐶𝑀       (3.4.3) 

Therefore, the reaction is first-order and the characteristic time is: 

𝜏ℎ1 ~ 
1

3𝑘ℎ ∫ 𝑣
2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0

=
1

3 × 2.50 ∙ 10−4 × 0.26
𝑠 =  5,128 𝑠 
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In the above, we assumed the total surface area as that of the nuclei. However, with time, 

this total surface area increases and would reduce 𝜏ℎ1. If we calculate the time scale based 

on the final size, which is 37.5 nm for 𝐶𝑇0 = 𝐶𝐶0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄ , we have 

∫ 𝑣
2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0
~ (2.76 × 10−23)

2
3⁄ × 1017 = 91.35 𝑚2 𝑚3⁄ , so that 𝜏ℎ2 = 14.6 𝑠. Thus, the 

growth process starts slowly with a time constant of 5128 𝑠 and ends rapidly with a time 

constant of 14.6 𝑠. We thus took the effective growth time constant 𝜏ℎ to be ~102 𝑠, as 

intermediate value closer to that related to the order of magnitude of the final particle surface 

per unit volume of physical space. 

The time scale estimated here gives the order of magnitude of the time required for 99% 

conversion of gold into GNPs when 𝐶𝑇0 = 𝐶𝐶0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄ . 

Reaction 4 

This is a first-order reaction, and so: 

𝜏𝑠 ~ 
1

𝑘𝑠
=

1

1.00
𝑠 ~ 1 𝑠         (3.4.4) 

A significant amount of 𝑆 therefore degrades in about one second, stopping reaction 2 

prematurely. 

In the presence of dicarboxy acetone, aurous chloride converts according to reaction 2, 

whose characteristic time is 𝜏𝑛 ~ 10
4 𝑠. Concurrently, dicarboxy acetone degrades into 

acetone according to reaction 4, whose characteristic time is 𝜏𝑠 ~ 1 𝑠. Once dicarboxy 

acetone is consumed, reaction 2 stops. Therefore, reaction 2 has barely started when it 

stops. However, quite a lot of nuclei are formed (~1017  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ ). According to reaction 3, 

the residual aurous chloride grows the formed nuclei. The characteristic time of this reaction 

is 𝜏ℎ  ~ 10
2 𝑠. The last reaction is the second reduction of auric chloride by acetone, 

occurring only when the ratio of citrate to chloroauric acid is less than unity. The synthesis, 

nevertheless, is usually carried out with citrate in excess, and therefore we did not estimate 

the characteristic time of this final reaction.  

As previously pointed out, the model also accounts for aggregation; nevertheless, particles 

only aggregate significantly under certain conditions. For the condition employed in 

estimating the reactions’ characteristic times above, aggregation is insignificant. We show 

this as follows. 
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3.4.2 Aggregation characteristic time 
NPs are most likely to aggregate when their concentration is the highest. To estimate the 

characteristic time of the aggregation process, we consider the scenario where the 

aggregation rate is at its maximum value. 

According to Marchisio & Fox (2013), the aggregation characteristic time is given by: 

𝜏𝑎  ~ 
𝑊

𝑞(𝑣𝑠,𝑣𝑠)𝑁𝑐
          (3.4.5) 

Here 𝑁𝑐 is the characteristic number concentration of NPs in the system and 𝑣𝑠 is the 

characteristic volume of the NPs. We will consider the minimum value of 𝑊, because this 

favours aggregation. From Eqs. 3.2.10 and 3.2.11, the minimum value is obtained when 

𝑓𝑎 = 1, which gives 𝜑 = − 90 𝑚𝑉. Therefore, it is:   

ln𝑊 = −
560

90
log10[(3𝐶𝐶0 + 𝐶𝑇0) × 10] + 27.5 

= −
560

90
log10[(0.9 + 0.3) × 10] + 27.5;𝑊 = 1.06 × 109 

At the conditions at which the synthesis is conducted, 𝑇 = 373 𝐾, 𝜌 = 105 𝑚𝑜𝑙/𝑚3 and 

𝜇 = 2.74 × 10−4  𝑘𝑔 (𝑚. 𝑠)⁄ . Since 𝐾𝐵 = 1.38 × 10
−23  𝐽 𝐾⁄ , Eq. 3.2.9 gives: 

𝑞(𝑣𝑠, 𝑣𝑠) =
2𝐾𝐵𝑇

3𝜇
(
1

𝑣𝑠
1 3⁄
+

1

𝑣𝑠
1 3⁄
)(𝑣𝑠

1 3⁄ + 𝑣𝑠
1 3⁄ ) =

8𝐾𝐵𝑇

3𝜇
= 5 × 10−17  𝑚3 𝑠⁄  

The number of NPs per unit volume of physical space that would form before aggregation 

starts taking place if reaction 2 went to completion is equal to: 

𝑁𝑐,𝑚𝑎𝑥 =
2

3

𝐶𝑇0
𝜌𝑣0

          (3.4.6) 

As seen above, to complete, reaction 2 requires 50 𝜏𝑛 (i.e. 5,000 𝑠). But reaction 4 will permit 

reaction 2 to proceed only for about one second. Therefore, it is: 

𝑁𝑐 =
2

3 × 5,000

𝐶𝑇0
𝜌𝑣0

= 9.4 × 1016  1 𝑚3⁄  

Thus, replacing these results in Eq. (3.4.5), we obtain: 

𝜏𝑎  ~ 
1.06 × 109

5 × 10−17 × 9.4 × 1016
= 2.26 × 108 𝑠 ~ 108 𝑠 

This is the characteristic time of the aggregation process for the initial conditions used in the 

synthesis. It gives an estimate of the time required by aggregation to take place significantly. 
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However, aggregation does not occur in all synthesis conditions. We will point out the 

conditions that favour aggregation when discussing how the model predicts the data of 

Chow and Zukoski (1994) in Section 3.4.4. Before that, we discuss the results from the 

simulations obtained by using the initial conditions adopted previously by Frens (1973) and 

subsequently by Kumar et al. (2007). The latter, Case 1, will illustrate that in the Turkevich 

organizer theory particles evolve via the nucleation and growth processes; the former, Case 

2, will illustrate the conditions that favour aggregation. 

3.4.3 Case 1 

Kumar et al. (2007) employed the experimental data of Frens (1973), which were obtained 

by keeping 𝐶𝑇0 constant at 0.3 𝑚𝑜𝑙 𝑚3⁄  while changing 𝐶𝐶0 from 0.12  to 0.76 𝑚𝑜𝑙 𝑚3⁄  at 100 

0C. These initial conditions translate into citrate to gold ratios from about 0.4 to 2.5. They 

reported their numerical solutions (the mean diameter of the particles) when 99% of gold had 

converted to GNPs, basing this criterion on the fact that the first and higher-order processes 

included in the model take infinite time to complete (Kumar et al., 2007). In the simulations, 

for the case where 𝐶𝑇0 = 𝐶𝐶0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄ ,  this criterion translated into a synthesis time of 

~102 𝑠. The synthesis times for other cases may be longer or shorter, depending on the 

initial conditions. 

Figure 3.4.1 reports the numerical predictions of the mean particle diameter obtained by us 

in Parsival and by Kumar et al. (2007), along with the experimental findings of Frens (1973). 

Kumar et al. extended the numerical predictions beyond a ratio of 2.5, considering values up 

to 7. Our predictions agree reasonably well with those of Kumar et al., with a maximum 

deviation within 5%. To illustrate how we obtained this agreement, let us analyse the results 

further. For the case in which 𝐶𝑇0 = 𝐶𝐶0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄ , the characteristic time for 

aggregation (~108 𝑠) is much longer than the synthesis time (~102 𝑠). Therefore, 

aggregation is insignificant, and the mean size of the particles is 48 𝑛𝑚, as reported by 

Kumar et al. The particles form at 2 𝑛𝑚 (the nucleus size) and then grow to their final size. 

We can calculate the amount of gold that forms the nuclei as follows: 

 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑔𝑜𝑙𝑑 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑔𝑟𝑜𝑤𝑡ℎ

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑔𝑜𝑙𝑑 𝑓𝑜𝑟 𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦
=
0.3

𝑥
=
483

23
  → 𝑥 = 2.17 × 10−5  𝑚𝑜𝑙 𝑚3⁄   

 (3.4.7) 

Thus, the nuclei concentration that Kumar et al. (2007) obtained is: 
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𝑥

𝜌𝑣0
=

2.17 × 10−5  𝑚𝑜𝑙 𝑚3⁄

1 × 105𝑚𝑜𝑙 𝑚3⁄  × 4.18 × 10−27𝑚3
= 5.19 × 1016  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄  

 

In our simulations, we obtained 5.23 × 1016  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄  (less than 0.8% deviation from the 

value above). Because these values are very close, our predictions closely agree with those 

of Kumar et al. (2007).  

 

Figure 3.4.1. Comparison of the predictions of the model implemented in this work for Case 
1 with those of the model of Kumar et al. (2007) and with the data of Frens (1973). (Like 
Kumar et al. (2007), we have reported the results in terms of the mean particle diameter).  

Citrate reacts with auric ions to produce aurous ions and dicarboxy acetone. The 

stoichiometric ratio of citrate to gold, obtained by combining reactions 1 to 5, is 1.5 (refer to 

Kumar et al., 2007). DCA organizes the aurous ions in the nucleation step (reaction 2), but 

concurrently degrades into acetone (reaction 4). When 𝐶𝐶0 𝐶𝑇0⁄  is less than 1.5, the amount 

of DCA is limited by the concentration of citrate. Thus, as this ratio decreases, the rate of 

nucleation decreases. Because the concentration of the precursor is kept constant, the 

nuclei produced grow to bigger sizes. 

When 𝐶𝐶0 𝐶𝑇0⁄  is higher than 1.5, the amount of DCA is limited by the concentration of 

chloroauric acid, which is kept constant. Hence, as the ratio increases, the rate of nucleation 

remains almost constant, yielding GNPs of almost identical mean size. 

3.4.4 Case 2 
Kumar et al. (2007) used this case to emphasize the role of aggregation, which was 

insignificant for the conditions examined above. The experimental results that they tried to 
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reproduce were those of Chow and Zukoski (1994). The latter varied 𝐶𝑇0 from 0.02 to 

1.26𝑚𝑜𝑙 𝑚3⁄  while keeping 𝐶𝐶0 and the temperature constant at 1.60𝑚𝑜𝑙 𝑚3⁄  and 70 0C, 

respectively, and reported that the nanoparticles aggregated. Although the temperature was 

different from Case 1, Kumar et al. used the same values of the reaction rate constants. In 

our investigation, we did the same, not accounting for the temperature effect, inasmuch as 

our goal in this preliminary part of the work was to reproduce the values reported by Kumar 

et al. and discuss our findings. 

With these conditions citrate is always in excess, so that chloroauric acid determines the 

amount of DCA formed. Using the same criterion of 99% of gold converted to GNPs and 

following the reasoning in Section 3.4.1, the synthesis times for  𝐶𝑇0 = 0.1𝑚𝑜𝑙 𝑚
3⁄  and 

𝐶𝑇0 = 1.26𝑚𝑜𝑙 𝑚
3⁄  are ~103 𝑠 and ~10 𝑠, respectively. Figure 3.4.2 shows the predictions of 

the model that we implemented and those obtained by Kumar et al., compared with the 

experimental data of Chow and Zukoski (1994). The model of Kumar et al. does not match 

the experimental data very well; however, the results seem to yield a correct trend, showing 

that the mean diameter decreases to a minimum value and then increases when the initial 

concentration of tetrachloroauric acid is increased. This, as Kumar et al. reported, shows 

that the aggregation process observed by Chow and Zukoski does occur. The predictions of 

the model which we implemented in Parsival, however, do not show this trend (see Figure 

3.4.2 for the predictions trend at 99% of gold converted to GNPs). 

 

 

Figure 3.4.2. Comparison of the predictions of the model implemented in this work for Case 

2 with those of the model of Kumar et al. (2007) and with the data of Chow and Zukoski 
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(1994). The figure illustrates how aggregation affects the mean particle size at different 

simulation times.  

 

To investigate the reason for this difference,  we estimated the characteristic times of the 

aggregation process for 𝐶𝑇0 = 0.1𝑚𝑜𝑙 𝑚
3⁄  and 𝐶𝑇0 = 1.26𝑚𝑜𝑙 𝑚

3⁄ . The times we obtained 

are 𝜏𝑎~10
9 𝑠 and 𝜏𝑎~10

3 𝑠, respectively (refer to Section 3.4.2 for details). At these lowest 

and highest initial concentrations of tetrachloroauric acid, the characteristic times of 

aggregation (109 and 103 𝑠) are much longer than the corresponding synthesis times 

(103 and 10 𝑠, respectively). We therefore concluded that the results reported by Kumar et 

al. in this case could not be obtained using the 99% conversion criterion previously 

described.  

When 𝐶𝑇0 = 0.1𝑚𝑜𝑙 𝑚
3⁄  (the lowest initial concentration of tetrachloroauric acid), the citrate 

to gold ratio is 16. In these conditions, about 4 × 1014  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄  form, hence consuming 

1.7 × 10−7𝑚𝑜𝑙 𝑚3⁄  of auric ions (see Sections 3.4.1 and 3.4.2 for details). These nuclei grow 

to an estimated mean particle diameter of 168 𝑛𝑚 (this value is not shown in Figure 3.4.2). 

For the highest initial concentration of tetrachloroauric acid, however, 𝐶𝑇0 = 1.26𝑚𝑜𝑙 𝑚
3⁄ , 

about 1.3 × 1020  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄  form, thus consuming 5.34 × 10−2𝑚𝑜𝑙 𝑚3⁄  of auric ions. These 

nuclei grow to an estimated mean particle diameter of 5.65 𝑛𝑚. Hence, within the synthesis 

time, the particle diameter decreases when the initial concentrations of tetrachloroauric acid 

increase. This agrees with our numerical results. 

To obtain the trend reported by Kumar et al., we ran the simulation for much longer times 

than the synthesis times to allow particles to aggregate. The model predictions at different 

simulation times (106, 107 and 5 × 107 𝑠) are also shown in Figure 3.4.2. Since the 

characteristic time for aggregation at 𝐶𝑇0 = 1.26𝑚𝑜𝑙 𝑚
3⁄  is 103 𝑠, by 106 𝑠 the NPs have 

started to aggregate, increasing the mean particle diameter from 4.96 𝑛𝑚 to 10.3 𝑛𝑚. As 𝐶𝑇0 

decreases, the particle concentration decreases while 𝜏𝑎 increases, the particles requiring 

longer times to aggregate significantly. By 106 𝑠, the mean size for 𝐶𝑇0 = 1.26𝑚𝑜𝑙 𝑚
3⁄  has 

increased to more than twice the value obtained at 99% gold converted to particles; 

conversely, for 𝐶𝑇0 = 0.42𝑚𝑜𝑙 𝑚
3⁄ , for instance, the mean size has only increased from 

12.5 𝑛𝑚 to 13.2 𝑛𝑚. 

We should note that in the model of Kumar et al. particles aggregate indefinitely; this is 

because the stability factor 𝑊, which should increase with time, remains constant. As shown 

in Section 3.2, 𝑊 depends on the initial concentrations 𝐶𝑇0 and 𝐶𝐶0, not on the current 

concentrations 𝐶𝑇 and 𝐶𝐶. Figure 3.4.2 reveals this indefinite aggregation: the longer the 
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simulation time, the larger the mean particle diameter. We can infer that, as the simulation 

time tends to infinity, the particles would coalesce into one aggregate. This is clearly at 

variance with the experimental evidence. 

To make the model correctly reflect the experimental evidence, which indicates that 

aggregation must eventually stop, in the equation for the stability factor, Eq. (3.2.10), we 

replaced the initial concentrations, 𝐶𝑇0 and 𝐶𝐶0, with the current ones, 𝐶𝑇 and 𝐶𝐶. The model, 

however, did not improve. As 𝐶𝑇 and 𝐶𝐶 decrease due to the reactions, 𝑊, and in turn the 

aggregation time, increase. Because 𝐶𝑇 and 𝐶𝐶  eventually reach constant values (but do not 

both vanish), 𝑊 and the aggregation time also reach constant values. Accordingly, the 

aggregation time never diverges and the particles aggregate indefinitely at constant rate. 

However, several authors, such as Chow and Zukoski (1994) and Ji et al. (2007), reported 

that the aggregation process becomes less significant as particle size increases. Therefore, 

the expression for 𝑊 must be a function of, and should increase with, particle size. 

Because particles aggregate indefinitely in the model, we retain the criterion of 99% of gold 

converted to GNPs to obtain the simulation time and use the corresponding mean size in 

testing the model in Section 3.5. 

3.4.5 Effects of our assumptions in the model implementation 
We ran four simulations to check the effect of the reactor volume and of the initial particle 

size distribution on the results of the model. In the model of Kumar et al. (2007), it was 

assumed that the system was perfectly mixed. This implies that the properties of the system 

are uniform in physical space and therefore do not depend on the location in physical space. 

It also implies that the reactor volume should not affect the results of the model. To check 

this, we varied the reactor volume, keeping the initial concentration of the reactants constant. 

We used two reactor volumes of 2 and 10 𝑚3, respectively. To check the effect of the initial 

particle size distribution, we used two distributions of different shapes (see Figure 3.4.3), 

denoted as D1 and D2. In all cases, the initial particle mass was set to 1e-20 kg; this is a 

negligible amount, which reflects the fact that initially no particles are really present in the 

system (note that, as already mentioned, using an initial distribution that vanishes identically 

over the entire size space is not recommended). In all cases, the final mean size of the 

particle was the same, equal to 46.5 nm. So, as expected, neither the volume nor the shape 

of the initial distribution affects the numerical results.  
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Figure 3.4.3. Particle size distributions used to initialize the simulations and for describe the 

nucleation process in Parsival. Distribution D1 is on the left, while distribution D2 is on the 

right. 

Furthermore, to test the numerical accuracy in Parsival, in Appendix D, we present another 

experimental problem involving a crystallization process and solve it using the numerical 

code. We refer the reader to this appendix for more information.  

3.5 Testing of the model 
In the previous sections, we reported and solved the model developed by Kumar et al. 

(2007); also, we compared our results to those of Kumar et al. (2007). In this section, we test 

the model using experimental data available in the literature to assess whether the Turkevich 

organizer theory, on which the model is based, rightly describes the synthesis. Kumar et al. 

used the discussions in Case 1 (Section 3.4) to illustrate that the organizer theory is 

generally valid for the citrate reduction method. After employing the work of Frens (1973) to 

estimate the parameters used in the model and predicting his experimental data with 

excellent agreement, Kumar et al. reported that the same model parameters gave good 

predictions for the work of Turkevich et al. (1951), Freund and Spiro (1985), and Abid 

(2003). We believe the model well reproduced these data because these researchers used 

initial conditions similar to those of Frens, whose work Kumar et al. fitted to make the 

predictions from the nucleation-growth model accurate. In Case 2 we showed how the model 

failed to predict the data of Chow and Zukoski (1994) and the inconsistencies in temperature 

and simulation times. In this section, we employ new data to test the model. 

Many other researchers have investigated the synthesis experimentally and in recent times 

have emphasized the significant role of pH in the synthesis (both the initial and final pH), 

which determines how particles evolve in the synthesis. For example, Ji et al. (2007) 

observed that NPs evolve by nucleation, aggregation and growth when the final pH of the 

mixture is below 6.5, while they evolve by nucleation and growth when the final pH of the 
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mixture is above 6.5. In the same way, Wuithschick et al. (2015) stated that the synthesis 

follows the seed-mediated mechanism (which is consistent with the nucleation-aggregation-

growth description of the synthesis) when the initial pH is equal to 3.5. This mechanism of 

the synthesis can be explained on the basis of the chemical properties of the precursor and 

reducing agent, which are a strong acid and a weak base, respectively. 

The precursor, tetrachloroauric acid, completely ionizes in an aqueous solution to release 

hydrogen ions and tetrachloroauric ions. In the presence of a base, hydroxyl ions replace 

chloride species in tetracloroauric ions to yield from monohydroxylated to tetrahydroxylated 

species. The speciation of the latter depends on the pH. The more hydroxylated the species 

is, the less reactive it is [whilst monohydroxylated trichloroauric ions can be reduced, species 

from dihydroxylated dichloroauric ions do not react, unless the pH is lowered (Ji et al., 

2007)]. The model developed by Kumar et al. (2007) does not account for these pH effects, 

solely accounting for how the tetrachloroauric acid reduces in the synthesis. 

The reducing agent, on the other hand, performs three important roles: reduces the 

precursor, supplies the hydroxyl ions and stabilizes the NPs, preventing aggregation. These 

additional reactions and processes render the synthesis complex to describe. Wuithschick et 

al. (2015) identified the factors affecting the final size as temperature, the initial 

concentrations of the precursor and reducing agent, and the initial and final pH. Thus, we 

used these factors to test the model. First, we tested the model against the work of 

Wuithschick et al. (2015) and Turkevich et al. (1951) for the effect of temperature. Second, 

we tested it against the work by Takiyama (1958), carried out at 80 0C. Third, we employed 

the works of Zabetakis et al. (2012) and Li et al. (2011) to test the model for the effect of the 

initial pH of the precursor. Lastly, we used the data of Ji et al. (2007) to test the role of the 

final pH of the mixture. For these experimental data, no error bars are reported because they 

are not available in the literature. 

3.5.1 Effect of temperature 
In their publication, Kumar et al. (2007) only tested the model for the Turkevich organizer 

theory at the usual synthesis temperature of 100 0C. In the literature, however, authors such 

as Turkevich et al. (1951) and Wuithschick et al. (2015) have investigated the effect of 

temperature on the final particle diameter. The former reported the mean sizes at 70, 80 and 

100 0C for initial concentrations of 𝐶𝑇0 = 0.26 𝑚𝑜𝑙 𝑚
3⁄  and 𝐶𝐶0 = 1.9 𝑚𝑜𝑙 𝑚

3⁄ , while the 

latter reported the mean sizes as the temperature changed from 23 to 100 0C for initial 

concentrations of 𝐶𝑇0 = 0.25 𝑚𝑜𝑙 𝑚
3⁄  and 𝐶𝐶0 = 2.5 𝑚𝑜𝑙 𝑚

3⁄ . In both cases, citrate was in 

excess. To test the model at temperatures different from 100 0C, we require the activation 
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energies for the reactions involved in the synthesis so as to obtain their corresponding 

reaction rate constants. Out of five reactions, only four have their activation energies 

reported in the literature. Turkevich et al. (1951) reported the activation energies for the 

nucleation step (reaction 2) and growth step (reaction 3) as 10 and 9.1 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

respectively; Wiig (1928) reported an activation energy for the reaction of dicarboxy acetone 

decomposition (reaction 4) of 23.1 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. Using molecular modelling, Ojea-Jiménez and 

Campanera (2012) obtained the activation energy of the reduction step by citrate (reaction 1) 

as 34 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. The last reaction (reaction 5), as we discussed, occurs only when the ratio 

of the initial concentrations of sodium citrate to tetrachloroauric acid is below unity. 

Therefore, in these investigations, reaction 5 was insignificant. 

Figure 3.5.1A shows how the mean particle diameter changes with temperature for the data 

of Wuithschick et al. (2015). The model poorly predicts the experimental data. Starting from 

23 0C, the mean size from experiment decreases with temperature and reaches a minimum 

value at around 60 0C before increasing. In contrast, the model predicts that the size 

decreases from 23 0C, where the mean diameter is 24.5 nm, to  40 0C, where the mean 

diameter is 21.5 nm, remaining constant thereafter. In this range of temperatures, the 

characteristic time of aggregation remains essentially constant at 107 𝑠 (see Section 3.4.2 for 

details). However, the synthesis time decreases with increasing temperature. At 23 0C, the 

synthesis time is 109 𝑠, a value obtained following the reasoning in Section 3.4.1, where the 

reaction rate constants at this temperature are used. As the synthesis time is longer than the 

time constant for aggregation, the particles aggregate, attaining a final mean size of 24.5 

nm. At higher temperature, the effect of aggregation decreases as the synthesis time 

decreases. Therefore, the mean size decreases. By 50 0C, aggregation has stopped 

affecting the mean size, because the synthesis time is now much shorter than the 

characteristic time of aggregation. When the effect of aggregation is negligible, as 

highlighted in Section 3.4, the balance between the nucleation step (reaction 2) and the 

decomposition of dicarboxy acetone (reaction 4) determines the final mean size, which 

remains constant at 21.3 nm with increasing temperature. To explain this profile, in Table 

3.5.1, we report the values of the rate constants of reactions 2 and 4, and their ratio at 

different temperatures. The ratio (kn/ks) remains constant, and this explains why the final 

mean size is constant as well. However, the experimental data do not remain constant with 

temperature; so, the balance between reactions 2 and 4 does not describe the synthesis. 

This aspect, consequently, is not properly captured by the model of Kumar et al.  
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Figure 3.5.1. Comparison of the model predictions at different temperatures with the data of 

(A) Wuithschick et al. (2015) and (B) Turkevich et al. (1951). 

 

Table 3.5.1. Values of the rate constants of reactions 2 and 4 with temperature. 

Temperature (0C)  kn ks kn/ks 

23 6.61E+15 6.57E-06 1.01E+21 

30 2.51E+16 2.50E-05 1.01E+21 

40 1.53E+17 1.52E-04 1.01E+21 

50 8.29E+17 8.25E-04 1.01E+21 

60 4.07E+18 4.05E-03 1.01E+21 

70 1.82E+19 1.81E-02 1.01E+21 

80 7.48E+19 7.44E-02 1.01E+21 

90 2.84E+20 2.83E-01 1.01E+21 

100 1.01E+21 1.00E+00 1.01E+21 

 

The seed-mediated mechanism proposed by Wuithschick et al. (2015) describes the 

synthesis and explains the profile of the final mean size with temperature shown in Figure 

3.5.1A. According to this mechanism, nuclei generate after citrate reduces tetrachloroauric 

acid. These nuclei aggregate to form bigger particles. Similarly, particles containing two or 

more nuclei can also aggregate. Nevertheless, particle aggregation stops for particles with 

sizes equal to the seed size [see Wuithschick et al. (2015) for more information]. The seeds 



 

102 
 

subsequently grow to the final particle size. Thus, the seed-mediated mechanism occurs 

according to the order: nucleation, aggregation and growth. Among these processes, 

aggregation is the most sensitive to temperature. Temperature affects both the aggregation 

kernel 𝑞 and the stability factor 𝑊, both of which determine the aggregation rate (Marchisio 

and Fox, 2013). For an aqueous system, Wang et al. (2010) reported that aggregation is 

insignificant below 60 0C for the reaction conditions which Wuithschick et al. (2015) 

investigated. Temperature also affects the rates of the nucleation and growth processes, as 

the Arrhenius equation illustrates. At low temperatures, both rates decrease so that only few 

nuclei form, and these grow slowly. Since the reaction mixture is left until all the precursor is 

converted, the few nuclei formed at 23 0C reach a large final size. As the temperature 

increases from 23 to 60 0C, the nucleation rate increases, forming more nuclei and leaving 

behind a smaller amount of precursor. The latter grows the many nuclei to smaller final 

sizes. For these initial conditions, as observed in Figure 3.5.1A, aggregation becomes 

significant above 60 0C. As the temperature rises from 60 0C, particle aggregation increases 

the final particle size. 

3.5.2 Effect of initial HAuCl4 concentration 
Another investigation of the Turkevich synthesis that did not follow the usual method of 

changing citrate concentration at a fixed concentration of tetrachloroauric acid was that by 

Takiyama (1958). This investigation predated the work of Frens and provides additional data 

with which to test the model. Takiyama studied the synthesis at 80 0C and 𝐶𝐶0 =

3.88 𝑚𝑜𝑙 𝑚3⁄  while changing 𝐶𝑇0 from 0.05 to 1.28 𝑚𝑜𝑙/𝑚3; so, citrate is in excess. In solving 

the model for these initial conditions, we used the values of the reaction rate constants and 

other parameters at the operating temperature. Figure 3.5.2 shows the model predictions 

along with the corresponding experimental data. For the model predictions, which do not 

agree with the data, the profile of the mean particle diameter with the initial concentration of 

gold resembles that of Figure 3.4.2 (this was expected, because the operating conditions in 

this study resemble those of Case 2, discussed in Section 3.4.4). As the synthesis is at 80 

0C, the synthesis time is far shorter than the aggregation characteristic time, so that the role 

of aggregation is negligible and only nucleation and growth affect the particle size 

distribution. If we  assume that the two latter processes are fully decoupled (as shown in 

Section 3.4), the concentration of nuclei formed equals the concentration of particles in the 

final reaction mixture. As revealed in Section 3.4.2, to determine the concentration of nuclei 

𝑁𝑐, we need to know the maximum concentration of nuclei 𝑁𝑐,𝑚𝑎𝑥, the characteristic time for 

nucleation 𝜏𝑛 and the characteristic time for the decomposition of dicarboxy acetone 𝜏𝑠. The 

expression 𝑁𝑐 = (𝜏𝑠 𝜏𝑛⁄ )𝑁𝑐,𝑚𝑎𝑥 is found. If we consider the lowest concentration of precursor 
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considered, 𝐶𝑇0 = 0.05 𝑚𝑜𝑙/𝑚
3, following the reasoning presented in Section 3.4.1, we 

obtain 𝜏𝑠 = 10 𝑠, 𝜏𝑛 = 10
6 𝑠 and 𝑁𝑐,𝑚𝑎𝑥 = 7.97 × 10

19  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ , which results into 𝑁𝑐 =

4.26 × 1014  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ . This estimate is of the same order of magnitude as the value 

obtained from the model numerical solution (2.13 × 1014  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ ). In forming these nuclei, 

𝜌𝑣0𝑁𝑐 = 1.78 × 10
−7  𝑚𝑜𝑙 𝑚3⁄  of the precursor converts. The concentration of the precursor 

that is left is ~0.05 𝑚𝑜𝑙 𝑚3⁄ . Using Eq. (3.4.7), the remaining amount grows the nuclei to: 

√(
0.05

8.9 × 10−8
× 23)

3

= 165 𝑛𝑚 

For the highest precursor concentration, 𝐶𝑇0 = 1.28 𝑚𝑜𝑙/𝑚
3, on the other hand, the model 

numerical solution yields a nuclei concentration of 3.32 × 1020  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ , which is ~106 

times the concentration of nuclei obtained for 𝐶𝑇0 = 0.05 𝑚𝑜𝑙/𝑚
3. These more concentrated 

nuclei grow to a mean size of 3.4 𝑛𝑚. Thus, as we move from 𝐶𝑇0 = 0.05 𝑚𝑜𝑙/𝑚
3 to 

1.28 𝑚𝑜𝑙/𝑚3, the mean particle diameter decreases from 165 𝑛𝑚 to 3.4 𝑛𝑚. 

 

Figure 3.5.2. Comparison of the model predictions at different gold concentrations with the 

data of Takiyama (1958). 

 

The seed mediated mechanism, on the other hand, explains the experimental profile in 

Figure 3.5.2. The final mean size increases slightly from 15 𝑛𝑚 at 𝐶𝑇0 = 0.05 𝑚𝑜𝑙/𝑚
3 to 

19 𝑛𝑚 at 𝐶𝑇0 = 0.10 𝑚𝑜𝑙/𝑚
3 and then remains almost constant afterwards. Because the 

sodium citrate solution can supply 𝑂𝐻−, the precursor can undergo two reactions: reduction 
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to form the nuclei and passivation by 𝑂𝐻−. The passivation can produce monohydroxylated 

species of the precursor; even in the presence of much 𝑂𝐻−, it can produce higher 

hydroxylated species of the precursor. The monohydroxylated species reduces to gold and 

grows the particles while the higher hydroxylated species cannot reduce to gold, leaving 

behind unconsumed gold in the solution. At 𝐶𝑇0 = 0.05 𝑚𝑜𝑙/𝑚
3, the ratio of citrate to gold is 

80, producing much 𝑂𝐻− that can form higher hydroxylated species. The mean size is small 

as some of the precursor is lost to the formation of higher hydroxylated species. As 𝐶𝑇0 

increases, the ratio of citrate to gold decreases, producing a smaller amount of 𝑂𝐻−. 

Therefore, more precursor converts to gold nanoparticles, increasing the mean size. As 𝐶𝑇0 

increases further, more precursor goes through the reduction step and produces many 

nuclei and seeds. Although more precursor also forms the monohydroxylated species that 

can grow the seeds, the balance between the number of seeds and the amount of gold 

available to grow them keeps the final mean size almost constant. 

3.5.3 Effect of initial pH of HAuCl4 (aq) 
To test the effect of the initial pH of the precursor, we employed the initial conditions of the 

work by Zabetakis et al. (2012). They synthetized the NPs at different initial concentrations 

(0.3 –  2.0 𝑚𝑜𝑙 𝑚3⁄ ) of the precursor at a temperature of 100 0C, keeping the citrate to gold 

ratio (denoted as 𝑅) constant. They considered 𝑅 values of 2, 3, 4 and 5. We obtained the 

initial pH values from the initial concentrations of tetrachloroauric acid, which is a strong 

acid. Figure 3.5.3 shows the model predictions against the experimental data for the effect of 

the initial pH of tetrachloroauric acid for all the values of 𝑅 investigated. The model 

predictions are unsatisfactory. They generally increase as the initial pH rises, unlike the 

experimental data that decrease and then increase, hence presenting a minimum. Low initial 

pH translates into high concentration of tetrachloroauric acid. For instance, for 𝑅 = 2 (i.e., 

the lowest pH considered, equal to 2.93), 𝐶𝑇0 = 1.2 𝑚𝑜𝑙/𝑚
3. From the simulation, this 

concentration yields ~1020  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ , consuming 4.18 × 10−2𝑚𝑜𝑙 𝑚3⁄  of 𝑇. Since 

aggregation is insignificant, these nuclei can only grow to a mean size of 3.9 𝑛𝑚, consuming 

the remaining quantity of 𝑇. The highest pH of 3.53, on the other hand, corresponds to 

𝐶𝑇0 = 0.3 𝑚𝑜𝑙/𝑚
3, and generates ~1018  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ . To form, these nuclei consume 4.18 ×

10−4𝑚𝑜𝑙 𝑚3⁄  of 𝑇 and grow to a bigger mean diameter. So, in the numerical simulations, as 

the initial pH increases, the mean diameter increases. 

The seed-mediated mechanism describes the behaviour observed experimentally. Low initial 

pH translates into a small amount of 𝑂𝐻−, which can only passivate a small portion of the 

precursor. Most of the precursor converts into gold and produces several nuclei. These 
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nuclei aggregate to form the seeds. On how the reaction condition favours aggregation, 

Wuithschick et al. observed vigorous aggregation at low pH that becomes less significant as 

the initial pH increases. Thus, at low pH, because of the effect of aggregation, the several 

nuclei aggregate to form larger seeds, producing larger final particles. As the initial pH 

increases, the amount of 𝑂𝐻−, which passivates the precursor, increases. The amount of the 

precursor that converts into gold decreases, yielding fewer nuclei. Because aggregation 

becomes less significant, these fewer nuclei aggregate less into smaller seeds, producing 

final smaller particles. As the initial pH increases further, even more precursor becomes 

passive. A small portion of the precursor reduces to even fewer nuclei. However, according 

to Wuithschick et al., increasing the initial pH at this stage does not significantly reduce the 

seed size. Thus, the fewer nuclei yield fewer seeds. Then, the passive form of the precursor, 

which increases with the initial pH, grows the fewer seeds to larger particles. 

Li et al. (2012) published a work similar to that of Zabetakis et al. (2012). They used different 

initial concentrations of tetrachloroauric acid at a constant citrate-to-gold ratio of 4. Figure 

3.5.4 shows their data with the corresponding model predictions; the trends are similar to 

those reported by Zabetakis et al., and similar considerations to those already discussed 

hold. 
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Figure 3.5.3. Comparison of the model predictions at different initial pH with the data of 

Zabetakis et al. (2012). R represents the ratio of citrate to gold. 

 

Figure 3.5.4. Comparison of the model predictions at different initial pH with the data of Li et 

al. (2012). 
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3.5.4 Effect of final pH of the mixture 
As previously mentioned, Ji et al. (2007) have reported that the mechanism of the synthesis 

depends on the final pH of the reaction mixture: at low pH the mechanism involves 

nucleation, aggregation and then growth, while at high pH it involves only nucleation and 

then growth. Calculating the final pH of the reacting mixture requires detailed knowledge of 

the thermodynamics of the synthesis, which is currently not available in the literature. The 

dissociation of sodium citrate depends on the pH, which in turn depends on the sodium 

citrate concentration. Along with reporting the values of the citrate to gold ratios considered, 

Ji et al. (2007) measured the corresponding final pH of the synthesis. They varied 𝐶𝐶0 from 

0.23 𝑚𝑜𝑙/𝑚3 to 6.92 𝑚𝑜𝑙/𝑚3 while keeping both 𝐶𝑇0 and the temperature constant at 

0.25 𝑚𝑜𝑙/𝑚3 and 100 0C, respectively. Figure 3.5.5 shows their data along with the model 

predictions at 99% of gold converted to GNPs. With this criterion, aggregation is insignificant 

in the simulation. For the model predictions, as the final pH increases, the mean particle 

diameter decreases. While, for the experimental data, the mean particle diameter decreases 

until the final pH reaches 6.5  and then increases. The lowest final pH of 4.15 corresponds to 

𝐶𝐶0 = 0.23 𝑚𝑜𝑙/𝑚
3 and a citrate to gold ratio 𝑅 = 0.9. For this ratio, in the model, citrate is 

the limiting reactant and determines the amount of DCA that forms the nuclei. The 

concentration of the latter is ~1017  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ . These nuclei then grow to a mean size of 

71.6 𝑛𝑚. Increasing the final pH corresponds to increasing 𝐶𝐶0 so that citrate becomes in 

excess and 𝐶𝑇0 starts determining the amount of DCA that forms the nuclei. The highest final 

pH of 6.92 corresponds to 𝐶𝐶0 = 6.92 𝑚𝑜𝑙/𝑚
3. At this pH, 𝐶𝑇0 = 0.25 𝑚𝑜𝑙/𝑚

3 and the 

concentration of nuclei results to be ~1019  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄ , ~102 times larger than that of the 

lowest pH. The nuclei concentration therefore varies from 1017  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄  at the minimum 

final pH to 1019  𝑛𝑢𝑐𝑙𝑒𝑖 𝑚3⁄  at the maximum final pH. As 𝐶𝑇0 is constant at 0.25 𝑚𝑜𝑙/𝑚3, the 

final mean size decreases with increasing pH.  

It is still the seed-mediated mechanism by Wuithschick et al. (2015) that explains the 

experimental data, just as Ji et al. (2007) also explained the synthesis in their report using 

two mechanisms: nucleation-aggregation-growth when the pH is below 6.5 and nucleation-

growth when the pH is above 6.5. Both explanations, by Ji et al. (2007) and Wuithschick et 

al. (2015), stem from the acid-base properties of the precursor and reducing agent. From 

thermodynamics, tetrachloroauric ion converts reversibly to the monohydroxylated form, both 

ions being present in equal amounts at the pH of 6.5. pH below 6.5 shifts the equilibrium to 

tetrachloroauric ion while pH above 6.5 shifts it to the monohydroxylated form. At the lowest 

final pH of 4.15, almost all the precursor forms nuclei; only a small portion (or even none) of 

it becomes hydroxylated. This produces several nuclei that then aggregate to form large 
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particles. As the final pH increases, aggregation starts playing a less significant role, and 

therefore the particle diameter decreases until the final pH is 6.5. Above 6.5, less of the 

precursor forms nuclei while more becomes hydroxylated, so that less particles form, which 

later grow when the hydroxylated precursor reacts on the particle surface. Thus, the 

increase in size after the pH of 6.5 is due to fewer particles growing bigger, whereas the 

increase in size below the pH of 6.5 is due to several particles aggregating into bigger sizes. 

 

 

Figure 3.5.5. Comparison of the model predictions at different final pH with the data of Ji et 

al. (2007). 

3.6 Concluding remarks 

This work investigated the mathematical model developed by Kumar et al. (2007) for the 

synthesis of gold nanoparticles by means of the citrate method. This is the only model, 

based on the Turkevich organizer theory, available in the literature. The model accounts for 

five reaction steps, one of which produces dicarboxy acetone, which organizes gold in the 

nucleation step. While DCA decomposes, the particles grow by the deposition of the residual 

precursor on their surfaces. GNPs evolve by the nucleation-growth mechanism, as proposed 
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by Turkevich et al. (1951). Although Kumar et al. (2007) included a submodel for 

aggregation, this submodel does not play a significant role over the synthesis time.  

Further, we tested the model for different conditions of temperature, concentrations and pH 

using various experimental data from the literature. The model performed poorly in 

describing the synthesis. We believe that this is because the five chemical steps over which 

the model of Kumar et al. is built do not reflect the chemistry of the synthesis accurately. 

Because the precursor and reducing agent are a strong acid and a weak base, respectively, 

their acid-base properties cover an important role in the synthesis. As a weak base, the 

reducing agent releases 𝑂𝐻− in water. The precursor, on the other hand, can be reduced 

and/or hydroxylated. Kumar et al. only modelled the reduction step that produces the nuclei 

but did not consider the hydroxylation step. Subsequently, these nuclei aggregate into 

seeds, which then grow by reacting with the hydroxylated precursor. Using the seed-

mediated mechanism proposed by Wuithschick et al. (2015), we were able to qualitatively 

explain the experimental data reported by the researchers. 

In the light of this work, it is necessary that a new model be derived for the citrate method. 

Since the seed-mediated mechanism of Wuithschick et al. (2015) seems to be able to 

convincingly describe the trends observed experimentally, this model should be based on 

this mechanistic theory along with all the chemical steps that reflect the acid-base properties 

of the precursor and reducing agent. These steps include reducing and hydroxylating the 

precursor to gold atoms and the passive form of the precursor, respectively, aggregating 

gold atoms to the seed particles, and growing the latter to the final GNPs by reacting with the 

passive precursor. We develop this model in the following chapter. 
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Chapter 4 

A New Model Based on the Seed-mediated 

Mechanism 

In this chapter, we report the development, implementation and validation of a novel 

mathematical model for the synthesis of gold nanoparticles by the “citrate synthesis method” 

based on a mechanistic description recently reported in the literature. This mechanism 

involves various reactions and processes, such as nucleation, aggregation and growth. To 

model the reactions, we adopted rate-order equations, some of which we derived using 

experimental data from the literature. The model is based on a population balance equation, 

which is coupled with a number of mass balance equations for the reactants involved in the 

synthesis. We validated the model predictions using experimental data from the literature. In 

the following introduction, we report the motivation and structure of the chapter.  

Parts of this chapter have been published: 

Agunloye, E., Panariello, L., Gavriilidis, A., Mazzei, L., 2018. A Model for the Formation of 

Gold Nanoparticles in the Citrate Method, Chemical Engineering Science, 191, 318-331. 

doi:10.1016/j.ces.2018.06.046 

4.1 Introduction 
In the past, researchers explained the GNPs synthesis through the pioneering work of 

Turkevich et al. (1951), who suggested that the particles form via a nucleation-growth 

mechanism. According to this mechanistic description of the synthesis, tetrachloroauric acid 

reacts with sodium citrate to form gold chloride and dicarboxy acetone (DCA). Subsequently, 

the latter (which acts as nucleation agent) organizes gold chloride to form gold nuclei, while 

decomposing into acetone. Its decomposition eventually prevents the generation of new 

nuclei (nucleation stops), leaving behind unconsumed gold chloride that reacts on the 

surface of the particles thereby making them grow. Nucleation and growth are therefore 

decoupled. 

Kumar et al. (2007) developed a mathematical model for the description of the GNPs 

synthesis, basing it on such a theory. In Chapter 3, we tested the model for different 

synthesis conditions studied experimentally by various researchers, for which results are 

available in the literature. The model poorly predicted the experimental data, because the 
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Turkevich organizer theory does not account for the acid-base properties of the precursor 

and reducing agent. 

In the last decade, however, new evidence has emerged indicating that the particles 

aggregate significantly during the synthesis, aggregation taking place after nucleation but 

before growth (Wuithschick et al., 2015). Further evidence has shown that changing the pH 

value at which the synthesis is conducted affects the processes of nucleation, aggregation 

and growth, and influences the final size of the particles (Ji et al., 2007). For example, the 

effect of aggregation, which occurs significantly at low pH values, decreases when the pH 

increases, while an opposite trend is found for growth. This behaviour is due to the chemistry 

of the precursor and reducing agent, which are a strong acid and a weak base, respectively. 

In addition, both of them exist in different forms depending on the value of the mixture pH: 

the precursor can exist as 𝐴𝑢𝐶𝑙4
−, 𝐴𝑢𝐶𝑙3(𝑂𝐻)

−, 𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
, 𝐴𝑢𝐶𝑙(𝑂𝐻)3

−
 and 𝐴𝑢(𝑂𝐻)4

−
, 

whilst the reducing agent can exist as 𝐶𝑡3−, 𝐶𝑡𝐻2−, 𝐶𝑡𝐻2
− and 𝐶𝑡𝐻3. Only pH values 

between 3 and 8, measured at room temperature, favour the synthesis (Ji et al., 2007). 

While investigating the synthesis within this pH range, Wuithschick et al. (2015) proposed 

the so-called “seed-mediated mechanism”, in which nuclei generate “seed particles”, which 

then grow into the particles of final size. 

In this chapter, we develop a new model for the synthesis based on the seed-mediated 

mechanism. This mechanism originates from the thermodynamics and kinetics of the 

synthesis. Thermodynamics allows identifying the chemical components and their amounts 

at quasi-equilibrium and final equilibrium states (later on, we will explain the concept of 

quasi-equilibrium in the context of the citrate synthesis method). Kinetics, on the other hand, 

provides the rates of the reactions involved in the synthesis. In developing the model, we 

take into account the thermodynamics of the substances involved in the synthesis. Then, we 

derive rate-order equations for the reactions that occur in the pH range of interest for the 

synthesis analysed. To predict the evolution of concentrations and particle size distribution, 

we derive mass balance equations for the fluid components and a population balance 

equation (PBE) for the GNPs. These describe the synthesis according to the seed-mediated 

mechanism of Wuithschick et al. (2015). While the mass balance equations are ordinary 

differential equations, the PBE is an integro-partial-differential equation. Their combination 

yields a complex model that can only be solved numerically. To solve it, we employ the 

commercial numerical code Parsival. For the initial conditions, we adopt the process 

conditions that other researchers previously used in this synthesis method to produce GNPs. 

We then compare the model predictions to experimental data from the literature. 
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Based on the foregoing, this chapter involves different concepts such as nanotechnology, 

analytical chemistry, thermodynamics and kinetics, and population balance modelling. To 

clearly convey these concepts, we have classified them into a main contribution, and 

supporting information. This chapter presents the main contribution while Appendix E 

presents the supporting information. Nevertheless, the supporting information is not less 

important; it is required to understand the main contribution. Section 4.2 of the main 

contribution briefly presents the seed-mediated mechanism. Section 4.3 reports the 

reactions that occur in the synthesis according to this mechanism, their corresponding rate-

order equations and the balance equations for the components. Section 4.4 presents the 

solutions of the model and discusses the results. Finally in this chapter (of the main 

contribution), Section 4.5 reports the concluding remarks. The supporting information in 

Appendix E contains six sections: Section 4.A discusses the thermodynamics of the citrate 

synthesis method; Section 4.B discusses the experimental evidence for the seed-mediated 

mechanism; Section 4.C reports some quasi-equilibrium calculations; and Sections 4.D, 4.E, 

and 4.F discuss rate calculations for various steps in the seed-mediated mechanism. We 

refer the reader to Appendix E. 

4.2 Seed-mediated mechanism 
In this section, we describe how gold nanoparticles evolve in the citrate synthesis method 

according to the seed-mediated mechanism of Wuithschick et al. (2015). For this synthesis, 

two solutions are prepared, one containing tetrachloroauric acid and the other containing 

sodium citrate in water. The aqueous medium renders the acid-base properties of precursor 

and reducing agent possible, dissociating according to the following equilibrium reaction: 

𝐻2𝑂 ←⃗⃗⃗ 𝐻
+ + 𝑂𝐻−         (4.2.1) 

At 25 0C, the equilibrium constant 𝐾𝑎,𝑤 of the dissociation of water, expressed as 𝐾𝑎,𝑤 =

𝐶𝐻+ . 𝐶𝑂𝐻−, is equal to 10−14 (Sandler, 2006), where 𝐶𝐻+ and 𝐶𝑂𝐻− denote the concentrations 

of 𝐻+ and 𝑂𝐻−, respectively, measured in 𝑚𝑜𝑙/𝑑𝑚3 (here and below, C denotes the molar 

concentration of a reactant, in the units just given, the subscript indicating the component 

being considered). The acid-base property of an aqueous medium is usually indicated by the 

value of the pH, expressed as 𝑝𝐻 ≡ − log10 𝐶𝐻+. In distilled water, 𝐶𝐻+ = 𝐶𝑂𝐻−. Hence, for 

distilled water at 25 0C, 𝑝𝐻 = 7, which is regarded as the neutral pH. The value of the neutral 

pH, nevertheless, changes with temperature, because 𝐾𝑎,𝑤 is temperature-dependent. For 

example, at the standard synthesis temperature of 100 0C, the value of the neutral pH is 5.6. 

Apart from Eq. (4.2.1), in the precursor solution, tetrachloroauric acid, which is a strong acid, 

completely ionizes according to: 
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𝐻𝐴𝑢𝐶𝑙4 → 𝐻
+ + 𝐴𝑢𝐶𝑙4

−        (4.2.2) 

The 𝐻+ ions produced in Eq. (4.2.2) shift the equilibrium position of Eq. (4.2.1) to the left so 

that the amount of 𝑂𝐻− ions present in the solution is negligible. So, even if 𝑂𝐻− can 

hydroxylate 𝐴𝑢𝐶𝑙4
− to the species 𝐴𝑢𝐶𝑙3(𝑂𝐻)

−, 𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
, 𝐴𝑢𝐶𝑙(𝑂𝐻)3

−
 and 𝐴𝑢(𝑂𝐻)4

−
, 

their equilibrium amounts in the precursor solution are negligible. To illustrate this, we 

present a sample calculation in Section 4.A.1 in the supporting information (SI) to Chapter 4, 

placed in Appendix E. So, in the tetrachloroauric solution, the precursor exists almost 

entirely as 𝐴𝑢𝐶𝑙4
− and the pH of this solution is equal to − log10 𝐶𝐻𝐴𝑢𝐶𝑙4. 

On the other hand, the reducing agent solution of sodium citrate is a base solution that 

contains a significant amount of 𝑂𝐻− because citrate consumes 𝐻+ ions and shifts the 

equilibrium of Eq. (4.2.1) to the right according to the following reactions: 

𝑁𝑎3𝐶𝑡 → 3𝑁𝑎
+ + 𝐶𝑡3−        (4.2.3) 

𝐶𝑡3− +𝐻+ ←⃗⃗⃗ 𝐶𝑡𝐻2− ; 1 𝐾𝑅3⁄         (4.2.4) 

𝐶𝑡𝐻2− +𝐻+ ←⃗⃗⃗ 𝐶𝑡𝐻2
−; 1 𝐾𝑅2⁄         (4.2.5) 

𝐶𝑡𝐻2
− +𝐻+ ←⃗⃗⃗ 𝐶𝑡𝐻3 ; 1 𝐾𝑅1⁄         (4.2.6) 

where the 𝐾𝑅𝑖’s are the equilibrium constants of the reactions reported, whose values at 25 

0C are 7.41 × 10−4, 1.74 × 10−5 and 3.98 × 10−7, respectively (Serjeant and Dempsey, 

1979). Because the amount of 𝑂𝐻− ions is larger than that of 𝐻+ ions, the value of the pH of 

the reducing agent solution is above 7 at 25 0C. To illustrate this, we present a sample 

calculation in Section 4.A.2 of the SI. 

Upon adding the reducing agent solution to the precursor solution in the synthesis, usually 

carried out at 100 0C in a well-mixed batch reactor, a number of reactions can occur at 

different rates. For example, Pines et al. (1997) reported ~ 10−11 𝑠 as the time scale for 

reactions involving 𝐻+ ions to reach completion at 23 0C. Hence, we expect the equilibrium 

reactions in Eqs. (4.2.1) and (4.2.4) to (4.2.6) to occur almost instantaneously. Wuithschick 

et al. (2015) confirmed this expectation experimentally: they reported that the reactions 

attain equilibrium in less than 2 s at 23 0C (notice that the time resolution of the instrument 

that they used was of seconds). Because of these fast reactions (fast compared to the other 

reactions involved in the synthesis), the synthesis mixture reaches a temporary equilibrium 

state, henceforth referred to as “quasi-equilibrium” state, before other reactions begin to 

occur significantly. When this state is reached, the amount of 𝑂𝐻− is significant and can 

convert 𝐴𝑢𝐶𝑙4
− into the hydroxylated forms previously reported. To illustrate this, we provide 

a sample calculation in Section 4.A.3 of the SI. 
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The speciation of chloroauric acid can in principle yield various hydroxylated species, 

namely, 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−, 𝐴𝑢𝐶𝑙2(𝑂𝐻)2

−
, 𝐴𝑢𝐶𝑙(𝑂𝐻)3

−
 and 𝐴𝑢(𝑂𝐻)4

−
. Peck et al. (1991) 

investigated the speciation reactions of the precursor solution using both UV-Vis and Raman 

spectroscopy and reported that below a pH value of 6.2 (measured at about 25 0C) 𝐴𝑢𝐶𝑙4
− is 

the dominant species, whilst in the pH range 6.2 - 8.4 𝐴𝑢𝐶𝑙4
− and 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− dominate. At 

larger values of the pH, the higher hydroxylated species dominate, starting with 

𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
 and then moving to the others in succession. So, we assume that within the 

pH range 3-8, in which the synthesis is conducted, 𝑂𝐻− only hydroxylates 𝐴𝑢𝐶𝑙4
− into 

𝐴𝑢𝐶𝑙3(𝑂𝐻)
−. Referred to as “passivation step”, this reaction occurs significantly over a time 

scale of ~ 30 𝑠 at 100 0C (Wuithschick et al., 2015). 

Moreover, 𝐴𝑢𝐶𝑙4
− (gold oxidation state of +3) converts into 𝐴𝑢 (gold oxidation state of zero) 

by the reducing action of the sodium citrate solution; this occurs significantly over a time 

scale similar to that characterizing the passivation reaction at 100 0C (Wuithschick et al., 

2015). Therefore, after a time of about a minute, all the gold initially present in the precursor 

is (prevalently) either in the form of atomic gold or of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−. In the remaining 20 min of 

the synthesis, all the gold converts into nanoparticles, as reported by researchers such as Ji 

et al. (2007), Frens (1973) and Wuithschick et al. (2015). 

To understand the mechanism of the synthesis, Polte et al. (2010) and Wuithschick et al. 

(2015) investigated it using a combination of small-angle X-ray scattering and X-ray 

absorption near-edge structure along with the other conventional techniques of transmission 

electron microscopy, surface electron microscopy and UV-Vis. This equipment provides 

time-resolved in situ information on the size of nanoparticles of about 2 nm or larger and of 

their number concentration, offering a reliable account of the synthesis. For the synthesis 

carried out at 75 0C, Polte et al. (2010) reported this information for a total synthesis time of 

80 min (in Figure 2(d) of their article). We have reproduced this figure in Figure 4.B.1 in 

Section 4.B of the SI. From this figure, we see that in the time interval between 20 and 80 

min the aggregation process is absent, because the particle number concentration is 

constant. Before 20 min, however, the aggregation process is present, because the number 

concentration of particles decreases. To determine whether the growth process is also 

present before this time, we further analysed Figure 4.B.1. From this analysis, reported in 

Section 4.B.1 of the SI, we can state that the growth process is nearly insignificant before 

this time. So, in developing a mathematical model, it can be assumed that in the synthesis 

the aggregation process is entirely decoupled from the growth process. According to 

Wuithschick et al. (2015), the nanoparticles stop aggregating when they reach about the 

same size, which is referred to as “seed” size. Then, these “seed particles” grow into the 

final NPs by reacting with the hydroxylated precursor, which we assume to be in the form of 
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𝐴𝑢𝐶𝑙3(𝑂𝐻)
− considering the pH range of interest in the citrate synthesis method. Based on 

these explanations, we present the seed-mediated mechanism as shown in Figure 4.2.1. 

𝐴𝑢𝐶𝑙4
− passivates into 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− and concurrently reduces into atomic gold. As gold 

atoms generate, they aggregate forming particle seeds; growth is not entirely absent, but its 

contribution is much less significant and thus is neglected. Finally, the gold present in 

𝐴𝑢𝐶𝑙3(𝑂𝐻)
− grows the seeds into NPs; during this step aggregation is absent. 

 

 

Figure 4.2.1. Reaction scheme in the seed-mediated synthesis mechanism describing how 

the gold in the precursor evolves into GNPs in the citrate synthesis method. 

4.3 Model development 
In this section, we derive a model for the GNP citrate synthesis based on the seed-mediated 

mechanism as presented in Figure 4.2.1. The precursor solution is mixed with the reducing 

agent solution to form the synthesis solution, where GNPs then form. The reduction, 

passivation and growth steps involve chemical reactions, while the seed formation step 
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involves solely the aggregation process. For the chemical reactions, we first derive balanced 

chemical equations and then develop their rate equations, whilst for the seed formation step 

we suggest a method for calculating the seed diameter that is applicable for initial molar 

ratios of sodium citrate to gold (more precisely to tetrachloroauric acid) equal to or greater 

than five. For initial molar ratios with these values, as illustrated in Section 4.C of the SI, the 

values of the pH of the synthesis solution at quasi and final equilibrium are approximately 

equal. Based on this observation, we derive a model for the synthesis. 

4.3.1 Precursor reduction step 
In the reduction step 𝐴𝑢𝐶𝑙4

− converts into gold atoms owing to the reducing action of the 

sodium citrate solution. As a result of the speciation reactions of citrate, given by Eqs. 

(4.2.4), (4.2.5) and (4.2.6), the reducing agent can be 𝐶𝑡3−, 𝐶𝑡𝐻2−, 𝐶𝑡𝐻2
−, 𝐶𝑡𝐻3 or a 

combination thereof. Using molecular thermodynamic simulations, Ojea-Jiménez and 

Campanera (2012) reported that the reducing agent is 𝐶𝑡𝐻2
−, while Kettermann et al. (2016) 

suggested that it is 𝐶𝑡𝐻2−. We tested both alternatives, using data about the kinetics of the 

synthesis reported by Ji et al. (2007). From this test, we concluded that 𝐶𝑡𝐻2
− is the most 

likely form of the reducing agent, as discussed in Section 4.D.3 of the SI. 

For the conversion of the precursor into gold atoms, Kumar et al. (2007) reported the overall 

balanced chemical equation in the form: 

2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂
−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂

−] + 3𝐻+ → 2𝐴𝑢0 + 3(𝐶𝐻3)2𝐶 = 𝑂 + 9𝐶𝑂2 + 6𝐶𝑙
− 

            (4.3.1) 

In this equation, 𝐴𝑢𝐶𝑙3 appears as precursor and 𝐶𝑡3− as reducing agent. However, several 

authors, such as Ji et al. (2007), Doyen et al. (2012) and Wuithchick et al. (2015), do not 

report the reaction in this form because, as said in Section 4.2, in the precursor solution gold 

is in the form of 𝐴𝑢𝐶𝑙4
−. Substituting 𝐴𝑢𝐶𝑙3 with 𝐴𝑢𝐶𝑙4

− − 𝐶𝑙− and 𝐶𝑡3− with 𝐶𝑡𝐻2
− − 2𝐻+, 

we can express Eq. (4.3.1) in terms of 𝐴𝑢𝐶𝑙4
− and 𝐶𝑡𝐻2

−. Rearranging the chemical species 

as reactants and products yields: 

2𝐴𝑢𝐶𝑙4
− + 3(𝐶𝐻2𝐶𝑂𝑂𝐻)2𝐶(𝑂𝐻)𝐶𝑂𝑂

− → 2𝐴𝑢0 + 8𝐶𝑙− + 3(𝐶𝐻3)2𝐶 = 𝑂 + 9𝐶𝑂2 + 3𝐻
+ 

           (4.3.2) 

Eq. (4.3.2) is the balanced chemical equation for the reduction step. The stoichiometry of 

this reaction requires three moles of 𝐶𝑡𝐻2
− to reduce two moles of 𝐴𝑢𝐶𝑙4

−. 

We assume that the kinetics of the reduction step follows a rate law. This means that the 

reaction rate is proportional to the product of the concentrations of the reactants, each 
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concentration raised to a coefficient (Fogler, 2004). Therefore, we write the rate 𝑟𝑟 for the 

reaction between 𝐴𝑢𝐶𝑙4
− and 𝐶𝑡𝐻2

− in the form: 

𝑟𝑟 = 𝑘𝑟 𝐶𝐴𝑢𝐶𝑙4− 
𝑙. 𝐶𝐶𝑡𝐻2−

𝑛        (4.3.3) 

where 𝑟𝑟 is the formation rate of gold atoms in 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄ , 𝑘𝑟 is the reduction rate constant, 

and 𝑙 and 𝑛 are the rate orders of 𝐴𝑢𝐶𝑙4
− and 𝐶𝑡𝐻2

−, respectively. 

While investigating the synthesis in the presence of an excess of sodium citrate, 

Chakraborty et al. (2016) found that Eq. (4.3.3) is first-order with respect to 𝐴𝑢𝐶𝑙4
−; that is, 

𝑙 = 1. So, we can write: 

𝑟𝑟 = 𝑘𝑟 𝐶𝐴𝑢𝐶𝑙4− . 𝐶𝐶𝑡𝐻2−
𝑛        (4.3.4) 

To obtain the values of 𝑘𝑟 and 𝑛, one needs data for 𝑟𝑟 and the corresponding values of 

𝐶𝐴𝑢𝐶𝑙4−  and 𝐶𝐶𝑡𝐻2−. To obtain values for 𝑟𝑟, one requires data of the time evolution of the 

concentration of gold atoms present in the GNPs. Hendel et al. (2014) do not report data of 

this kind, but give relevant information. In particular, for nanoparticles synthesized with 

different initial precursor concentrations, they correlated the amount of gold initially present 

in the precursor to the UV-Vis absorbance at 400 nm obtained at the end of the synthesis. 

By doing so, they observed that such quantities are linearly related. Because all the gold in 

the precursor converts into nanoparticles, they concluded that the UV-Vis absorbance at 400 

nm is proportional to the amount of gold atoms present in the solid phase. Consequently, 

one can use data of the time evolution of the UV-Vis absorbance at 400 nm to determine the 

time evolution of the concentration of gold atoms present in the solid phase. However, since 

the data of Hendel et al. (2014) were obtained at the end of the synthesis only, we could not 

use them to determine 𝑟𝑟 (no time-resolved data are available). To this end, we instead used 

the data of Ji et al. (2007), who investigated the synthesis at 100 0𝐶 for a fixed initial value of 

precursor concentration, equal to 0.25 𝑚𝑜𝑙/𝑚3, and an initial value of the citrate-to-gold 

molar ratio varying between 0.7 and 28 (values referred to the synthesis solution). Ji et al. 

reported the time evolution of the UV-Vis spectra in the wavelength band between 400 to 

800 nm for three initial conditions; furthermore, for these and many more initial conditions, 

they reported the time evolution of the UV-Vis peaks of the absorption spectra. One can 

obtain values for 𝑟𝑟 by using either the entire UV-Vis spectra or the values of their peaks. 

From the UV-Vis spectra, one can determine the values of the UV-Vis absorbance at 400 nm 

and subsequently the concentration of gold in the solid phase. Since these data are time-

resolved, one can therefore determine the corresponding values of 𝑟𝑟. The disadvantage of 

this method is that the spectra are available only for three initial precursor concentrations, 
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and so just three values for 𝑟𝑟 can be found. Many more values are instead available for the 

peaks; for this reason, we used the time evolution of the UV-Vis peaks. 

One consideration is in order here. Note that using the values of the UV-Vis peaks is 

possible since, when normalized, their time evolution is nearly identical to that of the 

normalized UV-Vis absorbance at 400 nm. To demonstrate this, in Section 4.D.1 of the SI 

we compare the time evolutions of the normalized UV-Vis absorbances (at 400 nm) and 

peaks (the normalized values are obtained by dividing the actual values of the absorbance 

by the respective maximum absorbance values, which correspond to those at the end of the 

synthesis). As we can observe, the time evolutions are nearly identical. This implies that also 

the UV-Vis peaks are linearly related to the concentration of gold in the solid phase. 

Therefore, we obtained the amount of gold atoms in the solid phase produced from the 

reduction step using the time evolution of the peaks. These data are reported in Figure 2S 

(b) of the work of Ji et al. (2007). 

We used these data in the limit 𝑡 → 0. This is because the gold atoms in the solid phase can 

form via both the reduction and growth steps, as illustrated in Figure 4.2.1; However, in the 

limit 𝑡 → 0, because the growth step occurs solely in the presence of particles, only the 

reduction step plays a role. Thus, to obtain the values of 𝑘𝑟 and 𝑛, we only used the data of 

𝑟𝑟, and of the corresponding values of 𝐶𝐴𝑢𝐶𝑙4−  and 𝐶𝐶𝑡𝐻2−, in this limit. In Section 4.D.2 of the 

SI, we also show how to obtain from Figure 2S (b) the value of the rate 𝑟𝑟 in the limit 𝑡 → 0, 

which we denote as 𝑟𝑟,0. The values of 𝐶𝐴𝑢𝐶𝑙4−  and 𝐶𝐶𝑡𝐻2− for vanishingly short times, 

denoted as  𝐶𝐴𝑢𝐶𝑙4−,0 and 𝐶𝐶𝑡𝐻2−,0, are those at quasi-equilibrium, which are attained in the 

synthesis solution when, after mixing the precursor solution with the reducing agent solution, 

the fast reactions involving 𝐻+ ions have reached equilibrium but 𝐴𝑢𝐶𝑙4
− has not 

significantly reacted. A sample calculation of how to obtain the values of 𝐶𝐴𝑢𝐶𝑙4− ,0 and 

𝐶𝐶𝑡𝐻2−,0 for the citrate-to-gold molar ratio of 0.7 is given in Section 4.A of the SI. 

For 𝑡 → 0, we write Eq. (4.3.4) as follows: 

𝑟𝑟,0 = 𝑘𝑟 𝐶𝐴𝑢𝐶𝑙4−,0 . 𝐶𝐶𝑡𝐻2−,0
𝑛        (4.3.5) 

This equation can be expressed equivalently as: 

log (
𝑟𝑟,0

𝐶𝐴𝑢𝐶𝑙4
−,0 
) = 𝑛 log𝐶𝐶𝑡𝐻2−,0 + log 𝑘𝑟       (4.3.6) 

By plotting log(𝑟𝑟,0 𝐶𝐴𝑢𝐶𝑙4−,0 ⁄ ) against log 𝐶𝐶𝑡𝐻2−,0 for several initial molar ratios of citrate-to-

gold, we obtain a straight line. The values of 𝑛 and log 𝑘𝑟 correspond to the slope and 

intercept of this line. For the data of Ji et al. (2007), Figure 4.3.1 shows the plot of Eq. 
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(4.3.6). Notice that to plot the values of log(𝑟𝑟,0 𝐶𝐴𝑢𝐶𝑙4−,0 ⁄ ) and log 𝐶𝐶𝑡𝐻2−,0 in the positive 

quadrant of the x-y plane, as done in Figure 4.3.1, we multiplied both sides of Eq. (4.3.6) by 

− 1; thus, the intercept of the line is equal to − log 𝑘𝑟. 

 

Figure 4.3.1. Plot of 𝑦 = − log(𝑟𝑟,0 𝐶𝐴𝑢𝐶𝑙4−,0 ⁄ ) vs 𝑥 = − log𝐶𝐶𝑡𝐻2−,0 to determine the order of 

𝐶𝑡𝐻2
− and the kinetic constant in the reduction rate equation. The experimental data, 

obtained at 100 0𝐶, are taken from Ji et al. (2007). 

From Figure 4.3.1, we can calculate the reaction order with respect to 𝐶𝑡𝐻2
−. This is given 

by the slope of the curve and is equal to 𝑛 = 1.85. The reduction rate constant at 100 0𝐶, on 

the other hand, is equal to: 

𝑘𝑟 = 10
1.55[𝑚3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄ = 35.48 [𝑚3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄   

We can thus write the reduction rate equation as: 

𝑟𝑟 = 𝑘𝑟𝐶𝐴𝑢𝐶𝑙4− . 𝐶𝐶𝑡𝐻2− 
1.85        (4.3.7) 

4.3.2 Precursor passivation step 
As previously discussed, the passivation step occurs when 𝑂𝐻− reacts with a portion of 

𝐴𝑢𝐶𝑙4
− to form 𝐴𝑢𝐶𝑙3(𝑂𝐻)

−, since higher hydroxylated forms of the precursor are present in 

negligible amounts within the pH range of interest for the synthesis, which is between 3 and 

8 when the pH is measured at 25 0C (Peck et al., 1991). We write the chemical reaction as: 

𝐴𝑢𝐶𝑙4
− + 𝑂𝐻− → 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− + 𝐶𝑙−       (4.3.8) 
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A rate equation for this step has been reported by Paclawski et al. (2012) in the form: 

𝑟𝑝 = 𝑘𝑝𝐶𝐴𝑢𝐶𝑙4− . 𝐶𝑂𝐻−          (4.3.9) 

where 𝑟𝑝 is the passivation rate and 𝑘𝑝 is the rate constant; the reaction is first-order with 

respect to both reactants. For the value of 𝑘𝑝, Paclawski et al. (2012) refer to Hanes et al. 

(1992), in which it is reported that 𝑘𝑝 = 0.0052 𝑚
3 (𝑚𝑜𝑙 ∙ 𝑠)⁄  at 16 0C. 

To determine the value of 𝑘𝑝 at the standard synthesis temperature of 100 0C, we employ 

the experimental data of Wuithschick et al. (2015), who reported, at different temperatures, 

the times that 𝐴𝑢𝐶𝑙4
− takes to convert significantly when hydroxylating into 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− for 

fixed initial concentrations of tetrachloroauric acid and 𝑁𝑎𝑂𝐻 in solution. These data refer to 

values of the mixture pH falling within the range in which the amounts of the higher 

hydroxylated forms of the precursor are negligible (Peck et al., 1991). Table 4.3.1 shows 

these data. From these, we can obtain the value of the activation energy of the passivation 

reaction. 

Table 4.3.1. Characteristic time of the passivation reaction at different temperatures. The 

experimental data are taken from Wuithschick et al. (2015). 

Temperature 
(0C) 

Reaction time 
(s) 

46 2150 

65 250 

75 150 

88 80 

95 40 

 

As the initial concentrations of 𝐻𝐴𝑢𝐶𝑙4 and 𝑁𝑎𝑂𝐻 do not change, 𝑘𝑝 is proportional to the 

inverse of the reaction time 𝜏𝑝, the proportionality constant, denoted as 𝑏, not depending on 

the reaction temperature. The reasoning for this proportionality is presented in Section 4.E.1 

of the SI. We can thus write: 

𝑘𝑝 =
𝑏

 𝜏𝑝
          (4.3.10) 

Therefore, the Arrhenius equation for this step can be written as: 

𝑏

 𝜏𝑝
= 𝑘0 exp[−𝐸𝑎 𝑅𝑇⁄ ]         (4.3.11) 



 

121 
 

where 𝑘0 and 𝐸𝑎 are the pre-exponential factor and activation energy, respectively, while 𝑇 is 

the temperature in Kelvin and 𝑅 is the universal gas constant. Rearranged, Eq. (4.3.11) 

becomes: 

ln (
1

 𝜏𝑝
) = ln (

𝑘0

𝑏
) −

𝐸𝑎

𝑅𝑇
         (4.3.12) 

A plot of ln(1 𝜏𝑝⁄ ) versus 1 𝑇⁄ , based on the experimental data of Wuithschick et al. (2015), 

is shown in Figure 4.3.2. The slope of the line is equal to − 9070.2 𝐾. Thus, we obtain: 

𝐸𝑎 = 9070.2 𝐾 ×  8.31 𝐽 (𝑚𝑜𝑙. 𝐾)⁄ = 75373 𝐽 𝑚𝑜𝑙⁄  

Given that 𝑘𝑝(16
 0𝐶) = 0.0052𝑚3 (𝑚𝑜𝑙 ∙ 𝑠)⁄ , we can write: 

0.0052𝑚3 (𝑚𝑜𝑙 ∙ 𝑠)⁄ = 𝑘0 exp(− 75373 (8.31 × 289)⁄ )𝑚3 (𝑚𝑜𝑙 ∙ 𝑠)⁄   

whence: 

𝑘0 = 2.22 × 10
11  𝑚3 (𝑚𝑜𝑙. 𝑠)⁄   

Then, the Arrhenius equation for the passivation rate constant reads: 

𝑘𝑝 = 2.22 × 10
11 exp[−75373 𝑅𝑇⁄ ] 𝑚3 (𝑚𝑜𝑙 ∙ 𝑠)⁄      (4.3.13) 

Thus, at 100 0C, we have:  

𝑘𝑝(100
 0𝐶) = 2.22 × 1011 exp[−75373 (8.31 × 373)⁄ ] = 6.1𝑚3 (𝑚𝑜𝑙 ∙ 𝑠)⁄   

By an indirect method, reported in Section 4.F of the SI, we obtained an estimated value of 

1.9𝑚3 (𝑚𝑜𝑙 ∙ 𝑠)⁄  for 𝑘𝑝 at 100 0C, confirming that the (more reliable) value found here is 

reasonable. 
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Figure 4.3.2. Plot of 𝑦 = ln(1 𝜏𝑝⁄ ) vs 𝑥 = 1 𝑇⁄  to determine the activation energy of the 

passivation step. The experimental data, where the initial precursor concentration is constant 

at 0.25 𝑚𝑜𝑙/𝑚3, are taken from Wuithschick et al. (2015). 

4.3.3 Seed growth step 
The growth step involves a continuous increase of the size of the seed particles that occurs 

when the gold atoms produced from the reduction of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− integrate onto the surface 

of the seed particles (shown in Figure 4.2.1). Using molecular thermodynamic simulations, 

Ojea-Jiménez and Campanera (2012) reported that the reducing agent for this step is 

𝐶𝑡𝐻2−. We can therefore write the balanced chemical equation for this step as a reaction 

between 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− and 𝐶𝑡𝐻2− by substituting in Eq. (4.3.2) 𝐴𝑢𝐶𝑙4

− with 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− +

𝐶𝑙− − 𝑂𝐻− and 𝐶𝑡𝐻2
− with 𝐶𝑡𝐻2− +𝐻+. This gives: 

2𝐴𝑢𝐶𝑙3(𝑂𝐻)
− + 3(𝐶𝐻2𝐶𝑂𝑂

−)2𝐶(𝑂𝐻)𝐶𝑂𝑂𝐻
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
→            2𝐴𝑢 + 6𝐶𝑙− + 2𝑂𝐻− + 9𝐶𝑂2 +

3(𝐶𝐻3)2𝐶 = 𝑂           (4.3.14) 

where we have explicitly indicated that this reaction occurs on the surface of the gold 

nanoparticles. 

Eq. (4.3.14) is the balanced chemical equation for the growth step. Like the reduction step, 

its stoichiometry requires that (on the particle surface) three moles of 𝐶𝑡𝐻2− reduce two 

moles of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−. 
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The growth model depends on the controlling mechanism. The two mechanisms are mass 

transfer and surface reaction (Mersmann, 2001). Here we assume that growth is controlled 

by the latter mechanism. This assumption is based on an analysis of the experimental data 

reported in Figure 2 (d) of the article of Polte et al. (2010), which presents the time evolution 

of the particle mean size (Figure 4.B.1 in Section 4.B of the SI reproduces this figure). The 

data reveals that the growth rate is constant over a large time interval; only towards the end 

of the synthesis it first appears to increase slightly and then it progressively decreases, 

eventually vanishing. The decrease is expected and is due to the depletion of the driving 

force (that is, of the concentration of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−). For growth controlled by mass transfer 

(that is, mass transfer limited), the growth rate decreases with size (Viswanatha and Sarma, 

2007; also see Eq. (2.2.88) in Chapter 2). Since this behaviour is not observed 

experimentally, we assume that surface reaction controls particle growth. A more detailed 

analysis is provided in Section 4.B of the SI. The same assumption was also made by 

Kumar et al. (2007). In deriving the growth model, we thus assume that the growth rate 

follows a rate law that depends on the concentrations of the reactants (that is, 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− 

and 𝐶𝑡𝐻2−) and on the specific particle surface. So, we write: 

𝑑𝐶𝐴𝑢

𝑑𝑡
= 𝐴 𝑘𝑔 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)−

𝑔. 𝐶𝐶𝑡𝐻2−
ℎ       (4.3.15) 

where 𝐶𝐴𝑢 represents the moles of gold atoms present in the particles per unit volume of 

mixture; this concentration, consequently, increases only because of growth (since 

nucleation is absent), and so 𝑑𝐶𝐴𝑢 𝑑𝑡⁄  is directly related to the rate of change of the particle 

size (see Section 4.B for further details). Also, in Eq. (4.3.15), 𝑘𝑔 is the reaction constant, 𝐴 

is the particle surface area per unit volume of mixture, and 𝑔 and ℎ are the reaction orders 

for 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− and 𝐶𝑡𝐻2−, respectively. 

Eq. (4.3.15) contains three constants: 𝑘𝑔, 𝑔 and ℎ. We take 𝑔 and ℎ to be equal to one, 

following Turkevich et al. (1951), who reported the order of the two reactants in the growth 

process to be unity. Thus, we have: 

𝑑𝐶𝐴𝑢

𝑑𝑡
= 𝐴 𝑘𝑔 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− . 𝐶𝐶𝑡𝐻2−       (4.3.16) 

To determine the value of 𝑘𝑔, we still employ the data in Figure 2 (d) of the article of Polte et 

al. (2010), where the initial concentrations of the precursor and reducing agent in the 

synthesis solution are 0.25 𝑚𝑜𝑙 𝑚3⁄  and 2.5 𝑚𝑜𝑙 𝑚3⁄ , respectively, and the solution 

temperature is 75 0𝐶. As this figure describes the time evolution of the mean size, we can 

obtain the growth rate 𝑑𝑠𝑚 𝑑𝑡⁄  from Eq. (4.3.16) as: 
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𝑑𝑠𝑚

𝑑𝑡
= (

𝑚𝑎

3𝜌𝑚𝑣
)  𝑘𝑔 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)−  𝐶𝐶𝑡𝐻2−        (4.3.17) 

where 𝑚𝑎 is the particle area shape factor (which we set equal to , assuming that the 

particles are spherical), 𝜌 is the molar density of gold, taken to be 105  𝑚𝑜𝑙 𝑚3⁄  (Kumar et al., 

2007), 𝑚𝑣 is the particle volume shape factor (which we set equal to /6, assuming that the 

particles are spherical) and 𝑠𝑚 is the mean particle diameter. See Section 4.B of the SI for 

the derivation of this equation. 

As previously illustrated, the mean particle size can be affected by seed formation (caused 

by aggregation) and growth. In the range 20 to 70 min in the Figure 2 (d), the particles no 

longer aggregate, since the number concentration of particles is constant. However, the 

particle mean size increases; this can only be due to growth. At any particular time within 

this time interval, we can calculate the values of 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)−, 𝐶𝐶𝑡𝐻2− and 𝐴, and then 

obtain the value of 𝑘𝑔 from Eq. (4.3.17). From the calculations reported in Section 4.B of the 

SI, at 75 0𝐶 the constant 𝑘𝑔 is equal to 2.0 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ . 

To obtain the value of 𝑘𝑔 at 1000𝐶, we employ additional experimental data reported by 

Polte et al. (2010) for the same initial concentrations of precursor and reducing agent but at 

two other temperatures: 85 and 100 0𝐶. These additional data show that the time scale of 

the growth step, which is the time required for the particle size to change significantly due to 

growth, decreases from about 40 mins at 75 0𝐶 to about 23 and 15 min at 85 and 100 0𝐶, 

respectively (Polte et al., 2010). From these times, we can calculate the activation energy of 

the growth step. Similarly to what we discussed in relation to the passivation step, we can 

relate the constant 𝑘𝑔 to the inverse of the growth time scale 𝜏𝑔 as follows: 

𝑘𝑔 =
𝑏

 𝜏𝑔
          (4.3.18) 

where 𝑏 is a proportionality constant. The reasoning for this equation is presented in Section 

4.E.2 of the SI. Then, we calculate the activation energy 𝐸𝑎 for the growth step using the 

Arrhenius equation (Mersmann, 2001): 

𝑏

 𝜏𝑔
= 𝑘0 exp[−𝐸𝑎 𝑅𝑇⁄ ]         (4.3.19) 

where 𝑘0 is the pre-exponential factor for the growth step. By rearranging Eq. (4.3.19), we 

obtain: 

ln (
1

 𝜏𝑔
) = ln (

𝑘0

𝑏
) −

𝐸𝑎

𝑅𝑇
         (4.3.20) 
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Figure 4.3.3 shows the plot of ln(1 𝜏𝑔⁄ ) versus 1 𝑇⁄ , based on the experimental data of Polte 

et al. (2010). The value of the slope is −6102.6 𝐾. From this value: 

𝐸𝑎 = 5,010  𝐾 × 8.31 𝐽 (𝑚𝑜𝑙. 𝐾)⁄ = 41,633 𝐽 𝑚𝑜𝑙⁄  

Given that 𝑘𝑔(75
 0𝐶) = 2.00 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ , we can write: 

2.00 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ = 𝑘0 exp(−41,633 (8.31 × 348)⁄ ) 𝑚4 (𝑚𝑜𝑙. 𝑠)⁄   

whence: 

𝑘0 = 3.58 𝑚
4 (𝑚𝑜𝑙. 𝑠)⁄   

and the value of 𝑘𝑔 at 100 0C is: 

𝑘𝑔(100
 0𝐶) = 3.58 𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ exp[−41,633 (8.31 × 373)⁄ ] = 5.25 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄   

 

Figure 4.3.3. Plot of 𝑦 = ln(1 𝜏𝑔⁄ ) vs 𝑥 = 1 𝑇⁄  to determine the activation energy of the 

growth step. The experimental data, where the initial concentrations of the precursor and 

reducing agent in the synthesis solution are 0.25 𝑚𝑜𝑙 𝑚3⁄  and 2.5 𝑚𝑜𝑙 𝑚3⁄ , respectively, are 

taken from Polte et al. (2010). 

4.3.4 Seed formation step 
The seed-mediated mechanism requires that the gold atoms, formed from the reduction 

step, aggregate into equal-sized “seed particles”. If the number concentration of gold atoms 

produced from the reduction step were approximately equal to the final number 

concentration of gold nanoparticles, each gold atom would coincide with a seed particle, 
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which would then “grow” into a final GNP (note that in this case the term “grow” is incorrect, 

since, at least initially, the particles are made up of few gold atoms; growth is possible solely 

when the particles comprise several atoms, so that the rate of change of their size caused by 

the attachment of additional atoms can be regarded as a continuous process). This is a 

limiting case for the seed particle size, not expected to be observed experimentally. The 

number concentration of gold atoms is expected to be far greater than the number 

concentration of the final GNPs, the seed size being consequently larger than the size of a 

gold atom, which is 0.272 𝑛𝑚 (Cordero et al. 2008). In this section, we propose a method for 

calculating the diameter of the seed particles; however, due to its complexity, we do not 

attempt to model the aggregation process or to determine its kinetics. 

Because no further aggregation occurs after the seed formation step, the number 

concentration of the seed particles must be equal to the final number concentration of GNPs 

(Wuithschick et al., 2015). Assuming complete conversion of the precursor into GNPs and a 

monodisperse particle size distribution, we can estimate the final number concentration of 

GNPs as follows: 

𝐶𝐻𝐴𝑢𝐶𝑙4
𝜌𝑚𝑣𝑠𝑓

3            (4.3.21) 

where 𝐶𝐻𝐴𝑢𝐶𝑙4 is the initial concentration of the precursor in the synthesis solution, and 𝑠𝑓 is 

the final mean particle diameter. 

The number concentration of seed particles, however, can also be calculated using the 

following equation: 

𝐶𝑠

𝜌𝑚𝑣𝑠𝑠
3           (4.3.22) 

where 𝐶𝑠 is the amount of precursor that forms the seed particles per volume of synthesis 

solution and 𝑠𝑠 is the seed diameter. 

The value of 𝐶𝐻𝐴𝑢𝐶𝑙4 is known. To determine the value of 𝐶𝑠, we use the selectivity of the 

reduction step over the passivation step, defined as the ratio of the amount of precursor that 

forms gold atoms in the reduction step to the amount of precursor that becomes passivated. 

The amount of precursor that forms gold atoms and then seed particles is equal to 𝑉𝐶𝑠 and 

can be expressed as: 

𝑉𝐶𝑠 = 𝑉 ∫ 𝑟𝑟𝑑𝑡
𝑡𝑠
0

          (4.3.23) 

where 𝑉 is the volume of synthesis solution, 𝑟𝑟 is the reaction rate for the reduction step, 𝑡 is 

the time, and 𝑡𝑠 is the total synthesis time. 
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Similarly, the amount of precursor that becomes passivated can be expressed as: 

𝑉(𝐶𝐻𝐴𝑢𝐶𝑙4 − 𝐶𝑠) = 𝑉 ∫ 𝑟𝑝𝑑𝑡
𝑡𝑠
0

         (4.3.24) 

where 𝑟𝑝 is the rate of the passivation reaction. The selectivity 𝑆 is defined as follows: 

𝑆 =
∫ 𝑟𝑟𝑑𝑡
𝑡𝑠
0

∫ 𝑟𝑝𝑑𝑡
𝑡𝑠
0

           (4.3.25) 

Using Eqs. (4.3.7) and (4.3.9), we thus have: 

𝑆 =
𝑘𝑟

𝑘𝑝

∫  [𝐶𝐴𝑢𝐶𝑙4
− ].[𝐶𝐶𝑡𝐻2

− ]
1.85

 𝑑𝑡
𝑡𝑠
0

∫  [𝐶𝐴𝑢𝐶𝑙4
− ][𝐶𝑂𝐻− ] 𝑑𝑡

𝑡𝑠
0

       (4.3.26) 

To use this equation to obtain 𝑆, we need to know the time profiles of 𝐶𝐴𝑢𝐶𝑙4− , 𝐶𝐶𝑡𝐻2−  and 

𝐶𝑂𝐻− . For synthesis conditions where the molar ratio of initial concentrations of sodium 

citrate to tetrachloroauric acid in the synthesis solution is equal to or greater than five, we 

assume that the values of 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻−  do not change significantly from their values at 

quasi-equilibrium, denoted as 𝐶𝐶𝑡𝐻2−,0  and 𝐶𝑂𝐻−,0 , respectively. The reasoning is discussed 

in Section 4.C of the SI. Thus, we can write: 

𝑆 =
𝑘𝑟

𝑘𝑝

[𝐶𝐶𝑡𝐻2
−,0 ]

1.85

[𝐶𝑂𝐻−,0 ]

∫  [𝐶𝐴𝑢𝐶𝑙4
− ] 𝑑𝑡

𝑡𝑠
0

∫  [𝐶𝐴𝑢𝐶𝑙4
− ] 𝑑𝑡

𝑡𝑠
0

=
𝑘𝑟

𝑘𝑝

[𝐶𝐶𝑡𝐻2
−,0 ]

1.85

[𝐶𝑂𝐻−,0 ]
      (4.3.27) 

Writing a material balance equation over 𝐴𝑢 in the precursor, we have: 

𝐶𝐻𝐴𝑢𝐶𝑙4 = 𝐶𝑠 + 𝐶𝑠 𝑆⁄          (4.3.28) 

where 𝐶𝑠 𝑆⁄  is the amount of precursor that becomes passivated. Solving Eq. (4.3.28) for 𝐶𝑠, 

substituting the resulting expression of 𝐶𝑠 into Eq. (4.3.22) and then equating the quantity 

obtained to that reported in Eq. (4.3.21) yields: 

𝑠𝑠 = 𝑠𝑓 (
𝑆

1+𝑆
)
1 3⁄

         (4.3.29) 

Note that the relation above applies to synthesis conditions where the molar ratios of the 

initial concentration of sodium citrate to tetrachloroauric acid in the synthesis solution are 

equal to or greater than five. As 𝑆 → 0, this limit being approached at high pH, 𝑠𝑠 → 0;.before 

reaching this extreme case, 𝑠𝑠 will become equal to the size of a gold atom, as previously 

discussed. 

Based on the criterion above, we simplify the balanced chemical equations for the reduction, 

passivation and growth steps, and present a model for the citrate synthesis method as 

follows. 
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4.3.5 Nanoparticle synthesis model 
The proposed model is based on the seed-mediated mechanistic description of the synthesis 

describing how the gold nanoparticles evolve as they form. To simplify the kinetic equations, 

we restrict to initial molar ratios of citrate to gold to values greater than five. For this 

condition, as shown in Figure 4.C.2 in Section 4.C of the SI, the pH value at quasi-

equilibrium is approximately equal to that at the end of the synthesis. This assumption has 

many implications. First, because the concentration of 𝐻+ ions determines the pH, this 

concentration and that of 𝑂𝐻− ions do not change from their values at quasi-equilibrium. 

Second, the relative mole fractions among the four citrate species also do not change from 

the values present at quasi-equilibrium, even though the sum of their amounts decreases 

owing to the reduction reactions of 𝐶𝑡𝐻2
− and 𝐶𝑡𝐻2− with 𝐴𝑢𝐶𝑙4

− and 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−, 

respectively. This second implication is illustrated in Figure 4.C.1 in Section 4.C of the SI, 

where specifying the pH value of the reaction solution determines the relative mole fractions 

among the four citrate species. Here, to illustrate why, we consider the equilibrium equations 

for citrate speciation reactions in Eqs (4.2.4) – (4.2.6), which take place nearly instantly at a 

time scale of ~ 10−11 𝑠 (Pines et al. 1997). For reaction (4.2.4), the equilibrium equation can 

be written as: 

𝐾𝑅3

𝐶𝐻+
=

𝐶
𝐶𝑡3−

𝐶𝐶𝑡𝐻2−
          (4.3.30) 

Being an equilibrium constant, 𝐾𝑅3 assumes a constant value which depends on the 

synthesis temperature. At a fixed synthesis temperature and once the pH value of the 

synthesis solution is determined at quasi-equilibrium, the ratio of 𝐶𝐶𝑡3−/𝐶𝐶𝑡𝐻2− in Eq. (4.3.30) 

assumes a constant value. Analogously, for Eqs (4.2.5) and (4.2.6), the ratios of 𝐶𝐶𝑡𝐻2−/

𝐶𝐶𝑡𝐻2− and 𝐶𝐶𝑡𝐻2−/𝐶𝐶𝑡𝐻3 are constant while the synthesis progresses, if one assumes that the 

mixture pH remains constant at the quasi-equilibrium value. 

This assumption also implies that we cannot write the chemical equations in terms of the real 

reactants and products involved in the reduction, passivation and growth steps. For 

example, by keeping the concentration of 𝑂𝐻− constant, we cannot write that 𝑂𝐻− reacts 

with 𝐴𝑢𝐶𝑙4
− to generate 𝐴𝑢𝐶𝑙3(𝑂𝐻)

−. We have to write instead that 𝑂𝐻− acts “as a catalyst”, 

converting the precursor to another form, not available to produce the gold atoms in the seed 

particles, but available to grow them. In reality, since 𝑂𝐻− is consumed by the passivation 

step, this reaction shifts the equilibrium reaction in Eq. (4.2.1) to the right, so as to keep the 

concentration of 𝑂𝐻− constant. In the process, Eq. (4.2.1) yields an additional amount of 𝐻+. 

This additional amount then shifts the speciation reactions of citrate in Eqs (4.2.2) – (4.2.4) 

to the right. To develop a model that accounts for the real reactants and products, apart from 
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the reaction rates so far considered, we need to know also the rates of the reactions 

involving 𝐻+. We do not know these rates, but we know that they are extremely large. 

Accordingly, we use the quasi-equilibrium approximation instead. In doing so, we could still 

consider all the reactants and products, but we would have to solve the quasi-equilibrium at 

every time step of the simulation (that is, a time step of ~10−11 𝑠), which is too demanding 

and costly. To avoid doing this, we opt for a simplified model that nevertheless is able to 

correctly predict the evolution of the particle size, ensuring that the amount of gold initially 

present in the precursor eventually turns into nanoparticles. As for the reactants, this 

simplified model cannot consider all the products of the reactions. Rather, it lumps a number 

of them into fictitious components. 

Chemical reactions 

For the reaction in Eqs. (4.3.2), we rewrite the chemical reaction as: 

2𝑇 + 3(𝑦𝑥 ∙ 𝐶𝑡) → 2𝐴𝑢 + 𝑃𝑟1        (4.3.31) 

𝑇 represents the gold in 𝐴𝑢𝐶𝑙4
−, 𝐶𝑡 represents the sum of all the species of citrate, 𝑦𝑥 

represents the relative mole fraction (among the four citrate species) of 𝐶𝑡𝐻2
− at the quasi-

equilibrium pH, 𝐴𝑢 represents the gold in the GNPs, and 𝑃𝑟1 represents all by-products from 

the reduction step, lumped together. 

For the reaction in Eq. (4.3.8), we have: 

𝑇
𝐵
→𝐾            (4.3.32) 

𝐵 represents 𝑂𝐻−, which is assumed to have a constant concentration, and acts as a 

catalyst; 𝐾 represents the gold that becomes passive and that eventually grows the seed 

particles. 

For the reaction in Eq. (4.3.14), we have: 

2𝐾 + 3(𝑦𝑦 ∙ 𝐶𝑡)
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
→      2𝐴𝑢 + 𝑃𝑟2       (4.3.33) 

𝑦𝑦 denotes the relative mole fraction of 𝐶𝑡𝐻2− at the quasi-equilibrium pH, whilst 𝑃𝑟2 

represents all by-products from the surface reduction, lumped together. 

Mole balances 

Assuming that the reaction solution is perfectly mixed (which implies that all intensive 

properties, such as temperature and concentrations, are uniform), we can select as control 

volume the region (of constant volume 𝑉) occupied by the mixture contained in the batch 
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reactor wherein the synthesis takes place. The balance equations of the mixture 

components are then those reported below. 

Precursor 

This is consumed by both the reduction and passivation steps. Considering Eqs (4.3.7) and 

(4.3.9), the material balance equation takes the form: 

𝑑𝐶𝑇

𝑑𝑡
= −𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85 − 𝑘𝑝𝐶𝑇𝐶𝐵       (4.3.34) 

Total citrate species 

At any time, we consider the sum of the concentrations of all the citrate species (i.e., 𝐶𝑡3−, 

𝐶𝑡𝐻2−, 𝐶𝑡𝐻2
− and 𝐶𝑡𝐻3), which we denote as 𝐶𝐶𝑡, and model the time variation of this total 

concentration caused by the reduction and growth reactions. The reduction step consumes 

𝐶𝑡𝐻2
−, whose amount, at any time, is given by 𝑦𝑥𝐶𝐶𝑡, whilst the growth step consumes 

𝐶𝑡𝐻2−, whose amount, at any time, is given by 𝑦𝑦𝐶𝐶𝑡. Considering the stoichiometric ratios in 

Eqs (4.3.2) and (4.3.14) and the growth rate equation in Eq. (4.3.16), the material balance 

equation on the total citrate species is: 

𝑑𝐶𝐶𝑡

𝑑𝑡
= − (3/2) 𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85 − (3/2) 𝑚𝑎𝑘𝑔𝐶𝐾( 𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠𝑠
  (4.3.35) 

Hydroxyl ions 

Having assumed that the pH of the mixture is constant at the quasi-equilibrium value, we 

simply write that the concentration of hydroxyl ions is constant: 

𝐶𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡          (4.3.36) 

Passive precursor 

The precursor passive form is generated by the passivation step and consumed by the 

growth step. Considering Eqs (4.3.8) and (4.3.16), the material balance equation reads: 

𝑑𝐶𝐾

𝑑𝑡
= 𝑘𝑝𝐶𝑇𝐶𝐵 −𝑚𝑎𝑘𝑔𝐶𝐾(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠
     (4.3.37) 

By-products 

The reduction and growth reactions generate by-products such as 𝐶𝑂2, (𝐶𝐻3)2𝐶 = 𝑂 and 

𝐶𝑙−, as shown in Eqs (4.3.2) and (4.3.14). To ensure that total mass is conserved, we report 

the balance equations for these other by-products. To account for those generated in the 

reduction step, lumped into 𝑃𝑟1, we write: 

𝑑𝐶𝑃𝑟1

𝑑𝑡
= (1/2) 𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85        (4.3.38) 
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To account for the by-products generated in the growth step, lumped in 𝑃𝑟2, we write the 

following material balance equation: 

𝑑𝐶𝑃𝑟2

𝑑𝑡
= (1/2) 𝑚𝑎𝑘𝑔𝐶𝐾(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠
      (4.3.39) 

Eqs. (4.3.34) – (4.3.38) express Eq. (2.2.14) in detail, describing the evolution the aqueous 

components in the citrate synthesis method according to the seed-mediated mechanism.  

Gold nanoparticles 

In writing a continuity statement for the particle phase, one employs the population balance 

modelling approach (Ramkrisna, 2000; Marchisio and Fox, 2013; and see Chapter 2). This is 

based on the size distribution of the particles (PSD) and accounts for the processes that 

affect the particle population. In modelling the evolution of the GNPs, we do not model the 

nucleation process, and the subsequent aggregation process that yields the seed particles. 

Instead, we consider a nucleation term that accounts directly for the “nucleation” of the seed 

particles, whose size is determined using the method specified in Section 4.3.4. After the 

seed particles have “nucleated”, they grow into the final GNPs. In the previous model by 

Kumar et al. (2007) and discussed in Chapter 3, the authors employed this modelling 

approach to describe the evolution of the GNPs by nucleation and growth, assuming that the 

nucleus had a known diameter of 2 nm. However, as illustrated in Section 4.3.4, the seed 

diameter does not have a constant value; this depends on the synthesis conditions. 

As we have assumed that the reaction system is uniform, the PSD does not depend on the 

real-space coordinates. The PSD, which we denote as 𝑓(𝑠, 𝑡), depends solely on the particle 

size and on the time coordinate. As previously mentioned in Chapters 2 and 3, 𝑓(𝑠, 𝑡)𝑑𝑠 

represents the number of particles per unit volume of synthesis solution with size in the 

differential range 𝑑𝑠 about the size 𝑠 at time 𝑡. For details about the derivation of the 

population balance equation, we refer to Ramkrishna (2000), Marchisio and Fox (2013), and 

Section 2.2.2 in Chapter 2. The equation in our case reads: 

𝜕𝑡𝑓(𝑠, 𝑡) = − 𝜕𝑠[𝑓(𝑠, 𝑡). 𝐺𝑠] + (
1

𝜌𝑚𝑣𝑠𝑠
3)𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85𝛿(𝑠 − 𝑠𝑠)   (4.3.40) 

where: 

𝐺𝑠 = (
𝑚𝑎

3𝜌𝑚𝑣
)𝑘𝑔 𝐶𝐾(𝑦𝑦𝐶𝐶𝑡)        (4.3.41) 

Here 𝐺𝑠 is the particle growth rate, previously reported in Eq. (4.3.17). As shown, the model 

accounts for the reaction leading to the growth process according to the seed-mediated 

mechanism.  



 

132 
 

The term on the left-hand side of Eq. (4.3.40) represents accumulation, while the first term 

on the right-hand side accounts for the growth process due to surface reaction. The second 

and last term on the right-hand side accounts for the formation of the seed particles. In this 

term, 𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)
1.85 gives the rate of formation of gold atoms in 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  which forms 

seed particles, and 𝛿(𝑠 − 𝑠𝑠) indicates that all the seed particles have equal diameter 𝑠𝑠, 

given by Eq. (4.3.29). The term 𝜌𝑚𝑣𝑠𝑠
3 is the moles of gold present in one seed particle. We 

have assumed here that as soon as the gold atoms form, they immediately aggregate, 

turning into seed particles; we made this assumption, because, for the time being, we do not 

know the aggregation rate and do not have a model for the aggregation process. Developing 

one is quite complex, and doing so is part of future work.  

4.4 Results and discussion 
To solve the model, we used the numerical code Parsival, which is commercially available 

for solving population balance equations. For the computational details of Parsival, we refer 

the reader to Wuithschick et al. (2001). In this code, the equations are solved on a mass 

basis; therefore, we transformed the equations, which were derived on a mole basis, into a 

mass basis. Since the reaction system is uniform, we converted the mole into kg by writing: 

𝑚𝑖 = 𝐶𝑖𝑌𝑖𝑉 (4.4.1) 

where 𝑚 is the mass in 𝑘𝑔, 𝐶 is the concentration in 𝑚𝑜𝑙 𝑚3⁄ , 𝑌 is the molar mass of species 

𝑖 in 𝑘𝑔 𝑚𝑜𝑙⁄  and 𝑉 is the volume of the synthesis solution. By differentiating Eq. (4.4.1) with 

respect to the time, one obtains: 

𝑑𝑚𝑖

𝑑𝑡
= 𝑌𝑖𝑉

𝑑𝐶𝑖

𝑑𝑡
+ 𝐶𝑖𝑌𝑖

𝑑𝑉

𝑑𝑡
 (4.4.2) 

In the synthesis, the reaction mixture is dilute, containing predominantly water. One can 

therefore assume that the volume of the mixture is constant. Therefore, Eq. (4.4.2) reduces 

to: 

𝑑𝑚𝑖

𝑑𝑡
= 𝑌𝑖𝑉

𝑑𝐶𝑖

𝑑𝑡
 (4.4.3) 

The balance equations of the model can then be expressed as follows: 

𝑇: 
𝑑[𝐶𝑇𝑌𝑇𝑉]

𝑑𝑡
= [−𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85 − 𝑘𝑝𝐶𝑇𝐶𝐵]𝑌𝑇𝑉 (4.4.4) 

𝐶𝑡: 
𝑑[𝐶𝐶𝑡𝑌𝐶𝑡𝑉]

𝑑𝑡
= −1.5 [𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85 +𝑚𝑎𝑘𝑔𝐶𝐾(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠𝑠
] 𝑌𝐶𝑡𝑉 (4.4.5) 

𝑃𝑟1: 
𝑑[𝐶𝑃𝑟1𝑌𝑃𝑟1𝑉]

𝑑𝑡
= [0.5 ∙ 𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85]𝑌𝑃𝑟1𝑉 (4.4.6) 
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𝐾: 
𝑑[𝐶𝐾𝑌𝐾𝑉]

𝑑𝑡
= [𝑘𝑝𝐶𝑇𝐶𝐵 −𝑚𝑎𝑘𝑔𝐶𝐾(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠
] 𝑌𝐾𝑉 (4.4.7) 

𝑃𝑟2: 
𝑑[𝐶𝑃𝑟2𝑌𝑃𝑟2𝑉]

𝑑𝑡
= [0.5 ∙ 𝑚𝑎𝑘𝑔𝐶𝐾(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠
] 𝑌𝑃𝑟2𝑉 (4.4.8) 

On the other hand, the population balance equation in Eq. (4.3.40) expresses how the 

particle size distribution evolves under the influence of the formation and growth of the seed 

particles. These are assumed to be formed at the seed size 𝑠𝑠, represented by the Dirac 

delta function. Because this function cannot be implemented in Parsival, we employed a 

similar but smooth function: a Gaussian distribution with mean equal to 𝑠𝑠 (i.e., the size of 

the seed particles) and an extremely small standard deviation. In Chapter 3, we showed that 

assuming a narrow Gaussian distribution does not affect the final results. For reaction 

conditions in which the initial values of the citrate-to-gold molar ratio are equal to or greater 

than five, we followed the methodology presented in Section 4.3.4 to determine the values of 

𝑦𝑥 and 𝑦𝑦 , which are the relative mole fractions of 𝐶𝑡𝐻2
− and 𝐶𝑡𝐻2−, respectively. 

The values of the constants 𝑘𝑟, 𝑘𝑝 and 𝑘𝑔 also need to be specified. At 100 0𝐶, their values, 

as reported in Section 4.3, are: 

𝑘𝑟 = 35.48 [𝑚
3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄   ;  𝑘𝑝 = 6.1𝑚

3 (𝑚𝑜𝑙. 𝑠)⁄   ;  𝑘𝑔 = 5.25 × 10
−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄  

Finally, in solving model equations in the synthesis model, we had to specify the initial 

conditions and the value of 𝑠𝑠. These initial conditions must satisfy the criterion that the initial 

value of the citrate-to-gold molar ratio in the synthesis solution be equal to or greater than 

five at a temperature of 100 0𝐶. In the literature, researchers such as Turkevich et al. (1951), 

Ji et al. (2007), Zabetakis et al. (2012) and Wuithschick et al. (2015) used experimental 

conditions that satisfy this condition. Albeit most of the experimental data reported by 

Turkevich et al. were for molar ratios below five, the authors reported a final mean size of 20 

nm at an initial value of the citrate-to-gold molar ratio of 7.6, which can be regarded as the 

synthesis standard condition. Similarly, Zabetakis et al. (2012) investigated the synthesis at 

a single initial molar ratio of five. However, while keeping the molar ratio constant, they 

altered the initial pH of the precursor by changing the initial concentrations. Ji et al. (2007) 

and Wuithschick et al. (2015), on the other hand, investigated the synthesis at several initial 

molar ratios at or greater than five. 

The value of the seed size 𝑠𝑠 can be calculated employing Eq. (4.3.29). In the following 

section, we validate the predictions obtained from this equation using the synthesis 

conditions of Wuithschick et al. (2015), where the size of the seeds is reported. Once Eq. 

(4.3.29) has been validated, we use it to illustrate that the value of the seed size is not 

constant, but depends on the initial conditions of the synthesis. 
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4.4.1 Seed size validation and sensitivity analysis 

To validate the value of the seed diameter obtained from Eq. (4.3.29), we employ the 

standard condition in the work of Wuithchick et al. (2015), where the molar ratio of citrate-to-

gold is ten, the initial precursor concentration in the synthesis solution at 100 0𝐶 is 

0.25 𝑚𝑜𝑙 𝑚3⁄ , and the final particle mean diameter is 18.6 𝑛𝑚. In this condition, the authors 

reported a value of the seed diameter of ~3 𝑛𝑚. This value allows validating the predictions 

of Eq. (4.3.29). 

To obtain the value of 𝑆, we use Eq. (4.3.27). At 100 0𝐶, 𝑘𝑟 = 35.48 [𝑚
3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄  and 

𝑘𝑝 = 6.1𝑚
3 (𝑚𝑜𝑙. 𝑠)⁄ . To determine the values of 𝐶𝐶𝑡𝐻2−,0  and 𝐶𝑂𝐻−,0 , we follow the 

procedure described in Section 4.A of the supporting information in Appendix E; these are 

1.4 × 10−3 𝑚𝑜𝑙/𝑚3 and 7.44 × 10−3 𝑚𝑜𝑙/𝑚3, respectively, while the pH value is 6.06. Thus: 

𝑆 =
𝑘𝑟
𝑘𝑝

[𝐶𝐶𝑡𝐻2−,0 ]
1.85

[𝐶𝑂𝐻−,0 ]
= 4.11 × 10−3   ;    𝑠𝑠 = 𝑠𝑓 (

𝑆

1 + 𝑆
)
1 3⁄

= 2.97 𝑛𝑚 

This value agrees with the measured seed size (~3 𝑛𝑚) measured by Wuithschick et al. 

(2015). We can therefore specify this value in the numerical code to implement the synthesis 

model for the standard condition of Wuithschick et al. (2015). Notice that changing the value 

of 𝑠𝑠, given the same synthesis conditions, does affect the model predictions. This indicates 

that the model is sensitive to the value assigned to the size of the seeds, and this value, 

therefore, has to be properly estimated. To illustrate this point, we changed the value of 

2.97 𝑛𝑚 by ±1 %, ±10 % and ±50 % and then solved the model numerically using these 

new, incorrect values of the seed diameter. Table 4.4.1 shows the results. 

Table 4.4.1. Sensitivity analysis of the model predictions (in terms of GNP final mean 

diameter) on the seed diameter. The value of the citrate-to-gold molar ratio is ten. 

Deviation from the 
actual seed size 

-50 % -10 % -1 % 0 % 1 % 10 % 50 % 

Seed diameter (nm) 1.49 2.67 2.94 2.97 3.00 3.27 4.46 
Final NP diameter (nm) 10.30 17.30 18.40 18.80 19.30 20.90 28.20 

 

These results reveal that as the seed diameter increases from the actual size of 2.97 nm, the 

final mean diameter increases. Because the selectivity is determined by the initial reaction 

conditions, the amount of the precursor that forms the seed particles is fixed. Increasing the 

seed size, therefore, decreases the number density of seeds. These seeds then grow into 

final GNPs with a mean diameter larger than 18.8 nm. Hence, specifying the accurate value 
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of the seed diameter in the model is important to predict correctly the final mean diameter of 

the NPs. 

In the calculations above, the model used as input the final size of the NPs, its output being 

the size of the seeds, which we were able to validate using the experimental information 

provided by Wuithschick et al. (2015). Nevertheless, one would like the model to be fully 

predictive and have as output also the final NP size. To this end, we need a submodel or an 

empirical correlation that can predict the seed size once the initial synthesis conditions are 

selected. Developing a submodel based on theoretical arguments is quite challenging and 

we regard it as part of future work. To render the model fully predictive, we opt for a 

correlation. 

4.4.2 Seed size correlation 

To derive a correlation able to predict the size of the seeds, we employ Eq. (4.3.29) to 

calculate the seed size for some syntheses for which experimental data are available and 

then relate the values obtained to the initial conditions adopted in the syntheses. We employ 

the experimental data of Ji et al. (2007), whose initial conditions satisfy the criterion for the 

synthesis model (i.e., the initial citrate-to-gold molar ratio must be equal to or greater than 

five). Ji et al. (2007) investigated the synthesis at 100 0𝐶 for a fixed initial value of precursor 

concentration, equal to 0.25 𝑚𝑜𝑙/𝑚3, and an initial value of the citrate-to-gold molar ratio 

varying between 0.7 and 28 (values referred to the synthesis solution). To derive the 

correlation, we considered the syntheses in which the initial values of the citrate-to-gold 

molar ratio were 5.6, 7.7, 8.4, 14 and 27.8, whilst the final mean sizes of the GNPs were 

19.79, 25.23, 25.87, 31.01, and 30.58 𝑛𝑚, respectively. From the initial conditions of these 

five syntheses and following the procedure described in Section 4.4.1, we could calculate 

the corresponding values of the selectivity 𝑆. Then, we calculated the seed diameters from 

Eq. (4.3.29). Figure 4.4.1A shows how the seed diameter varies with the initial value of the 

citrate-to-gold molar ratio. 
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Figure 4.4.1. (A) Seed diameter predicted by Eq. (3.29) as a function of the initial value of 

the citrate-to-gold molar ratio. (B) Seed diameter predicted by Eq. (3.29) as a function of the 

quasi-equilibrium pH. The values refer to the syntheses studied experimentally by Ji et al. 

(2007) at 100 0C. The initial concentration of gold in the synthesis solution is equal to 

0.25 𝑚𝑜𝑙/𝑚3 in all cases. 

The figure shows that the seed size varies linearly with the citrate-to-gold molar ratio when 

the initial precursor concentration and temperature are constant (at 0.25 and 100 0𝐶, 

respectively). Once the initial conditions of the synthesis are assigned, the value of the 

quasi-equilibrium pH can be calculated using the method outlined in Section 4.A of the SI. 
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Once the value of the quasi-equilibrium pH is known for each value of the initial citrate-to-

gold molar ratio, Figure 4.4.1B can be generated. This expresses the seed mean diameter of 

the NPs as a function of the quasi-equilibrium pH. Also in this case the functional relation is 

linear, the correlation fitting the data even better than in Figure 4.4.1A. Thus, letting 𝑝𝐻𝑄 

denote the quasi-equilibrium pH, we can write: 

𝑠𝑠 = 𝐴𝑠 ∙ 𝑝𝐻𝑄 + 𝐵𝑠         (4.4.9) 

where 𝐴𝑠 = − 5.40 and 𝐵𝑠 = 37.08 𝑛𝑚. 

Notice that the quasi-equilibrium pH depends solely on the citrate-to-gold molar ratio, being 

independent of the initial precursor concentration. We verified this using the thermodynamic 

model presented in Section 4.A of the SI. We employed this model also to generate Figure 

4.4.2, in which we report the values of the quasi-equilibrium pH against those of the citrate-

to-gold molar ratio for syntheses investigated experimentally by various research groups. 

These syntheses had different initial values of precursor concentration, but, as the figure 

reveals, the experimental points fall on one curve; this implies that the only variable that 

affects the quasi-equilibrium pH is indeed the citrate-to-gold molar ratio. 

 

Figure 4.4.2. Relationship between the quasi-equilibrium pH and the initial value of the 

citrate-to-gold molar ratio. The data refer to syntheses conducted at 100 0C by various 

research groups [Turkevich et al. (1951), Frens (1973), Freund and Spiro (1983), Abid 

(2003), Ji et al. (2007), Zabetakis et al. (2012) and Wuithschick et al. (2015)]. 

The correlation (4.4.9) is valid at a temperature of 100 0𝐶 for a fixed value of precursor 

concentration. We now extend its range of validity by considering experimental data referring 



 

138 
 

to syntheses in which this concentration varies, while the value of the initial citrate-to-gold 

molar ratio is kept fixed. To this end, we employ the synthesis conditions of Zabetakis et al. 

(2012), who kept the molar ratio equal to 5 whilst considering the precursor concentrations 

𝐶𝑇0 = 0.3, 0.6, 1.0, 1.2, and 2.0 𝑚𝑜𝑙 𝑚3⁄  in the synthesis solution. We use three out of these 

five initial conditions to obtain the dependence on the initial precursor concentration, while 

we use the remaining two in Section 4.4.3 to test the model predictions. These three initial 

conditions are 𝐶𝑇0 = 0.3, 1.0, and 2.0 𝑚𝑜𝑙 𝑚3⁄ , which yielded GNPs with mean sizes of 

18.70, 14.40, and 16.00 𝑛𝑚, respectively. For these three initial conditions, we can calculate 

the selectivity 𝑆 using the procedure in Section 4.4.1. Then, we calculate the seed diameter 

from Eq. (4.3.29). Figure 4.4.3 shows how the seed size varies with the initial precursor 

concentration. From this figure, the seed diameter linearly correlates with the initial 

concentration of precursor. To account for the dependence of the seed size on the initial 

precursor concentration in Eq. (4.4.9), we write: 

𝑠𝑠 = 𝐴𝑠 ∙ 𝑝𝐻𝑄 + 𝐷𝑠 ∙ 𝐶𝑇0 + 𝑄𝑠        (4.4.10) 

where 𝐷𝑠 = 4.03 and 𝑄𝑠 is a constant. 

 

Figure 4.4.3. Seed diameter predicted by Eq.(4.3.29) as a function of the initial precursor 

concentration. The values refer to the syntheses studied experimentally by Zabetakis et al. 

(2012) at 100 0C. The initial citrate-to-gold molar ratio in the synthesis solution is equal to 

five in all cases. 

Based on these figures, we take the values of 𝐴𝑠 and 𝐷𝑠 to be equal to − 5.40 and 4.03, 

respectively. To obtain the value of 𝑄𝑠, we equate the right-hand side of Eq. (4.4.10) to the 



 

139 
 

right-hand side of the linear correlation equation in Figure 4.4.1B, where the initial precursor 

concentration is 0.25 𝑚𝑜𝑙/𝑚3, thus writing:  

4.03 ∙ 𝐶𝑇0 + 𝑄𝑠 = 37.08        (4.4.11) 

This yields 𝑄𝑠 = 36.08 𝑛𝑚. Alternatively, one could equate the right-hand side of Eq. (4.4.10) 

to the right-hand side of the linear correlation equation in Figure 4.4.3, where the quasi-

equilibrium pH is 5.72. This yields, 𝑄𝑠 = 36.49 𝑛𝑚. This and the previous values are quite 

close; they would have been identical if the correlation coefficients in Figures 4.4.1B and 

4.4.3 had been unity. As Figure 4.4.1B contains more data points than Figure 4.4.3, we opt 

for 𝑄𝑠 = 36.08 𝑛𝑚. Thus, we write Eq. (4.4.10) as: 

𝑠𝑠 = − 5.40 ∙ 𝑝𝐻𝑄 + 4.03 ∙ 𝐶𝑇0 + 36.08       (4.4.12) 

With this correlation for the seed diameter applicable at the synthesis temperature of 100 0C, 

the synthesis model is fully predictive. We test the model predictions in the following section. 

4.4.3 Model validation 

In this section, we test the model by comparing its predictions against experimental data. 

These data refer to syntheses whose initial conditions satisfy the criterion on which the 

model is based, namely that the initial citrate-to-gold molar ratio must be equal to or greater 

than five; furthermore, they refer to syntheses conducted at a temperature of 100 0C. Three 

data sets are taken from the work of Ji et al. (2007) and two from the work of Zabetakis et al. 

(2012). Ji et al. kept the initial precursor concentration constant at 0.25 𝑚𝑜𝑙/𝑚3 and varied 

the citrate-to-gold molar ratio considering the values of 7.0, 10.5 and 17.8. Zabetakis et al., 

conversely, kept the initial citrate-to-gold molar ratio constant at five and varied the initial 

precursor concentration, considering the values of 0.6 and 1.2 𝑚𝑜𝑙/𝑚3. From these initial 

conditions, following the procedure outlined in Section 4.A of the SI, we obtained the value of 

the quasi-equilibrium pH, and then calculated the corresponding values of seed diameter 

using Eq. (4.4.12). Notice that these data were not part of the data set employed to derive 

the seed size correlation in the previous section. 

For the data of Ji et al. (2007), Figure 4.4.4A shows the particle sizes predicted by our model 

and by that of Kumar et al. (2007) against the experimental data. As shown, the predictions 

of our model are in very good agreement and follow the same trend as the experimental 

data. The values of the seed diameter calculated from Eq. (4.4.12) for the citrate-to-gold 

molar ratios of 7.0, 10.5 and 17.8 are 5.28, 4.26, and 2.99 𝑛𝑚, respectively. These values, 

also shown in Figure 4.4.4A, compare reasonably well with those of 5.63, 4.25, and 2.91 𝑛𝑚, 

calculated from Eq. (4.3.29). These good predictions of the seed diameter explain why the 
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model yields good predictions in terms of final particle size. As the quasi-equilibrium pH 

increases, indicating an increasing amount of 𝑂𝐻−, the amount of precursor that generates 

𝐴𝑢𝐶𝑙3(𝑂𝐻)
− increases, while the amount of precursor that forms gold atoms and then seed 

particles decreases. The latter trend is confirmed by the decreasing values of the seed 

diameter. Thereafter, the remaining precursor, in the form 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−, grows the seed 

particles into the final GNPs. Since the initial precursor concentration in these three initial 

conditions was kept constant at 0.25 𝑚𝑜𝑙/𝑚3, the increasing amounts of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− grow 

the seed particles to larger final sizes. 

In Figure 4.4.4A, we also report the values predicted by the model developed by Kumar et 

al. (2007). To obtain these values, we implemented and solved their model numerically. In 

this model, Kumar et al. assumed the seed diameter to be constant at 2 nm for different 

reaction conditions. The description of how their model was solved numerically, and the 

checks carried out to verify that the implementation is correct, are discussed in Chapter 3. 

We see that the predictions from their model show an opposite trend: the predicted mean 

diameter decreases with increasing quasi-equilibrium pH; moreover, the model predictions 

are less accurate for two of the three conditions reported in Figure 4.4.4A. Their model is 

based on a mechanistic description which is completely different from that informed by the 

chemistry of precursor and reducing agent in the synthesis solution; accordingly, it does not 

account for the important role played by the pH in this synthesis method. The pH determines 

the relative mole fractions of the citrate species and the quantities of precursor that reduces 

to gold atoms and passivates into the hydroxylated form which is able to grow the seeds 

(𝐴𝑢𝐶𝑙3(𝑂𝐻)
−). The concentration of gold atoms along with the balance of forces of attraction 

and repulsion determines the seed size. As discussed, this is not constant, contrary to the 

assumption used in the model of Kumar et al. 
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Figure 4.4.4. Final particle size predicted by our model and that of Kumar et al. (2007) 

against the experimental data obtained by Ji et al. (A) and Zabetakis et al. (B). 

For the data of Zabetakis et al. (2012), Figure 4.4.4B shows the values of the final particle 

sizes predicted by our model and by that of Kumar et al. (2007) against the experimental 

data. Again, the predictions of our model are in very good agreement with the latter. The 

values of the seed diameter in this case are larger than those reported in Figure 4.4.4A for 
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the syntheses of Ji et al. This is because the seeds are formed via an aggregation process, 

whose effect decreases as the value of the pH of the mixture at quasi-equilibrium conditions 

increases. For both syntheses conducted by Zabetakis et al. the pH value is 5.72 (the value 

does not change because in both syntheses the value of the citrate-to-gold molar ratio is the 

same). This value is lower than all the pH values characterizing the syntheses conducted by 

Ji et al., as one can see from Figure 4.4.4A. Even if the quasi-equilibrium pH, which 

determines the selectivity, is identical for both conditions in Figure 4.4.4B, the initial 

precursor concentrations are different. The larger initial concentration of precursor increases 

the concentration of gold atoms. These atoms aggregate more significantly to produce larger 

seeds, and also a greater number concentration of seed particles. As shown in Figure 

4.4.4B, the seed size for 𝐶𝑇0 = 1.2 𝑚𝑜𝑙/𝑚
3 is 10.03 𝑛𝑚 while for 𝐶𝑇0 = 0.6 𝑚𝑜𝑙/𝑚

3 is 

7.61 𝑛𝑚. For the number concentration of seed particles, obtained by solving the synthesis 

model, 𝐶𝑇0 = 1.2 𝑚𝑜𝑙/𝑚
3 yields about twice the value for 𝐶𝑇0 = 0.6 𝑚𝑜𝑙/𝑚

3. For the growth 

process, although a larger amount of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− is generated in the case of 𝐶𝑇0 =

1.2 𝑚𝑜𝑙/𝑚3, this amount grows the greater number of seed particles (per unit volume) to 

almost the same final size as in the case of 𝐶𝑇0 = 0.6 𝑚𝑜𝑙/𝑚
3, as shown. 

The predictions of the model by Kumar et al. (2007) deviate considerably from the 

experimental data, the NP final sizes being smaller than the size of the seeds yielded by our 

model. We have discussed in Chapter 3 why their model does not yield accurate predictions, 

and so here we do not comment on this at length. Although the model accounts for the 

reduction of the precursor, it does not account for the hydroxylation of the tetrachloroauric 

ions, a reaction that occurs in parallel with the reduction step when the precursor and 

reducing agent solutions are mixed. 

In our model, the three most important synthesis parameters are the initial precursor 

concentration, equilibrium pH of the synthesis solution and synthesis temperature. From the 

seed correlation reported in Eq. (4.4.12), both the initial precursor concentration and 

equilibrium pH of the synthesis solution determine the seed size, and hence the final size of 

GNPs. The synthesis temperature, on the other hand, affects reaction rate constants and 

hence the selectivity of parallel reactions such as those of the precursor reduction and 

passivation steps. See Eq. (4.3.27). Notice that the seed correlation in Eq. (4.4.12) applies to 

the citrate synthesis method at 100 0C. 

Also, the size distribution resulting from our model is monodisperse. This is because of some 

of the assumptions we employed in deriving the model. These assumptions include 1) the 

synthesis solution is perfectly mixed (since the synthesis is usually carried out in a well-

mixed batch reactor), 2) the aggregation model is not modelled (the model is based on the 
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seed-mediated mechanism proposed by Wuithschick et al. (2015), where seed particles form 

and the grow), 3) the seed particles from the same synthesis condition have identical size 

i.e. they are monodisperse (see Eq. (4.3.40)), and 4) the seed formation step is fully 

decoupled from the growth step, where the growth rate is independent of size (see eq. 

(4.3.17)). Based on these assumptions, the predicted final size distribution is monodisperse 

as the seed size distribution. 

4.6 Concluding remarks 
This chapter presented a new mathematical model for the description of the synthesis of 

gold nanoparticles via the citrate synthesis method. This method involves reducing 

tetrachloroauric acid with sodium citrate in an aqueous medium. In this medium, the 

precursor and reducing agent can exist in various forms by reacting with 𝑂𝐻− and 𝐻+, 

respectively. Furthermore, the system features several reactions and processes that occur in 

series and in parallel. Using the seed-mediated mechanism proposed by Wuithschick et al. 

(2015), we reported the steps describing the evolution of GNPs in the synthesis. 

Subsequently, we derived rate equations for the reactions involved in the reduction, 

passivation and growth steps, and proposed a method of calculating the seed diameter in 

the seed formation step. Then, we reported the synthesis model that describes how the 

components evolve with time, assuming that the pH value of the reaction mixture is 

constantly equal to its quasi-equilibrium value. 

We solved the model for experimental conditions satisfying the criterion of initial values of 

the citrate-to-gold molar ratio equal to or greater than five. In this model, seed particles first 

form and then GNPs evolve from them. To determine the size of the seeds, we derived a 

correlation based on the initial conditions of the synthesis. We illustrated that the model 

predictions are sensitive to the value employed for the seed size. In the cases investigated, 

the model predictions agreed very well with the experimental data. In most of these cases, 

the growth process overrides the seed formation process in determining the final particle 

size; the more the amount of gold that passivates, the larger the final particle size is. At low 

pH values, nonetheless, we saw that seed sizes are larger, since the aggregation process is 

more vigorous. 
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Chapter 5 

Modelling of the Aggregation Process 

In this chapter, we present a modelling approach for the aggregation process in metal 

nanoparticles synthesis based on the theory proposed by Polte (2015). In the following 

introduction, we report the motivation and structure of the chapter. 

5.1 Introduction 
Metal nanoparticles (NPs) are investigated for several potential applications, in fields such 

as biomedicine, electronics, optics, energy and catalysis, because of their interesting 

thermal, electrical, optical, magnetic and chemical properties. These properties are 

determined by parameters such as size, shape, composition and crystalline structure. 

Although many techniques can be used to obtain them, researchers most commonly 

synthesize metal NPs in liquids, a mixture that is otherwise called a colloid (Polte, 2015). In 

colloids, the shape, composition and crystalline structure of the final NPs are usually pre-

determined by selecting a synthesis method (Liveri, 2006). Size, on the other hand, varies 

from the nucleus size to the final size, resulting in a particle size distribution. The nucleus 

size corresponds to the smallest size of the particles. Understanding the evolution of NPs 

from the nucleus size to the final distribution therefore is essential. 

Hypothetically, one can imagine the processes involved in the evolution of NPs to include 

nucleation, growth, aggregation, and possibly breakage and dissolution. Historically, 

however, colloidal NP syntheses have been described using a nucleation-growth 

mechanism. For many metal NPs, this mechanism follows the classical nucleation theory 

(CNT) first employed by LaMer and Dinegar (1950). For gold NPs synthesized by the citrate 

synthesis method, Turkevich et al. (1951) proposed another nucleation-growth mechanism 

called the Turkevich’s organizer theory. While Finke and Watzy (1997) reported the failure of 

CNT in describing NP syntheses in general, in Chapter 3 we reported the failure of the 

Turkevich organizer theory for the citrate synthesis method. In a recent theory, Polte (2015) 

argued that metal atoms, in particular silver and gold atoms, formed from the precursor can 

exist in the particle phase as dimers and then as larger particles owing to the aggregation 

process. This process occurs because of the prevailing Van der Waal’s forces of attraction at 

the atomic level, causing metal atoms to aggregate into bigger particles. In colloids, NP 

aggregation is stopped by either electrostatic repulsion or steric hindrance. In the former, 

ions called potential determining ions conjugate with the particles thereby making all 
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particles carry the same sign and quantity of charges. Because of the like charges, they 

repel one another. In the latter, the particles are shielded from contacting one another by 

macromolecules. In this work, we focus on electrostatically stabilized particles. 

As discussed in Chapter 2, the interaction of colloidal particles due to the forces of attraction 

and repulsion is described in the popular DLVO theory, named after Derjaguin, Landau, 

Verwey and Overbreek (Derjaguin and Landau, 1941; Verwey and Overbreek, 1948). In this 

theory, the total interaction energy between two particles is the sum of the Van der Waal’s 

energy of attraction and electrostatic energy of repulsion. Based on this theory, Fuch (1960) 

developed an expression for the stability of identical particles against aggregation in terms of 

the total interaction energy between a pair over the whole space of interaction. This 

interaction energy has a peak value at a separation between the particles equivalent to the 

electric double layer (Israelachvili, 2011). Subsequently, Reerink and Overbreek (1954) 

simplified the expression to a form in terms of the peak energy and then to another form in 

terms of concentration of the potential determining ions. For particles of different sizes, 

authors such as Marchisio and Fox (2013) and Bogush and Zukoski (1991) reported the 

equivalent expression of Fuch in terms of the total interaction energy and that of Reerink and 

Overbreek in terms of the peak energy. Using the expression of Reerink and Overbreek in 

terms of the concentration of the potential determining ions, on the other hand, Kumar et al. 

(2007) developed a model for the aggregation process and employed it as a submodel in 

predicting the evolution of particle size in the citrate synthesis method for gold nanoparticles. 

Unfortunately, the submodel failed to describe the synthesis as the aggregation process 

never stopped. For more details on this aspect, we refer the reader to Chapter 3.  

To extend the expression of Reerink and Overbreek in terms of the peak energy, however, 

Bogush and Zukoski (1991) proposed that the peak energy linearly increases with the 

harmonic mean when particles of different sizes aggregate. On the profile of the peak energy 

with size, Polte (2015) proposed that it increases from a value of zero at the minimum 

particle size (that is a metal atom) to a maximum value in the final NP, thereby suggesting 

that aggregation should stop. 

In this chapter, we develop a model for aggregation based on the theory proposed by Polte 

(2015). To test the behaviour of the model, we employ as case study the citrate reduction 

method of synthesizing gold nanoparticles for which in Chapter 4 we reported a synthesis 

model. This synthesis model describes the citrate synthesis method where the aggregation 

process is fully decoupled from other processes such the growth process. Using the 

synthesis model, we can calculate the particle size, called the seed size, resulting from the 
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aggregation process. Thus, we can investigate the behaviour of the aggregation submodel in 

the citrate synthesis method. 

The chapter is structured as follows. Section 5.2 presents the new aggregation model while 

Section 5.3 briefly describes the case study along with the model describing the synthesis. 

This model comprises submodels for reactions, gold atoms formation, aggregation and 

growth. Section 5.4 presents the solutions of the model and discusses the results. Finally, 

Section 5.5 reports the concluding remarks. 

5.2 The aggregation submodel 
In writing a continuity statement for the particle phase, one employs the population balance 

modelling approach (Ramkrisna, 2000; Marchisio and Fox, 2013). This approach is based on 

the size distribution of the particles (PSD) and accounts for the processes that affect the 

particle population. In the particle phase, under the influence of only the aggregation 

process, new particles generate while consuming old particles. The generation and 

consumption terms owing to the aggregation process feature in the population balance 

modelling. For a colloidal system that is uniform in space, the PSD does not depend on the 

real-space coordinates. The PSD, which we denote as 𝑓(𝑠, 𝑡), depends solely on the particle 

size and on the time coordinate. By definition, 𝑓(𝑠, 𝑡)𝑑𝑠 represents the number of particles 

per unit volume of synthesis solution with size in the differential range 𝑑𝑠 about the size 𝑠 at 

time 𝑡. For details about the derivation of the population balance equation, we refer to 

Ramkrishna (2000), Marchisio and Fox (2013) and Chapter 2 of this thesis. Also in Chapter 

2, Section 2.2.3.3, we have derived the source and death terms due to the aggregation 

process in the population balance equation. The equation reads: 

𝜕

𝜕𝑡
𝑓(𝑠, 𝑡) = [(𝑠2 2⁄ )∫

𝜔̃𝐴(𝑠̅; 𝑠̂(𝑠̅, 𝑠))

𝑊(𝑠̅; 𝑠̂(𝑠̅, 𝑠))
× (𝑠3 − 𝑠̅3)−2 3⁄ 𝑓(𝑠̅, 𝑡)  ∗ 𝑓(𝑠̂, 𝑡)𝑑𝑠̅ 

𝑠

0

] 

                                     − [𝑓(𝑠, 𝑡) ∫
𝜔̃𝐴(𝑠,𝑠̅)

𝑊(𝑠,𝑠̅)
 𝑓(𝑠̅, 𝑡) 

∞

0
𝑑𝑠̅]    ;    𝑠̂ ≡ (𝑠3 − 𝑠̅3)1 3⁄   (5.2.1) 

The first and second terms on the right-hand-side account for the particles gained and lost 

due to the aggregation process, respectively. The first term gives the rate at which particles 

of sizes 𝑠̅ and 𝑠̂ aggregate to form particles of size 𝑠, while the second term gives the rate at 

which particles of size 𝑠 aggregate with particles of size 𝑠̅ to form larger particles. These 

terms involve the functions 𝜔̃𝐴(𝑠̅, 𝑠̂) and 𝑊(𝑠̅, 𝑠̂). The former, measured in 𝑚3 𝑠⁄ , is the 

aggregation kernel and indicates the rate of aggregation; the latter is the stability factor, 

which accounts for the fact that not all collisions are successful at producing a new 

aggregate. This stability factor is a number between 1 and ∞. When 𝑊 = 1, fast aggregation 
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is obtained, while when 𝑊 = ∞, no aggregation occurs. There are many factors that can 

impede aggregation. As revealed in Section 2.2.3.3 in Chapter 2, in our case, we consider 

the effect of surface charges and their electric potential. 

For colloidal systems, as the particle sizes are below 1 𝜇𝑚, the aggregation process is 

controlled by the Brownian motion and the aggregation kernel is expressed as (Elimelech et 

al., 1995): 

𝜔̃𝐴(𝑠̅, 𝑠̂) =
2𝑘𝐵𝑇

3𝜇
(
1

𝑠̅
+
1

𝑠̂
) (𝑠̅ + 𝑠̂)        (5.2.2) 

where 𝐾𝐵, 𝑇 and 𝜇 are the Boltzmann constant and the temperature and viscosity of the 

fluid, respectively, as presented in Eq. (2.2.106) in Chapter 2. 

For the stability factor 𝑊, Fuch (1960) first developed an expression that accounts for the 

effect of the sum of the potential energies associated with the attractive and repulsive forces 

among monodisperse particles of diameter 𝑠0. Subsequently, Bogush and Zukoski (1991) 

reported the expression for particles of different sizes 𝑠̅ and 𝑠̂, also previously reported in 

Chapter 2, as: 

𝑊(𝑠̅, 𝑠̂) =
(𝑠̅+𝑠̂)

2
∫

exp[
𝐸𝑇

𝑘𝐵𝑇
⁄ ]

𝑥2
𝑑𝑥

∞

(𝑠̅+𝑠̂) 2⁄
       (5.2.3) 

Since binary aggregation is usually assumed (Ramkrishna, 2000), 𝑥 is the distance away 

from the reference particle, which ranges from (𝑠̅ + 𝑠̂) 2⁄ , when the two particles are in 

contact before aggregating, to infinity. 𝐸𝑇 is the sum of the energy due to the Van der Waals 

force of attraction and that due the charge repulsion. 𝐸𝑇 has a peak value 𝐸𝑎𝑔𝑔 at a 

separation between the particles equivalent to the electric double layer (Israelachvili, 2011). 

Reerink and Overbreek (1954) simplified the original expression of Fuch (for monodisperse 

particles) to a form in terms of 𝐸𝑎𝑔𝑔. For particles of different sizes, however, as previously 

reported in Chapter 2, authors such as Marchisio and Fox (2013) and Bogush and Zukoski 

(1991) reported an expression in terms of 𝐸𝑎𝑔𝑔. This expression, previously reported in 

Chapter 2, is:  

𝑊(𝑠̅, 𝑠̂) =
2κ

(𝑠̅+𝑠̂)
exp [

𝐸𝑎𝑔𝑔(𝑠̅, 𝑠̂)
𝑘𝐵𝑇
⁄ ]       (5.2.4) 

1 κ⁄ , with a dimension of 𝐿, is the thickness of the electric-double layer formed by the surface 

charges. It is expressed as (Israelachvili, 2011; also see Chapter 2): 

1 κ⁄ = [
𝜖0𝜖𝑐𝑘𝐵𝑇

∑ (𝑝𝑖𝑒
2𝑧𝑖

2)𝑖
]
1 2⁄

          (5.2.5) 
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𝜖0 is the permittivity of free space, whose value is 8.85 × 10−12 𝐹 𝑚⁄ ; 𝜖𝑐 is the dielectric 

constant of the solution; 𝑒 is the charge on an electron, whose value is 1.6 × 10−19𝐶; 𝑝𝑖 is 

the number concentration of the potential determining ions in the bulk of the solution 

measured in 1 𝑚3⁄ ; and 𝑧𝑖 is the charge on the ion. In Appendix F, we present a calculation 

using Eq. (5.2.5). 

In Chapter 2, Section 2.2.3.3, we have shown that Eq. (5.2.4) is dimensionally incorrect; it 

cannot yield 𝑊(𝑠̅, 𝑠̂), a dimensionless number.  

To correct this problem, instead of 2𝜅 (𝑠̅ + 𝑠̂)⁄  as the coefficient in Eq. (5.2.4), we use 

𝜅(𝑠̅ + 𝑠̂) 2⁄ . (The term (𝑠̅ + 𝑠̂) 2⁄  is the average size of the two particles aggregating.) Doing 

so yields a dimensionally correct expression as: 

𝑊(𝑠̅, 𝑠̂) =
κ(𝑠̅+𝑠̂)
2
exp [

𝐸𝑎𝑔𝑔(𝑠̅, 𝑠̂)
𝑘𝐵𝑇
⁄ ]       (5.2.6) 

To test that Eq. (5.2.6) yields an approximate value as Eq. (5.2.3), we employ them in 

solving a problem investigated experimentally and reported by Israelachvili (2011). We refer 

the reader to Appendix G for this problem and its calculations. In these calculations, we 

solved Eq. (5.2.3) numerically and Eq. (5.2.6) at the double layer thickness. Table 5.2.1 

shows the results from these expressions. 

Table 5.2.1: Results for the experimental problem from Israelachvili (2011) using Eqs (5.2.3) 

and (5.2.6). 

 Eq. (5.2.3) Eq. (5.2.6) 

𝑊(𝑠̅, 𝑠̂) 8.32 × 1013 1.27 × 1014 

 

As shown, the result from Eq. (5.2.6) has the same order of magnitude as that of the original 

expression (Eq. (5.2.3)). Thus, Eq. (5.2.6) is the approximate expression of Eq. (5.2.3). 

 

Eq. (5.2.6) yields a value of the stability factor 𝑊(𝑠̅, 𝑠̂) between any particle pair of sizes 𝑠̅ 

and 𝑠̂ in a colloidal system defined by the thickness of the electric double layer κ, 

aggregation barrier 𝐸𝑎𝑔𝑔 and temperature 𝑇 of the colloidal system. Given Eq. (5.2.5), κ can 

be calculated. Similarly, since the system is usually isothermal, 𝑇 is known. However, for any 

colloidal system, 𝐸𝑎𝑔𝑔 cannot be easily determined. In deriving a simplified expression for 

(𝑠̅, 𝑠̂), Reerink and Overbreek (1954) assumed 𝐸𝑎𝑔𝑔 = 0 and reported an equation in terms 
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of the concentration of the potential determining ions. In Section 2.2.3, we showed that 

𝐸𝑎𝑔𝑔 = 0 in the derivation of Reerink and Overbreek. This assumption may be reasonable for 

colloidal systems where there is no stabilization by electrostatic repulsion, only the Van der 

Waal’s force of attraction. For these systems, the value of 𝐸𝑇 varies from a large negative 

number to zero. Kumar et al. (2007) employed this simplified expression for the aggregation 

process in the citrate method of synthesizing gold nanoparticles. Because of the assumption 

that 𝐸𝑎𝑔𝑔 = 0, which is not applicable to colloidal systems (Polte, 2015), in the model 

developed by Kumar et al., particles aggregated indefinitely, in contrast to experimental 

evidence. We refer the reader to Chapter 3 for more details. 

In nanoparticle synthesis, however, since electrostatic repulsion stabilizes nanoparticles, the 

maximum value of 𝐸𝑎𝑔𝑔 cannot be zero. This claim is based on a profile reported in Figure 4 

(d) of the article of Polte (2015), which presents how 𝐸𝑎𝑔𝑔 varies with size. In deriving this 

profile, Polte proposed a thought experiment. In this experiment, he employed the DLVO 

theory, which we have reviewed in Chapter 2, Section 2.2.3. He imagined that the 

aggregating particles are identical in size, forming identical bigger particles, as the 

aggregation process progresses. In the following derivation, to obtain an expression for 𝐸𝑎𝑔𝑔 

for particles of identical size 𝑠̅ ((𝑠̂ = 𝑠̅), we reason as Polte (2015) did. Then, we modify the 

expression for particles of different sizes. 

For identical spherical particles, an expression for 𝐸𝑇 from the DLVO theory can be written 

as (Polte, 2015): 

𝐸𝑇 = −
𝐴𝐻𝑠̅

24𝐷
+
𝜋𝑠̅

2

𝑧2𝑒2𝜓0
2𝜌0

𝑘𝐵𝑇κ
2  exp(−κ𝐷)       (5.2.7) 

The terms in this equation are as defined previously (see Section 2.2.3). 

Based on this equation and his experimental investigations of metal nanoparticles, Polte 

claimed that 𝐸𝑇 and hence 𝐸𝑎𝑔𝑔 increase with size according to Figure 4 (d) of the article of 

Polte (2015). We have reproduced this figure in Figure 5.2.1. In this figure, A, B, C, and D 

represent the profiles of 𝐸𝑎𝑔𝑔 for four colloidal systems. As shown, for each system, 𝐸𝑎𝑔𝑔 

increases with size from zero to a maximum value. We can assume the value of 𝐸𝑎𝑔𝑔 to be 

zero at the smallest particle size, which is taken to be the size of a metal atom since the 

particle phase evolves from metal atoms (Polte, 2015). For any system to be stable to 

aggregation, the value of 𝐸𝑎𝑔𝑔 must be above the grey area. At the upper bound of the grey 

area, the value of 𝐸𝑎𝑔𝑔 of the colloidal system is sufficient to overcome the fluctuation energy 

of the aggregating particles. The fluctuation energy is equivalent to the thermal energy 𝑘𝐵𝑇 

as revealed in Eq. (5.2.6). In the grey area, the values of 𝐸𝑎𝑔𝑔 are insufficient to prevent 
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particle aggregation. (Particles aggregate significantly in colloidal systems whose values of 

𝐸𝑎𝑔𝑔 are within the grey area.) Thus, while the colloidal systems described by A and B can 

be stabilized by electrostatic repulsion once their particle sizes correspond to values of 𝐸𝑎𝑔𝑔 

that are above the grey area, systems described by C and D cannot be stabilized in the 

range of size shown. We refer the reader to the article of Polte (2015) for more details. 

Further, the initial steepness of the profile of 𝐸𝑎𝑔𝑔 with size relates to how small the stable 

size of the colloidal system is. The steeper the curve is initially, the smaller the stable size is. 

The stable size in Figure 5.2.1 is the size corresponding to the intersection of the 𝐸𝑎𝑔𝑔 curve 

and the upper bound of the grey area. This stable size is smaller for system A than for 

system B. In the same vein, we can conclude that system A is more stable than system B. 

 

 

 

 

Figure 5.2.1: The profiles of the aggregation barrier 𝐸𝑎𝑔𝑔 with particle size for four different 

colloidal systems. Systems described by profiles A and B form stable particles while systems 

described by profiles C and D do not. Data derived from Polte (2015): Figure 2 (d). 

 

From this figure, 𝐸𝑎𝑔𝑔 increases with size and attains a maximum value at an infinite size 

(the curve having an asymptote). We describe this asymptote as: 

𝐸𝑎𝑔𝑔 = 𝐸𝑚𝑎𝑥           (5.2.8) 
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where 𝐸𝑚𝑎𝑥 is a maximum value of 𝐸𝑎𝑔𝑔 as illustrated in Figure 5.2.1 As shown, the value of 

𝐸𝑚𝑎𝑥 depends on the colloidal system. Furthermore, we can describe how the profile of 𝐸𝑎𝑔𝑔 

approaches the asymptote quite well using an exponential function. The form of the 

exponential function should resemble that used to describe the dynamics of a first-order 

system. After a step change in an input variable, the output variable of a first-order system 

attains a new equilibrium value as time 𝑡 → ∞. At 𝑡 = 0, however, the change in the output 

variable is zero. The dynamics of a first-order is given by: 

∆𝑢 = ∆𝑢𝑚𝑎𝑥(1 − exp[− 𝑡 𝜏⁄ ])        (5.2.9)  

where ∆𝑢 is the change in the output variable, ∆𝑢𝑚𝑎𝑥 is the maximum change of the output 

variable, which depends on the step change in input, and 𝜏 is the characteristic time for the 

system to reach equilibrium. While 𝑡 has the value of zero, the smallest possible size of the 

particles is the diameter of a metal atom 𝑠0. Therefore, to write Eq. (5.2.9) in terms of a 

colloidal system, we make the following transformations: 

𝑡 = (
𝑠̅

𝑠0
− 1); ∆𝑢 = 𝐸𝑎𝑔𝑔; ∆𝑢𝑚𝑎𝑥 = 𝐸𝑚𝑎𝑥; 𝜏 = 1 ℎ⁄      (5.2.10) 

where ℎ is a constant value. 

Thus, to describe the profile of 𝐸𝑎𝑔𝑔 with size, we propose the equation as: 

𝐸𝑎𝑔𝑔((𝑠̅; 𝑠̂ = 𝑠̅)) = 𝐸𝑚𝑎𝑥 (1 − exp [−ℎ (
𝑠̅

𝑠0
− 1)])     (5.2.11) 

Using Eq. (5.2.11), when 𝑠0 = 𝑠̅, 𝐸𝑎𝑔𝑔 = 0 as required from Figure 5.2.1. The value of 𝐸𝑚𝑎𝑥, 

as observed from Figure 5.2.1, depends on the colloidal system, decreasing in value as we 

move from system A to system D. Substituting Eq. (5.2.11) in Eq. (5.2.6), however, yields a 

more complex expression for 𝑊 that can lead to numerical convergence problems (for 

example, a numerical overflow – that is, yielding values larger than the largest number that 

can be handled by a computer). To simplify it, we propose a linear approximation for Eq. 

(5.2.11). For curves A and B, this linear relationship is sufficient to describe how 𝐸𝑎𝑔𝑔 varies 

with size, because their colloidal systems become stable within the initial steepness of the 

curve. However, for the other two colloidal systems represented by curves C and D, this 

linear relationship would be inaccurate. Furthermore, as described in the Figure, aggregation 

in these later colloidal systems would never stop. Notice that Polte (2015) derived Figure 

5.2.1, and in particular curves C and D, from a thought experiment. Experimentally, however, 

aggregation in all colloidal systems stops. In describing the profile of 𝐸𝑎𝑔𝑔 for their 

experimental investigations, Bogush and Zukoski (1991) employed a linear relationship 

between 𝐸𝑎𝑔𝑔 and size. Furthermore, they illustrated that the particles in their colloidal 
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systems were stable to the aggregation process. Thus, instead of the exponential relation in 

Eq. (5.2.11), we opt for a linear relationship. Using a Taylor’s series expansion of the right-

hand side Eq. (5.2.11) about the point 𝑠̅ = 𝑠0, we write: 

𝐸𝑎𝑔𝑔((𝑠̅; 𝑠̂ = 𝑠̅)) = 𝐸𝑎𝑔𝑔(𝑠0) +
𝑑𝐸𝑎𝑔𝑔

𝑑𝑠
(𝑠0)(𝑠̅ − 𝑠0)     (5.2.12) 

As previously shown, 𝐸𝑎𝑔𝑔(𝑠0) = 0. From Eq. (5.2.11), 

𝑑𝐸𝑎𝑔𝑔

𝑑𝑠
(𝑠0) = 𝐸𝑚𝑎𝑥

ℎ

𝑠0
          (5.2.13) 

Eq. (5.2.12) when rearranged becomes: 

𝐸𝑎𝑔𝑔(𝑠̅; 𝑠̂ = 𝑠̅) = 𝑍(𝑠̅ 𝑠0⁄ − 1);  𝑍 = 𝐸𝑚𝑎𝑥ℎ      (5.2.14) 

where 𝑍 is a gradient that is constant for a colloidal system. When divided by the thermal 

energy i.e. 𝑍 𝑘𝐵𝑇⁄ , we call it the stability gradient. 

In Eq. (5.2.14), when 𝑠0 = 𝑠̅, 𝐸𝑎𝑔𝑔 = 0 as required from Figure 5.2.1. Thereafter, 𝐸𝑎𝑔𝑔 

increases linearly with size, describing quite well the colloidal systems represented by 

curves A and B in the grey area in Figure 5.2.1.  

As shown, Eq. (5.2.14) holds for particles of identical size 𝑠̅. To extend this equation to 

particles of different sizes, we employ an expression proposed by Bogush and Zukoski 

(1991). In this expression, Bogush and Zukoski (1991) used the harmonic mean of sizes 𝑠̅ 

and 𝑠̂ of the aggregating particles. We write the expression for the harmonic mean as 

(Bogush and Zukoski, 1991): 

2𝑠̅𝑠̂

(𝑠̅+𝑠̂)
           (5.2.15) 

Thus, instead of 𝑠̅ in Eq. (5.2.14), we write: 

𝐸𝑎𝑔𝑔(𝑠̅; 𝑠̂) = 𝑍 (
2𝑠̅𝑠̂

(𝑠̅+𝑠̂)𝑠0
− 1)        (5.2.16) 

In Eq. (5.2.16), when 𝑠̅ = 𝑠̂ = 𝑠0, 𝐸𝑎𝑔𝑔 = 0 as required from Figure 5.2.1. Further, for 

identical size, when 𝑠̅ = 𝑠̂ ≠ 𝑠0, 𝐸𝑎𝑔𝑔 is finite and increases with size. Considering Eq. 

(5.2.15) for different sizes, as the size difference increases, the harmonic mean increases, 

thus increasing 𝐸𝑎𝑔𝑔 and 𝑊. Using Eq. (5.2.16), therefore, particles of different sizes should 

aggregate less than those of identical size. We can combine Eqs. (5.2.2), (5.2.6) and 

(5.2.16) as follows: 

𝜔̃𝐴

𝑊
(𝑠̅; 𝑠̂) =

4𝑘𝐵𝑇

3𝜇κ
×

(
1

𝑠̅
+
1

𝑠̂
)

exp[
𝑍

𝑘𝐵𝑇
(

2𝑠̅𝑠̂

𝑠0(𝑠̅+𝑠̂)
−1)]

       (5.2.17) 
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To use this equation, we need a value for 𝑍. Employing the aggregation model (a 

combination of Eqs. (5.2.1) and Eq. (5.2.17)), this value can be obtained by fitting 

experimental data. As 𝑍 → ∞, Eq. (5.2.17) approaches zero. Also, the stable size 

approaches the size of the metal atom. While as 𝑍 → 0, the stable size approaches a size 

equivalent to the largest size obtained experimentally. For the particular value of 𝑍 for a 

colloidal system of aggregating particles, we investigate a synthesis method where the 

aggregation process occurs. 

5.3 Case study: the citrate synthesis method 
As a case study, we apply the developed aggregation model to describe the citrate synthesis 

method. In this method, tetrachloroauric reacts with sodium citrate in an aqueous solution to 

produce at the end of the synthesis gold nanoparticles (GNPs). In the evolution of GNPs, 

Polte et al. (2010) reported data illustrating the aggregation process. These data, reported in 

Figure 2(d) of their article, show particles aggregating in the first 20 minutes of the synthesis. 

Thereafter, this process stops while the particle mean size increases until the end of the 

synthesis. The latter size increase is due to the growth process. In Chapter 4, we showed 

that the aggregation process can be assumed as fully decoupled from the growth process, 

for conditions where the initial citrate-to-gold ratios are equal to or greater than five. Before 

particles begin to aggregate, however, they must be generated first from the aqueous 

solution via the nucleation process. For the nucleus size, as discussed in Chapter 2, Polte 

(2015) argued that it is the size of an atom (for metal nanoparticles such as GNPs). To form 

gold atoms, the gold in tetrachloroauric acid reduces from an oxidation state of +3 to zero, 

due to the reducing action of sodium citrate. In the reacting mixture as well, we illustrated in 

Chapter 4 that 𝑂𝐻− can react with the precursor in the passivation step, which occurs in 

parallel with the reduction of tetrachloroauric acid to gold atoms. For detailed information 

about the mechanism of the citrate synthesis method, we refer the reader to Chapter 4. 

At the end of the aggregation process, for conditions where the initial citrate-to-gold ratios 

are equal to or greater than five, the particles are called seed particles. Thus, due to the 

aggregation process, the particles evolve from the size of a gold atom, which is 0.272 𝑛𝑚 

(Cordero et al. 2008), to the seed size. The latter size is not constant but varies depending 

on the initial condition of the synthesis (see Chapter 4 for details). For the standard synthesis 

condition of Wuithschick et al. (2015), they reported the seed diameter as 3 nm. For other 

initial conditions, we reported an equation in Chapter 4 that can be used to calculate the 

seed size at the synthesis temperature of 1000 C. As shown in the aggregation model in the 

previous section, the number concentration of particles affects the aggregation process. At 

the minimum size of a gold atom, we need to know the rate of formation of atoms from the 
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reduction step. Also, we need to know the rate of the passivation step since both this step 

and the reduction step competitively consume the precursor.  

We therefore couple the aggregation model developed in the previous section with the 

synthesis model (excluding the growth submodel) developed in Chapter 4 in what we call 

Case A. We refer the reader to Chapter 4 for the details about the synthesis model. On the 

other hand, we assume the aggregation is fully decoupled from the reduction and 

passivation steps in what we call Case B. The latter case is justified considering Figure 2 (d) 

of the article of Polte et al. (2010), reproduced in Figure 4.B.1 in Section 4.B, where the 

number concentration of particles rapidly declines from a maximum value. To determine the 

case that closely describes the citrate reduction method, we test the two cases in Section 

5.4. Herein, we discuss the models for the two cases as follows. 

5.3.1 Case model A: coupled aggregation 
In the synthesis model of this case, we do not account for the growth process since this 

process does not influence the seed formation step. However, we couple the aggregation 

model with the reduction and passivation steps. Furthermore, in the particle phase, we 

account for the formation of gold atoms and the aggregation process. We report the 

chemical reactions and the material and population balance equations as follows. 

Chemical equations 

For the reduction step, we write the chemical equation as: 

2𝑇 + 3(𝑦𝑥 ∙ 𝐶𝑡) → 2𝐴𝑢 + 𝑃𝑟1        (5.3.1)  

𝑇 represents the gold in 𝐴𝑢𝐶𝑙4
−, 𝐶𝑡 represents the sum of all the species of citrate, 𝑦𝑥 

represents the relative mole fraction (among the four citrate species) of 𝐶𝑡𝐻2
− at the quasi-

equilibrium pH, 𝐴𝑢 represents the gold in the GNPs, and 𝑃𝑟1 represents all by-products from 

the reduction step, lumped together. 

For the passivation step, we have: 

𝑇
𝐵
→𝐾            (5.3.2) 

𝐵 represents 𝑂𝐻−, which is assumed to have a constant concentration, and acts as a 

catalyst; 𝐾 represents the gold that becomes passive and that eventually grows the seed 

particles. 

Assuming that the reaction solution is perfectly mixed (which implies that all intensive 

properties, such as temperature and concentrations, are uniform), we can select as control 
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volume the region (of constant volume 𝑉) occupied by the mixture contained in the batch 

reactor wherein the synthesis takes place. The balance equations of the mixture 

components are then those reported below. 

Balance equations 

Precursor 

This is consumed by both the reduction and passivation steps. The material balance 

equation takes the form:  

𝑑𝐶𝑇

𝑑𝑡
= −𝑘𝑟𝐶𝑇[𝑦𝑥𝐶𝐶𝑡]

1.85 − 𝑘𝑝𝐶𝑇𝐶𝐵       (5.3.3) 

This equation is identical to Eq. (4.3.34), reported in Chapter 4. 

Total citrate species 

At any time, we consider the sum of the concentrations of all the citrate species (i.e., 𝐶𝑡3−, 

𝐶𝑡𝐻2−, 𝐶𝑡𝐻2
− and 𝐶𝑡𝐻3), which we denote as 𝐶𝐶𝑡, and model the time variation of this total 

concentration caused by the reduction step. This step consumes 𝐶𝑡𝐻2
−, whose amount, at 

any time, is given by 𝑦𝑥𝐶𝐶𝑡. The material balance equation on the total citrate species thus is: 

𝑑𝐶𝐶𝑡

𝑑𝑡
= − (3/2) 𝑘𝑟𝐶𝑇[𝑦𝑥𝐶𝐶𝑡]

1.85       (5.3.4) 

This equation is a simplified version of Eq. (4.3.35) in Chapter 4, in which the growth term 

has been neglected in line with the modelling choice we have made. 

Hydroxyl ions 

Having assumed that the pH of the mixture is constant at the quasi-equilibrium value, we 

simply write that the concentration of hydroxyl ions is constant: 

𝐶𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡          (5.3.5) 

Also, this equation is identical to Eq. (4.3.36), reported in Chapter 4. 

Passive precursor 

The precursor passive form is generated by the passivation step. The material balance 

equation reads: 

𝑑𝐶𝐾

𝑑𝑡
= 𝑘𝑝𝐶𝑇𝐶𝐵          (5.3.6) 

This equation is a simplified version of Eq. (4.3.37) in Chapter 4, in which the growth term 

has been neglected in line with the modelling choice we have made. 
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By-products 

The reduction step generates by-products such as 𝐶𝑂2, (𝐶𝐻3)2𝐶 = 𝑂 and 𝐶𝑙−, as reported in 

Chapter 4. To ensure that total mass is conserved, we report the balance equation for these 

other by-products, lumped into 𝑃𝑟. We write the equation as:  

𝑑𝐶𝑃𝑟1

𝑑𝑡
= (1/2) 𝑘𝑟𝐶𝑇[ 𝑦𝑥𝐶𝐶𝑡]

1.85        (5.3.7) 

Also, this equation is identical to Eq. (4.3.38), reported in Chapter 4. 

Particles 

In modelling the evolution of the particle size distribution (PSD), we model the generation of 

gold atoms, the real nucleation process, and the subsequent aggregation process that yields 

the seed particles. As we have assumed that the reaction system is uniform, the PSD does 

not depend on the real-space coordinates. The PSD, which we denote as 𝑓(𝑠, 𝑡), depends 

solely on the particle size and on the time coordinate. 

The evolution of the PSD, governed by the population balance equation, must reflect the 

effects of the nucleation and aggregation processes taking place in the mixture. The growth 

process is neglected. The nucleation rate is modelled as follows: 

𝐻𝑁(𝑠) = (
1

𝜌𝑚𝑣𝑠0
3)𝑘𝑟𝐶𝑇[ 𝑦𝑥𝐶𝐶𝑡]

1.85𝛿(𝑠 − 𝑠0)  (5.3.8) 

In the nucleation term, 𝑘𝑟𝐶𝑇[ 𝑦𝑥𝐶𝐶𝑡]
1.85 gives the rate of formation of gold atoms in 

𝑚𝑜𝑙 (𝑚3. 𝑠)⁄ , and 𝛿(𝑠 − 𝑠0) indicates that all the nuclei have equal size, given by 𝑠0 (the size 

of one atom). The term 𝜌𝑚𝑣𝑠0
3 is the amount of gold in moles present in one atom. 𝜌 is 

molar density of gold.  

For the aggregation process, from Section 5.2, we write the aggregation submodel as: 

𝐵(𝑠) − 𝐷(𝑠) =

[(𝑠2 2⁄ ) ∫
𝜔̃𝐴(𝑠̅;𝑠̂(𝑠̅,𝑠))

𝑊(𝑠̅;𝑠̂(𝑠̅,𝑠))
× (𝑠3 − 𝑠̅3)−2 3⁄ 𝑓(𝑠̅, 𝑡)  ∗ 𝑓(𝑠̂, 𝑡)𝑑𝑠̅ 

𝑠

0
] − [𝑓(𝑠, 𝑡) ∫

𝜔̃𝐴(𝑠,𝑠̅)

𝑊(𝑠,𝑠̅)
 𝑓(𝑠̅, 𝑡) 

∞

0
𝑑𝑠̅] 

            

           (5.3.9) 

Eq. (5.2.17) gives the equation for 𝜔̃𝐴 𝑊⁄ . To calculate the value of κ in Eq. (5.2.17), we 

need to know the potential determining ions (PDIs) and their concentrations. Briggs et al. 

(1993) assumed them to be 𝐶𝑡𝐻2− and 𝐶𝑡3−. The electrostatic charges on 𝐶𝑡𝐻3 and 𝐶𝑡𝐻2
− 

are 0 and −1, respectively. Conversely, those on 𝐶𝑡𝐻2− and 𝐶𝑡3− are −2 and −3, 
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respectively. Furthermore, in the process conditions investigated by Briggs et al., the 

amounts of 𝐶𝑡𝐻3 and 𝐶𝑡𝐻2
− are insignificant. The combination of the charges and amounts 

of 𝐶𝑡𝐻2− and 𝐶𝑡3− makes them the PDIs. Similarly, in the process conditions satisfying the 

synthesis model, the amounts of 𝐶𝑡𝐻3 and 𝐶𝑡𝐻2
− are insignificant. Thus, we assume 𝐶𝑡𝐻2− 

and 𝐶𝑡3− to be the PDIs. Following Eq. (5.2.5), we write the expression for κ as: 

1 κ⁄ = [
𝜖0𝜖𝑐𝑘𝐵𝑇

(4.𝑝𝐶𝑡𝐻2−𝑒
2+9.𝑝𝐶𝑡3−𝑒

2)
]
1 2⁄

        (5.3.10) 

𝑝𝐶𝑡𝐻2− and 𝑝𝐶𝑡3− are the number concentrations of 𝐶𝑡𝐻2− and 𝐶𝑡3−, respectively, in the bulk 

of the solution measured in 1 𝑚3⁄ . 

For the term 𝑍 in Eq. (5.2.17), we obtain its value by fitting experimental data. We discuss 

the fitting procedure in Section 5.4. 

Finally, the population balance equation reads: 

𝜕𝑡𝑓(𝑠) = 𝐻𝑁(𝑠) + 𝐵(𝑠) − 𝐷(𝑠) (5.3.11) 

The terms on the right-hand side represent generation owing to nucleation and aggregation. 

5.3.2 Case model B: fully decoupled aggregation 
In this case, we first calculate the amount of gold atoms formed from the precursor 𝑉𝐶𝑠 using 

the yield of the reduction step. Then in the population balance equation, we account for the 

aggregation process only, starting with the gold atoms calculated. The initial amount of gold 

in the precursor is equal to the sum of the amount of gold atoms formed from the reduction 

step and that of gold in the passive precursor from the passivation step. This statement 

reads: 

𝑉𝐶𝑇0  = 𝑉 ∫ (𝑟𝑟 + 𝑟𝑝)𝑑𝑡
𝑡𝑠
0

        (5.3.12) 

where 𝑉 is the volume of synthesis solution, 𝐶𝑇0 is the initial precursor concentration, 𝑟𝑟 is 

the reaction rate for the reduction step, 𝑟𝑝 is the rate of the passivation reaction, 𝑡 is the time, 

and 𝑡𝑠 is the total synthesis time. Notice that the synthesis solution is assumed to be 

uniform, so that 𝑟𝑟 and 𝑟𝑝 do not depend on space coordinates. 

The yield 𝐿𝑑 is defined as follows: 

𝐿𝑑 =
∫ 𝑟𝑟𝑑𝑡
𝑡𝑠
0

𝐶𝑇0
           (5.3.13) 

Using Eqs. (5.3.12) and the equations for 𝑟𝑟 and 𝑟𝑝, reported in Chapter 4, we thus have: 
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𝐿𝑑 =
𝑘𝑟 ∫ 𝐶𝐴𝑢𝐶𝑙4

− .𝐶𝐶𝑡𝐻2
− 
1.85 𝑑𝑡

𝑡𝑠
0

𝑘𝑟 ∫ ( 𝐶𝐴𝑢𝐶𝑙4
− .𝐶𝐶𝑡𝐻2

− 
1.85)𝑑𝑡+𝑘𝑝 ∫ (𝐶𝐴𝑢𝐶𝑙4

− 𝐶𝑂𝐻− )𝑑𝑡
𝑡𝑠
0

𝑡𝑠
0

      (5.3.14) 

In this equation, the denominator on the right-hand side is equal to 𝐶𝑇0 because all the 

precursor eventually reacts via the two reactions considered (reduction and passivation).  

To use this equation to obtain 𝐿𝑑, we need to know the time profiles of 𝐶𝐴𝑢𝐶𝑙4− , 𝐶𝐶𝑡𝐻2−  and 

𝐶𝑂𝐻− . For synthesis conditions where the ratio of initial concentrations of sodium citrate to 

tetrachloroauric acid in the synthesis solution is equal to or greater than five, we assume that 

the values of 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻−  do not change significantly from their values at quasi-

equilibrium, denoted as 𝐶𝐶𝑡𝐻2−,0  and 𝐶𝑂𝐻−,0 , respectively. The reasoning is discussed in 

Chapter 4. Thus, we can write: 

𝐿𝑑 =
𝑘𝑟.𝐶𝐶𝑡𝐻2

−,0 
1.85 ∫  𝐶𝐴𝑢𝐶𝑙4

−  𝑑𝑡
𝑡𝑠
0

𝑘𝑟.𝐶𝐶𝑡𝐻2
−,0 

1.85 ∫ ( 𝐶𝐴𝑢𝐶𝑙4
− )𝑑𝑡+𝑘𝑝𝐶𝑂𝐻−,0 ∫ (𝐶𝐴𝑢𝐶𝑙4

− )𝑑𝑡
𝑡𝑠
0

𝑡𝑠
0

   

=
𝑘𝑟.𝐶𝐶𝑡𝐻2

−,0 
1.85 ∫  𝐶𝐴𝑢𝐶𝑙4

−  𝑑𝑡
𝑡𝑠
0

(𝑘𝑟.𝐶𝐶𝑡𝐻2
−,0 

1.85+𝑘𝑝𝐶𝑂𝐻−,0 ) ∫ ( 𝐶𝐴𝑢𝐶𝑙4
− )𝑑𝑡

𝑡𝑠
0

   

𝐿𝑑 =
𝑘𝑟.𝐶𝐶𝑡𝐻2

−,0 
1.85

(𝑘𝑟.𝐶𝐶𝑡𝐻2
−,0 

1.85+𝑘𝑝𝐶𝑂𝐻−,0 )
        (5.3.15) 

Thus, the amount of gold atoms formed from the precursor 𝑉𝐶𝑠 is given as: 

𝑉𝐶𝑠 = 𝐿𝑑 . 𝑉𝐶𝑇0          (5.3.16) 

From this equation, the number concentration of gold atoms before the aggregation process 

begins can be expressed as: 

(
1

𝜌𝑚𝑣𝑠0
3) . 𝐶𝑠          (5.3.17) 

For the population balance equation, which in the present case accounts only for the 

aggregation process, we write: 

𝜕𝑡𝑃(𝑠) = 𝐵(𝑠) − 𝐷(𝑠) (5.3.18) 

The expressions for 𝐵(𝑠) and 𝐷(𝑠) (as well as those for the other implicit terms) have been 

reported in Case A. 

To close the model for each case, one needs a value of 𝑍, or 𝑍 𝑘𝐵𝑇⁄  (the stability gradient). 

However, this value or a correlation for finding it is not available in the literature. To 

overcome this problem, using the model, we fit experimental data to estimate the value of 𝑍 

for a particular initial condition. While many authors have investigated the citrate synthesis 

method and reported the final mean diameter, only Wuithschick et al. (2015) reported the 
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particle size (called the seed size) at the end of the aggregation process as well as the final 

mean diameter at the end of the synthesis. However, they reported the seed size for only 

one initial condition. For other initial conditions, we use the correlation in Eq. (4.4.12) 

reported in Chapter 4 to calculate the actual seed size. Therefore in estimating the value of 

𝑍 for a particular initial condition, we employ the seed size as the experimental data. By 

following this procedure, we can estimate the values of 𝑍 for different initial conditions. 

These values of 𝑍, when related to their initial conditions, correlate linearly. Then, we derive 

a correlation for calculating 𝑍. With this correlation, the models above are fully predictive. We 

describe how to estimate the value of 𝑍, the derived correlation and the test for the fully 

predictive model in the following section. 

5.4 Results and discussion 
In solving the model (for both Case A and Case B), we use the commercial numerical code 

Parsival. For Case A, due to numerical convergence problems, we initialized the amount of 

particles with a vanishingly small mass (or number) of particles with a mean size equal to the 

diameter of a gold atom. The details of model implementation in Parsival, for example those 

of the synthesis model, have been provided in Chapters 3 and 4. For these details, we refer 

to these chapters. On the other hand, for Case B, we initialized with the mass of gold 

corresponding to the amount calculated from Eq. (5.3.16). 

5.4.1 Parameter estimation and case model validation 
To illustrate how to estimate the value of 𝑍, we employ the standard condition in the work of 

Wuithchick et al. (2015), where the ratio of citrate-to-gold is 10, the initial precursor 

concentration in the synthesis solution at 100 0𝐶 is 0.25 𝑚𝑜𝑙 𝑚3⁄ , and the final particle mean 

diameter is 18.6 𝑛𝑚. In these conditions, the authors reported a value of the seed diameter 

of 3 𝑛𝑚 at about 40% polydispersity. This value allows estimating the value of 𝑍. For each 

case model, we specified the initial condition and the final condition, which is the seed 

diameter of 3 𝑛𝑚 as reported by Wuithschick et al. (2015), to estimate the corresponding 

value of 𝑍. The initial condition corresponds to 𝑡 = 0. Similarly, the final condition at the end 

of the aggregation process corresponds to a particular time 𝑡 = 𝑡𝑎, when the size of the 

aggregating particles reaches the seed diameter and remains constant thereafter. 

Wuithschick et al. (2015) reported this time to be between 3 and 7 mins for this synthesis 

solution at 100 0𝐶. Thereafter, the seed diameter should remain constant. In fitting the result 

from the model to a mean diameter of 3 nm, we initialised in the code the initial condition. 

Then, we specified the same value of 3 nm as the mean diameter at 𝑡𝑎 = 200 𝑠. 

Furthermore, to ensure particle stability at the seed diameter, we specified 3 nm as the 
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mean diameter at times 300, 400, 500, 1000 and 10000 s. The latter time is sufficiently 

longer than the synthesis time of 1200 s observed experimentally by Wuithschick et al. 

(2015). Later, we check whether the model is stable to aggregation. 

Table 5.4.1: Results from the parameter estimation 

 Case A Case B 

Value of Z kBT⁄  0.81 1.18 

Particle number concentration (1/m3) 3.85E+15 3.55E+17 

 

Table 5.4.1 shows the results from the parameter estimation. The value of 𝑍 𝑘𝐵𝑇⁄  in Case A 

is smaller than that in Case B. As the value of 𝑍 𝑘𝐵𝑇⁄  decreases, the value of 𝑊 (the stability 

factor) in Eq. (5.2.6) decreases, indicating that aggregation is more significant. In Case A, 

once the reduction step has yielded gold atoms in sufficient concentration, these begin to 

aggregate. This aggregation process continues until the particle mean size reaches the seed 

diameter. In Case B, on the other hand, all the gold atoms have been produced before the 

aggregation process begins. Because of this time delay, aggregation is more significant in 

Case A than in Case B. The particle number concentrations in Table 5.4.1 illustrate better 

this significant aggregation as the value of the number concentration in Case A is about two 

orders of magnitude smaller than that in Case B. To determine the case that closely applies 

to the citrate synthesis method, we estimate the seed particle concentration and then 

compare with the values in Table 5.4.1. To estimate this concentration, since particle 

aggregation is insignificant after the seed formation step, we equate the seed number 

concentration to the number concentration at the end of the synthesis. To calculate the 

latter, assuming that the GNP size distribution is monodisperse, one can use the expression 

𝐶𝑇0 𝜌𝑚𝑣𝑠𝑓
3⁄ , where 𝑠𝑓 is the final mean diameter, 𝜌 is the molar density of gold, taken as 

105  𝑚𝑜𝑙 𝑚3⁄  (Kumar et al., 2007) and 𝑚𝑣 is the particle volume shape factor (which we set 

equal to /6, assuming that the particles are spherical). From the data of Wuithschick et al. 

(2015), 𝐶𝑇0 = 0.25 𝑚𝑜𝑙 𝑚
3⁄  and  𝑠𝑓 = 18.6 𝑛𝑚. Thus, the seed concentration is estimated as: 

0.25 𝑚𝑜𝑙 𝑚3⁄

1 × 105 × /6 × (18.6 × 10−9)3
= 7.42 × 1017 1 𝑚3⁄  

This value compares with the value in Case B much better than that of Case A. See Table 

5.4.1. Thus, we assume that the aggregation process is fully decoupled from the nucleation 

process (i.e. the formation of gold atoms) and adopt case model B for the citrate synthesis 

method. 
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Furthermore, we confirmed that in this case model, beyond the seed diameter, particles do 

not aggregate significantly. To do this, we simulated the aggregating system using the case 

model (for the standard synthesis condition of Wuithschick et al. (2015)) for 1 × 105 𝑠. Figure 

5.4.1A shows how the mean size varies over this simulation time. Within the synthesis time 

of about 1,000 s, the particles aggregate to a mean diameter of about 3nm, the size 

experimentally observed by Wuithschick et al. (2015). Thereafter, the mean diameter 

continues to increase. However, this increase is barely significant. The mean size at 100,000 

s is 3.5 nm. This size is smaller than the resulting value when two particles having identical 

sizes of 3 nm aggregate. To estimate this resulting value 𝑠𝑎 of the aggregate, we assume 

that its volume equals the sum of the volumes of the two primary particles of 3 nm. Thus, we 

have: 

𝑠𝑎
3 = 2 × 33   →   𝑠𝑎 = 3.78 𝑛𝑚       (5.4.1) 

By 1,000 s, in the citrate synthesis method, the growth step starts affecting the particle size 

significantly, doubling the size to about 6 nm. By this size, the effect of the aggregation 

process would be much less significant. Thus, the Case B model would be able to describe 

the evolution in size in the synthesis. 

Figure 5.4.1B reports at 1,000 s the particle size distribution whose polydispersity is 

calculated as 38%. This value compares reasonably well with the polydispersity of 40% for 

seed particles experimentally observed by Wuithschick et al. (2015). 
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Figure 5.4.1 Time evolution of the particle phase from the modelling results using the 

experimental data of the work of Wuithchick et al. (2015), where the ratio of citrate-to-gold is 

10, the initial precursor concentration in the synthesis solution at 100 0𝐶 is 0.25 𝑚𝑜𝑙 𝑚3⁄ . A: 

The profile of mean particle diameter with time, B: Particle size distribution at the synthesis 

time of 1200 s.  PSD PD represents the polydispersity of the particle size distribution. 

As shown, the value of 𝑍 𝑘𝐵𝑇⁄  for the standard condition of Wuithschick et al. was estimated 

from the seed diameter. Nevertheless, one would like the case model to be fully predictive, 

yielding the particle size distribution comparable to experimental data. To this end, we need 

an empirical correlation that can predict the value of 𝑍 𝑘𝐵𝑇⁄  once the initial synthesis 

conditions are selected. 
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5.4.2 Correlation for the stability gradient 𝒁 𝒌𝑩𝑻⁄  

As shown, 𝑍 𝑘𝐵𝑇⁄  depends on the process conditions in the synthesis mixture (i.e. the 

colloidal system). These process conditions vary with time from the initial conditions to the 

final conditions. However, past authors such as Wuithschick et al. (2015) and Bogush and 

Zukoski (1991) assumed the value of  𝑍 𝑘𝐵𝑇⁄  to be constant for an initial condition of a 

system of aggregating particles. Thus, in deriving a correlation for 𝑍 𝑘𝐵𝑇⁄ , we use only the 

initial conditions, i.e. the initial precursor concentration, initial citrate-to-gold ratio and 

synthesis temperature. To relate 𝑍 𝑘𝐵𝑇⁄  to the initial precursor concentration, we employ the 

synthesis conditions of Zabetakis et al. (2012), who kept the ratio equal to 5 whilst 

considering the precursor concentrations 𝐶𝑇0 = 0.3, 0.6, 1.0, 1.2, and 2.0 𝑚𝑜𝑙 𝑚3⁄  in the 

synthesis solution. These synthesis conditions satisfy the criteria for the synthesis model. 

We use three out of these five initial conditions to obtain the dependence on the initial 

precursor concentration, while we use the remaining two in Section 5.4.3 to test the model 

predictions. These three initial conditions are 𝐶𝑇0 = 0.3, 1.0, and 2.0 𝑚𝑜𝑙 𝑚3⁄ , which yielded 

seed diameters of 6.74, 9.75, and 13.62 𝑛𝑚, respectively (see Chapter 4, Section 4.4.2). 

From these seed diameters and the corresponding initial conditions, following the procedure 

described in Section 5.4.1, we estimated the values of 𝑍 𝑘𝐵𝑇⁄ . Figure 5.4.2 shows how 

𝑍 𝑘𝐵𝑇⁄  varies with the initial precursor concentration. 

 

Figure 5.4.2: The value of 𝑍 𝑘𝐵𝑇⁄  estimated as a function of the initial precursor 

concentration. The experimental data are from Zabetakis et al. (2012). 
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Based on this figure, we propose a linear function of 𝑍 𝑘𝐵𝑇⁄  on the initial precursor 

concentration as: 

𝑍 𝑘𝐵𝑇⁄ = 𝐹𝑧 ∙ 𝐶𝑇0 + 𝐷𝑧         (5.4.1) 

where 𝐹𝑧 = −0.1321 and 𝐷𝑧 = 0.5021. 

To relate 𝑍 𝑘𝐵𝑇⁄  to the initial citrate-to-gold ratio, we employ the synthesis conditions of Ji et 

al. (2012), who investigated the synthesis at 100 0𝐶 for a fixed initial value of precursor 

concentration, equal to 0.25 𝑚𝑜𝑙/𝑚3, and an initial value of the citrate-to-gold ratio varying 

between 0.7 and 28 (values referred to the synthesis solution). To derive the correlation, we 

considered the syntheses in which the initial values of the citrate-to-gold ratio (𝑅𝑎) are 7.0, 

8.4, 14 and 27.8, whilst the seed diameters are 5.63, 4.92, 3.61, and 1.91 𝑛𝑚, respectively 

(see Chapter 4, Section 4.4.2). These ratio values are greater than five, satisfying the 

criterion for the synthesis model. From these seed diameters and the corresponding initial 

conditions, following the procedure in Section 5.4.1, we estimated the values of 𝑍 𝑘𝐵𝑇⁄ . 

Figure 5.4.3 shows how 𝑍 𝑘𝐵𝑇⁄  varies with the initial citrate-to-gold ratio. 

 

 

Figure 5.4.3: The value of 𝑍 𝑘𝐵𝑇⁄  estimated as a function of the initial precursor 

concentration. The experimental data are from Ji et al. (2007). 

Based on this figure, we propose a linear function of 𝑍 𝑘𝐵𝑇⁄  on 𝑅𝑎 as: 

𝑍 𝑘𝐵𝑇⁄ = 𝑄𝑧 ∙ 𝑅
𝑎 + 𝐿𝑧         (5.4.2) 
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where 𝑄𝑧 = 0.0553 and 𝐿𝑧 = 0.0964. 

To relate 𝑍 𝑘𝐵𝑇⁄  to the synthesis temperature, we do not have data from the literature. 

However, because the synthesis is usually carried out at 100 0𝐶, we focus only on this 

temperature. We therefore combine Eqs. (5.4.1) and (5.4.2) to derive an overall correlation 

of 𝑍 𝑘𝐵𝑇⁄  on the initial conditions at the synthesis temperature of 100 0𝐶 as: 

𝑍 𝑘𝐵𝑇⁄ = 𝐹𝑧 ∙ 𝐶𝑇0 + 𝑄𝑧 ∙ 𝑅
𝑎 + 𝑃𝑧       (5.4.3) 

Based on these figures, we take the values of 𝐹𝑧 and 𝑄𝑧 to be equal to −0.1321 and 0.0553, 

respectively. To obtain the value of 𝑃𝑧, we equate the right-hand side of Eq. (5.4.3) to the 

right-hand side of the linear correlation equation in Figure 5.4.2, where the ratio is 5, thus 

writing: 

0.0553 ∙ 𝑅𝑎 + 𝑃𝑧 = 0.5021        (5.4.4) 

This yields 𝑃𝑧 = 0.2256 .  

Alternatively, one could equate the right-hand side of Eq. (5.4.3) to the right-hand side of the 

linear correlation equation in Figure 5.4.3, where the initial precursor concentration is 

0.25 𝑚𝑜𝑙/𝑚3, thus writing: 

−0.1321 ∙ 𝐶𝑇0 + 𝑃𝑧 = 0.0964        (5.4.5) 

This yields 𝑃𝑧 = 0.129. The two values obtained for 𝑃𝑧 are different; this is because of the 

slight difference in the correlation coefficients in Figures 5.4.2 and 5.4.3. The values would 

have been identical if the correlation coefficients in both figures had been unity. Based on 

the correlation coefficients, Eq. (5.4.4) should be selected. However, Figure 5.4.3, which 

yields Eq. (5.4.5), contains one data point more than Figure 5.4.2, which yields Eq. (5.4.4). 

Thus, in correlating the stability gradient, we will consider both values of 𝑃𝑧, employing these 

two correlations: 

1: 𝑍 𝑘𝐵𝑇⁄ = − 0.1321 ∙ 𝐶𝑇0 + 0.0553 ∙ 𝑅
𝑎 + 0.129     (5.4.6) 

2: 𝑍 𝑘𝐵𝑇⁄ = − 0.1321 ∙ 𝐶𝑇0 + 0.0553 ∙ 𝑅
𝑎 + 0.2256     (5.4.7) 

With either of these correlations for the value of 𝑍 𝑘𝐵𝑇⁄ , at the synthesis temperature of 100 

0C, the Case B model is fully predictive. We test the predictions of this model based on these 

two correlations in the following section.  

5.4.3 Model validation 

In this section, we test the model (Case B model) by comparing its predictions against the 

seed diameters resulting from the reaction conditions. Furthermore, we couple the model 
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with the growth process and test the predictions from the resulting model against the final 

diameters from the same reaction conditions. By the calculations relating to Figure 4.B.1 in 

Chapter 4, we observed that the growth process is absent at the beginning of the 

aggregation process. Furthermore in Chapter 4, we showed that the model predictions of the 

final mean diameter is sensitive to the value of the seed diameter. No matter how small the 

effect of growth is on particle size, coupling the aggregation process to the growth process at 

the beginning of the synthesis would yield poor predictions of the final mean diameter. To 

obtain good predictions of the latter, we couple the aggregation process to the growth 

process at a particular time. To determine this coupling time, we also report the 

characteristic times of the processes in the citrate synthesis method. 

5.4.3.1 Seed size validation 

For this model validation, we employ three initial conditions from the work of Ji et al. (2007) 

and two from the work of Zabatakis et al. (2012). For these experimental conditions, the 

initial citrate-to-gold molar ratios are equal to or greater than five, thereby satisfying the 

criterion for the synthesis model reported in Chapter 4. Thus, by an alternative method, that 

is, using the seed correlation reported in Chapter 4, we can calculate the seed diameter 

resulting from the aggregation process. These calculated seed diameters can then be 

employed to validate the fully predictive models (based on the two correlations for 𝑍 𝑘𝐵𝑇⁄ ) 

reported in the previous section. In the work of Ji et al. (2007), who kept the initial precursor 

concentration constant at 0.25 𝑚𝑜𝑙/𝑚3 and varied the citrate-to-gold ratio at the synthesis 

temperature 100 0C, we employ the ratios of 7.7, 10.5 and 17.8. On the other hand, in the 

work of Zabetakis et al. (2012), who kept the initial citrate-to-gold ratio constant at 5 and 

varied the initial precursor concentration at the synthesis temperature 100 0C, we employ the 

initial precursor concentrations of 0.6 and 1.2 𝑚𝑜𝑙/𝑚3. Using these initial conditions, we 

calculated the corresponding value of 𝑍 𝑘𝐵𝑇⁄  from either correlation 1 (i.e. Eq. (5.4.6)) or 

correlation 2 (i.e. Eq. (5.4.7)), and then simulated the synthesis using case model B. Notice 

that these data were not part of the data set employed to derive the correlation for 𝑍 𝑘𝐵𝑇⁄  in 

the previous section. 

For the data of Zabetakis et al. (2012), Figure 5.4.4 shows how the mean diameter of the 

aggregating particles compares with the actual seed diameter reported previously in Chapter 

4. For correlation 1 (see Figure 5.4.4A), by 500 s, the predicted mean sizes for the two data 

points have exceeded the actual sizes of the seed particles. The results also show the 

predicted mean sizes increase over time. By 105 𝑠, the predicted mean sizes are about twice 

the values at 500 s. For the higher initial precursor concentration, where 𝐶𝑇0 = 1.2 𝑚𝑜𝑙/𝑚
3, 
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Zabetakis et al. (2012) reported a final particle diameter (not the seed diameter) of 14.1 𝑛𝑚. 

By 104 𝑠, the seed diameter in Figure 5.4.4A has exceeded the final particle diameter.  

For the results from correlation 2 shown in Figure 5.4.4B, on the other hand, the predicted 

seed diameters are slightly smaller than the actual sizes by 500 s. Similar to Figure 5.4.4A, 

the results in Figure 5.4.4 B increase with time. However, the predicted seed mean 

diameters are smaller than those of Figure 5.4.4A. Furthermore, by 105 𝑠, the predicted seed 

diameter for the higher initial precursor concentration is smaller than the final mean size of 

14.1 𝑛𝑚. The constant value in calculating the stability gradient in correlation 1 (Eq. (5.4.6) is 

0.129 while the constant value in correlation 2 (Eq. 5.4.7) is 0.2256. As the value of the 

stability gradient increases, the stable size decreases (as previously illustrated in Section 

5.2). 

 

Figure 5.4.4 The model predictions of the seed diameter using Case B model. A: The 

predictions from correlation 1 in Eq. (5.4.6); B: The predictions from correlation 2 in Eq. 

(5.4.7). Two data sets are taken from the work of Zabetakis et al. (2012). 

For the data of Ji et al. (2007), on the other hand, Figure 5.4.5 shows how the mean 

diameter of the aggregating particles compares with the actual seed diameter reported 

previously in Chapter 4 (Section 4.4.3). The behaviour of the model based on the 

correlations is similar to that discussed for Zabetakis et al. (2012). For the data of Zabetakis 

et al. (2012) and those of Ji et al. (2007), however, the predicted seed diameters from the 

model based on correlation 2 compare to the actual sizes better than those predicted from 

the model based on correlation 1. 
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One may conclude that correlation 2 in case model two yields better predictions than 

correlation 1, as the seed size predictions from the latter yielded sizes larger than the final 

mean diameter within the time considered. Nevertheless, we can observe that the predicted 

mean sizes from both correlations increase with time. Thus, it is possible that the predicted 

sizes of the model with either correlation could be larger than the final mean diameters as 

the synthesis time approaches infinity. However, in the citrate synthesis method, the growth 

process also affects the particle size distribution, increasing the size significantly in a time 

scale of about 103 𝑠. To obtain this value, we calculated the characteristic times of the 

growth process. We also calculated those for the other processes. These calculations are 

presented in the following section. 

 

Figure 5.4.5 The model predictions of the seed diameter using case model B. A: the 

predictions from correlation 1 in Eq. (5.4.6); B: the predictions from correlation 2 in Eq. 

(5.4.7). Three data sets are taken from the work of Ji et al. (2007). 

5.4.3.2 Characteristic times of the synthesis processes 

We estimate the characteristic time for each of the reactions in the nanoparticles synthesis 

model for the citrate synthesis method to determine how the reactions progress relative to 

each other. We refer to Section 4.4.5 for these reactions. Also, we determine the 

characteristic time for the aggregation process. The characteristic time of a reaction 

indicates how long the reaction requires to convert a significant amount of the limiting 

reactant. 

Precursor reduction reaction 

After the synthesis solution has reached quasi-equilibrium, this reaction occurs between the 

precursor and 𝐶𝑡𝐻2
−, producing gold atoms. 
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Considering the threshold initial molar ratio of citrate-to-gold of five, and assuming that 

𝐶𝑇0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄ , then 𝐶𝐶0 = 1.5 𝑚𝑜𝑙 𝑚

3⁄ . We can write: 

 
𝑑𝐶𝑇

𝑑𝑡
= −𝑘𝑟𝐶𝑇(𝑦𝑥𝐶𝐶𝑡)

1.85 = {−𝑘𝑟(𝑦𝑥𝐶𝐶𝑡)
1.85}𝐶𝑇     (5.4.8)  

The term in the parenthesis in Eq. (5.4.8) is approximately constant because citrate is in 

excess. For more details, we refer to Chapter 4. Thus, the characteristic time is equal to: 

𝜏𝑟 ~ 
1

𝑘𝑟(𝑦𝑥𝐶𝐶𝑡)
1.85         (5.4.9) 

At quasi-equilibrium, following the reasoning in Section 4.A.3 in Appendix E, this reaction 

condition yields 𝑦𝑥 = 2.353 × 10
−3. With 𝑘𝑟 = 35.48 [𝑚

3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄ . Thus, we have: 

𝜏𝑟 ~ 
1

35.48 (2.353 × 10−3 × 1.5 𝑚𝑜𝑙 𝑚3⁄ )1.85
~970 𝑠 

This is the characteristic time for this reaction to convert the precursor by about 63 %. 

Experimentally, however, this reaction only consumes about 4.7 % of the precursor. To 

obtain this value, we used the ratio of the amount of the precursor in the seed particles to the 

amount of precursor in the final particles. In Section 4.5.2, we reported for this reaction 

condition the seed and final diameters as 6.75 and 18.70 𝑛𝑚, respectively. The percentage 

consumed in the reduction step would be 6.753 18.73⁄ % = 4.7%. 

We can therefore estimate the time for the reduction reaction to complete as 

4.7 %

63 %
× 970 𝑠 = 72.4 𝑠 

This time is 2.4 times the time scale of ~ 30 𝑠 at 100 0C reported by Wuithschick et al. (2015) 

for this reaction. However, in the reaction condition of Wuithschick et al. (2015), only about 2 

% of the precursor was consumed in the reduction step. 

Precursor passivation reaction 

This reaction converts the precursor to the passive form and occurs in parallel with the 

reduction reaction.  

𝑑𝐶𝑇

𝑑𝑡
= −𝑘𝑝𝐶𝑇𝐶𝐵         (5.4.10) 

Since the concentration of 𝐵 (𝑂𝐻−) remains almost constant in the course of the synthesis, 

we can write: 

𝜏𝑝 ~ 
1

𝑘𝑝𝐶𝐵
          (5.4.11) 
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Using the same reaction condition as above and following the reasoning in Section 4.2.4, 

𝐶𝐵 = 3.43 × 10
−3  𝑚𝑜𝑙 𝑚3⁄  and 𝑘𝑝 = 6.1𝑚

3 (𝑚𝑜𝑙. 𝑠)⁄ . Thus: 

𝜏𝑝 ~ 
1

6.1×3.43×10−3
~48 𝑠        (5.4.12) 

This is the characteristic time for about 63 % of the precursor to convert to the passive form. 

Considering that 95.3 % of the precursor converts in this reaction, we can estimate the time 

for this reaction to complete as: 

95.3 %

63 %
× 48 𝑠 = 73 𝑠 

This time is approximately equal to the characteristic time for the reduction step calculated 

above. 

Seed growth step 

We calculate the seed number density as: 

𝐶𝑇0
𝜌𝑚𝑣𝑠𝑓

3
=

0.3

105(𝜋 6⁄ )(18.7 × 10−9)3
= 8.76 × 1017  1 𝑚3⁄  

Assuming that the seed formation and growth steps are fully decoupled, the particle number 

density can be taken equal to 8.76 × 1017  1 𝑚3⁄ . So, we can estimate the order of magnitude 

of the particle surface per unit volume of physical space as follows: 

  

∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠

~ (6.75 × 10−9)2 × 8.76 × 1017 = 39.91𝑚2 𝑚3⁄  

We can then write: 

𝑑𝐶𝐾

𝑑𝑡
= −[𝑚𝑎𝑘𝑔(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠
] 𝐶𝐾      (5.4.13) 

As previously mentioned, since citrate is in excess, all the terms in bracket are 

approximately constant. In the reaction condition, 𝑘𝑔 = 5.25 × 10
−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ , 𝑦𝑦 = 0.196, 

𝐶𝐶𝑡 = 1.5 𝑚𝑜𝑙 𝑚
3⁄ .  

Therefore, the reaction is first-order and the characteristic time is: 

𝜏ℎ1 ~ 
1

𝑚𝑎𝑘𝑔(𝑦𝑦𝐶𝐶𝑡) ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠𝑠

=
1

𝜋 × 5.25 × 10−6 × 0.196 × 1.5 × 39.91
𝑠 =  5,167 𝑠 
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In the above, we assumed the total surface area as that of the seed particles. However, with 

time, this total surface area increases and would reduce 𝜏ℎ1. If we calculate the time scale 

based on the final size, which is 18.70 nm, we have: 

 

∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠𝑠

~ (18.70 × 10−9)2 × 8.76 × 1017 = 306.33𝑚2 𝑚3⁄  

so that 𝜏ℎ2 = 673 𝑠. Thus, the growth process starts slowly with a time constant of 5167 𝑠 

and ends with a time constant of 673 𝑠. These orders of characteristic times of the growth 

process explain why the citrate synthesis method completes in a synthesis time of about 

103 𝑠.  

Aggregation characteristic time 

NPs are most likely to aggregate when their concentration is the highest. To estimate the 

characteristic time of the aggregation process, we consider the scenario where the 

aggregation rate is at its maximum value. In this scenario, all the gold atoms form before 

aggregating.  

According to Marchisio & Fox (2013) and as reported in Chapter 3, the aggregation 

characteristic time is given by: 

𝜏𝑎  ~ 
𝑊

𝜔̃𝐴(𝑠0,𝑠0)𝑁𝑐
          (5.4.14) 

Here 𝑁𝑐 is the number of gold atoms of size 𝑠0 in the system. At this size, 𝐸𝑎𝑔𝑔 = 0 and 𝑊 is 

the minimum, calculated using Eq. (5.2.6) as: 

𝑊(𝑠̅, 𝑠̂) =
κ(𝑠̅ + 𝑠̂)

2
exp [

𝐸𝑎𝑔𝑔(𝑠̅, 𝑠̂)
𝑘𝐵𝑇
⁄ ] = κ × 2.72 × 10−10 

where: 

1 κ⁄ = [
𝜖0𝜖𝑐𝑘𝐵𝑇

(4. 𝑝𝐶𝑡𝐻2−𝑒
2 + 9. 𝑝𝐶𝑡3−𝑒

2)
]
1 2⁄

=
1

𝑒
[

𝜖0𝜖𝑐𝑘𝐵𝑇

(4. 𝑝𝐶𝑡𝐻2− + 9. 𝑝𝐶𝑡3−)
]
1 2⁄

 

=
1

1.6 × 10−19
[
8.85 × 10−12 × 55.3 × 1.38 × 10−23 × 373

(4 × 1.26 × 1023 + 9 × 5.06 × 1023)
]

1 2⁄

 

= 4.41 × 10−9 𝑛𝑚 

Thus: 
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𝑊(𝑠̅, 𝑠̂) =
2.72 × 10−10

4.41 × 10−9
= 0.06 

This number is below 1, the value of 𝑊 for fast aggregation. At the atomic level, in addition 

to the Brownian motion, the Van der Waals’ forces of attraction cause aggregation. 

At the conditions at which the synthesis is conducted, 𝑇 = 373 𝐾, 𝜌 = 105 𝑚𝑜𝑙/𝑚3 and 

𝜇 = 2.74 × 10−4  𝑘𝑔 (𝑚. 𝑠)⁄ . Since 𝐾𝐵 = 1.38 × 10
−23  𝐽 𝐾⁄ , Eq. (5.2.2) gives: 

𝜔̃𝐴(𝑠̅, 𝑠̂) =
2𝑘𝐵𝑇

3𝜇
(
1

𝑠̅
+
1

𝑠̂
) (𝑠̅ + 𝑠̂) =

8𝐾𝐵𝑇

3𝜇
= 5 × 10−17  𝑚3 𝑠⁄  

The number of atoms per unit volume of physical space that would form before aggregation 

starts taking place if the precursor reduction reaction went to completion is equal to: 

𝑁𝑐,𝑚𝑎𝑥 = 4.7 % 
𝐶𝑇0

𝜌𝑚𝑣𝑠0
3         (5.4.15) 

As seen above, we have included the percentage yield of the precursor reduction step. 

Therefore, it is: 

4.7 % 
0.3 

105(𝜋 6⁄ )(2.72 × 10−10)3
= 1.34 × 1022 1 𝑚3⁄  

Thus, replacing these results in Eq. (5.4.14), we obtain: 

𝜏𝑎  ~ 
0.06

5 × 10−17 × 1.34 × 1022
= 8.96 × 10−8 𝑠 ≈  10−9 𝑠 

This is the characteristic time of the aggregation process for the initial conditions used in the 

synthesis. It gives an estimate of the time required by aggregation to take place significantly. 

In the simulation in Parsival for this reaction condition, we noticed the number concentration 

decreased from 1.34 × 1022 1 𝑚3⁄  to 7.72 × 1021 1 𝑚3⁄  in 2.35 × 10−7 𝑠. 

5.4.3.3 Coupling aggregation and growth 

With the significant size increase from growth at about 103 𝑠, the effect of  aggregation would 

decrease significantly because 𝐸𝑎𝑔𝑔(𝑠̅; 𝑠̂) in Eq. (5.2.16) increases with size. Then, the value 

of 𝑊 diverges thus stabilizing the particles from further aggregation. 

To illustrate this decreasing effect of aggregation with time, we simulate only the aggregation 

model for a simulation time of 𝑡 = 500 𝑠. Thereafter, we couple the aggregation and growth 

process. By this coupling at 𝑡 = 500 𝑠, we allow both the aggregation and growth processes 

to influence the PSD. We do not couple the two processes at 𝑡 = 0 𝑠 because in deriving the 
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synthesis model in Section 4.4, we assumed that the growth is absent in the seed formation 

step, that is in the early part of the aggregation process. 

In the growth process, the passive precursor 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− reacts on the surface, growing the 

particles and changing the particle size distribution (see Chapter 4). Following the reasoning 

in Section 5.3 (Case B model), we calculate the amount of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− that grows the 

particles as: 

𝐶𝑇0(1 − 𝐿𝑑). 𝑉          (5.4.16) 

This amount affects the PSD as the growth process according to: 

− 𝜕𝑠[𝑓(𝑠, 𝑡). 𝐺𝑠]         (5.4.17) 

where: 

𝐺𝑠 = (
𝑚𝑎

3𝜌𝑚𝑣
)𝑘𝑔 𝐶𝐾(𝑦𝑦𝐶𝐶𝑡)        (5.4.18) 

Here 𝐺𝑠 is the particle growth rate, previously reported in Chapter 4. 

𝑘𝑔 = 5.25 × 10
−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄  and 𝑦𝑦 is the relative mole fraction of  𝐶𝑡𝐻2− in the citrate 

species. 

Also, 𝑚𝑎 is the particle area shape factor (which we set equal to , assuming that the 

particles are spherical), 𝜌 is the molar density of gold, taken to be 105  𝑚𝑜𝑙 𝑚3⁄  (Kumar et al., 

2007) and 𝑚𝑣 is the particle volume shape factor (which we set equal to /6, assuming that 

the particles are spherical). See Section 4.4.3 for the derivation of Eqs (5.4.17) and (5.4.18). 

After simulating Case B model (based on either correlation 1 or 2) for 𝑡 = 500, we couple the 

growth model with the case model so that at 𝑡 ≥ 500 𝑠 both the aggregation and growth 

processes influence the particles size distribution. We then simulate for total times of 104  

and 105 𝑠, that is simulating the coupled model for 9500 𝑠 and 99500 𝑠, respectively. 

For the data of Zabetakis et al. (2012), Figure 5.4.6 shows how the mean diameter of the 

particles compares with the final mean diameter obtained experimentally. This figure shows 

that the sizes at 104  and 105 𝑠 are identical. By 104 𝑠, the growth process has vanished as 

the driving force (that is, the concentration of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−) is depleted. Also, beyond 104 𝑠, 

we can conclude that the aggregation process is absent in the model (for both correlations). 
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Similarly, we can observe that the predictions agree excellently (that is, they overlap) with 

the experimental data.  

 

Figure 5.4.6 The predictions of the final diameter using case model B. A represents 

correlation 1 in Eq. (5.4.6) while B represents correlation 2 in Eq. (5.4.7). Two data sets are 

taken from the work of Zabetakis et al. (2012). 

For the data of Ji et al. (2007), Figure 5.4.7 shows how the mean diameter of the particles 

compares with the final mean diameter obtained experimentally. As above, beyond the 

simulation time of 104 𝑠 both the aggregation and growth processes are absent. However, it 

is only in the model based on correlation 1 that the predicted mean diameters overlap those 

obtained experimentally although the predicted diameters from the model based on 

correlation 2 are also good. The slight deviation in the latter is due to the value of the 

constant in calculating the stability gradient in Eq. (5.4.7), which is 0.2256 compared to 0.129 

in Eq. (5.4.6) for the former. As the stability gradient increases, the particle size resulting 

from the aggregation process decreases (Eq. (5.2.17) when combined with Eq. (5.2.1) 

illustrates this relationship). Particles do not aggregate significantly, resulting in a large 

number of particles. Since the same amount of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−) is available in the model for 

both correlations, the particles from correlation 1 grow to slightly smaller size than those 

correlation 2.  

This figure shows that the sizes at 104  and 105 𝑠 are identical. By 104 𝑠, the growth process 

has vanished as the driving force (that is, the concentration of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−) is depleted. 

Also, beyond 104 𝑠, we can conclude that the aggregation process is absent in the model 

(for both correlations). Similarly, we can observe that the predictions agree excellently with 

the experimental data.  
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Figure 5.4.7 The predictions of the final diameter using case model B. A represents 

correlation 1 in Eq. (5.4.6) while B represents correlation 2 in Eq. (5.4.7). Three data sets are 

taken from the work of Ji et al. (2007). 

5.5 Concluding remarks 
In this chapter, we presented a new mathematical model for the aggregation process in 

nanoparticle synthesis. This model accounts for the stabilization of the colloidal system by 

electrostatic repulsion and is based on the theory proposed by Polte (2015) that the energy 

barrier increases with size. To investigate the model, because the aggregation process 

occurs alongside other processes, we employ the citrate synthesis method. This synthesis 

method involves reactions, nucleation, aggregation and growth. In addition, the seed size 

resulting from the aggregation process in this synthesis method has been previously 

reported. 

In this chapter, we described the synthesis model using two case models: 1) case model A 

assumes the aggregation process is coupled with the reactions and nucleation and 2) case 

model B assumes the aggregation process is fully decoupled from other processes. From 

the model validation, we showed that the citrate synthesis method evolves by decoupling the 

aggregation process that forms the seed particles from other processes. 

Furthermore, we developed two correlations for the profile of energy barrier with size, 

reported as the stability gradient, to make case model B fully predictive and then validated 

the predictions using the seed size reported previously. At a particular time, the model 

predictions agree with the seed size. However, the predicted seed size increases thereafter 

with time. 
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To test the stability of the particles to aggregation, we coupled it with the growth process. We 

found that the particles are stable to aggregation within the characteristic time of the 

synthesis. Furthermore, Case B model (based on either correlation 1 or correlation 2) 

yielded excellent results. Thus, either correlation may be used in describing the citrate 

synthesis method. 
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Chapter 6 

Conclusions and future work 

This Ph.D. work presented the mathematical modelling of the formation of gold nanoparticles 

by the citrate synthesis method. After reviewing the literature for various experimental 

investigations of this synthesis method, we adopted the population balance approach to 

model it. Then, we investigated the mathematical model developed by Kumar et al. (2007) 

for the synthesis of gold nanoparticles by means of the citrate method. This is the only 

model, based on any mechanistic theory (that is, the Turkevich organizer theory), available 

in the literature. The model accounts for five reaction steps, one of which produces 

dicarboxy acetone, which organizes gold in the nucleation step. While DCA decomposes, 

the particles grow by the deposition of the residual precursor on their surfaces. GNPs evolve 

by the nucleation-growth mechanism, as proposed by Turkevich et al. (1951). Although 

Kumar et al. (2007) included a submodel for aggregation, this submodel does not play a 

significant role over the synthesis time. 

Furthermore, we tested the model developed by Kumar et al. for different conditions of 

temperature, concentrations and pH using various experimental data from the literature. The 

model performed poorly in describing the synthesis. We believe that this is because the five 

chemical steps over which the model of Kumar et al. is built do not reflect the chemistry of 

the synthesis accurately. Because the precursor and reducing agent are a strong acid and a 

weak base, respectively, their acid-base properties cover an important role in the synthesis. 

As a weak base, the reducing agent releases 𝑂𝐻− in water. The precursor, on the other 

hand, can be reduced and/or hydroxylated. Kumar et al. only modelled the reduction step 

that produces the nuclei but did not consider the hydroxylation step. Subsequently, these 

nuclei aggregate into seeds, which then grow by reacting with the hydroxylated precursor. 

Using the seed-mediated mechanism proposed by Wuithschick et al. (2015), we were able 

to qualitatively explain the experimental data reported by the researchers. 

Thereafter, we presented a new mathematical model for the description of the synthesis of 

gold nanoparticles via the citrate synthesis method. This method involves reducing 

tetrachloroauric acid with sodium citrate in an aqueous medium. In this medium, the 

precursor and reducing agent can exist in various forms by reacting with 𝑂𝐻− and 𝐻+, 

respectively. Furthermore, the system features several reactions and processes that occur in 

series and in parallel. Using the seed-mediated mechanism proposed by Wuithschick et al. 
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(2015), we reported the steps describing the evolution of GNPs in the synthesis. 

Subsequently, we derived rate equations for the reactions involved in the reduction, 

passivation and growth steps, and proposed a method of calculating the seed diameter in 

the seed formation step. Then, we reported the synthesis model that describes how the 

components evolve with time, assuming that the pH value of the reaction mixture is 

constantly equal to its quasi-equilibrium value. 

Then, we solved the model for experimental conditions satisfying the criterion of initial values 

of the citrate-to-gold molar ratio equal to or greater than five. In this model, seed particles 

first form and then GNPs evolve from them. To determine the size of the seeds, we derived 

a correlation based on the initial conditions of the synthesis. We illustrated that the model 

predictions are sensitive to the value employed for the seed size. In the cases investigated, 

the model predictions agreed very well with the experimental data. In most of these cases, 

the growth process overrides the seed formation process in determining the final particle 

size; the more the amount of gold that passivates, the larger the final particle size is. At low 

pH values, nonetheless, we saw that seed sizes are larger, since the aggregation process is 

more vigorous. 

This work also, in Chapter 5, presented a new mathematical model for the aggregation 

process in nanoparticle synthesis. This model accounts for the stabilization of the colloidal 

system by electrostatic repulsion and is based on the theory proposed by Polte (2015) that 

the energy barrier increases with size. To close the model, we require a value for the initial 

steepness of the profile of energy barrier and size. To investigate the model, because the 

aggregation process occurs alongside other processes, we employ the citrate synthesis 

method. This synthesis method involves reactions, nucleation, aggregation and growth. In 

addition, the size resulting from the aggregation process in this synthesis method has been 

previously reported. 

Also in Chapter 5, we described the synthesis using two case models: 1) case model A 

assumes the aggregation process is coupled with the reactions and nucleation and 2) case 

model B assumes the aggregation process is fully decoupled from other processes. From 

the model validation, we showed that the citrate synthesis method evolves by decoupling the 

aggregation process from other processes (case model B). 

Furthermore, we developed a correlation for the stability gradient to make case model B fully 

predictive and then validated it using experimental data. The model predictions agree 

reasonably with the experimental data. 
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With this aggregation model, we will be able to investigate the citrate synthesis method for 

initial citrate-to-gold ratios smaller than five at the synthesis temperature of 100 0C and other 

synthesis temperatures. 

6.1 Future work 
In Chapter 4, in order to make the nanoparticle synthesis model fully predictive, we derived a 

correlation for the seed diameter in the seed-mediated mechanism. The correlation, 

however, is only valid at the synthesis temperature of 100 0C. We would like to extend its 

validity and that of the whole synthesis model to other temperatures. To do this, we would 

need the rate constants of the reactions in the synthesis model (that is, the precursor 

reduction and passivation steps, and the seed growth step). For both the precursor 

passivation and seed growth steps, we have calculated their Arrhenius parameters (that is, 

activation energies and pre-exponential factors) in Chapter 4. Thus, we can calculate their 

rate constants at other temperatures. However, for the precursor reduction step, we need 

kinetic data such as those presented in Section 4.3.1 at other temperatures (at least at two 

other temperatures). Then, we follow the procedure in Section 4.3.1 to calculate the rate 

constant at these temperatures. Along with the value of the rate constant calculated in this 

Ph.D. work, we will calculate the Arrhenius parameters for the reduction step and hence its 

rate constant at any other temperature. Thereafter, we follow the procedure discussed in 

Section 4.4.2 to obtain the seed correlation and hence a predictive synthesis model for gold 

nanoparticles in the citrate synthesis conducted at other temperatures. 

In developing the nanoparticle synthesis model in Section 4.3.5, we focused on experimental 

data whose initial molar citrate-to-gold ratios are greater than or equal to five. For these 

ratios, we assumed the pH value of the synthesis mixture at quasi-equilibrium is equal to the 

pH value at final equilibrium. Thus, we did not account for the reactions involving 𝐻+. Past 

authors such as Turkevich et al. (1951) and Frens (1973) have investigated the synthesis at 

citrate-to-gold ratios below five. For these ratios, however, we need to account for the 

reactions involving 𝐻+ because the pH value of the synthesis mixture at quasi-equilibrium is 

not equal to the pH value at final equilibrium. For these ratios as well, the final synthesis 

mixture contains considerably polydisperse gold nanoparticles, reported in the literature to 

follow a mechanism different from the seed-mediated mechanism. Nevertheless, the various 

reactions and processes such as nucleation (formation of gold atoms), aggregation, and 

growth described in the thesis influence the dynamics of the synthesis mixture and that of 

gold nanoparticles. For the reactions involving 𝐻+, in the forward step, we would base their 

rates on the time scale of ~ 10−11 𝑠, reported by Pines et al. (1997) for reactions involving 

𝐻+ ions to reach completion at 23 0C. In the backward step, we would use their equilibrium 
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constants to obtain the kinetic rate constants. Then, we derive rate models for these 

reactions. These rate models along with the synthesis and aggregation models developed in 

the work would be able to describe the synthesis at all ratios. 

We would also like to improve the aggregation sub-model. As revealed in Chapter 5, we 

derived a correlation for the stability gradient based on the initial condition of the synthesis. 

However, it should be based on the prevailing process condition, which changes with time as 

the concentrations of particles and reactants change. We would like to account for the effect 

of the changing dynamics on the stability gradient. 

Finally, we hope to integrate the synthesis model with fluid dynamics. We aim to derive, 

implement and validate a more advanced model able to account for the fluid dynamics. This 

would no longer be based on the assumption that the system is perfectly mixed. 
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Appendix A 

In this appendix, using the averaging theory, we derive the material balance for the 

continuous phase. This is an alternative method to the method presented in the thesis. For 

the material balance, we write: 

𝜕𝑡𝐶𝑖 = −∇𝒙𝑱̅𝒊 + 𝑟𝑖         (A.1) 

This equation is identical to Eq. (2.2.13) in the thesis. The term on the left-hand side 

represents the accumulation term as Eq. (2.2.13). The first term on the right-hand side is the 

total molar flux 𝑱̅𝒊, combining both the convective and diffusive terms in Eq. (2.2.13). The last 

term on the right-hand side is identical to the last term of Eq. (2.2.13). 

By the averaging theory, we integrate Eq. (A.1) over the physical volume 𝑉, which is 

assumed to be fixed and constant. This strategy would produce a mean concentration 〈𝐶𝑖〉, 

which is no longer dependent on the physical space. We implement this integral transform 

as follows: 

∫ [𝜕𝑡𝐶𝑖 + ∇𝒙𝑱̅𝒊 − 𝑟𝑖]𝑉
𝑑𝑉 = 0        (A.2) 

The first term on the left-hand side in eq. (A.2) is transformed as: 

∫ 𝜕𝑡𝐶𝑖𝑉
𝑑𝑉 =

𝑑

𝑑𝑡
∫ 𝐶𝑖𝑉

𝑑𝑉 =
𝑑

𝑑𝑡
[〈𝐶𝑖〉. 𝑉] = 𝑉

𝑑〈𝐶𝑖〉

𝑑𝑡
     (A.3) 

Using the Gauss theorem, the second term on the left-hand side of eq. (A.2) is transformed 

as: 

−∫ ∇𝒙𝑱̅𝒊𝑉
𝑑𝑉 = −∫ 𝑱̅𝒊𝑆

. 𝑑𝑺        (A.4) 

For a batch reactor, Eq. (A.4) is zero. That is: 

∫ 𝑱̅𝒊𝑆
. 𝑑𝑺 = 0          (A.5) 

The last term on the left-hand side of Eq. (A.2) is transformed as: 

∫ 𝑟𝑖𝑉
𝑑𝑉 = 𝑉〈𝑟𝑖〉         (A.6) 

where 〈𝑟𝑖〉 is the mean rate of generation of component 𝑖 per unit volume from various 

reactions and it is only a function of time. 

Putting all the terms together, Eq. (A.2) becomes: 
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𝑉
𝑑〈𝐶𝑖〉

𝑑𝑡
= 𝑉〈𝑟𝑖〉; 

𝑑〈𝐶𝑖〉

𝑑𝑡
= 〈𝑟𝑖〉        (A.7) 

Notice that we obtained Eq. (A.7) without imposing the condition of perfect mixing in the 

reactor. By imposing this condition, 

〈𝐶𝑖〉 = 𝐶𝑖 and 〈𝑟𝑖〉 = 𝑟𝑖         (A.8) 

Thus, Eq. (A.7) becomes: 

𝑑𝐶𝑖

𝑑𝑡
= 𝑟𝑖           (A.9) 

Eq. (A.9) is identical to Eq. (2.2.14) reported in the thesis for a perfectly mixed batch reactor. 
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Appendix B 

In this appendix, we provide qualitative criteria to determine the controlling mechanism for 

the growth process. As discussed in the thesis using Figure 2.2.3, the growth process can 

be controlled by mass transfer or by surface integration or by both mechanisms. In Figure 

2.2.3, the total mass flux 𝑱̅ due to mass transfer can be written as: 

𝑱̅ = 𝑘𝑀𝑇(𝑐 − 𝑐
′) =

(𝑐−𝑐′)

𝑅𝑀𝑇
        (B.1) 

where 𝑐 is the bulk concentration, 𝑐′ is the concentration of the solute at the particle surface, 

as shown in Figure 2.2.3, 𝑘𝑀𝑇 is the mass transfer coefficient, and 𝑅𝑀𝑇 is the mass transfer 

resistance. For a well-mixed reactor, the mass transfer coefficient is given by Eq. (2.2.89) as: 

𝑘𝑀𝑇 =
𝐷0

𝑟𝑐
(1 +

𝑟𝑐

𝛿
)         (B.2) 

Similarly, in terms of surface integration, the total mass flux can be written as: 

𝑱̅ = 𝑘𝑆𝐼(𝑐
′ − 𝑐𝑒𝑞) =

(𝑐′−𝑐𝑒𝑞)

𝑅𝑆𝐼
        (B.3) 

where 𝑅𝑆𝐼 is the surface integration resistance. 

In this equation, we have assumed the order of reaction to be one, following the work 

Turkevich et al. (1951). 

From Eq. (B.1), we have: 

𝑐′ = 𝑐 − 𝑱̅𝑅𝑀𝑇          (B.4) 

And from Eq. (B.3), we have: 

𝑐′ = 𝑱̅𝑅𝑆𝐼 + 𝑐𝑒𝑞          (B.5) 

Thus,  

𝑱̅ =
(𝑐−𝑐𝑒𝑞)

𝑅𝑀𝑇+𝑅𝑆𝐼
          (B.6) 

When 𝑅𝑀𝑇 ≫ 𝑅𝑆𝐼, Eq. (B.6) becomes: 

𝑱̅ =
(𝑐−𝑐𝑒𝑞)

𝑅𝑀𝑇
          (B.7) 

This is the expression for growth controlled by mass transfer. 

When 𝑅𝑆𝐼 ≫ 𝑅𝑀𝑇, Eq. (B.6) becomes: 
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𝑱̅ =
(𝑐−𝑐𝑒𝑞)

𝑅𝑆𝐼
          (B.8) 

This is the expression for growth controlled by surface integration. 

When 𝑅𝑆𝐼 ≈ 𝑅𝑀𝑇, then both mechanisms control the growth process.  
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Appendix C 

In population balance equations, we theoretically solve for the number density function, 

𝑓(𝑠, 𝑡). However, experimental data like the sieve analysis can be described using some 

analytical distribution functions. We fit the experimental data and compare the resulting 

profile with any of the distribution functions, to determine which one describes the data. 

Sometimes, however, none of the functions may be suitable to describe the data. These 

distribution functions are (Randolph and Larson, 2001): 

1. Normal distribution 

2. Log-normal distribution 

3. Gamma distribution 

4. Rosin-Rammler distribution 

5. Guadin-Melloy distribution 

We discuss the function of each distribution as follows.   

C.1 Normal distribution 
Normal distribution suggests that the distribution is evenly distributed about the mean 

size, 〈𝑠〉, i.e. exactly half the number are on either side of the mean and extends from −∞ to 

+∞. Its expression is: 

𝑓(𝑠) =
𝑛(𝑠)

𝑁𝑇
=

1

𝜎√2𝜋
exp (−

(𝑠−〈𝑠〉)2

2𝜎2
)       (C.1) 

where 𝑛(𝑠) is the number of particles having size 𝑠, and 𝑁𝑇 is the total number of particles. 

Since it is normalized, the number fraction is given as  

𝐹(𝑠) = ∫ 𝑓(𝑠)𝑑𝑠
𝑠

−∞
= ∫

1

𝜎√2𝜋
exp (−

(𝑠−〈𝑠〉)2

2𝜎2
) 𝑑𝑠

𝑠

−∞
           (C.2)  

and  

𝐹(𝑠) = ∫ 𝑓(𝑠)𝑑𝑠
∞

−∞
= 1         (C.3) 

Equation (C.2) can be expressed in a reduced form by making the following substitution: 

𝑝 =
𝑠−〈𝑠〉

𝜎√2
           (C.4) 

So it becomes: 

𝐹(𝑝) =
1

√𝜋
∫ exp(−𝑝2) 𝑑𝑝
𝑝

−∞
         (C.5) 
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Equation (C.5) can be re-expressed as: 

𝐹(𝑝)√𝜋 = ∫ exp(−𝑝2) 𝑑𝑝
0

−∞
+ ∫ exp(−𝑝2) 𝑑𝑝

𝑝

0
     (C.6) 

Assuming that the integrand is an even function of 𝑝, the first term on the right-hand side of 

Eq. (C.6) can be expressed as (Randolph and Larson, 2001): 

∫ exp(−𝑝2) 𝑑𝑝
0

−∞
=
√𝜋

2
         (C.7) 

Eq. (C.6) then becomes: 

𝐹(𝑝)√𝜋 =
√𝜋

2
+ ∫ exp(−𝑝2) 𝑑𝑝

𝑝

0
;  𝐹(𝑝) =

1

2
+

1

√𝜋
∫ exp(−𝑝2) 𝑑𝑝
𝑝

0
   (C.8) 

Alternatively, we can express Eq. (C.8) as: 

𝐹(𝑝) = 0.5(1 + erf 𝑝)         (C.9) 

Where erf 𝑝 =
2

√𝜋
∫ exp−𝑦2 𝑑𝑦
𝑝

0
       (C.10) 

When 𝐹(𝑝) = 0.5, 𝑝 = 0 and the corresponding value of 𝑠 can be read off from the 

cumulative distribution 𝐹 vs 𝑠, that is 〈𝑠〉. 

At 𝑠 = 〈𝑠〉 + 𝜎, 𝑝 =
1

√2
, so 𝐹(𝑝) = 0.84 from equation (C.9). As above, the corresponding 

value of  𝑠 can be read off from 𝐹 vs 𝑠. Therefore, 𝜎 = 𝑠 − 〈𝑠〉. 

We insert 〈𝑠〉 and 𝜎 into equation (C.1) and generate 𝑓(𝑠) for all values of 𝑠 from −∞ to +∞.   

C.2 Log-normal distribution 
Log-normal distribution ensures that the range of 𝑠 is from 0 to +∞. log 𝑠, log〈𝑠〉 and log 𝜎 

replace 𝑠, 〈𝑠〉  and 𝜎 respectively in equation (C.1). For a number of sizes, 〈𝑠〉 is the 

geometric mean which is found as: 

〈𝑠〉 = √∏ 𝑠𝑖
𝑛
1

𝑛
           (C.11) 

The expression for the log-normal is given as; 

𝑓(log 𝑠) =
1

log𝜎√2𝜋
exp−

(log 𝑠−log〈𝑠〉)2

2(log𝜎)2
        (C.12) 

And  

 𝐹(log 𝑠) = ∫ 𝑓(log 𝑠)𝑑(log 𝑠)
log 𝑠

0
        (C.13) 

where 𝐹(∞) = 1 
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The reduced form log-normal distribution is obtained by  

𝑝 =
log 𝑠−log〈𝑠〉

√2 log𝜎
           (C.14) 

Then equation (C.13) can be expressed as equation (C.9). We obtain 〈𝑠〉 and 𝜎 exactly as in 

the case of normal distribution and plot 𝑓(𝑠). 

C.3 Gamma distribution 
Like 〈𝑠〉  and 𝜎 in the previous density functions, parameters 𝑎 and 𝑏 are required in the 

density function to plot the gamma distribution. The expression is:  

𝑓(𝑠) = [⌈(𝑎 + 1)(𝑏 𝑎⁄ )
𝑎+1
]
−1

𝑠𝑎 exp (−
𝑎𝑠

𝑏
)      (C.15) 

Where ⌈(𝑎 + 1) = 𝑎! 

𝐹(𝑠) = ∫ [⌈(𝑎 + 1)(𝑏 𝑎⁄ )
𝑎+1
]
−1

𝑠𝑎 exp (−
𝑎𝑠

𝑏
) 𝑑𝑠

𝑠

0
      (C.16) 

Randolph and Larson (2001) suggested that 𝑏 is the mode of the distribution while 𝑎 is the 

wideness of the distribution; 𝑎 and 𝑏 resemble 〈𝑠〉  and 𝜎 respectively. The parameters in 

normal, log-normal and gamma distributions are similar. Figure C.1 shows their 

resemblance.  

 

Figure C.1 Profiles of normal, log-normal and gamma distributions over size, 𝑠, obtained 

from Randolph and Larson (2001). 

Equation (C.16) can be expressed in its reduced form by substituting: 𝑧 = 𝑎𝑠 𝑏⁄  as: 

𝐹(𝑧) = [⌈(𝑎 + 1)]−1 ∫ 𝑧𝑎𝑒−𝑧𝑑𝑧
𝑧

0
        (C.17) 
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Integrating equation (C.17) becomes: 

𝐹(𝑧) = 1 − 𝑒−𝑧 [1 + 𝑧 +
𝑧2

2!
+
𝑧3

3!
+⋯+

𝑧𝑎

𝑎!
]       (C.18) 

In mixed-suspension mixed-product removal, 𝑧 expresses 
𝑠

𝐺𝑠𝜏
, where 𝐺𝑠 and 𝜏 are the growth 

rate and the residence time respectively. 

C.4 Rosin-Rammler distribution 
Rosin-Rammler distribution is given as 

𝑓(𝑠) = 𝑛𝑏𝑠𝑛−1 exp(−𝑏𝑠𝑛)        (C.19) 

Then, the cumulative fraction will be: 

𝐹(𝑠) = ∫ 𝑛𝑏𝑠𝑛−1 exp(−𝑏𝑠𝑛)  𝑑𝑠
𝑠

0
        (C.20) 

Say 𝑥 = 𝑏𝑠𝑛 

Equation (C.20) becomes  

𝐹(𝑥) = ∫ exp(−𝑥)  𝑑𝑥
𝑥

0
         (C.21) 

Integrating equation (C.21) gives 

𝐹(𝑥) = 1 − exp(−𝑥)         (C.22) 

Equation (C.22) can subsequently be rearranged by taking log of both sides and substituting 

𝑥 = 𝑏𝑠𝑛 as 

log(log(1 − 𝐹)−1) = log 𝑏 + 𝑛 log 𝑠         (C.23) 

If the plot of log(log(1 − 𝐹)−1) vs log 𝑠 is linear, then the experimental data obeys Rosin-

Rammler distribution. 

C.5 Gaudin-Melloy distribution 
The expression for the number density function of Gaudin-Melloy distribution is given as 

𝑓(𝑠) =
𝑚

𝑠𝑚
[1 −

𝑠

𝑠𝑚
]
𝑛−1

         (C.24) 

Then, the cumulative fraction is: 

𝐹(𝑠) = ∫
𝑚

𝑠𝑚
[1 −

𝑠

𝑠𝑚
]
𝑚−1

 𝑑𝑠
𝑠

0
         (C.25) 

Equation (C.25) can be reduced to: 
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𝐹(𝑝) = ∫ 𝑚[1 − 𝑝]𝑚−1 𝑑𝑝
𝑝

0
   where  𝑝 = 𝑠 𝑠𝑚⁄     (C.26) 

Integrating equation (C.26) gives: 

𝐹(𝑝) = 1 − (1 − 𝑝)𝑚         (C.27) 

Eq. (C.27) can be re-expressed as:  

log(1 − 𝐹) = 𝑚 log(1 − 𝑝)         (C.28) 

If the plot of log(1 − 𝐹) vs log(1 − 𝑝) is linear, then the experimental data obeys Gaudin-

Melloy distribution.  

In most cases, mean size 〈𝑠〉  and the coefficient of variation describe the quality of particle 

size distribution; the mean describes the average of the distribution while the coefficient of 

distribution describes how far the size distribution is from the mean. They are mathematically 

expressed as: 

〈𝑠〉  = ∫ 𝑠𝑓(𝑠)𝑑𝑠
𝑠

0
          (C.29) 

𝑐. 𝑣. = 𝜎 〈𝑠〉 ⁄            (C.30) 

These properties of a distribution and others are obtained from the calculation and 

manipulation of the moments of particle size distribution.    

C.6 Moments of particle size distribution 
Moments of distribution are used to obtain representative numbers of a distribution like the 

total number of particles, the total length of particles etc. Once these moments are known, 

the quality of the distribution like mean size, coefficient of variation, skewness and kurtosis 

can be determined. 

The definition of the moment for the particle size distribution is given as: 

𝑚𝑗 = ∫ 𝑠𝑗𝑛(𝑠)𝑑𝑠
∞

0
          (C.31) 

The first four moments and their meanings are: 

 Total number of particles : 𝑁𝑇 = 𝑚0 = ∫ 𝑛(𝑠)𝑑𝑠
∞

0
    (C.32) 

 Total length of particles :𝑠𝑇 = 𝑚1 = ∫ 𝑠𝑛(𝑠)𝑑𝑠
∞

0
    (C.33) 

 Total area of particles :𝐴𝑇 = 𝑚2 = ∫ 𝑠2𝑛(𝑠)𝑑𝑠
∞

0
    (C.34) 

 Total mass of particles:𝑀𝑇 = 𝑘𝑉𝜌𝑚3 = 𝑘𝑉𝜌∫ 𝑠3𝑛(𝑠)𝑑𝑠
∞

0
   (C.35) 
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The general expression for the mean size in terms of the moments is: 

Mean size, 𝑠𝑗+1,𝑗 =
𝑚𝑗+1

𝑚𝑗
         (C.36) 

The value of 𝑗 determines the type of mean size. The first four mean sizes are:  

Number mean size, 𝑠1,0 =
𝑚1

𝑚0
        (C.37)  

Length mean size, 𝑠2,1 =
𝑚2

𝑚1
        (C.38) 

Area mean size, 𝑠3,2 =
𝑚3

𝑚2
        (C.39) 

Weight mean size, 𝑠4,3 =
𝑚4

𝑚3
        (C.40) 
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Appendix D 

In this appendix, to test the numerical accuracy in Parsival, we consider solving another 

problem using the code and later analyse the convergence of its results. Also, we describe 

the procedures for model implementation using the Parsival interface. 

D.1 Validation of PBM in Parsival 
The model developed by Kumar et al. (2007) is centred on the nucleation-growth mechanism 

of Turkevich et al. (1951). Aggregation plays a secondary role. Thus, to investigate how 

accurate the solution of population balance equations is in Parsival, we consider a 

crystallization problem that involves nucleation and growth only. The crystallizer is a batch 

vessel operated on the natural and linear cooling mechanisms (these mechanisms are 

defined below). This problem was solved by means of another numerical technique (Runge-

Kunta method) and the results are available in the literature (Jones and Mullin, 1973). We 

now use Parsival to solve the model. 

Crystallization occurs by mass transfer from the liquid phase to the solid phase (the 

crystals). The mass transfer can occur by nucleation or growth or both. The liquid phase, 

which is largely the solvent, contains the solute forming a homogeneous solution. This 

homogeneous solution can only be formed if the solvent contains an amount of solute that is 

below its solubility. The solubility of a solute in a solvent is the maximum amount of solute 

that can dissolve in a certain amount of solvent forming a homogeneous solution. The 

solubility of a solute depends on the temperature of the solution, usually increasing with 

temperature. If a homogeneous solution is therefore cooled, some of the mass in the liquid 

phase will transfer into the solid phase through the nucleation and growth processes forming 

crystals. Apart from cooling, crystallization can be caused by evaporating the solvent, 

precipitating the solute, or adding another solvent. We consider the crystallization of 

potassium sulphate/water solution by cooling in a batch crystallizer. First, we derive the 

material balance equation and the population balance equation. Then we apply the cooling 

mechanisms: natural cooling and linear cooling (for more details, see Jones and Mullin 

(1973)). 

Material balance 

Taking the aqueous phase as the system, the material balance for the solute is: 

𝐴𝑐𝑐 = 𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛        (D.1) 

where 𝐴𝑐𝑐 is the rate of accumulation of the solute in the liquid phase, given as 
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𝐴𝑐𝑐 =
𝑑(𝑐𝑀)

𝑑𝑡
= 𝑀

𝑑𝑐

𝑑𝑡
           (D.2) 

in which 𝑐 is kg solute per kg water and 𝑀 is kg of water. 𝑀 does not vary with time. 

𝐼𝑛 is the mass flow rate of solute that enters the liquid phase. For a batch system, in the 

absence of crystal dissolution, it is: 

𝐼𝑛 = 0           (D.3) 

𝑂𝑢𝑡 is the mass flow rate of solute leaving the aqueous phase. The solute can leave the 

aqueous phase by nucleation and growth. The nucleation rate is defined as the number of 

nuclei formed per unit volume of solution per unit time. The nucleation mass flow rate, on the 

other hand, is the mass of solute in the form of nuclei produced per unit time, denoted as 

𝑅𝑛.𝑀, where 𝑅𝑛 is the mass of solute in the form of nuclei produced per kg of water per unit 

time. 𝑅𝑛 can be expressed as (Jones and Mullin, 1973): 

𝑅𝑛 = 𝑘𝑛∆𝑐
𝑛(𝑡)          (D.4) 

where 𝑘𝑛 is the nucleation rate constant, ∆𝑐 is the supersaturation and 𝑛 is the order of the 

nucleation rate equation. The mass of solute that leaves the liquid phase by nucleation 

therefore is: 

𝑘𝑛∆𝑐
𝑛(𝑡)𝑀          (D.5) 

Growth also causes the solute to leave the aqueous phase. The growth process depends on 

the supersaturation and the area of the particles according to:  

𝑘𝑔𝐴(𝑡)∆𝑐
𝑔(𝑡)𝑀         (D.6) 

where 𝑘𝑔 is the growth rate constant, 𝐴(𝑡) is the total surface area of particles per kg of 

water, and 𝑔 is the order of the growth equation. 𝐴(𝑡) can be expressed as: 

𝐴(𝑡) =
𝑚𝑎𝑉

𝑀
∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
        (D.7) 

where 𝑚𝑎 is the area shape factor, 𝑉 is the volume of the solution, and ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
 is the 

second moment of the particle size distribution per unit volume of solution. 𝑠 is the particle 

diameter, 𝑓(𝑠, 𝑡) is the number density function, such that 𝑓(𝑠, 𝑡)𝑑𝑠 is the number of particles 

at time 𝑡 present in a differential size 𝑑𝑠 per unit volume of solution. 𝑠0 is the size of a 

nucleus. 

In the aqueous system, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0. 

Putting Eqs. (D.2), (D.5), (D.6) and (D.7) together: 
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𝑀
𝑑𝑐

𝑑𝑡
= −[𝑘𝑛∆𝑐

𝑛𝑀+𝑚𝑎𝑘𝑔∆𝑐
𝑔(𝑡)𝑉 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠0
]     (D.8) 

Another way to express growth is by considering a single crystal. The rate of change of 

mass on the crystal is  

𝑑( 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑐𝑟𝑦𝑠𝑡𝑎𝑙)

𝑑𝑡
=
𝑑(𝜌𝑐.𝑣𝑐)

𝑑𝑡
= 𝜌𝑐

𝑑𝑣𝑐

𝑑𝑡
       (D.9) 

where 𝜌𝑐 is the mass density of the crystal; 𝑣𝑐 is the volume of a crystal, which can be 

expressed as 

𝑣𝑐 = 𝑚𝑣𝑠
3          (D.10) 

where 𝑚𝑣 is the volume shape factor. Thus: 

𝑑𝑣𝑐

𝑑𝑡
= 3𝑚𝑣𝑠

2 𝑑𝑠

𝑑𝑡
          (D.11) 

𝑑𝑠 𝑑𝑡⁄  is the crystal growth rate 𝐺𝑠(𝑠). 

Also, from the area of this crystal 𝑚𝑎𝑠
2, we can calculate the rate of change of mass as: 

𝑚𝑎𝑘𝑔∆𝑐
𝑔(𝑡)𝑠2          (D.12) 

Eqs. (D.9) and (D.12) are equivalent. By substituting for 𝑑𝑣𝑐 𝑑𝑡⁄ , we have: 

𝜌𝑐3𝑚𝑣𝑠
2𝐺𝑠 = 𝑚𝑎𝑘𝑔∆𝑐

𝑔(𝑡)𝑠2 

Then: 

𝑘𝑔∆𝑐
𝑔 =

3𝑚𝑣𝜌𝑐𝐺𝑠(𝑠)

𝑚𝑎
         (D.13) 

Substituting for 𝑘𝑔∆𝑐
𝑔 in Eq. (E.8), we have: 

𝑀
𝑑𝑐

𝑑𝑡
= −[𝑘𝑛∆𝑐

𝑛𝑀+ 3𝑚𝑣𝜌𝑐𝐺𝑠(𝑡)𝑉 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
]     (D.14) 

But:  

𝑐 = 𝑐∗ + ∆𝑐          (D.15) 

where 𝑐∗ and ∆𝑐 are the solubility and supersaturation, respectively. Then: 

𝑀
𝑑(∆𝑐)

𝑑𝑡
= −𝑀

𝑑𝑐∗

𝑑𝑡
− [𝑘𝑛∆𝑐

𝑛𝑀+ 3𝑚𝑣𝜌𝑐𝐺(𝑡)𝑉 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
]    (D.16) 

Also, we can write: 

𝑑𝑐∗

𝑑𝑡
=
𝑑𝑐∗

𝑑𝜃
.
𝑑𝜃

𝑑𝑡
          (D.17) 
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where 𝜃 denotes the temperature of the solution. 

𝑑𝑐∗ 𝑑𝜃⁄  is the gradient of the solubility curve, expressed as: 

𝑑(𝑐∗)

𝑑𝜃
= 𝛽1 + 2𝛽2𝜃         (D.18) 

𝛽1 and 𝛽2 are constants of the solubility curve. 

𝑑𝜃 𝑑𝑡⁄  is the rate of change of temperature with time and accounts for the cooling 

mechanism.  

Thus: 

𝑀
𝑑(∆𝑐)

𝑑𝑡
= −𝑀(

𝑑𝑐∗

𝑑𝜃
.
𝑑𝜃

𝑑𝑡
) − [𝑘𝑛∆𝑐

𝑛𝑀+ 3𝑚𝑣𝜌𝑐𝐺𝑠(𝑠)𝑉 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠
∞

𝑠0
]   (D.19) 

Eq. (D.19) describes the changes in mass of the solute in the aqueous phase. Next, we 

consider the solid phase using the population balance equation.  

A batch crystallizer is assumed to be well-mixed and the crystals are described by only the 

particle diameter 𝑠. Thus, we will use the simplified population balance equation discussed in 

the main thesis as: 

𝜕𝑓(𝑠,𝑡)

𝜕𝑡
= −

𝜕[𝐺𝑠(𝑠)𝑓(𝑠,𝑡)]

𝜕𝑠
+𝐻𝑁(𝑠0)       (D.20) 

Eq. (D.20) describes how the NDF (𝑓(𝑠, 𝑡)) changes with time under the influence of 

nucleation (𝐻𝑁(𝑠0)) and particle growth (−𝜕[𝐺𝑠(𝑠)𝑓(𝑠, 𝑡)] 𝜕𝑠⁄ ). 𝐻𝑁(𝑠0) is the nucleation term, 

related to the mass nucleation rate as: 

∫𝐻𝑁(𝑠0)𝑑𝑠 =
𝑅𝑛.𝑀

𝑚𝑣𝜌𝑐𝑠0
3𝑉
=
𝑘𝑛∆𝑐

𝑛(𝑡).𝑀

𝑚𝑣𝜌𝑐𝑠0
3𝑉

       (D.21) 

The growth rate, on the other hand, is expressed as (Jones and Mullin (1973)): 

𝐺𝑠 = 𝑎𝑠
𝑏 exp[−𝐸 𝑅(𝜃 + 273)⁄ ] ∆𝑐𝑔       (D.22)  

To solve the population balance equation, apart from the temperature 𝜃, we need the initial 

particle size distribution, and the supersaturation ∆𝑐 at time 𝑡. The former is given by the 

mass of seeds per kg water (𝑊𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙) and the seed size (𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙). The latter is given by Eq. 

(D.19), which can only be solved if we know 𝑑𝜃 𝑑𝑡⁄  and the initial supersaturation ∆𝑐(0). We 

consider the two cooling mechanisms of natural cooling and linear cooling as follows. 

For natural cooling, the heat loss 𝑄 is proportional to the temperature difference between the 

temperature of the system 𝜃 and the temperature of the surrounding 𝜃𝑤. Assuming that the 
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heat capacity 𝜗𝑝 for the system is constant in the temperature range of interest, considering 

also that for a batch system the total mass 𝑀𝑇 is constant, we can write:  

𝑑(𝜗𝑝𝑀𝑇𝜃)

𝑑𝑡
= −𝑄 = −𝑝𝑛(𝜃 − 𝜃𝑤)       (D.23) 

𝑝𝑛 is the proportionality constant for how the temperature of the solution changes with the 

temperature difference between the solution and the surrounding. 

𝑑𝜃

𝑑𝑡
= −

𝑝𝑛

𝜗𝑝𝑀𝑇
(𝜃 − 𝜃𝑤) = 𝐾1(𝜃 − 𝜃𝑤)       (D.24) 

If we know the batch time for the crystallization process 𝜏, the initial solution temperature 𝜃0 

and the final solution temperature 𝜃𝑓, we can obtain 𝐾1 as: 

∫
𝑑𝜃

(𝜃−𝜃𝑤)

𝜃𝑓
𝜃0

= ∫ 𝐾1𝑑𝑡
𝜏

0
         (D.25) 

𝐾1 =
1

𝜏
ln
(𝜃𝑓−𝜃𝑤)

(𝜃0−𝜃𝑤)
         (D.26) 

Thus: 

𝜃 = 𝜃𝑤 + (𝜃0 − 𝜃𝑤) [
(𝜃𝑓−𝜃𝑤)

(𝜃0−𝜃𝑤)
]

𝑡

𝜏
        (D.27) 

For linear cooling, however, the heat loss is constant: 

𝜗𝑝𝑀𝑇
𝑑(𝜃)

𝑑𝑡
= 𝑝𝑙;  

𝑑𝜃

𝑑𝑡
= 𝐾2       (D.28) 

𝑝𝑙 is the constant for linear cooling while 𝐾2 = 𝑝𝑙 𝜗𝑝𝑀𝑇⁄ . 

Similarly, if we know the batch time 𝜏 for the crystallization process, the initial system 

temperature 𝜃0 and the final system temperature 𝜃𝑓, we can obtain 𝐾2 as: 

∫ 𝑑𝜃
𝜃𝑓
𝜃0

= ∫ 𝐾2𝑑𝑡
𝜏

0
         (D.29) 

Thus: 

𝐾2 =
(𝜃𝑓−𝜃0)

𝜏
          (D.30) 

So that: 

𝜃 = 𝜃0 +
(𝜃𝑓−𝜃0)

𝜏
𝑡         (D.31) 

In Parsival, we used the initial conditions, and the parameters employed by Jones and Mullin 

(1973) as follows: 
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𝑎 = 100; 𝑏 = 0.5; 𝐸 𝑅⁄ = 2.4 × 103 ; 𝑘𝑛 = 2 × 10
8 ; 𝑛 = 7.63 ; 𝑔 = 2 ; 𝑠0 = 6 × 10

−5 𝑚; 

𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 5.5 × 10
−4 𝑚; 𝛽0 = 6.66 × 10

−2 ; 𝛽1 = 2.3 × 10
−3 ; 𝛽2 = 6 × 10

−6; 𝑚𝑣 = 0.47; 

𝑊𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 2.36 × 10
−3 𝑘𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑘𝑔 𝑤𝑎𝑡𝑒𝑟⁄ ; 𝜃0 = 60

0𝐶 ; 𝜃𝑓 = 25
0𝐶 ; 𝜃𝑤 = 15

0𝐶 ; ∆𝑐(0) =

7.32 × 10−3 𝑘𝑔 𝑠𝑜𝑙𝑢𝑡𝑒 𝑘𝑔 𝑤𝑎𝑡𝑒𝑟⁄ ; 𝜏 = 10800 𝑠. 

After simulating, Parsival solved the problem for the two mechanisms. 

For the natural cooling, we obtained a mean size of 591 𝜇𝑚 compared to 594 𝜇𝑚 reported by 

Jones and Mullin, representing a relative deviation of 0.5%. While for the linear cooling, we 

obtained 845 𝜇𝑚 compared to 831 𝜇𝑚 reported by Mullin and Jones, representing a relative 

deviation of 1.7%. Further, we analysed how the calculations in Parsival converge. 

D.2 Convergence analysis in Parsival 
In solving the population balance equation, an integro-differential equation, Parsival uses the 

adaptive h-p Galerkin method. The h-p Galerkin method is a finite element scheme that 

divides the size space into a number of nodes h and represents each node with an algebraic 

equation of order p, hence the name h-p. The nodes and the equations, when brought 

together, yield the particle size distribution. The method solves the population balance 

equation within a time step that guarantees the specified accuracy. The accuracy refers to 

the difference between the solutions (the concentrations of the fluid components and PSD) 

at time 𝑡 and time 𝑡 + ∆𝑡. For all cases in our simulations, because of the simulation time, we 

specified an accuracy of 0.1%. The time step, called the actual time step ∆𝑡𝑎, is obtained 

using the Rothe method (see Wulkow et al. (2001) for details). We do not specify it. 

However, we specify the maximum time step ∆𝑡𝑚. Parsival uses ∆𝑡𝑎 when ∆𝑡𝑎 < ∆𝑡𝑚; 

otherwise, it uses ∆𝑡𝑚. In this analysis, we check the impact of using ∆𝑡𝑚 = 0.1, 1 and 10 𝑠. 

On the size step ∆𝑠, the h-p Galerkin method adapts to the particle size distribution and 

refines the number of nodes as the simulation progresses. We fixed the initial minimum size 

𝑠𝑚𝑖𝑛 = 0.1 𝑛𝑚, the first node; Parsival generates the number of subsequent nodes and their 

locations by searching the semi-infinite size space (i.e. from 𝑠𝑚𝑖𝑛 to ∞) for particles.  

However, when a very narrow distribution is used, as in our case, where we simulated a 

Dirac delta distribution in the model developed by Kumar et al. (2007), the search may omit 

the particles within the distribution. In order to capture this distribution, we instructed Parsival 

to search at and around the mean size (𝑠0 = 2 𝑛𝑚) by adding specific nodes. The node step 

is represented by ∆𝑥. Once Parsival has captured particles in one time step ∆𝑡𝑎, it is able to 

refine and propagate the nodes for later time steps by taking note of the processes such as 
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growth and aggregation until the final simulation time. For this analysis therefore, we added 

nodes at 2 𝑛𝑚 and −∆𝑥 from 2 𝑛𝑚 down to 1 𝑛𝑚 , and +∆𝑥 from 2 𝑛𝑚 up to 3 𝑛𝑚. 

We simulated the implemented model of Kumar et al. (2007) using the initial conditions of 

0.3 𝑚𝑜𝑙 𝑚3⁄  for both chloroauric acid and sodium citrate.  

Table D.1: Mean particle diameters for a combination ∆𝑡𝑚 and ∆𝑥 

 
∆𝑡𝑚  (s) 0.1 1.0 10.0 

∆𝑥 (nm) 
 

(nm) 

0.01 
 

38.1 37.6 37.6 

0.10 
 

38.1 37.6 37.6 

1.00 
 

38.1 37.6 37.6 
 

Table D.1 shows the results of the mean size for simulating the model by Kumar et al. for the 

case 𝐶𝑇0 = 𝐶𝐶0 = 0.3 𝑚𝑜𝑙 𝑚
3⁄  using a combination of ∆𝑡𝑚 and ∆𝑥. Changing the node steps 

does not affect the results. Also, time steps of 1 and 10 𝑠 produce identical results but 

reducing the time step to 0.1 𝑠 changes the results by ~1%.  

As we said before, the specified value of accuracy determines ∆𝑡𝑎. Further, we check the 

impact of changing this value on the numerical solution in Parsival. Using the same initial 

conditions as above, for values of accuracy: 0.01, 0.1 𝑎𝑛𝑑 1% in diiferent time steps ∆𝑡𝑚 =

0.1, 1 and 10 𝑠, Table D.2 shows the results of the mean size.  

Table D.2: Mean particle diameters for a combination accuracy and ∆𝑡𝑚 

 
∆tm (s) 0.1 1 10 

Accuracy 
 

(nm) 

0.01% 
 

38.1 38.1 38.1 

0.10% 
 

37.6 37.6 37.1 

1.00% 
 

37.6 37.6 37.1 
 

The table illustrates that both the values of accuracy and ∆𝑡𝑚 affect the results. When the 

accuracy is 0.01%, ∆𝑡𝑎 calculated from the Rothe method (for the whole simulation time) is 

less than  ∆𝑡𝑚 so that the latter does not affect the results. By relaxing the accuracy to 

0.1,and 1%, ∆𝑡𝑚 begins to affect the results, giving the least accurate result of 37.1 𝑛𝑚 when 

∆𝑡𝑚 = 10 𝑠. In the main thesis, for these initial conditions, we used accuracy of 0.1% and 

∆𝑡𝑚 of 1 𝑠, and reported the mean particle diameter 37.6 𝑛𝑚. Thus, our values were 

reasonably accurate. 
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Based on the foregoing, we can conclude that the numerical calculations in Parsival for high 

accuracy converge to nearly the same final results regardless of the time and size steps 

specified. 

D.3 Procedures for model implementation using the 
Parsival interface 
In this section, we discuss the procedures for implementing and solving a system of 

equations (i.e., a combination of population balance equation and material balance 

equations) describing a nanoparticles synthesis. To illustrate these procedures, we employ 

the model developed by Kumar et al. (2007) discussed in Chapter 3 because it is simpler 

than the synthesis model developed by Chapter 4, yet it covers key processes such as 

reactions, nucleation, growth and aggregation. 

Figure D.1A shows the home page of Parsival, appearing after clicking the software from the 

windows start menus. 

 

 

Figure D.1 - A: Showing the home page of Parsival; and, B: Showing where to click for new 

model. 
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To build a model, we left-click the workshop tab and select new model from the drop-down 

list, as illustrated in Figure D.1B. Doing so yields the interface in Figure D.2 called Parsival 

workshop. This interface comprises seven menu bars: 1) Settings, 2) Reactors, 3) Fluids, 4) 

Distributions, 5) Streams, 6) Coefficients, and 7) Modules. We describe the details that go 

into each bar as follows. 

 

Figure D.2: Showing the Parsival workshop interface comprising seven menu bars: 1) 

Settings, 2) Reactors, 3) Fluids, 4) Distributions, 5) Streams, 6) Coefficients, and 7) 

Modules. 

In the settings, we specify the simulation time in seconds in the ‘Endtime’ box and the 

numerical accuracy. For this model, as shown in Figure D.2, we have specified a simulation 

time of 500 s and an accuracy of 10−3. Also, in the settings bar, we specify the minimum and 

maximum particle size, and the units system. 
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The second bar is for reactors, where we choose the type of reactor (batch or continuous 

reactor) as well as the condition of temperature. In our case, we employed a batch reactor 

and a synthesis temperature of 100 0C. Figure D.3A show the specifications in this bar. 

The third bar is for fluids, where the components of the aqueous solution and their properties 

such as density and parameters such as molar masses and the initial amounts of the 

component in kg mass are specified. Figure D.3B shows the specifications in the third bar. 

 

Figure D.3 - A: Showing the specifications in the second bar; and, B: Showing those in the 

third bar. 

The fourth button is called distributions, where we specify the properties of the particle size 

distribution such as the mean size and standard deviation. From these parameters, Parsival 

constructs a Gaussian distribution of sizes. We can create more than one distribution, for 

example one representing particles initially present in the reactor and another representing 

nucleation. We also need to specify the mass of particles initial present (in our case, a 

negligible mass of 10−20 𝑘𝑔), particle density an volume shape factor of 𝜋 6⁄ = 0.5238. 

Figure D.4A shows the sub-interface of the fourth bar. 

The fifth bar is specifying the inlet and outlet streams from the reactor. In our case, it is the 

batch reactor: no streams. 
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The sixth bar, called coefficients, is for specifying values of the parameters such as the rate 

constants. The sub-interface is shown in Figure D.4B. 

 

Figure D.4 – A: Showing the specifications in the fourth bar (distributions); and, B: Showing 

the specifications in the sixth bar (coefficients). 

The seventh bar is called modules, where we build models for the processes. The required 

modules for our system of equations (see Section 3.3, Eqs (3.3.18) – (3.3.29) for these 

equations) are ODE-system for the material balance equations (describing the evolution of 

the fluid components); nucleation with form distribution for the expression describing the 

nucleation process; growth by supersaturation for the expression describing the growth 

process; and agglomeration (by diameter) for the expressions describing the aggregation 

process. Notice that the expressions describing the nucleation, growth and aggregation 

processes make up the population balance equation. 

For the implementation of the material balance equations in the ODE-system, see Figure D.5 

for the details included. First, we declare the fluid components (evolving with time). By this 

declaration, at each time step, Parsival feeds the amount in kg mass of each declared 

component into the sub-program (ODE-system). Second, we call the molecular weights of 
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the declared components as well as the total volume of the reaction volume. The ODE-

system sub-program can now calculate the concentration of each fluid component in 

𝑚𝑜𝑙 𝑚3⁄ . Third, we call other parameters such as the rate constants. We can therefore build 

the material balance equations (describing how each component evolves with time) in the 

ODE-system sub-program. Notice that we have created some comments in the program for 

clarity. 
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Figure D.5: Showing the details included in the ODE-system sub-program for solving the 

material balance equations. 

For the implementation of the nucleation model in the nucleation with form distribution 

module, five inputs are required: the current particle size distribution (box 1), the fluid 

component consumed in the nucleation step (box 2), the sub-program for calculating the 
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nucleation rate, the particle size distribution of the nuclei (box 4), and the nucleation rate 

constant (box 5). Figure D.6A shows the sub-interface for the nucleation module. Of interest 

is the nucleation rate sub-program. Figure D.6B shows this sub-program for the model 

developed by Kumar et al. (2007). Other than the Dirac delta function, which is represented 

by a Gaussian distribution in box 4, the final expression in this sub-program is identical to 

Eq. (3.3.25). Before the final expression, we must declare and feed in the quantities in the 

expression every time step.  

 

Figure D.6 – A: Showing the sub-interface for the nucleation module; and, B: Showing the 

nucleation rate sub-program. 

For the implementation of the growth sub-model in the module of growth by supersaturation, 

like for the nucleation module, five inputs are required: the current particle size distribution 

(box 1), the fluid component consumed in the growth process (box 2), the sub-program for 

calculating the concentration sub-program (box 3), the length sub-program (box 4), and the 

growth rate constant (box 5). For the growth rate expression such as Eq. (3.3.26) in Chapter 

3, Parsival separates the function of size (the length sub-program) from the function of 

concentration (the concentration sub-program). However, this equation does not depend on 

size as the growth process surface-reaction controlled. Figure D.7 shows the sub-interface 

for the growth module, the concentration and length sub-programs. The final expression in 

the concentration sub-program is identical to Eq. (3.3.26) while final expression in the length 

sub-program is unity. 
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Figure D.7 – A: Showing the sub-interface for the growth module; B: Showing the 

concentration sub-program; and, C: Showing the length sub-program. 

For the implementation of the aggregation sub-model in the module of agglomeration, four 

inputs are required: five inputs are also required: the two aggregating particle size 

distributions (basically specifying the current particle size distribution twice in boxes 1 and 2 

since binary aggregation is assumed), the two sub-programs for the aggregation kernel (box 

3) and the stability factor (box 4), and a constant (box 5). The multiplication product of the 

final expressions in these two sub-programs must yield the value of 𝜔̃𝐴(𝑠, 𝑠
′) 𝑊⁄ . As in the 

growth module, Parsival separates the function of size from other quantities: the function of 

size in box 3 and other quantities in box 4. Figure D.8 shows the sub-interface for the 

aggregation module, the size sub-program and the subprogram for other quantities. 
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Figure D.8 – A: Showing the sub-interface for the aggregation module; B: Showing the size 

sub-program; and, C: Showing the subprogram for other quantities. 

The implementation of the aggregation completes the procedures for building the model of 

Kumar et al. (2007). Therefore, the model can be solved in Parsival by clicking on the start 

button in Figure D.2. Similar procedures apply in implementing other model in Parsival. 

D.4 Concluding remarks 
Thus, from the PBM validation and convergence analysis, we can conclude that the 

numerical calculations in Parsival are reasonably accurate. 
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Appendix E 

Supporting Information to Chapter 4 

4.A Thermodynamics of the citrate synthesis 
method 
In this section, we discuss the thermodynamics of the precursor and reducing agent 

solutions, separately; then, we discuss the thermodynamics of their mixture. 

4.A.1 Thermodynamics of tetrachloroauric acid in water 
Being an acid, 𝐻𝐴𝑢𝐶𝑙4 shifts the equilibrium position of Eq. (4.2.1) (in the main contribution) 

to the left. In addition to the amounts of the components featuring in Eq. (4.2.1), we intend to 

determine the amounts of the other components present in the precursor solution at 

equilibrium; these amounts, of course, depend on the temperature of the solution. As the 

system evolves toward equilibrium, several reactions take place, some reactions being faster 

than others. While the dissociation reactions of water and acid occur nearly instantaneously 

(Pines et al., 1997, reported ~ 10−11 𝑠 as the time scale of the dissociation reactions), the 

hydroxylation reactions of 𝐴𝑢𝐶𝑙4
− occur much more slowly (Wuithschick et al., 2015, 

reported ~30 𝑠 as the time scale of these reactions). We assume that the precursor solution 

is allowed to reach the final equilibrium state at 25 0C. To synthesize the gold nanoparticles, 

a portion of this stock solution is subsequently heated to 100 0C. Therefore, we consider the 

precursor solution at 25 0C, which reaches very quickly a quasi-equilibrium state due to the 

dissociation reactions. Once this state has been reached, we account for the hydroxylation 

reactions, which occur before the solution reaches the final equilibrium state. Then, we 

account for the heating of the solution by considering its final equilibrium state at 100 0C. 

Step 1: Quasi-equilibrium of tetrachloroauric acid in water at 25 0C 

Tetrachloroauric acid completely ionizes in water according to: 

𝐻𝐴𝑢𝐶𝑙4 → 𝐻
+ + 𝐴𝑢𝐶𝑙4

−
        (4.A.1) 

Based on Eqs. (4.2.1) and (4.A.1), the mixture contains 𝐻+, 𝐴𝑢𝐶𝑙4
−, 𝐻2𝑂, and 𝑂𝐻−. We 

write the mass balance equations for these components using the following table: 
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Components: 𝐻+ 𝑂𝐻− 𝐻2𝑂 𝐻𝐴𝑢𝐶𝑙4 𝐴𝑢𝐶𝑙4
− 

Symbols 𝐴 𝐵 𝐶 𝐷 𝐸 

Initial moles: 0 0 𝑛𝐶
0 𝑛𝐷

0  0 

Moles at equilibrium: 𝑛𝐴 𝑛𝐵 𝑛𝐶 0 𝑛𝐸 

The unknowns are 𝑛𝐴, 𝑛𝐵, 𝑛𝐶 and 𝑛𝐸. We obtain their values by solving the mass balance 

equations and the equilibrium equation reported below. 

Balance over the atoms: 

𝐻: 2𝑛𝐶
0 + 𝑛𝐷

0 = 𝑛𝐴 + 𝑛𝐵 + 2𝑛𝐶        (4.A.2) 

𝑂:  𝑛𝐶
0 = 𝑛𝐵 + 𝑛𝐶         (4.A.3) 

𝐴𝑢: 𝑛𝐷
0 = 𝑛𝐸          (4.A.4) 

At the quasi-equilibrium state, the amounts of 𝐴𝑢 and 𝐶𝑙 are related; accordingly, an 

additional balance equation for 𝐶𝑙 is not needed. 

The equation for the equilibrium constant of the water dissociation reaction provides the last 

equation required to solve the problem; this reads: 

𝐾𝑎,𝑤 = (
𝑛𝐴

𝑉
) (
𝑛𝐵

𝑉
)         (4.A.5) 

where 𝑉 denotes the volume of the solution in 𝑑𝑚3. 

For the case of the preparation of the standard solution at 25 0C in which 𝐶𝐻𝐴𝑢𝐶𝑙4 = 2.5 ×

10−4 𝑀, if we assume that 𝑉 = 1 𝑑𝑚3, it is 𝑛𝐷
0 = 2.5 × 10−4 𝑚𝑜𝑙. Also, since the molecular 

weight of 𝐻𝐴𝑢𝐶𝑙4 is 340 𝑔 𝑚𝑜𝑙⁄ , the mass concentration of 𝐻𝐴𝑢𝐶𝑙4 is 0.085 𝑔 𝑑𝑚3⁄ . With 

𝑉 = 1 𝑑𝑚3, if the solution density 𝜌𝑠𝑜𝑙 is equal to 103  𝑔 𝑑𝑚3⁄ , the total mass of the solution is 

1000 𝑔; so, the mass of water is 999.915 𝑔. Because the molecular weight of water is 

18𝑔 𝑚𝑜𝑙⁄ , we obtain 𝑛𝐶
0 = 55.55 𝑚𝑜𝑙. 

At 25 0C, 𝐾𝑎,𝑤 = 1 × 10
−14. Solving Eqs. (4.A.2) – (4.A.5) yields the values in Table 5.A.1. 
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Table 5.A.1. Mole numbers of the components present at quasi-equilibrium conditions in 

1 𝑑𝑚3 of aqueous solution of 𝐻𝐴𝑢𝐶𝑙4. The initial precursor concentration is equal to 

𝐶𝐻𝐴𝑢𝐶𝑙4 = 2.5 × 10
−4𝑚𝑜𝑙/𝑑𝑚3 in water at 25 0C. 

𝑛𝐴 (𝐻
+) 2.50 × 10−4 𝑚𝑜𝑙 

𝑛𝐵 (𝑂𝐻
−) 4.00 × 10−11 𝑚𝑜𝑙 

𝑛𝐶  (𝐻2𝑂) 55.55 𝑚𝑜𝑙 

𝑛𝐸  (𝐴𝑢𝐶𝑙4
−) 2.50 × 10−4 𝑚𝑜𝑙 

𝑝𝐻 3.60 

Having taken the total mixture volume equal to 1 𝑑𝑚3, one finds that the numerical values of 

the component amounts in moles and of the component concentrations in 𝑚𝑜𝑙/𝑑𝑚3 are the 

same. Thus, at quasi-equilibrium, 𝐶𝑂𝐻− ≪ 𝐶𝐴𝑢𝐶𝑙4− ≅ 𝐶𝐻𝐴𝑢𝐶𝑙4 ≅ 𝐶𝐻+. We conclude that the 

amount of 𝑂𝐻− is insufficient to cause significant hydroxylation of 𝐴𝑢𝐶𝑙4
−. Nonetheless, 

because of the sensitivity of the synthesis to small amounts of either 𝐻+ or 𝑂𝐻−, we 

consider these reactions in the following section. 

Step 2: Final equilibrium of tetrachloroauric acid in water at 25 0C 

According to the literature, the speciation of the tetrachloroauric acid is given by the 

reactions: 

𝐴𝑢𝐶𝑙4
− + 𝑂𝐻− ←⃗⃗⃗ 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− + 𝐶𝑙−    𝐾𝑃1   (4.A.6) 

𝐴𝑢𝐶𝑙3(𝑂𝐻)
− + 𝑂𝐻− ←⃗⃗⃗  𝐴𝑢𝐶𝑙2(𝑂𝐻)2

−
+ 𝐶𝑙−   𝐾𝑃2   (4.A.7) 

 𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
+ 𝑂𝐻− ←⃗⃗⃗ 𝐴𝑢𝐶𝑙(𝑂𝐻)3

−
+ 𝐶𝑙−   𝐾𝑃3   (4.A.8) 

𝐴𝑢𝐶𝑙(𝑂𝐻)3
−
+ 𝑂𝐻− ←⃗⃗⃗ 𝐴𝑢(𝑂𝐻)4

−
+ 𝐶𝑙−   𝐾𝑃4   (4.A.9) 

where the 𝐾𝑃𝑖’s are the equilibrium constants of the reactions. The values of these four 

constants at 20 0C are 3.98 × 10−6, 3.98 × 10−7, 3.16 × 10−8 and 5.01 × 10−9, respectively 

(Ojea-Jiménez and Campanera, 2012; Goai and Matijevic, 1999). To obtain their values at 

25 0C, we use the following equation (Sandler, 2006): 

𝐾𝑎 = exp (−
∆𝐺0

𝑅𝑇
)       →       ∆𝐺0 = − 𝑅𝑇 ln𝐾𝑎      (4.A.10) 

where 𝐾𝑎 is the equilibrium constant of a generic reaction, ∆𝐺0 is the Gibbs free energy 

change for the reaction at the standard state of both reactants and products, 𝑇 is the 

temperature in Kelvin and 𝑅 is the universal gas constant. 
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From this equation, we obtain ∆𝐺0 for reactions (4.A.6) – (4.A.9) as (3.02, 3.59, 4.20 and 

4.65) × 104 𝐽 𝑚𝑜𝑙⁄ , respectively. Thus, at 25 0C, the values of the 𝐾𝑃𝑖 are 4.90 × 10−6, 

5.13 × 10−7, 4.57 × 10−8 and 6.92 × 10−9, respectively. 

Solving the mass balance equations for the atoms involved in the reactions and the 

equilibrium equations for the reactions yields the results reported in Table 4.A.2. 

Table 4.A.2. Mole numbers of the components present at final equilibrium conditions in 1 

𝑑𝑚3 of aqueous solution of 𝐻𝐴𝑢𝐶𝑙4. The initial precursor concentration is equal to 𝐶𝐻𝐴𝑢𝐶𝑙4 =

2.5 × 10−4𝑚𝑜𝑙/𝑑𝑚3 in water at 25 0𝐶. 

𝑛𝐴 (𝐻
+) 2.50 × 10−4 𝑚𝑜𝑙 

𝑛𝐵 (𝑂𝐻
−) 4.00 × 10−11 𝑚𝑜𝑙 

𝑛𝐶  (𝐻2𝑂) 55.55 𝑚𝑜𝑙 

𝑛𝐸  (𝐴𝑢𝐶𝑙4
−) 2.50 × 10−4 𝑚𝑜𝑙 

𝑛𝐹 (𝐴𝑢𝐶𝑙3(𝑂𝐻)
−) 2.21 × 10−10 𝑚𝑜𝑙 

𝑛𝐺  ( 𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
) 2.06 × 10−17 𝑚𝑜𝑙 

𝑛𝐻 (𝐴𝑢𝐶𝑙(𝑂𝐻)3
−
) 1.69 × 10−25 𝑚𝑜𝑙 

𝑛𝐼 (𝐴𝑢(𝑂𝐻)4
−

) 1.56 × 10−34 𝑚𝑜𝑙 

𝑛𝐽 (𝐶𝑙
−) 2.21 × 10−10 𝑚𝑜𝑙 

𝑝𝐻 3.60 

The results indicate that 𝐻𝐴𝑢𝐶𝑙4 exists almost entirely as 𝐴𝑢𝐶𝑙4
− ion in water at 25 0C as the 

hydroxylated species of the precursor are present in negligible amounts, and the final pH 

remains unchanged from the value reported in Table 4.A.1. 

As the synthesis is usually carried out at 100 0C, we now consider how the amounts of the 

components in Table 4.A.2 change on heating the solution. 

Step 3: Final equilibrium of tetrachloroauric acid in water at 100 0C 

To determine the equilibrium amounts at 100 0C, we write and solve again material balance 

equations for the atoms involved in the reactions and equilibrium equations for the reactions 

with the values of the equilibrium constants at 100 0C. Using Eq. (4.A.10), we find that 

𝐾𝑎,𝑤 = 6.46 × 10
−12 and the values of the 𝐾𝑃𝑖’s are 5.75 × 10−5, 9.33 × 10−6, 1.29 × 10−6 
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and 3.02 × 10−7, respectively. With the previous initial data (𝑛𝐷
0 = 2.5 × 10−4 𝑚𝑜𝑙 and 

𝑛𝐶
0 = 55.55 𝑚𝑜𝑙 contained in 1 𝑑𝑚3 of solution), the results are shown in Table 4.A.3. 

Table 4.A.3. Mole numbers of the components present at final equilibrium conditions in 1 

𝑑𝑚3 of aqueous solution of 𝐻𝐴𝑢𝐶𝑙4. The initial precursor concentration is equal to 𝐶𝐻𝐴𝑢𝐶𝑙4 =

2.5 × 10−4𝑚𝑜𝑙/𝑑𝑚3 in water at 100 0C. 

𝑛𝐴 (𝐻
+) 2.50 × 10−4 𝑚𝑜𝑙 

𝑛𝐵 (𝑂𝐻
−) 2.61 × 10−8 𝑚𝑜𝑙 

𝑛𝐶  (𝐻2𝑂) 55.55 𝑚𝑜𝑙 

𝑛𝐸  (𝐴𝑢𝐶𝑙4
−) 2.50 × 10−4 𝑚𝑜𝑙 

𝑛𝐹 (𝐴𝑢𝐶𝑙3(𝑂𝐻)
−) 1.94 × 10−8 𝑚𝑜𝑙 

𝑛𝐺  ( 𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
) 2.44 × 10−13 𝑚𝑜𝑙 

𝑛𝐻 (𝐴𝑢𝐶𝑙(𝑂𝐻)3
−
) 4.20 × 10−19 𝑚𝑜𝑙 

𝑛𝐼 (𝐴𝑢(𝑂𝐻)4
−

) 1.01 × 10−25 𝑚𝑜𝑙 

𝑛𝐽 (𝐶𝑙
−) 1.94 × 10−8 𝑚𝑜𝑙 

𝑝𝐻 3.60 

The amounts of the hydroxylated species of the precursor have increased from those in 

Table 4.A.2. For instance, the amount of 𝐴𝑢(𝑂𝐻)4
−
 has increased by nine orders of 

magnitude. Nevertheless, the sum of the amounts of the four hydroxylated species is 

negligible as the precursor exists almost entirely as 𝐴𝑢𝐶𝑙4
−. Similarly, although the amount 

of 𝑂𝐻− has increased by three orders of magnitude, the value of the mixture pH remains 

unchanged. To increase the amount of 𝑂𝐻−, we need to add a base to the solution. In the 

Turkevich synthesis, an aqueous solution of sodium citrate, which is a weak base, is added 

to the precursor solution. The primary purpose of adding (tri)sodium citrate is to reduce the 

gold (in 𝐴𝑢𝐶𝑙4
−, 𝐴𝑢𝐶𝑙3(𝑂𝐻)

−,  𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
, 𝐴𝑢𝐶𝑙(𝑂𝐻)3

−
 and 𝐴𝑢(𝑂𝐻)4

−
) existing at +3 

oxidation state to atomic gold, whose oxidation state is zero. To simplify our analysis, in the 

main contribution we consider only 𝐴𝑢𝐶𝑙4
− and 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− as the existing forms of the 

precursor. We neglect higher hydroxylated forms, because, as shown in Tables 4.A.2 and 

4.A.3 and as reported by Peck et al. (1991), they are present in negligible amounts within the 

range of pH of interest for the synthesis. In the next section, we consider the 

thermodynamics of the reducing agent solution (sodium citrate dissolved in water). 
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4.A.2 Thermodynamics of sodium citrate in water 
Apart from being the synthesis reducing agent, an aqueous solution of sodium citrate is a 

weak base. To illustrate this, in this section we determine the components of the solution 

and their amounts at equilibrium. Wuithschick et al. (2015) observed that the solution 

reaches a final equilibrium state in less than 2 𝑠. Consequently, unlike in the previous 

section, we only consider the final equilibrium state of the solution at the preparation and 

synthesis temperatures of 25 and 100 0C, respectively. 

Step 1: Final equilibrium of sodium citrate in water at 25 0C 

Sodium citrate first ionises completely as: 

𝑁𝑎3𝐶𝑡 → 3𝑁𝑎
+ + 𝐶𝑡3−        (4.A.11) 

Citrate subsequently interacts with 𝐻+, produced due to the reaction in Eq. (4.2.1), as: 

𝐶𝑡3− +𝐻+ ←⃗⃗⃗ 𝐶𝑡𝐻2−         1 𝐾𝑅3⁄       (4.A.12) 

𝐶𝑡𝐻2− +𝐻+ ←⃗⃗⃗ 𝐶𝑡𝐻2
−       1 𝐾𝑅2⁄       (4.A.13) 

𝐶𝑡𝐻2
− +𝐻+ ←⃗⃗⃗ 𝐶𝑡𝐻3       1 𝐾𝑅1⁄       (4.A.14) 

where the 𝐾𝑅𝑖’s are the equilibrium constants, whose values at 25 0C are 7.41 × 10−4, 1.74 ×

10−5 and 3.98 × 10−7, respectively (Serjeant and Dempsey, 1979). 

The reactions in Eqs. (4.A.12) – (4.A.14) occur significantly in less than 2 𝑠 (Wuithschick et 

al., 2015). Solving the material balance equations for the atoms involved in the reactions and 

the equilibrium equations for the reactions yields the results in Table 4.A.4 if the initial 

concentration of 𝑁𝑎3𝐶𝑡 is 𝐶𝑁𝑎3𝐶𝑡 = 0.194 𝑚𝑜𝑙/𝑑𝑚
3. This is the initial concentration of the 

reducing agent solution employed by Ji et al. (2007). When compared to the precursor 

solution, it is three orders of magnitude more concentrated. As we see in Section 4.A.3, 

however, only a small volume of this solution is added to the precursor solution to form the 

synthesis solution. With such a small addition of reducing agent solution, the initial 

concentrations of tetrachlorauric acid in the precursor solution and in the synthesis solution 

are essentially equal. 
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Table 4.A.4. Mole numbers of the components present at equilibrium conditions in 1 𝑑𝑚3 of 

aqueous solution of 𝑁𝑎3𝐶𝑡. The initial reducing agent concentration is equal to 𝐶𝑁𝑎3𝐶𝑡 =

0.194 𝑚𝑜𝑙/𝑑𝑚3 in water at 25 0C. 

𝑛𝐴 (𝐻+) 1.18 × 10−10 𝑚𝑜𝑙 

𝑛𝐵 (𝑂𝐻−) 8.46 × 10−5 𝑚𝑜𝑙 

𝑛𝐶 (𝐻2𝑂) 52.78 𝑚𝑜𝑙 

𝑛𝐷 (𝐶𝑡𝐻3) 9.07 × 10−17 𝑚𝑜𝑙 

𝑛𝐸 (𝐶𝑡𝐻2
−) 5.77 × 10−10 𝑚𝑜𝑙 

𝑛𝐹 (𝐶𝑡𝐻2−) 8.46 × 10−5 𝑚𝑜𝑙 

𝑛𝐺 (𝐶𝑡3−) 0.1939 𝑚𝑜𝑙 

𝑛𝐼 (𝑁𝑎
+) 0.5820 𝑚𝑜𝑙 

𝑝𝐻 9.93 

The results indicate that at 25 0C the solution is alkaline, because the value of the pH is 

higher than the neutral pH of 7. In comparison with Table 4.A.2, the amount of 𝑂𝐻− in the 

aqueous solution of sodium citrate is larger than that in the aqueous solution of 

tetrachloroauric acid by six orders of magnitude. Thus, this amount can hydroxylate 𝐴𝑢𝐶𝑙4
− 

into 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−. 

The results also indicate that citrate exists almost entirely as 𝐶𝑡3− ion in water at this 

condition of pH and temperature. To analyse the effect of heating, we consider the solution 

at 100 0𝐶. 

Step 2: Final equilibrium of sodium citrate in water at 100 0C 

To determine the equilibrium amounts of the components at 100 0C, we solve again the 

material balance equations and the equilibrium equations using the values of the equilibrium 

constants at this temperature. Using Eq. (4.A.10), at 100 0C, 𝐾𝑎,𝑤 = 6.46 × 10
−12, while the 

values of the 𝐾𝑅𝑖’s are 3.16 × 10−3, 1.58 × 10−4 and 7.76 × 10−6, respectively. With the 

previous initial data, 𝑛𝑁𝑎3𝐶𝑡
0 = 0.194 𝑚𝑜𝑙 and 𝑛𝐶

0 = 52.78 𝑚𝑜𝑙 in 1 𝑑𝑚3 of solution, the results 

are shown in Table 4.A.5. 
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Table 4.A.5. Mole numbers of the components present at equilibrium conditions in 1 𝑑𝑚3 of 

aqueous solution of 𝑁𝑎3𝐶𝑡. The initial reducing agent concentration is equal to 𝐶𝑁𝑎3𝐶𝑡 =

0.194 𝑚𝑜𝑙/𝑑𝑚3 in water at 100 0𝐶. 

𝑛𝐴 (𝐻+) 1.52 × 10−8 𝑚𝑜𝑙 

𝑛𝐵 (𝑂𝐻−) 4.24 × 10−4 𝑚𝑜𝑙 

𝑛𝐶 (𝐻2𝑂) 52.78 𝑚𝑜𝑙 

𝑛𝐷 (𝐶𝑡𝐻3) 1.89 × 10−13 𝑚𝑜𝑙 

𝑛𝐸 (𝐶𝑡𝐻2
−) 4.27 × 10−8 𝑚𝑜𝑙 

𝑛𝐹 (𝐶𝑡𝐻2−) 4.24 × 10−4 𝑚𝑜𝑙 

𝑛𝐺 (𝐶𝑡3−) 0.1936 𝑚𝑜𝑙 

𝑛𝐼 (𝑁𝑎
+) 0.5820 𝑚𝑜𝑙 

𝑝𝐻 7.82 

Note that the neutral pH at 100 0𝐶 is 5.59. Thus, from the results, because the pH value is 

higher than this value, the aqueous solution of 𝑁𝑎3𝐶𝑡 is still alkaline. The amount of 𝑂𝐻− has 

increased by about an order of magnitude from the value at 25 0𝐶 to 4.24 × 10−4 𝑚𝑜𝑙. 

Consequently, 𝑂𝐻− can significantly hydroxylate 𝐴𝑢𝐶𝑙4
− to 𝐴𝑢𝐶𝑙3(𝑂𝐻)

− when the solutions 

of the precursor and reducing agent are mixed. 

4.A.3 Mixture of precursor and reducing agent solutions 
In this section, we determine the amounts at quasi-equilibrium of the components in the 

solution obtained by mixing the precursor and reducing agent solutions. Here, by quasi-

equilibrium we mean the state that the resulting solution reaches after mixing the precursor 

and reducing agent solutions and after the fast reactions involving 𝐻+ in Eq. (4.A.12) – 

(4.A.14) have reached equilibrium, but before the synthesis reactions of 𝐴𝑢𝐶𝑙4
− 

(hydroxylation and reduction reactions) have started occurring significantly. When the two 

solutions are mixed, in less than 2 s the following reactions reach equilibrium: 

𝐻2𝑂 ←⃗⃗⃗ 𝐻
+ + 𝑂𝐻− 𝐾𝑎,𝑤     (reaction 1) 

𝐶𝑡𝐻3 ←⃗⃗⃗ 𝐶𝑡𝐻2
− +𝐻+ 𝐾𝑅1     (reaction 2) 

𝐶𝑡𝐻2
− ←⃗⃗⃗ 𝐶𝑡𝐻2− +𝐻+ 𝐾𝑅2     (reaction 3) 
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𝐶𝑡𝐻2− ←⃗⃗⃗ 𝐶𝑡3− +𝐻+ 𝐾𝑅3     (reaction 4) 

At 100 0C, the value of 𝐾𝑎,𝑤 is 6.46 × 10−12 and those of the 𝐾𝑅𝑖’s are 3.16 × 10−3, 1.58 ×

10−4 and 7.76 × 10−6, respectively. 

In preparing the synthesis solution, previous authors such as Turkevich et al. (1951), Frens 

(1973), Ji et al. (2007) and Wuithschick et al. (2015) kept the initial concentration of 

tetrachloroauric acid constant at about 0.25 × 10−3 𝑚𝑜𝑙/𝑑𝑚3 by adding a small volume of the 

reducing agent solution to a large volume of the precursor solution. For example, in 

preparing the standard synthesis solution, Wuithschick et al. (2015) mixed 199 𝑐𝑚3 of 

0.25 × 10−3 𝑚𝑜𝑙/𝑑𝑚3 precursor solution with 1 𝑐𝑚3 of 0.5 𝑚𝑜𝑙/𝑑𝑚3 reducing agent solution. 

In preparing other synthesis solutions, however, the previous authors did not report the 

volumes of the precursor and reducing agent solutions combined. Instead, they reported the 

concentrations of the precursor and reducing agent in the synthesis solution. These 

concentrations are what we need for the present analysis. 

To determine the amounts of the components at quasi-equilibrium, we employ the smallest 

initial molar ratio of citrate to gold with a value of 0.7 in the data of Ji et al., who reported the 

initial concentrations of the precursor and reducing agent in the synthesis solution as 

𝐶𝐻𝐴𝑢𝐶𝑙4,0 = 0.25 × 10
−3 𝑚𝑜𝑙/𝑑𝑚3 and 𝐶𝑁𝑎3𝐶𝑡,0 = 0.175 × 10

−3 𝑚𝑜𝑙/𝑑𝑚3, respectively. (Notice 

that the concentration of the reducing agent solution in Section 4.A.2 was 0.194 𝑚𝑜𝑙/𝑑𝑚3, 

which is about three orders of magnitude larger than that in the synthesis solution. Ji et al. 

obtained this synthesis solution by mixing 100 𝑐𝑚3 of 0.25 × 10−3 𝑚𝑜𝑙/𝑑𝑚3 precursor 

solution with 0.09 𝑐𝑚3 of 0.194 𝑚𝑜𝑙/𝑑𝑚3 reducing agent solution). With these initial 

concentrations, assuming that amounts of the order of 10−8 𝑚𝑜𝑙 (or smaller) in the volume of 

the resulting mixture are negligible, solving the material balance equations for the atoms and 

the equilibrium equations for the reactions, yields the results given in Table 4.A.6. 

Table 4.A.6. Mole numbers of the components present at quasi-equilibrium conditions 

following the speciation of citrate for 𝐶𝐻𝐴𝑢𝐶𝑙4,0 = 0.25 × 10
−3 𝑚𝑜𝑙/𝑑𝑚3 and 𝐶𝑁𝑎3𝐶𝑡,0 = 0.175 ×

10−3 𝑚𝑜𝑙/𝑑𝑚3 at 100 0𝐶 in 1 𝑑𝑚3 of synthesis solution. 

𝑛𝐴(𝐻
+) 5.24 × 10−5 𝑚𝑜𝑙 

𝑛𝐵(𝑂𝐻
−) 1.23 × 10−7 𝑚𝑜𝑙 

𝑛𝐶 (𝐻2𝑂) 55.55 𝑚𝑜𝑙 

𝑛𝐷(𝐶𝑡𝐻3) 6.45 × 10−7 𝑚𝑜𝑙 
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𝑛𝐸(𝐶𝑡𝐻2
−) 3.90 × 10−5 𝑚𝑜𝑙 

𝑛𝐹(𝐶𝑡𝐻
2−) 1.18 × 10−4 𝑚𝑜𝑙  

𝑛𝐺(𝐶𝑡
3−) 1.75 × 10−5 𝑚𝑜𝑙  

𝑛𝐻(𝑁𝑎
+) 5.25 × 10−4  

𝑛𝐼(𝐴𝑢𝐶𝑙4
−) 2.50 × 10−4  

𝑝𝐻 4.28 

We see that all the citrate species, but 𝐶𝑡𝐻3, are in significant amounts. Similarly, as 

expected, because the molar ratio of the initial concentration of sodium citrate to 

tetrachloroauric acid is 0.7, the mixture at quasi-equilibrium is still acidic, but less than the 

initial precursor solution. In the synthesis solution, keeping the initial amount of 

tetrachloroauric acid constant at 𝐶𝐻𝐴𝑢𝐶𝑙4,0 = 0.25 × 10
−3 𝑚𝑜𝑙/𝑑𝑚3 and increasing the initial 

amount of sodium citrate 𝐶𝑁𝑎3𝐶𝑡,0 would make the quasi-equilibrium pH increase. At a certain 

point, the quasi-equilibrium pH would exceed the neutral pH of 5.59, making the solution 

basic. 

4.B Experimental evidence for the seed-mediated 
mechanism 
In this section, we first show that the growth step in the citrate method is controlled by 

surface reaction and then we calculate the value of the rate constant 𝑘𝑔. 

4.B.1 Growth step controlling mechanism 
In Figure 2(d) of the article of Polte et al. (2010), reproduced in Figure 4.B.1, over the first 20 

min of the synthesis the mean particle radius increases from about 2 𝑛𝑚 to about 3.6 𝑛𝑚, 

while the number of particles decreases to roughly 20% of the initial value measured at t~0 

min. This decrease in the particle number indicates that on average five primary 

nanoparticles aggregate into one nanoparticle. To estimate the mean radius 𝑟𝑎 of the 

aggregate, we assume that its volume equals the sum of the volumes of the five primary 

particles. Thus, we have: 

𝑟𝑎
3 = 5 × 23   →   𝑟𝑎 = 3.42 𝑛𝑚       (4.B.1) 

This value is approximately equal to the mean radius of about 3.6 𝑛𝑚 measured at 20 min. 

After this time, we can observe that the number of particles is almost constant at 20% of the 

initial value. We can therefore conclude that the time scale of the aggregation process at 
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75 0𝐶 is about 20 min. Within this time interval, the size increase owing to particle growth is 

negligible; growth occurs significantly only after, increasing the mean radius from 3.6 𝑛𝑚  to 

~ 7 𝑛𝑚 in ~ 40 mins. The length of this time interval coincides with the time scale of the 

growth step. Therefore, the processes of aggregation and growth are decoupled in time, 

consistently with the seed-mediated mechanistic description of Wuithschick et al. (2015). 

 

Figure 4.B.1. Evolution of the mean radius and of the percentage number of particles in the 

citrate synthesis method. The values of the initial concentrations of 𝐻𝐴𝑢𝐶𝑙4 and 𝑁𝑎3𝐶𝑡 in the 

synthesis solution are 0.25 𝑚𝑜𝑙 𝑚3⁄  and 2.5 𝑚𝑜𝑙 𝑚3⁄ , respectively. The mixture temperature 

is 75 0𝐶. Data reproduced from Figure 2(d) of Polte et al. (2010). 

Furthermore, this figure reveals that, between 20 and 60 min, the slope of the curve is 

almost constant over a large period of time, increasing slightly around the time of 60 min. For 

growth controlled by mass transfer, the slope, which is the growth rate, should decrease with 

size (Viswanatha and Sarma, 2007). However, because the growth rate is constant with the 

particle size over a large time interval, we assume the surface reaction process controls 

particle growth in the citrate synthesis method. After about 60 min from the start of the 

synthesis, the growth rate declines because of the depletion of the driving force (that is, of 

the concentration of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−). 
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4.B.2 Calculation of the growth rate 𝒌𝒈 

To determine the value of 𝑘𝑔 at 75 0C, we consider in Figure 4.B.1 the time interval between 

20 and 45 min. In this region only particle growth is present; the particle number density is 

constant, since particles have stopped aggregating. Furthermore, the growth rate is 

constant, indicating growth is controlled by surface reaction. The number of particles is equal 

to the final number of GNPs per unit volume, which we denote as 𝑁𝑃. Within this time 

interval, we can express 𝐶𝐴𝑢, that is, the amount of gold atoms present in the particle phase 

per unit volume of synthesis solution, as follows: 

𝐶𝐴𝑢 = 𝑁𝑃𝜌𝑚𝑣𝑠𝑚
3         (4.B.2) 

where 𝜌 is the molar density of gold, taken as 105  𝑚𝑜𝑙 𝑚3⁄ , 𝑚𝑣 is the particle volume shape 

factor (which we set equal to /6, assuming that the particles are spherical), and 𝑠𝑚 is the 

(time-dependent) mean particle diameter. Also, it is: 

𝐴 = 𝑁𝑃𝑚𝑎𝑠𝑚
2          (4.B.3) 

where 𝑚𝑎 is the particle area shape factor (which we set equal to , assuming that the 

particles are spherical). Substituting for 𝐶𝐴𝑢 and 𝐴 in Eq. (4.3.16), we have: 

3𝑁𝑃𝜌𝑚𝑣𝑠𝑚
2 𝑑𝑠𝑚

𝑑𝑡
= 𝑁𝑃𝑚𝑎𝑠𝑚

2𝑘𝑔 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)−  𝐶𝐶𝑡𝐻2−  

This reduces to: 

𝑑𝑠𝑚

𝑑𝑡
= (

𝑚𝑎

3𝜌𝑚𝑣
)𝑘𝑔𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)−  𝐶𝐶𝑡𝐻2−        (4.B.4) 

Within the time interval between 20 and 45 min in Figure 4.B.1, we consider four points from 

the radius-time curve, specifically those at 25, 30, 35 and 40 min. At these times, we can 

calculate the corresponding values of 𝑑𝑠𝑚 𝑑𝑡⁄ , which is equal to twice the slope of the curve; 

the results are 1.13 × 10−3, 1.13 × 10−3, 1.01 × 10−3 and 6.57 × 10−4 𝑛𝑚 𝑠⁄ , respectively. 

To obtain the corresponding values of 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)−, we operated as follows. We first 

calculated 𝑁𝑃 using the values of the initial precursor concentration in the synthesis solution 

(equal to 0.25  𝑚𝑜𝑙 𝑚3⁄ ) and of the final mean particle diameter 𝑠𝑓 (equal to 15 𝑛𝑚). Because 

all the gold contained in the precursor eventually forms gold nanoparticles, we can write: 

𝑁𝑃 =
0.25 𝑚𝑜𝑙 𝑚3⁄

𝜌𝑚𝑣𝑠𝑓
3

=
0.25 𝑚𝑜𝑙 𝑚3⁄

1 × 105  𝑚𝑜𝑙 𝑚3⁄ × /6 × (15 × 10−9)3
= 1.41 × 1018  1 𝑚3⁄  

Assuming a reactor volume of 1 𝑚3, the amount of gold in the particles in moles is equal, at 

any given time between 20 and 45 min, to 1.41 × 1018 × 𝜌𝑚𝑣𝑠𝑚
3. At the synthesis time of 25 
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min, 𝑠𝑚 = 7.86 𝑛𝑚, and so the value is 1.41 × 1018 × 1 × 105 × /6 × (7.86 × 10−9)3 =

0.036 𝑚𝑜𝑙. Then, at the synthesis time of 25 min, the amount of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− in moles is 

given by the difference between the initial amount of precursor in moles and the current 

amount of gold present in the particles in moles, i.e. 0.25 − 0.036 𝑚𝑜𝑙 = 0.214 𝑚𝑜𝑙. 

Analogously, at synthesis times of 30, 35, and 40 min, from Figure 4.B.1 we obtain 𝑠𝑚 =

8.54, 9.04, and 9.56 𝑛𝑚, respectively. The corresponding amounts of gold in the particles at 

these times are 0.046, 0.055 and 0.065 𝑚𝑜𝑙, respectively. As above, we use the differences 

between the initial amount of 0.25 mol and these amounts of gold in the particles to calculate 

the amounts of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− present in the mixture at the three synthesis times considered. 

As we will see shortly, the same amounts of gold in the particles can be used to calculate the 

amounts of 𝐶𝑡𝐻2− at the different times considered. For the time being, by deducting these 

amounts from the initial amount of 0.25 𝑚𝑜𝑙, we find that the amounts of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− are 

0.204, 0.195 and 0.185 𝑚𝑜𝑙 at 30, 35, and 40 min, respectively. Based on the assumption of 

1 𝑚3 of synthesis solution, 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− is 0.214, 0.204, 0.195 and 0.185 𝑚𝑜𝑙 𝑚3⁄  at times 25, 

30, 35, and 40 min, respectively. 

In the synthesis solution, the initial concentration of 𝑁𝑎3𝐶𝑡 is equal to 2.5 𝑚𝑜𝑙 𝑚3⁄ . This 

value is ten times larger than that of the precursor. Given the stoichiometric ratio of the 

reduction of the precursor as 1.5 (Kumar et al., 2007) and the amount of gold in the particle 

phase, we can calculate the amounts of citrate consumed as 𝐶𝑡𝐻2
− while reducing 𝐴𝑢𝐶𝑙4

− 

and as 𝐶𝑡𝐻2− while reducing 𝐴𝑢𝐶𝑙3(𝑂𝐻)
−. Then, we use the difference between the initial 

amount of 2.5 𝑚𝑜𝑙 in 1 𝑚3 synthesis solution and these consumed amounts to calculate the 

total amount of all citrate species 𝐶𝑡 left in 1 𝑚3 of synthesis solution. This amount is 

distributed among the four citrate species according to their relative mole fractions in Figure 

4.C.1 in Section 4.C once the reaction pH is specified. Since the initial molar ratio of sodium 

citrate to tetrachloroauric acid is greater than five, as discussed in the main contribution, the 

reaction pH is approximately equal to the pH value at quasi-equilibrium. Following the 

reasoning in Section 4.A, the pH value at quasi-equilibrium after the precursor and reducing 

agent solutions are mixed to obtain the synthesis solution, which contains 0.25  𝑚𝑜𝑙 𝑚3⁄  

𝐻𝐴𝑢𝐶𝑙4 and 2.5 𝑚𝑜𝑙 𝑚3⁄  𝑁𝑎3𝐶𝑡 at 75 0𝐶, is 6.43, whilst the corresponding values of the 

relative mole fractions among the four citrate species are 7.48 × 10−8, 4.32 × 10−4, 9.97 ×

10−2 and 0.9 for 𝐶𝑡𝐻3, 𝐶𝑡𝐻2
−, 𝐶𝑡𝐻2− and 𝐶𝑡3−, respectively. 

From the amounts of gold in the particles at 25, 30, 35 and 40 min, previously calculated as 

0.036, 0.046, 0.055 and 0.065 𝑚𝑜𝑙, respectively, we can now determine the total amounts of 

𝐶𝑡 consumed as 𝐶𝑡𝐻2
− in the reduction step and as 𝐶𝑡𝐻2− in the surface reduction of the 

growth step. The sum of these amounts is 1.5 times the amounts of gold in the particles. At 
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25 min, this sum is given by 0.054 𝑚𝑜𝑙. By deducting this amount from the initial amount of 

2.5 𝑚𝑜𝑙, we obtain the amount of 𝐶𝑡 left, given by 2.45 𝑚𝑜𝑙. Then, using the relative molar 

fraction of 𝐶𝑡𝐻2− reported above (which is equal to 9.97 × 10−2), we can calculate the 

amount of 𝐶𝑡𝐻2− present at 25 min in the synthesis solution as 9.97 × 10−2 ∙ 2.45 =

0.244 𝑚𝑜𝑙. We operate analogously for the three other times of 30, 35 and 40 min; the 

amounts of 𝐶𝑡𝐻2− obtained are 0.242, 0.241, and 0.240 𝑚𝑜𝑙, respectively. Based on the 

assumption that the volume of the synthesis solution is 1 𝑚3, 𝐶𝐶𝑡𝐻2− becomes 0.244 , 0.242, 

0.241 and 0.240 𝑚𝑜𝑙 𝑚3⁄ , respectively. 

Now that we know the values of the variables 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− and 𝐶𝐶𝑡𝐻2− in the 

synthesis solution at the times 25, 30, 35 and 40 min, we can use Eq. (4.B.4) to calculate the 

respective values of the rate constant 𝑘𝑔. To do so, we can adopt two alternative 

approaches. We substitute the values of 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− and 𝐶𝐶𝑡𝐻2− at times 25, 30, 35 

and 40 min into Eq. (4.B.4), to obtain four corresponding rate constants. Then, from these 

values, we calculate the average value and use it as the value of 𝑘𝑔 in the model. 

Alternatively, we substitute the average values of 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− and 𝐶𝐶𝑡𝐻2− into Eq. 

(4.B.4) to obtain the value for 𝑘𝑔. 

We first follow the first approach. At 25 min, the values of 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− and 𝐶𝐶𝑡𝐻2− are 

2.27 × 10−3  𝑛𝑚 𝑠⁄ , 0.214 𝑚𝑜𝑙 𝑚3⁄  and 0.244 𝑚𝑜𝑙 𝑚3⁄ , respectively; so, the resulting value of 

𝑘𝑔 is 2.17 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ . For the other synthesis times, the values are 2.29 × 10−6, 

2.14 × 10−6 and 1.48 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ , respectively. These four values yield an average 

value of 2.0 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ . 

On the other hand, we substitute the average values of 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− and 𝐶𝐶𝑡𝐻2− into 

Eq. (4.B.4) to obtain one single value for 𝑘𝑔. Over the four synthesis times, the average 

values of 𝑑𝑠𝑚 𝑑𝑡⁄ , 𝐶𝐴𝑢𝐶𝑙3(𝑂𝐻)− and 𝐶𝐶𝑡𝐻2− result to be 1.96 × 10−12𝑚 𝑠⁄ , 0.200 𝑚𝑜𝑙 𝑚3⁄ , and 

0.242 𝑚𝑜𝑙 𝑚3⁄  , respectively. From these values, the value of 𝑘𝑔 is 2.0 × 10−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄ . 

The values of 𝑘𝑔 from these two approaches are identical, yielding 

𝑘𝑔 = 2.0 × 10
−6𝑚4 (𝑚𝑜𝑙. 𝑠)⁄  at 75 0C. 

4.C Quasi-equilibrium and pH calculations 
In this section, we show that Eq. (4.3.27) is valid for initial molar ratios of citrate to gold equal 

to or greater than five. 

To use Eq. (4.3.26) to calculate 𝑆, we need the time profiles of 𝐶𝐴𝑢𝐶𝑙4− , 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻− . 

However, we do not have all the necessary information to determine them. To overcome 
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this, we assume a particular profile for each reactant based on the initial and final values of 

𝐶𝐴𝑢𝐶𝑙4− , 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻− . For the initial values, we use those present at quasi-equilibrium, 

because the reactions involving 𝐻+ ions taking place before the quasi-equilibrium state is 

reached can be regarded as instantaneous. For the final values, we use the reported 

experimental values that refer to the end of the synthesis. Because past researchers have 

reported complete conversion of the precursor into GNPs when the pH value of the reaction 

condition measured at 25 0C is in the range 3 – 8, we can assume that at the end of the 

synthesis 𝐶𝐴𝑢𝐶𝑙4−  vanishes. We cannot, however, do the same for 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻− , 

because the synthesis is usually carried out with excess of sodium citrate. In theory, for 

conditions with excess of sodium citrate, we can calculate the residual amount (at the end of 

the synthesis) of Ct, representing the sum of all the species of citrate, as the difference 

between the initial amount of sodium citrate and 1.5 times the initial amount of 

tetrachloroauric acid. From this residual amount, we can then determine 𝐶𝐶𝑡𝐻2− if we know 

the final synthesis pH because the relative amount of each species of citrate (among only 

the citrate species) depends on the prevailing pH value. The pH variations of the relative 

mole fractions at equilibrium among the citrate species at 25 and 100 0C are shown in A and 

B, respectively, of Figure 4.C.1. 

To obtain these diagrams, we considered an aqueous solution containing only sodium citrate 

and hydrochloric acid. In this system, after the complete dissociation of sodium citrate and 

hydrochloric acid in water, the only reactions occurring are the speciation reactions in Eqs. 

(4.2.4) – (4.2.6) and the equilibrium reaction of water in Eq. (4.2.1). As previously illustrated, 

these reactions occur instantaneously. Since there are no other reactions, for this system the 

quasi-equilibrium state is the same as the final equilibrium state. By specifying the initial 

concentrations of sodium citrate and hydrochloric acid, we can then determine the 

equilibrium amounts of all the reactants including the four citrate species and 𝐻+ ions. In 

calculating the equilibrium amounts, we write and solve material balance equations for the 

components with the values of the equilibrium constants at the prevailing temperature of 25 

or 100 0C. From the equilibrium amount of 𝐻+, we can then determine the equilibrium pH of 

the reaction system. With the concentrations of hydrochloric acid in the range 10−4 𝑚𝑜𝑙/𝑚3 

to 103 𝑚𝑜𝑙/𝑚3 for a fixed concentration of 3 𝑚𝑜𝑙/𝑚3 sodium citrate in the synthesis solution, 

we obtained the pH variations of the relative mole fractions at equilibrium among the citrate 

species at 25 and 100 0C, as shown in Figure 4.C.1. 

The final synthesis pH, itself, is a measure of the final value of 𝐶𝑂𝐻− . Therefore, from the 

final synthesis pH, we can determine both the final values of 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻− .  
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Figure 4.C.1. Relative mole fractions of the citrate species as a function of pH: A. 25 0C B. 

100 0C. 

In their investigation, Ji et al. (2007) reported the value of the pH at the end of the synthesis. 

As said previously, they investigated the synthesis at 100 0C. However, the reported pH 

values were measured at 25 0C, because most pH meters are not accurate at high 

temperatures (Barron et al., 2006). Figure 4.C.2 shows how those pH values, indicated as 

“final equilibrium pH”, change with the initial values of the ratio of citrate to precursor. Since 

the latter are the final equilibrium states at 25 0C, for comparison, we calculated the pH 

values at quasi-equilibrium pH at this temperature for the initial ratios of citrate to precursor 

in the synthesis solution. These pH values at quasi-equilibrium are also indicated in Figure 

4.C.2. From this figure, the pH values at quasi-equilibrium are approximately equal to the pH 

values at final equilibrium for initial molar ratios equal to or greater than five. Similarly, at the 

synthesis temperature of 100 0C, we assume that the pH values at quasi-equilibrium are 

approximately equal to the pH values at final equilibrium for initial molar ratios equal to or 

greater than five.  

Therefore, in Eq. (4.3.26), we can assume that 𝐶𝑂𝐻− remains constant and equal to the 

quasi-equilibrium value 𝐶𝑂𝐻−,0 as the synthesis progresses. Similarly, we can assume that 

the value of 𝐶𝐶𝑡𝐻2−  does not change significantly with time for values of the initial citrate-to-

gold molar ratio equal to or greater than 5, since sodium citrate is in large excess. To show 

this, using the threshold molar ratio of 5, we apply the stoichiometry of 1.5 of citrate to 

tetrachloroauric acid reported by Kumar et al. (2007). At quasi-equilibrium, the amount of 𝐶𝑡, 

representing the sum of all the species of citrate, is five moles for every mole of 

tetrachloroauric acid present in the reaction solution. At the end of the synthesis, the amount 

of 𝐶𝑡 would be 3.5 moles, whilst that of tetrachloroauric acid would be zero. The final amount 

of 𝐶𝑡 represents 70% of the initial value. This has the same order of magnitude as the initial 

one. In line with the assumption that the pH value is constant, the relative mole fraction of 

𝐶𝑡𝐻2
− is constant. Therefore, the final value of 𝐶𝐶𝑡𝐻2−  is about 70% of the value present at 
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quasi-equilibrium. This final value has the same order of magnitude as 𝐶𝐶𝑡𝐻2−,0 . Hence, to a 

good approximation, in Eq. (4.3.26) we can replace 𝐶𝐶𝑡𝐻2−  and 𝐶𝑂𝐻−  with 𝐶𝐶𝑡𝐻2−,0  and 

𝐶𝑂𝐻−,0 , respectively. Doing so yields Eq. (4.3.27). 

 

Figure 4.C.2. A comparison of the values of the initial pH of tetrachloroauric acid solution, 

quasi-equilibrium and final pH of the synthesis mixture at 25 0𝐶 using the data from Ji et al. 

(2007). 

4.D Reduction step calculations 
In this section, we illustrate how to calculate the initial reduction rate from the peak 

absorbance reported by Ji et al. (2007). Then, we employ Eq. (4.3.4) to confirm that 𝐶𝑡𝐻2
−, 

and not 𝐶𝑡𝐻2−, reduces 𝐴𝑢𝐶𝑙4
− in the reduction step. 

4.D.1 Peak absorbance as a measure of gold atoms 
Figure 2S (b) in the work of Ji et al. shows the time evolution of the peak absorbance of the 

UV-Vis absorption spectra in the wavelength band between 400 and 800 nm when 

monitoring the synthesis conducted at a temperature of 100 0𝐶 for a fixed initial value of the 

concentration of 𝐻𝐴𝑢𝐶𝑙4 of 0.25 𝑚𝑜𝑙/𝑚3 in the synthesis solution and an initial value of the 

citrate-to-gold molar ratio spanning the range 0.7-28. Figure 4.D.1 shows the time evolutions 

of the normalized peaks (of these absorption spectra) and of the normalized UV-Vis 

absorbance at 400 nm for two values of the citrate-to-gold molar ratio (7.0 and 17.5). We can 

see that these are nearly identical. 
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Figure 4.D.1. Time evolution of the peaks (of the UV-Vis absorption spectra in the 

wavelength band of 400 to 800 nm) and of the UV-Vis absorbance at 400 nm for citrate-to-

gold molar ratios of 7.0 and 17.5. The experimental data are taken from Ji et al. (2007). 

To show that the peak absorbance relates to the amount of atomic gold present in the solid 

phase, we consider the (non-normalized) values of the former at the end of the synthesis. 

These are about unity for all the values of the citrate-to-gold molar ratio investigated. The 

final mean diameter of the GNPs reported by Ji et al. for these values of the molar ratio 

varies between a minimum of 13 nm to a maximum of 60 nm. Assuming that the particles 

are spherical and monodisperse, and that all the gold in the precursor converts into GNPs, 

we can calculate the number concentration of GNPs at the end of the synthesis as follows: 

𝐶𝐻𝐴𝑢𝐶𝑙4
𝜌𝑚𝑣𝑠𝑓

3             (4.D.1) 

where 𝐶𝐻𝐴𝑢𝐶𝑙4 = 0.25 𝑚𝑜𝑙/𝑚
3, 𝜌 = 105 𝑚𝑜𝑙/𝑚3 and 𝑚𝑣 = 𝜋 6⁄  for all ratios. 

For a final mean diameter 𝑠𝑓 of 13 nm, the number concentration is: 

0.25 𝑚𝑜𝑙/𝑚3

105 𝑚𝑜𝑙/𝑚3 × 𝜋 6⁄ × (13 × 10−9)3
= 2.17 × 1018 𝐺𝑁𝑃𝑠 𝑝𝑒𝑟 𝑚3 

For a final mean diameter 𝑠𝑓 of 60 nm, the number concentration is: 

0.25 𝑚𝑜𝑙/𝑚3

105 𝑚𝑜𝑙/𝑚3 × 𝜋 6⁄ × (60 × 10−9)3
= 2.21 × 1016 𝐺𝑁𝑃𝑠 𝑝𝑒𝑟 𝑚3 

Thus, the value of the GNP number concentration varies by two orders of magnitude. In 

contrast, the peak absorbance is almost constant at the value of one. Therefore, the peak 

absorbance cannot be related to the GNP number concentration. However, for the ratios 

employed by Ji et al. (2007), assuming complete conversion of the gold in the precursor into 

GNPs, the final concentration of gold in the particle phase is constant, equal to 0.25 𝑚𝑜𝑙/𝑚3, 
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which is the value of the initial 𝐻𝐴𝑢𝐶𝑙4 concentration in the synthesis solution. So, we can 

relate the final peak absorbance of nearly one to the final concentration of gold of 0.25 𝑚𝑜𝑙/

𝑚3 in the particle phase, and in general, we can relate the concentration of gold in the 

particle phase 𝐶𝐴𝑢  to the peak absorbance 𝑃. So, we can write: 

𝐶𝐴𝑢 = 𝑏𝑃          (4.D.2) 

where 𝑏 is a proportionality constant. We obtain its value by relating the final peak 

absorbance, assumed to be one in Figure 2S (b) of Ji et al. (2007), to the maximum 

concentration of gold 𝐶𝐴𝑢,𝑚𝑎𝑥 in the solution containing the GNPs, which, in the case 

considered, is equal to 0.25 𝑚𝑜𝑙/𝑚3. Therefore, we obtain: 

𝑏 = 𝐶𝐴𝑢,𝑚𝑎𝑥        →        𝐶𝐴𝑢 = 𝐶𝐴𝑢,𝑚𝑎𝑥𝑃      (4.D.3) 

4.D.2 Calculation of the initial reduction rate, 𝑟𝑟,0  
Because 𝐶𝐴𝑢  accounts for the gold from the reduction and growth steps, we consider Figure 

2S (b) of Ji et al. (2007) for 𝑡 → 0; in this limit, the slope of the function 𝑃(𝑡) is related to the 

reduction step only. Thus, we write:  

𝑟𝑟,0 = 𝑑𝐶𝐴𝑢 𝑑𝑡⁄ |0          (4.D.4) 

where the subscript 0 indicates that the quantity is evaluated in the limit 𝑡 → 0. Using Eq. 

(4.D.3), we then have: 

𝑟𝑟,0 = 𝐶𝐴𝑢,𝑚𝑎𝑥 𝑑𝑃 𝑑𝑡⁄ |0         (4.D.5) 

We can calculate 𝑑𝑃 𝑑𝑡⁄ |0 from the Figure 2S(b) of Ji et al. (2007) by extending the straight 

line tangent, at time 𝑡 = 0, to each 𝑃(𝑡) curve to the final peak absorbance of one and by 

determining the time 𝑡𝑟,0 taken to reach this final peak absorbance along the x-axis. 

Therefore, we have: 

𝑑𝑃 𝑑𝑡⁄ |0 = 1 𝑡𝑟,0⁄           (4.D.6) 

For the smallest citrate-to-gold molar ratio of 0.7 in the Figure 2S (b) of Ji et al. (2007), 

where 𝐶𝐻𝐴𝑢𝐶𝑙4,0 = 0.25 × 10
−3 𝑚𝑜𝑙/𝑑𝑚3 and 𝐶𝑁𝑎3𝐶𝑡,0 = 0.175 × 10

−3 𝑚𝑜𝑙/𝑑𝑚3 in the 

synthesis solution, we obtain: 

𝑑𝑃 𝑑𝑡⁄ |0 = 1 (2.4 × 60 𝑠)⁄        →        𝑟𝑟,0 = 1.74 × 10
−3𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  

We denote the concentrations of precursor and reducing agent in the synthesis solution for 

𝑡 → 0 as 𝐶𝐴𝑢𝐶𝑙4−,0  and 𝐶𝑅𝐴,0 (where 𝑅𝐴 represents the reducing agent, which can be any of 

the species in which citrate can be present). The values for 𝑡 → 0 correspond to those at 
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quasi-equilibrium, which are obtained when, after mixing the precursor solution with the 

reducing agent solution, the fast reactions involving the 𝐻+ ions have reached equilibrium, 

but 𝐴𝑢𝐶𝑙4
− has still not significantly reacted. For the citrate-to-gold molar ratio of 0.7, we 

have reported the values of 𝐶𝐴𝑢𝐶𝑙4−,0  and 𝐶𝑅𝐴,0 in Table 4.A.6 of Section 4.A, in which 𝐶𝑅𝐴,0 

is either 𝐶𝐶𝑡𝐻2−,0  or 𝐶𝐶𝑡𝐻2−,0 . For 𝑡 → 0, we write Eq. (4.3.4) as: 

𝑟𝑟,0 = 𝑘𝑟 𝐶𝐴𝑢𝐶𝑙4−,0 . [𝐶𝑅𝐴,0]
𝑛
        (4.D.7) 

4.D.3 Test for the reducing agent 
Following the procedure above, we obtained the values of 𝑟𝑟,0, 𝐶𝐴𝑢𝐶𝑙4−,0  and 𝐶𝑅𝐴,0 for other 

citrate-to-gold molar ratios. These values are shown in Table 4.D.1. 

Table 4.D.1. Initial rates and concentrations for different initial values of citrate-to-gold molar 

ratio calculated from the data of Ji et al. (2007) at the synthesis temperature 100 0𝐶. The 

concentrations are at quasi-equilibrium. 

Molar Ratio rr,0 CAuCl4
−,0  CCtH3,0  CCtH2−,0  CCtH2−,0  CCt3−,0  

 [mol/(m3s)] [mol/m3] 

1.4 3.63E-03 0.25 6.36E-05 1.61E-02 2.06E-01 1.28E-01 

2.0 1.59E-03 0.25 1.96E-05 9.40E-03 2.26E-01 2.65E-01 

2.8 9.41E-04 0.25 7.50E-06 5.94E-03 2.36E-01 4.58E-01 

3.5 6.28E-04 0.25 4.20E-06 4.49E-03 2.40E-01 6.30E-01 

4.2 2.76E-04 0.25 2.68E-06 3.61E-03 2.43E-01 8.03E-01 

4.9 1.71E-04 0.25 1.86E-06 3.02E-03 2.45E-01 9.77E-01 

5.6 9.32E-05 0.25 1.37E-06 2.60E-03 2.47E-01 1.15E+00 

6.3 1.10E-04 0.25 1.05E-06 2.28E-03 2.48E-01 1.32E+00 

7.0 6.26E-05 0.25 8.34E-07 2.04E-03 2.50E-01 1.50E+00 

7.7 6.48E-05 0.25 6.78E-07 1.84E-03 2.51E-01 1.67E+00 

8.4 6.34E-05 0.25 5.63E-07 1.68E-03 2.52E-01 1.85E+00 

10.5 4.60E-05 0.25 3.52E-07 1.34E-03 2.54E-01 2.37E+00 

14.0 3.69E-05 0.25 1.96E-07 1.01E-03 2.58E-01 3.24E+00 
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Figure 4.D.2. Plot of Eq. (4.3.6), in which 𝐶𝑡𝐻2
− is replaced by 𝐶𝑡𝐻2− as the reducing agent 

for the reduction step; 𝑦 = − log(𝑟𝑟,0 𝐶𝐴𝑢𝐶𝑙4−,0 ⁄ ) vs 𝑥 = − log𝐶𝐶𝑡𝐻2−,0. 

Table 4.D.1 shows that the rate of the reduction step decreases with increasing initial values 

of the citrate-to-gold molar ratio. With the values reported in Table 4.D.1, we have produced 

the diagrams in Figures 4.3.1 (reported in the main contribution) and 4.D.2. The former, 

which refers to 𝐶𝑡𝐻2
−, shows that as the concentration of 𝐶𝑡𝐻2

− increases, the reduction 

rate increases, while the opposite trend is observed in Figure 4.D.2, which refers to 𝐶𝑡𝐻2−. 

We expect that the reduction rate should increase with the concentration of reducing agent. 

Moreover, while the reaction order 𝑛 results to be 1.85 when 𝐶𝑡𝐻2
− is assumed to be the 

reducing agent, the reaction order is − 23 for 𝐶𝑡𝐻2−, a value that appears to be unlikely. In 

addition, Figure 4.3.1 gives a better correlation for the experimental data. Therefore, we 

conclude that 𝐶𝑡𝐻2
− is the reducing agent. 

4.E Characteristic times’ calculations 
In this section, we relate the rate constant to the characteristic time for two reactions: 1) a 

single-phase (i.e., homogeneous) reaction involving two reactants, whose rate is first-order 

with respect to each reactant, and 2) a fluid-particle surface reaction which leads to particle 

growth involving two reactants, whose rate is first-order with respect to each reactant and 

depends on the surface area. 
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4.E.1 Single-phase reaction 
We assume that the single-phase reaction occurs between reactants A and B, where A is 

the limiting reactant. Since the rate is first-order with respect to each reactant, the 

consumption rate of component A is given by: 

𝑑𝐶𝐴

𝑑𝑡
= − 𝑘1𝐶𝐴𝐶𝐵          (4.E.1) 

where 𝑘1 is the reaction rate constant. 

We define the characteristic time 𝜏1 of this reaction as the time that A takes to react 

significantly. Here “significantly” means that the change in concentration of A has the same 

order of magnitude as the initial concentration 𝐶𝐴,0 of A. If we denote as 𝐶𝐵,0 the initial 

concentration of B, using Eq. (4.E.1), we can therefore write: 

𝐶𝐴,0

𝜏1
= 𝑘1𝐶𝐴,0𝐶𝐵,0       →       𝑘1 = (

1

𝐶𝐵,0
)
1

𝜏1
      (4.E.2) 

If the initial concentrations of reactants A and B are kept constant, we can relate the rate 

constant to the characteristic time as: 

𝑘1 =
𝑏

𝜏1
           (4.E.3) 

where 𝑏 is a constant (its value would vary if the value of the initial concentration 𝐶𝐵,0 

changed). Eq. (4.E.3) has been used, as Eq. (4.3.10), in the main contribution. 

4.E.2 Surface reaction for particle growth 
We assume that the surface reaction for particle growth occurs between reactants P and Q. 

Since the rate is first-order with respect to each reactant and depends on the surface area, 

following the same passages shown in Section 4.B to derive Eq. (4.B.4), we can write: 

𝑑𝑠

𝑑𝑡
= 𝑘𝑔 (

𝑚𝑎

3𝜌𝑚𝑣
)𝐶𝑃𝐶𝑄          (4.E.4) 

We define the characteristic time 𝜏𝑔 of this process as the time that the particle size takes to 

increase significantly. Here “significantly" means that the order of magnitude of the particle 

size change is the same as the order of magnitude of the particle size 𝑠0 taken as reference 

value. We can thus write Eq. (4.E.4) as: 

𝑠0

𝜏𝑔
= 𝑘𝑔 (

𝑚𝑎

3𝜌𝑚𝑣
)𝐶𝑃,0𝐶𝑄,0               (4.E.5) 

whence: 
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𝑘𝑔 =
𝑏

𝜏𝑔
 with 𝑏 ≡  𝑠0 (

3𝜌𝑚𝑣

𝑚𝑎
)

1

𝐶𝑃,0𝐶𝑄,0
       (4.E.6) 

Here 𝐶𝑃,0 and 𝐶𝑄,0 are reference values for the concentrations of the reactants, which have 

the same order of magnitude as the reactant concentrations during the particle growth 

process examined. 

In the gold nanoparticles growth process considered in Section 4.3.3, reactants P and Q are 

𝐴𝑢𝐶𝑙3(𝑂𝐻)
− and 𝐶𝑡𝐻2−, respectively, and their concentrations at the beginning of the growth 

process are those at the end of the seed formation step. Moreover, the value of 𝑠0 coincides 

with the size of the seed particles. 

In Section 4.3.3, we used Eq. (4.E.6) to obtain the value of 𝑘𝑔. To do so, we considered 

three syntheses investigated experimentally by Polte et al. (2010), in which the initial 

concentrations of precursor and reducing agent in the synthesis solutions were 0.25  

𝑚𝑜𝑙 𝑚3⁄  and 2.50  𝑚𝑜𝑙 𝑚3⁄ , respectively, while the solution temperatures were 75, 85 and 

100 0C. For these syntheses, we assumed that the parameter 𝑏 in Eq. (4.E.6) had the same 

value. This is justified only if in the syntheses the orders of magnitude of 𝐶𝑃,0, 𝐶𝑄,0 and 𝑠0 are 

the same. This is indeed the case. The experimental data reveal that the size of the seeds 

does not vary by an order of magnitude. The same is true for the concentration of reducing 

agent, because 𝐶𝑡𝐻2− is in large excess. Therefore, we only need to prove that the 

concentration of 𝐴𝑢𝐶𝑙3(𝑂𝐻)
− at the beginning of the growth process has the same order of 

magnitude in all cases. If we denote as 𝐶𝐴𝑢,0 the initial concentration of precursor in the 

synthesis (which, as said, is equal to 0.25  𝑚𝑜𝑙 𝑚3⁄  for all three syntheses), then a simple 

mass balance on gold yields: 

𝐶𝑃,0 = [1 − (
𝑠𝑠

𝑠𝑓
)
3

] 𝐶𝐴𝑢,0        (4.E.7) 

where 𝑠𝑠 and 𝑠𝑓 denote the size of the seed and the final size of the nanoparticles, 

respectively. Usually, the term (𝑠𝑠 𝑠𝑓⁄ )
3
 is far less than unity, but even if its order of 

magnitude were unity, the orders of magnitude of 𝐶𝐴𝑢,0 and 𝐶𝑃,0 would be the same. So, we 

can indeed regard the parameter 𝑏 as a constant. 

4.F Passivation step calculations 
To estimate the value of 𝑘𝑝 at the standard synthesis temperature of 100 0C, we employ the 

experimental data of Wuithschick et al. (2015), who (when investigating the synthesis at 

100 0𝐶 with 0.25 𝑚𝑜𝑙/𝑚3 and 2.5 𝑚𝑜𝑙/𝑚3 as the initial concentrations of tetrachloroauric acid 

and sodium citrate, respectively, in the synthesis solution) reported that about 1.3 mol% of 
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the precursor converted to gold atoms and then seed particles, while the residual precursor 

grew the latter. From this conversion, we can determine the selectivity 𝑆 of the reduction 

step over the passivation step, defined as the ratio of the amount of precursor that forms 

gold atoms in the reduction step to the amount of precursor that becomes passivated, as 

1.3 % 98.7 %⁄ = 1.32 × 10−2. From Eq. (4.3.27) in the main contribution, the selectivity 𝑆 is 

defined as follows: 

𝑆 =
𝑘𝑟

𝑘𝑝

[𝐶𝐶𝑡𝐻2
−,0 ]

1.85

[𝐶𝑂𝐻−,0 ]
          (4.F.1) 

Rearranging, we have: 

𝑘𝑝 =
𝑘𝑟

𝑆

[𝐶𝐶𝑡𝐻2
−,0 ]

1.85

[𝐶𝑂𝐻−,0 ]
         (4.F.2) 

As the synthesis temperature is 100 0𝐶, 𝑘𝑟 is equal to 35.48 [𝑚3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄ . Following the 

procedure described in Section 4A, we find that 𝐶𝐶𝑡𝐻2−,0  and 𝐶𝑂𝐻−,0  are equal to 1.4 ×

10−3 𝑚𝑜𝑙/𝑚3 and 7.44 × 10−3 𝑚𝑜𝑙/𝑚3 for the synthesis condition that yielded 1.32 × 10−2 as 

the value of the selectivity 𝑆. Thus: 

𝑘𝑝 =
35.48 [𝑚3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄

1.32 × 10−2
[1.4 × 10−3 𝑚𝑜𝑙/𝑚3]1.85

[7.44 × 10−3 𝑚𝑜𝑙/𝑚3]
= 1.9𝑚3 (𝑚𝑜𝑙. 𝑠)⁄  
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Appendix F 

In this appendix, we present two calculations using Eq. (5.2.5). First, we present a simple 

case calculation and then we use the equation in the citrate synthesis method. 

This equation yields the thickness of the electric double layer. To understand the concept of 

the electric double layer, let us assume a charged surface is immersed in a solution 

containing ions. This charged surface attracts oppositely charged ions, which surround the 

surface and form a layer of ions around it, called layer 1. Because of the attraction, there is 

no relative motion between the surface and layer 1. While the charged surface is all covered 

by the oppositely charged ions, layer 1 is exposed on one side to the solution environment 

and can also attract oppositely charged ions, called layer 2, which would be of the same sign 

as the charged surface. However, the attraction of layer 1 for layer 2 is weak because of the 

existing attraction between it and the charged surface. Consequently, layer 2 of ions 

continues to attach and detach from layer 1. Hence, layer 2 is called the diffuse layer and 

(the order of magnitude of) the distance between the surface and layer 2 is called the electric 

double layer thickness. To determine this thickness, researchers employ the Debye’s length 

1 κ⁄ , which is expressed in Eq. (5.2.5) as: 

1 κ⁄ = [
𝜖0𝜖𝑐𝑘𝐵𝑇

∑ (𝑝𝑖𝑒
2𝑧𝑖

2)𝑖
]
1 2⁄

          (F.1) 

where 𝜖0 is the permittivity of free space, whose value is 8.85 × 10−12 𝐹 𝑚⁄ ; 𝜖𝑐 is the 

dielectric constant of the solution; 𝑒 is the charge on an electron, whose value is 1.6 ×

10−19𝐶; 𝑝𝑖 is the number concentration of the i-th ion present in the solution measured in 

1 𝑚3⁄ ; and 𝑧𝑖 is the charge on the i-th ion. As indicated, this length only depends on the 

condition in the bulk solution, but not on the condition of the surface (Israelachvili, 2011). 

A simple case: In this case, we consider an aqueous solution containing 100 mM of sodium 

chloride and some bio-colloidal particles at 25 0𝐶. We assume the solution to be mainly 

water with 𝜖𝑐 = 78.54 at 𝑇 = 298 𝐾. For each of 𝑁𝑎+ and 𝐶𝑙−, 𝑧𝑖
2 = 1. Thus: 

1 κ⁄ = [
𝜖0𝜖𝑐𝑘𝐵𝑇

∑ (𝑝𝑖𝑒
2𝑧𝑖

2)𝑖
]
1 2⁄
= [

8.85×10−12𝐹 𝑚⁄ ×78.54×1.38×10−23 𝐽 𝐾⁄ ×298 𝐾

[(100×10−3×103𝑚𝑜𝑙 𝑚3⁄ ×6.02×1023)×(1.6×10−19𝐶)2×(1)]×2
]
1 2⁄

  

= [
2.86×10−30 

3.08×10−12
]
1 2⁄

= [9.27 × 10−19]1 2⁄ = 0.96 𝑛𝑚  

For this condition in this simple case, Israelachvili (2011) reported a value of 0.95 𝑛𝑚 as 1 κ⁄ . 

The citrate method, on the other hand, presents a complex case with a number of problems. 

There are many ions in solution, some monovalent such as 𝐻+, 𝑂𝐻−, some divalent such as 
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𝐶𝑡𝐻2− and some trivalent such as 𝐶𝑡3−. Further, we need to know which ions preferentially 

attach on the particles, which are called the potential determining ions (PDIs). To overcome 

these problems, Briggs et al. (1993) assumed the PDIs to be 𝐶𝑡3− and 𝐶𝑡𝐻2−. This 

assumption is consistent with the fact that citrate ions, and in particular 𝐶𝑡3−, provide the 

electrostatic stabilization for GNPs (Kumar et al., 2007). Thus, we assume 𝐶𝑡3− and 𝐶𝑡𝐻2− 

preferentially attach on the particles. Further, Briggs et al. reported certain values of 1 κ⁄  on 

a 300 𝑛𝑚 gold sphere for different concentrations of sodium citrate, where the citrate species 

are assumed to be 75% 𝐶𝑡3− and 25% 𝐶𝑡𝐻2−. These concentrations of sodium citrate are 

6 × 10−6, 1 × 10−4 and 3 × 10−4 𝑚𝑜𝑙/𝑑𝑚3, yielding 58.8, 15.3, and 8.9 𝑛𝑚, respectively, as 

the values of 1 κ⁄ . Using Eq. (E.1) and the assumed composition of 75% 𝐶𝑡3− and 25% 

𝐶𝑡𝐻2−, we obtained 53.6, 13.1, and 6.9 𝑛𝑚, respectively, as the values of 1 κ⁄ . The values 

we obtained are similar to the values reported by Briggs et al. Thus, in Eq. (E.1), we use only 

the amounts of 𝐶𝑡3− and 𝐶𝑡𝐻2− in determining 1 κ⁄ . 
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Appendix G 

In this appendix, we derive an approximate expression for Eq. (5.2.3). In this equation, 𝑥 

ranges from (𝑠 + 𝑠′) 2⁄  to ∞. In a reactor mixture, 𝑉 is finite. Thus, for a colloidal system of 

finite volume, the maximum value of 𝑥 is finite. To determine the order of magnitude of this 

distance, we present a sample calculation as follows. 

Israelachvili (2011) reported the expression for 𝐸𝑇 around a particle (a vesicle) in interaction 

with another vesicle as: 

𝐸𝑇(𝑟) =
𝑠

4
𝑍 exp(−κ𝑥) −

𝐴𝑠

24𝑥
        (G.1) 

where 𝑍 = 9.38 × 10−11 tanh2(𝜑𝑠 107⁄ ) and 𝐴 = 10−20𝐽. 𝜑𝑠 is the surface potential, given as 

24.5 𝑚𝑉. Similarly, 1 κ⁄  is taken as 0.95 𝑛𝑚 and 𝑠 = 200 𝑛𝑚. Figure G.1 shows the results of 

how 𝐸𝑇 varies with 𝑥 (this profile is similar to the profile in Elimelech et al. (1995) and Hunter 

(1995)). From this figure, the upper limit of 𝑥 in Eq. (5.2.3) is smaller than 8 𝑛𝑚. Thus, 𝑥 is 

finite as previously stated. Also in this figure, the maximum value 𝐸𝑎𝑔𝑔 = 1.03 × 10
−19 𝐽.  

Then, we solve Eq. (5.2.3) numerically.  

 

Figure G.1: The calculated profile of 𝐸𝑇(𝑥) using an experimental problem from Israelachvili 

(2011) 

In this example, 𝑇 = 310 𝐾 (Israelachvili, 2011)  and taking 𝑘𝐵 = 1.38 × 10
−23  𝐽 𝐾⁄  , we 

calculate 𝐸𝑇 𝑘𝐵𝑇⁄  and integrate the expression ∫ exp[𝐸𝑇 𝑘𝐵𝑇⁄ ] 𝑥2⁄ 𝑑𝑥
𝑥=8 𝑛𝑚

0
 as Figure G.1 
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reveals. We solved the expression numerically from 𝑥 = 0.1 𝑛𝑚 to 8 𝑛𝑚. Table G.1 shows 

the numerical data. From the numerical data, we observed that only the positive values of 𝐸𝑇 

contribute to the stability factor of the particle. More importantly, while 

∫ exp[𝐸𝑇 𝑘𝐵𝑇⁄ ] 𝑥2⁄ 𝑑𝑥
8

0
= 4.16 × 1020 1 𝑚⁄ , κ exp[𝐸𝑎𝑔𝑔 𝑘𝐵𝑇⁄ ] = 6.33 × 1020 1 𝑚⁄ . These values 

are quite close. Therefore, instead of the integral function in Eq. (5.2.3), we can write the 

equation approximately as: 

𝑊(𝑠̅, 𝑠̂) =
κ(𝑠̅+𝑠̂)
2
exp [

𝐸𝑎𝑔𝑔(𝑠̅, 𝑠̂)
𝑘𝐵𝑇
⁄ ]       (G.2) 

Table G.1: The numerical data for the experimental problem of Israelachvili (2011) 

x (nm) ET/(kb*T) z=exp(ET/(kb*T)) z/x2 (1/m2)     

0.1 -110.9855377 6.30367E-49 6.30367E-29     

0.2 -12.45732933 3.88911E-06 9.72278E+13     

0.3 14.2944542 1614368.152 1.79374E+25 
 

0.4 23.80017357 21691223526 1.3557E+29 

0.5 26.89079374 4.77005E+11 1.90802E+30 

0.6 27.12190849 6.01029E+11 1.66952E+30 

0.7 25.97636155 1.91157E+11 3.90117E+29 

0.8 24.16427519 31218452655 4.87788E+28 

0.9 22.0559014 3791021717 4.68027E+27 

1.0 19.8543718 419415150.9 4.19415E+26 

1.1 17.67390712 47389304.75 3.91647E+25 

1.2 15.57866886 5830823.828 4.04918E+24 

1.3 13.60347341 808934.6435 4.7866E+23     

1.4 11.76546029 128728.433 6.56778E+22     

1.5 10.07095463 23646.12738 1.05094E+22     

1.6 8.519641937 5012.258729 1.95791E+21     

1.7 7.107174884 1220.694067 4.22385E+20     

1.8 5.82683264 339.2823461 1.04717E+20     

1.9 4.670590805 106.7607986 2.95736E+19     

2.0 3.62981584 37.70587208 9.42647E+18     

2.1 2.695715505 14.81611597 3.35966E+18     

2.2 1.859628286 6.421349425 1.32673E+18     

2.3 1.113205334 3.04410013 5.75444E+17     

2.4 0.448520058 1.565992891 2.71874E+17     

2.5 -0.141871129 0.867733075 1.38837E+17     

2.6 -0.664901057 0.514324414 7.60835E+16     

2.7 -1.12698617 0.324008292 4.44456E+16     

2.8 -1.534035525 0.215663593 2.75081E+16     

2.9 -1.891469246 0.15085001 1.7937E+16     

3.0 -2.204242802 0.110334038 1.22593E+16     

3.1 -2.476874605 0.084005366 8.74145E+15     

∑(𝑧 𝑥2⁄ ) = 4.16 × 1030 

𝑑𝑥∑(𝑧 𝑥2⁄ ) = 4.16 × 1020 

𝑑𝑥 = 1 × 10−10 

[𝑧]𝑚𝑎𝑥 ∗ κ = 6.33 × 10
20 
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3.2 -2.713475187 0.06630598 6.47519E+15     

3.3 -2.917776748 0.054053729 4.96361E+15     

3.4 -3.093162277 0.045358292 3.92373E+15     

3.5 -3.242693692 0.039058542 3.18845E+15     

3.6 -3.369138675 0.034419271 2.65581E+15     

3.7 -3.474995984 0.030961958 2.26165E+15     

3.8 -3.562519147 0.028367273 1.96449E+15     

3.9 -3.633738499 0.026417239 1.73683E+15     

4.0 -3.690481577 0.024959979 1.56E+15     

4.1 -3.734391921 0.023887692 1.42104E+15     

4.2 -3.766946336 0.023122564 1.3108E+15     

4.3 -3.789470715 0.022607565 1.22269E+15     

4.4 -3.803154492 0.022300315 1.15188E+15     

4.5 -3.809063824 0.022168923 1.09476E+15     

4.6 -3.808153595 0.022189111 1.04863E+15     

4.7 -3.801278328 0.022342193 1.01142E+15     

4.8 -3.789202088 0.022613638 9.81495E+14     

4.9 -3.77260747 0.022992034 9.57602E+14     

5.0 -3.752103732 0.023468323 9.38733E+14     

5.1 -3.728234164 0.024035241 9.24077E+14     

5.2 -3.70148275 0.024686895 9.12977E+14     

5.3 -3.672280183 0.025418445 9.04893E+14     

5.4 -3.641009305 0.026225861 8.99378E+14     

5.5 -3.60801001 0.027105733 8.96057E+14     

5.6 -3.573583669 0.028055133 8.94615E+14     

5.7 -3.537997119 0.029071496 8.94783E+14     

5.8 -3.501486256 0.030152536 8.9633E+14     

5.9 -3.464259272 0.031296179 8.99057E+14     

6.0 -3.426499565 0.032500508 9.02792E+14     

6.1 -3.388368363 0.033763722 9.07383E+14     

6.2 -3.35000708 0.035084106 9.12698E+14     

6.3 -3.311539434 0.036460003 9.18619E+14     

6.4 -3.273073347 0.037889799 9.25044E+14     

6.5 -3.234702663 0.03937191 9.3188E+14     

6.6 -3.196508675 0.040904767 9.39044E+14     

6.7 -3.158561507 0.042486814 9.46465E+14     

6.8 -3.120921345 0.044116503 9.54077E+14     

6.9 -3.083639551 0.04579229 9.61821E+14     

7.0 -3.046759651 0.047512633 9.69646E+14     

7.1 -3.010318225 0.049275995 9.77504E+14     

7.2 -2.974345705 0.051080845 9.85356E+14     

7.3 -2.938867085 0.052925655 9.93163E+14     

7.4 -2.903902561 0.054808907 1.00089E+15     

7.5 -2.869468099 0.056729093 1.00852E+15     

7.6 -2.835575944 0.058684717 1.01601E+15     

7.7 -2.802235075 0.060674299 1.02335E+15     
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7.8 -2.769451612 0.062696377 1.03051E+15     

7.9 -2.737229173 0.064749508 1.03749E+15     

8.0 -2.705569201 0.066832272 1.04425E+15     
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Nomenclature 

Symbol Meaning                    Units 

Roman alphabets 

𝐴 Particle surface area per unit volume of 

solution 

𝑚2 𝑚3⁄  

𝐴𝐻 Hamaker constant 𝐽 

𝐴𝑠 Seed correlation parameter − 

𝐵𝑠 Seed correlation parameter 𝑛𝑚 

𝑏 Proportionality constant − 

𝐵(𝑣) Birth aggregation rate  1/(𝑑𝑚3. 𝑐𝑚3. 𝑠) 

𝐵𝑟 Pre-exponential constant for repulsion 

energy 

𝐽 

𝑐, 𝐶 Concentration 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑇 gold (III) chloride 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝐶 Citrate 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝐷 Acetone 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑀 aurous chloride 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑆 Dicarboxy acetone 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑃 Other products 𝑚𝑜𝑙 𝑚3⁄  

𝐶 All the four species of citrate − 

𝐶𝑇, 𝐶𝐴𝑢𝐶𝑙4−  Concentration of tetrachloroauric ion 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝐶𝑡 Concentration of all citrate species 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝐻+ Concentration of 𝐻+ ions 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑂𝐻− Concentration of 𝑂𝐻− ions 𝑚𝑜𝑙 𝑚3⁄  

𝐶𝐴𝑢  Concentration of gold in the particle 

phase 

𝑚𝑜𝑙 𝑚3⁄  
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𝐶𝐴𝑢,𝑚𝑎𝑥 Maximum concentration of gold in the 

particle phase 

𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑅𝐴 Concentration of the reducing agent, 

which can be any of the species of 

citrates 

𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑃𝑟1 Concentration of all other products from 

the reduction step, lumped together  

𝑚𝑜𝑙 𝑚3⁄  

𝐶𝑃𝑟2 Concentration of all other products from 

the growth step, lumped together  

𝑚𝑜𝑙 𝑚3⁄  

𝐷𝑖𝑚 diffusion coefficient for component i in 

the mixture 

𝑚2 𝑠⁄  

𝐷𝑖𝑗 the binary diffusion coefficient of 

component i relative to component j 

𝑚2 𝑠⁄  

𝐷0 Diffusion coefficient of solute 𝑚2 𝑠⁄  

𝐷(𝑣) Death aggregation rate  1/(𝑑𝑚3. 𝑐𝑚3. 𝑠) 

𝐷𝑠 Seed correlation parameter − 

𝐷𝑧 Stability gradient correlation parameter − 

𝑒 The charge on an electron, whose value 𝐶 

𝐸𝐴 Energy due to the Van der Waal’s force 

of attraction 

𝐽 

𝐸𝑅 Energy due to the charge repulsion 𝐽 

𝐸𝑇 the sum of the particles’ interaction 

energy due to the Van der Waal’s force 

of attraction and that due the charge 

repulsion 

𝐽 

𝐸𝑎𝑔𝑔 the energy barrier to particle 

aggregation 

𝐽 

𝐸𝑚𝑎𝑥 The maximum particles’ interactive 

energy attainable  

𝐽 

𝐸𝑎 Activation energy 𝐽 𝑚𝑜𝑙⁄  
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𝑓𝑎 Fraction of surface occupied by gold 

species 

− 

𝑓(𝑠) number of particles per particle-length 

per total volume of fluid-particle mixture 

1/(𝑚3.𝑚) 

𝑓𝑛(𝑠, 𝒖, 𝒙, 𝑡) or 

𝑓𝑛(𝝍, 𝑡) 

number density function Depends on the application 

𝑭 Force 𝑁 

𝐹𝑧 Stability gradient correlation parameter − 

𝐺𝑠 linear growth rate 𝑚/𝑠 

〈𝐺𝑠〉 Average linear growth rate conditioned 

on 𝑠 

𝑚/𝑠 

〈𝐺𝑠〉𝑎𝑣 Average linear growth rate conditioned 

on 𝑠 and 𝒙 

𝑚/𝑠 

𝐺𝑣  volume-growth rate 𝑚3 𝑠⁄  

𝐻𝑁 Nucleation rate 1 (𝑚3.𝑚. 𝑠)⁄  

𝑱𝑖 Diffusive flux of component i 𝑚𝑜𝑙 (𝑚2. 𝑠)⁄  

𝑱̅𝒊 Total molar flux of component i 𝑚𝑜𝑙 (𝑚2. 𝑠)⁄  

𝑘𝑐 Rate constant for the reaction  between 

citrate and auric acid 

𝑚3 (𝑚𝑜𝑙. 𝑠)⁄  

𝑘𝑑 Rate constant for the reduction with 

acetone 

𝑚3 (𝑚𝑜𝑙. 𝑠)⁄  

𝑘𝑀𝑇 Mass transfer coefficient  𝑚/𝑠 

𝑘𝑆𝐼 Surface integration coefficient 𝐷𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

𝑘𝑛 Rate constant for the nucleation step (𝑚3)4 (𝑚𝑜𝑙5. 𝑠)⁄  

𝑘𝑠 Rate constant for the degradation of 

dicarboxy acetone 

1/𝑠 

𝑘ℎ Rate constant for the growth step 𝑚/𝑠 

𝑘0 Pre-exponential factor 𝐷𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
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𝑘𝑟 Rate constant for the reduction step [𝑚3 𝑚𝑜𝑙⁄ ]1.85 1 𝑠⁄  

𝑘𝑝 Rate constant for the passivation step 𝑚3 (𝑚𝑜𝑙. 𝑠)⁄  

𝑘𝑔 Rate constant for the growth step 𝑚4 (𝑚𝑜𝑙. 𝑠)⁄  

𝐾𝑎,𝑤 Dissociation constant of water − 

𝐾𝑅𝑖’s Equilibrium constants of the speciation 

of citrate 

− 

𝐾𝑃𝑖’s Equilibrium constants of the speciation 

of the precursor 

− 

𝐾𝐵 Boltzmann constant 𝐽 𝐾⁄  

𝑙 Reaction order of the precursor in the 

reduction step 

− 

𝑚𝑖 Mass of species i 𝑘𝑔 

𝑚𝑎 Particles area shape factor − 

𝑚𝑣 Particles volume shape factor − 

𝑛 Reaction order of the reducing agent in 

the reduction step 

− 

𝑁0 Number of nuclei formed in the model 

developed by Kumar et al. per unit 

reactor volume 

1/𝑚3 

𝑁𝑃 final number of GNPs per unit reactor 

volume 

1/𝑚3 

𝑁𝑎𝑣 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜’𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 = 6.02𝑒23 − 

𝑛(𝑠, 𝒙) Number of particle per unit size space 

per unit physical space 

1/(𝑚.𝑚3) 

𝑃 Peak absorbance − 

𝑃𝑟1 by-products of the reduction step, 

lumped together 

− 

𝑃𝑟2 by-products of the growth step, lumped 

together 

− 
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𝑃(𝑣) number of particles per particle-volume 

per total volume of fluid-particle mixture 

1/(𝑑𝑚3. 𝑐𝑚3) 

𝑃𝑟 Osmotic pressure 𝑁 𝑚2⁄  

𝑝𝑖 The number concentration of an ion in 

the bulk of the solution  

1 𝑚3⁄  

𝑃𝑧 Stability gradient correlation parameter − 

𝑞1, 𝑞2 Point charges 𝐶 

𝑞(𝑣, 𝑣′) Aggregation kernel 𝑚3 𝑠⁄  

𝑄𝑠 Seed correlation parameter 𝑛𝑚 

𝑟𝑟 Rate of the reduction step 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  

𝑟𝑝 Rate of the passivation step 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  

𝑟𝑔 Rate of the growth step 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  

𝑟𝑚 Particle mean radius 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  

𝑟𝑎 Aggregate mean radius 𝑚𝑜𝑙 (𝑚3. 𝑠)⁄  

𝑟 Particle radius 𝑚 

𝑅 Universal gas constant 8.31 𝐽 (𝑚𝑜𝑙. 𝐾)⁄  

𝑅𝑎 Citrate-to-gold ratio − 

𝑅𝑒 Reynold’s number − 

𝑠 Size 𝑚 

𝑠0 Nucleus diameter (2 𝑛𝑚 in the model of 

Kumar et al. and size of gold atom i.e. 

0.272 𝑛𝑚 in the aggregation model) 

𝑚 

𝑠𝑠 Seed diameter 𝑚 

𝑠𝑚 Mean diameter with time 𝑚 

𝑠𝑓 Final mean diameter 𝑚 

𝑆 Selectivity of the reduction step over the 

passivation step 

− 

𝑆̂ Supersaturation − 
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𝑺 physical control surface 𝑚2 

𝑆𝑐 Schmidt’s number − 

𝑆ℎ Sherwood’s number − 

𝑡 Time 𝑠 

𝑡𝑟,0 Time taken to reach the final peak 

absorbance along the x-axis 

𝑠 

𝑡𝑠 Synthesis time 𝑠 

𝑇 Temperature 𝐾 

𝒖𝒇 Fluid velocity 𝑚 𝑠⁄  

𝑉 volume of synthesis solution  𝑚3 

𝑉𝑚 Molar volume of solute 𝑚3 𝑚𝑜𝑙⁄  

𝑊 Stability factor − 

𝜔̃𝐴(𝑠̅, 𝑠̂, 𝑡) Aggregation kernel 𝑚3 𝑠⁄  

𝒙 Position vector 𝑚 

𝑥 relative mole fraction of 𝐶𝑡𝐻2
− at the 

quasi-equilibrium pH 

− 

𝑦𝑖 mole fraction of component i. − 

𝑦𝑥 relative mole fraction of 𝐶𝑡𝐻2
− at the 

quasi-equilibrium pH 

− 

𝑦𝑦 relative mole fraction of  𝐶𝑡𝐻2− at the 

quasi-equilibrium pH 

− 

𝑌𝑖 Molar mass of species i 𝑘𝑔 𝑚𝑜𝑙⁄  

𝑧𝑖 The charge on the ion 𝐶 

𝑍 The numerator of the stability gradient 𝐽 

   

Greek alphabets   

𝛿 The thickness of the boundary layer 𝑚 

𝜖0 The permittivity of free space 𝐹 𝑚⁄  
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𝜖𝑐 The dielectric constant of the solution − 

𝜅 the Debye-Huckel parameter 1 𝑚⁄  

𝜇 Fluid viscosity 𝑘𝑔 (𝑚. 𝑠)⁄  

𝜌 Molar density of gold 𝑚𝑜𝑙 𝑚3⁄  

𝜌𝑓 Fluid density 𝑚𝑜𝑙 𝑚3⁄  

𝜌𝑒 Electron densities 1 𝑚3⁄  

𝜌𝑥 counterion density profile 1 𝑚3⁄  

𝜋𝑁(𝑠|𝒙, 𝑡) Probability density function 1 𝑚⁄  

λ Chemical potential 𝐽 

𝜑 Surface charge potential 𝑚𝑉 

𝜓𝑥 Electrostatic charge potential 𝑉 

𝜏 Characteristic time 𝑠 

𝜏𝑝 Reaction time for the passivation 𝑠 

𝜏𝑔 Time for the growth step only in the 

citrate method 

𝑠 

𝛾𝑠 the interfacial surface energy for the 

cluster 

𝐽 𝑚2⁄  
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Glossary 

Keyword Meaning 

Aggregation This is the coalescence of two or more 

smaller particles to form a bigger particle. 

Aggregation frequency This is the number of collisions per unit time. 

Aggregation kernel This is the volume of successful particles 

aggregating per unit time. 

Auric ion Gold in +3 oxidation state: 𝐴𝑢3+ 

Aurous ion Gold in +1 oxidation state: 𝐴𝑢+ 

Classical nucleation theory This postulates that nucleation only occurs in 

a supersaturated solution when statistical 

fluctuation brings a number of monomers 

together required to form thermodynamically 

stable clusters, called nuclei. 

Colloidal system An aqueous system containing surfactants 

and/or nanoparticles not seen by unaided 

eye and undergoing Brownian motion. 

The Gaussian distribution This is otherwise known as the normal 

distribution.  

Growth This is the addition of an atom or a monomer 

into the characteristic arrangement of a 

particle. 

Intra-particle ripening This is the rearrangement of the monomers 

in a single particle, changing the shape of 

the particle from one form to another, for 

example, a nanowire becoming a 

nanosphere. 

Nanoparticles These are particles with sizes in the range 1 

– 100 nm. 
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Nanotechnology The synthesis, modification and application 

of nanoparticles. 

Nucleation This is the generation of the smallest 

particles from the aqueous phase. 

Nucleation-aggregation-growth mechanism This is the evolution of particles in the order 

of nucleation, aggregation and growth. 

Number density function This is the number of particles per unit 

phase-space volume, where phase space is 

the abstract space given by the union of size, 

velocity and physical spaces. 

Reducing agent solution Aqueous solution of sodium citrate 

Particle size distribution This is the list of values or a mathematical 

function that defines the relative amount, by 

number or mass, of particles present 

according to size.  

Parsival The numerical code employed in solving 

population balance equations. 

pH A measure of the concentration of 𝐻+ ions. 

Polydentate This relates to the shape of a structure with a 

teeth-like grip. 

Polydispersity Also known as the coefficient of variation – 

the ratio of standard deviation to the mean 

size – of the particle size distribution 

Population balance equation An equation describing the number density 

function or in particle the particle size 

distribution evolve with time under the 

influence of processes such as nucleation, 

growth, aggregation and/or breakage. 

Precursor solution tetrachloroauric acid solution 

Quasi-equilibrium A temporary equilibrium state reached in the 

citrate synthesis method after fast reactions 
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(involving 𝐻+) have completed, but before 

other synthesis reactions begin to occur 

significantly.  

Sodium citrate This is a compound with the chemical 

expression: [(𝐶𝑂𝑂𝑁𝑎𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂𝑁𝑎] or 

simply 𝑁𝑎3𝐶𝑡. 

Seed-mediated mechanism A description of the formation of gold 

nanoparticles in the citrate synthesis method, 

where gold atoms form and aggregate into 

seed particles before growing to the final 

particle size, as proposed by Wuithschick et 

al. (2015). 

Solubility The maximum amount of solute, at a 

particular temperature and pressure, that can 

dissolve in a solvent and form a 

homogeneous solution 

Species of hydroxylation of tetrachloroauric 

ions 

These are 𝐴𝑢𝐶𝑙4
−, 𝐴𝑢𝐶𝑙3(𝑂𝐻)

−, 

𝐴𝑢𝐶𝑙2(𝑂𝐻)2
−
, 𝐴𝑢𝐶𝑙(𝑂𝐻)3

−
 and 𝐴𝑢(𝑂𝐻)4

−
 

Species of citrate These are 𝐶𝑡3−, 𝐶𝑡𝐻2−, 𝐶𝑡𝐻2
−, and 𝐶𝑡𝐻3 

Stability factor This is the number that accounts for 

stabilization by electrostatic repulsion. 

Surfactant A long macromolecule with a characteristic 

head and tail. 

Synthesis mechanism This is the description of how GNPs form in 

the citrate synthesis method. 

Synthesis solution A mixture of the precursor solution and 

reducing agent solution. 

Tetrachloroauric acid This is a compound with the chemical 

expression: 𝐻𝐴𝑢𝐶𝑙4 

Turkevich organizer theory A nucleation-growth mechanism of formation 

of gold nanoparticle in the citrate synthesis, 
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where dicarboxy acetone organises aurous 

ions in the nucleation step, as proposed by 

Turkevich et al. (1951) 

 


