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Abstract: A multi-state model is used to describe employment history. Transition-

specific rates are defined using generalised gamma distributions and Gompertz dis-

tributions. This flexible parametric modelling of the rate of change is combined with

latent classes for unobserved propensity to change jobs. The propensity is described

by two latent classes which can be interpreted as consisting of movers and stayers.

The modelling is illustrated by analysing longitudinal data from the German Life

History Study.
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1 Introduction

Multi-state models are used to describe stochastic processes where the change of

status is of interest. Many applications can be found in biostatistics with the illness-

death model as the quintessential example. An illness-death model can be defined

by three states: a healthy state, an ill state, and the dead state. Of interest can be

risk factors for the onset of the illness, or expected duration in the ill state. In social

statistics and in demography, multi-state models are used to study processes such as

changes in region of residence, employment history, or changes in marital status.

Statistical methods for multi-state models are typically not discipline specific. As an

example, a three-state illness-death model for medical data can be quite similar to a

three-state model for employment history when the states in the latter are defined as

employed, unemployed, and retired.

The aim of this paper is to introduce the generalised gamma distribution (Stacy,

1962) for flexible parametric continuous-time multi-state modelling in demography.

The application is with respect to employment history, where states are defined cor-

responding to the number of past jobs, and intermediate spells without a job. The

time scale in our model for employment history is time since entry into the labour

market. We use the generalised gamma distribution to model transition-specific time

dependence and we show that using this distribution improves the statistical inference

when combined with transition-specific exponential and Gompertz distributions. In

addition, we show that parametric models can be extended with a definition of latent
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classes.

For continuous-time multi-state models, the generalised gamma distribution is dis-

cussed in Jackson (2016). The parametric modelling is within a wider methodological

framework for multi-state models described by, for example, Kalbfleisch and Lawless

(1985), Kay (1986), Hougaard (2000), Jackson (2011), and Van den Hout (2017).

The latent-class model that we define, can be seen as a random-effects model with

a discrete distribution for the random effects. Latent-class models for discrete-time

multi-state models are discussed in, for example, Vermunt et al. (1999) and Bar-

tolucci et al. (2012). An example in demography is Dias and Willekens (2005), who

discuss determining the number of latent classes. For continuous-time multi-state

models which include random effects see, for example, Hougaard (2000), Putter and

Van Houwelingen (2015), and Van den Hout (2017). For multi-state modelling in

demography, an overview with a wide range of random-effects structures is given by

Bijwaard (2014).

When multi-state models are applied in biostatistics, we can see the latent-class model

as a frailty model. For example, if progression through a set of states denotes a

deterioration of health, a model with two latent classes can distinguish individuals

who move quickly through the states (the frail individuals) from those who move less

quickly (the more healthy ones). In the current paper, the latent classes are defined

with respect to employment history and will allow us to distinguish individuals who

tend to change job more quickly (the movers) from those who tend to stay put (the

stayers). In the application, we will show that such a distinction can lead to a model

that fits the data better.

Our multi-state model for employment history combines the generalised gamma distri-
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bution with the latent-class approach. Although this distribution and the latent-class

approach have been discussed in the literature separately (see the references above),

our contribution is to combine these two concepts and thus defining a very flexible

statistical modelling framework. The paper will illustrate this by defining a series

of models, and by model comparison, validation, and interpretation. We show that

the modelling framework is general and allows for a wide range of applications in

demography.

2 The German Life History Survey

The German Life History Study (1980-2005) provides retrospective life course infor-

mation for Germans born between 1919 and 1951 (Mayer, 2015). The study is often

used to investigate education, employment history, and family formation.

For the current paper, we use the Blossfeld-Rohwer subsample of the German Life

History Study (Blossfeld and Rohwer, 2002). These data are available in the Biograph

package in the R software. This package is introduced by Willekens (2014), who uses

the Blossfeld-Rohwer subsample in a three-state model for employment history.

This subsample contains data for 201 individuals on job episodes and spells without

a job. The start and end of each job episode are available on a time scale in months.

Individual background information is given by covariates such as age, gender, and

education.

Interviews for GLHS were conducted in 1981. In what follows, we propose a statistical

model for employment history as known at the time of the interview. This history
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Figure 1: Eleven-state process for employment history in GLHS.

is defined by a series of mutually exclusive states. Because not many individuals in

GLHS have had more than six jobs, we restrict the modelling of employment history

up to (and including) the sixth job.

Figure 1 shows the diagram for the process that we will model in this paper. States

1 up to 6 denote the first job up to the sixth job. State 7 up to 11 denote episodes

between jobs; that is, state 7 denotes having no job after the first job, state 8 denotes

having no job after the second job, etcetera. With the imposed restriction to a

maximum of six jobs, state 6 acts as an absorbing state.

It is possible to define a process with fewer states by collapsing the five no-job states

into one state. However, the model comparison in Section 6 shows that it is worthwhile

to distinguish the five no-job states as illustrated in Figure 1.

In the subsample (denoted GLHS from now on), all individuals start in state 1, but

they do so at different times and different ages. The time scale in GLHS is century
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Figure 2: For the 201 individuals in GLHS, a two-dimensional representation of the

start time of the first job and the age at the start of the first job.

months. For example, the first individual in the data is a man who starts his first

job at century month 555. In calendar years, this is (555− 1)/12 + 1900 = 1946. In

GLHS, three birth cohorts are represented: 1929-31, 1939-41, and 1949-51.

For the 201 individuals in GLHS, Figure 2 shows the start time of the first job (in

calendar years) and the age at which the individuals started their first job. The graph

shows a cohort effect in the sense that the age at the start of the first job is increasing

with increasing calendar year for the start of the first job. Therefore, we will include

cohort effects in the statistical model for employment history.

Table 1 is the state table for the eleven-state employment history in GLHS. This
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Table 1: State table for GLHS: number of times for each successive pair of states.

The states are defined by employment history; see Figure 1.

To

From 1 2 3 4 5 6 7 8 9 10 11

1 16 96 0 0 0 0 89 0 0 0 0

2 0 44 78 0 0 0 0 40 0 0 0

3 0 0 39 52 0 0 0 0 16 0 0

4 0 0 0 27 24 0 0 0 0 11 0

5 0 0 0 0 11 18 0 0 0 0 3

7 0 66 0 0 0 0 23 0 0 0 0

8 0 0 29 0 0 0 0 11 0 0 0

9 0 0 0 10 0 0 0 0 6 0 0

10 0 0 0 0 8 0 0 0 0 3 0

11 0 0 0 0 0 2 0 0 0 0 1

table shows the frequencies for successive pair of states. Right-censored histories are

presented in the (r, r) entries with r = 1, ..., 5, 7, ..., 11. To give an example, of the

201 individuals who started in state 1, 16 are still in their first jobs at the time of

the interview, 96 went straight from their first jobs to their second job, and 89 had

a period without a job after their first job. The table shows that data are sparse for

state 5, 6, 10 and 11. In total there are 564 job episodes (sum of the frequencies in

the first five rows) and 159 spells without a job (sum of the frequencies in the last

five rows).
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To model potential time dependence in employment history, we need to specify a

time scale for the process. Possible options are time in current job, age, and time

since entry into the labour market. For our statistical model, we use the third option

following the choice of Blossfeld and Rohwer (2002, Chapter 2) for their model for the

rate of leaving the current job. This option implies, for example, that our modelling

allows two individuals who have been in their third job equally long, to have a different

distribution for moving to the fourth job due to a difference in time since entry into

the labour market. It allows us to investigate the effects of gender and education

while controlling for time spent in the labour market.

3 Distributions for transition times

To model change of state in continuous time, we specify continuous parametric distri-

butions for transition time T ≥ 0. This section starts with the definition of transition-

specific hazard functions and state-specific survivor functions, and will then discuss

the exponential distribution, the Gompertz distribution, and the generalised gamma

distribution.

Our modelling is based on continuous-time stochastic processes, which are defined as

{Yt|t ∈ (0,∞)} with Yt denoting the state at time t. The range of Yt is defined by

the state space S.

In our application, we have finite S = {1, 2, ..., 11}, with state 6 being the only

absorbing state. Let (t1, t2] denote a generic time interval, and define Yj = Ytj , for

j = 1, 2. Specific for GLHS, the following type of observations are possible for a time

interval (t1, t2]. If there is no transition, then (y1, y2) = (r, r), for r ∈ S\{6}. If there
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is a transition, then (y1, y2) = (r, s) with s = r + 1 or s = r + 6 if r ∈ {1, 2, 3, 4, 5},

and s = r − 5 for r ∈ {7, 8, 9, 10, 11}. For example, if the individual moves out of

state 1, then he or she moves to state 2 or state 7. Given state 7, the next possible

state is 2.

Let hrs(t) denote the hazard for moving from state r to state s at time t; that is,

hrs(t) = lim
∆↓0

P (Yt+∆ = s|Yt = r)

∆
.

If a transition is not possible from r to s, we define hrs(t) = 0. Let hr•(t) denote

the hazard for moving out of state r. For example, for state 1 we have h1•(t) =

h12(t) + h17(t).

For (t1, t2], the conditional survivor function for state r at t1 is given by

Sr(t2|t1) = exp

(
−
∫ t2

t1

hr•(u)du

)
.

This definition of Sr(t2|t1) implies that given state r at t1, the hazard function hr•

defines the probability of a transition out of state r. In the application, if all five

hazard functions are defined by exponential distributions, then the corresponding

transition probabilities define a time-homogeneous first-order Markov chain. If the

hazard functions are time-dependent or contain covariate effects, then the process is

not a Markov chain in the strict sense; see also Commenges (1999).

3.1 Exponential and Gompertz distribution

The transition-specific hazard function for the exponential distribution is given hrs(t) =

exp(µrs), where µrs ∈ R. The exponential model is a very common model for multi-

state processes and is readily available in software for multi-state models. Note that
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this hazard function does not depend on time t, which may be too restrictive in some

applications.

The transition-specific hazard function for the Gompertz distribution is hr(t) =

exp(µrs+ξrst), where µrs, ξrs ∈ R. As a distribution for a time to event, the Gompertz

distribution is used in biostatistics and sociology; see, for example, Hougaard (2000)

and Blossfeld and Rohwer (2002), respectively. For usage in demography; see, for

example, Mueller et al. (1995), Olshansky and Carnes (1997), and Bongaarts (2005).

Models with exponential and Gompertz distributions can be extended in the usual

way by log-linear regression: µrs = β>rsx, where x is a vector of covariates values

including an intercept.

3.2 Generalised gamma distribution

The generalised gamma distribution is a very flexible continuous parametric distri-

bution for event time T ≥ 0. The distribution includes the exponential, Weibull,

log-normal, and gamma distributions as special cases; that is, these cases can be de-

fined by restricting certain parameters in the generalised gamma distribution. We

will first review the generalised gamma distribution, and then use this distribution to

define the transition-specific hazards.

Following the presentation and terminology in Cox et al. (2007), the generalised

gamma distribution T ∼ GG(µ, σ, q) has probability density function

f(t|µ, σ, q) =
|q|

σtΓ(q−2)

(
q−2(exp(−µ)t)q/σ

)q−2

exp
(
−q−2(exp(−µ)t)q/σ

)
, (3.1)
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for location µ, scale σ > 0, and shape q. The survivor function is given by

S(t) =

 1− Γ
[
q−2(exp(−µ)t)q/σ; q−2

]
if q > 0

Γ
[
q−2(exp(−µ)t)q/σ; q−2

]
if q < 0 ,

(3.2)

where Γ [t; γ] =
∫ t

0
xγ−1e−xdx/Γ(γ). Prentice (1974) introduced the above parameter-

isation for the generalised gamma by Stacy (1962). This choice of parameterisation

allows q ≤ 0. The generalised gamma distribution is available in R via the flexsurv

package (Jackson, 2016).

The log-normal distribution is defined as GG(µ, σ, q = 0); the Weibull distribution as

GG(µ, σ, q = 1); and the gamma distribution as GG(µ, σ, q = σ). To illustrate this

for the Weibull distribution, for q = 1 density (3.1) reduces to

f(t|µ, σ, q = 1) =
1

σ
t1/σ−1(exp(−µ))1/σ exp

(
−(exp(−µ)t)1/σ

)
.

Re-parameterisation by τ = 1/σ and λ = exp(µ) gives

f(t|τ, λ) =
τ

λ

(
t

λ

)τ−1

exp

(
−
(
t

λ

)τ)
,

which is a standard representation of the Weibull density. The median of this distri-

bution is λ (log(2))1/τ = exp(µ) (log(2))σ. This illustrates that the location parameter

µ determines the median given a fixed value for scale σ. This also holds for the unre-

stricted generalised gamma distribution. Scale σ and shape q together determine the

type of hazard function—as stated and illustrated in Cox et al. (2007); see also the

data analysis in Section 6.

For the multi-state model, we define transition-specific hazard as hrs(t) = frs(t)/Srs(t),

where the density function frs(t) and the survivor function Srs(t) are defined by the

generalised gamma distribution GG(µrs, σrs, qrs). If there are two possible transitions
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out of state r, then we are in a competing-risks setting. For example, the function

S12(t) as defined above should not be interpreted as the survivor function with respect

to being in state 1; see also (Putter et al., 2007, Section 3.2).

4 Latent-class models

A latent-class model is defined by specifying K classes, probabilities πik = P (i ∈

class k) for individual i ∈ {1, ..., N} and class k ∈ {1, 2, ..., K}, and class-specific

model parameters. The probabilities πik model the class membership with the re-

striction
∑K

k=1 πik = 1. Class-specific model parameters can refer to location, shape

or scale parameters that vary across the K classes.

The class-specific parameters induce class-specific distributions for the transition

times. As an example, consider the exponential model and K = 2. Say we want

to explore the latent-class modelling for direct transitions from one job to the next

job. We can define πi1 = π1 and πi2 = 1 − π1, for all i, and make the rele-

vant location parameters class-specific by defining µrs.k = βrs + bk, where (r, s) ∈

{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} and b1 = −b2. The two latent classes induce two

extra parameters to be estimated: π1 and b1. The first is the probability to belong to

class 1, and the second is the effect on the location parameter due to being in class

1. For example, if b1 < 0, then exp(µrs.1) < exp(µrs.2), which implies that individuals

in class 2 are more likely to move to state s than individuals in class 1. A model like

this allows us to distinguish so-called movers from stayers: unobserved heterogeneity

in the propensity to move to a next state.

The distinction between individuals who move quickly through the states and individ-
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uals who tend not to move so quickly is described as tracking by Satten (1999): there

is a correlation between the transition times within individuals, and rapid progressors

can be distinguished from slow progressors. In the literature, a mover/stayer model

can also denote a stochastic process that is a mixture of two processes, one of which

has transition hazards equal to zero; see, for example, Frydman (1984) and Cole et al.

(2005). This option, however, will not be explored in the current paper.

Latent-class models can be seen as random-effects models where the random effects

have a discrete distribution; see, for example, the generalised linear mixed models as

discussed in Aitkin (1999). When fitting the latent-class as a random-effects model,

the classes that are created are primarily aimed at capturing unobserved heterogene-

ity—interpretation of the classes is not of primary interest.

5 Estimation

For individual i, for i ∈ {1, 2, ..., N}, GLHS data were formatted such that the data

are given by times ti = (ti1, ti2, ..., tini
), states yi = (yi1, yi2, ..., yini

), and baseline

covariates values xi = (xi1, xi2, ..., xim). We also define transition indicators δi =

(δi2, δi3, ..., δini
) to maintain the standard notation in survival analysis. Note, however,

that in the GLHS data, times ti1, ..., tini−1 are all transition times, and tini
is either a

right-censored time, or a transition time for moving to state 6.

Consider a time interval (tij, tij+1], j = 1, ..., ni − 1. When yij = yij+1, there is no

transition and the conditional survivor function for observing state Yij+1 at tij+1 is

Syij(tij+1|tij). When yij 6= yij+1, time tij+1 denotes a time of a transition, and the den-

sity function for moving to observed state Yij+1 at tij+1 is Syij(tij+1|tij)hyijyij+1
(tij+1).



14 Ardo van den Hout and Wenhui Tan

The former case is labelled by δij+1 = 0 and the latter by δij+1 = 1.

Individual contributions to the likelihood function for the fixed-effects models are

given by

Li(θ|ti, δi,yi,xi) =

ni−1∏
j=1

Syij(tij+1|tij)hyijyij+1
(tij+1)(δij+1),

for i = 1, 2, ..., N , with θ the vector containing all the model parameters. The overall

likelihood function is L(θ) =
∏N

i=1 Li(θ|ti, δi,yi,xi).

Individual contributions to the likelihood function for the latent-class models are

given by

Li(θ|ti, δi,yi,xi) =
K∑
k=1

(
ni−1∏
j=1

Syij(tij+1|tij, k)hyijyij+1
(tij+1|tij, k)(δij+1)

)
πik,

where θ includes the parameters for the latent-class modelling. Probabilities πik

can be linked to individual covariate values using a multinomial regression model.

However, in the GLHS data analysis in Section 6 we assume πik = πk ∀i.

The likelihood function for the fixed-effects models is the standard format for sur-

vival data extended to multiple event times within individuals. Note that possible

association between observations within an individual is not modelled. In contrast,

the likelihood function for the latent-class models allows a correlation between obser-

vations via the latent-class parameters.

For the maximum likelihood estimation we use the general-purpose optimiser in the R

software optim (R Core Team, 2013). This versatile optimiser can maximise the log-

likelihood function without the need to provide explicit expressions for the derivatives.

The optimiser will return the numerically differentiated Hessian matrix if requested.

Covariance of a function of estimated model parameters can be derived by using
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simulation. An important example of such a function are transition probabilities for a

specified time interval. For the simulation, parameter vectors θ(s), for s = 1, ..., S, are

drawn from N(θ̂, V̂θ), where V̂θ is the estimated covariance matrix derived from the

estimated Hessian. Next, for any function g(θ), summary statistics such as mean and

covariance are derived from g(θ(1)), ..., g(θ(S)); see Mandel (2013) for a justification

of this method.

6 Data analysis

We start the data analysis for GLHS with the basic exponential model. This model

can be seen as an intercepts-only model for the location parameters, and has as many

parameters as transitions in the process: µrs = βrs.0, for the pairs (r, s) as defined by

the process in Figure 1. This model has Akaike information criterion (AIC) equal to

6605.4.

Dummy variables for the cohort effects are defined as (x1, x2) = (0, 0) for birth cohort

1929-31, (x1, x2) = (1, 0) for cohort 1939-41, and (x1, x2) = (0, 1) for cohort 1949-51;

see also Blossfeld and Rohwer (2002). Let x3 and x4 denote the dummy variables for

the effect of gender and education. Women are coded by x3 = 0, men by x3 = 1.

Education is defined by years of education before entry into labour market: x4 = 0

for less than 12 years, x4 = 1 for 12 years or more. The threshold 12 years is equal

to middle school qualification with vocational training.

For the modelling of the effects of the dummy variables, we distinguish three types

of transitions: from one job to the next (A), from a job to no job (B), and from no

job to the next job (C). The model for the location parameters with the covariates
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is thus given by

A) µrs = βrs.0 + βA.1x1 + βA.2x2 + βA.3x3 + βA.4x4

 From a job to the next:

(r, s)=(r, r + 1), r ∈ {1, ..., 5}

B) µrs = βrs.0 + βB.1x1 + βB.2x2 + βB.3x3 + βB.4x4

 From a job to no job:

(r, s)=(r, r + 6), r ∈ {1, ..., 5}

C) µrs = βrs.0 + βC.1x1 + βC.2x2 + βC.3x3 + βC.4x4

 From no job to the next job:

(r, s)=(r, r − 5), r ∈ {7, ..., 11}

(6.1)

and has AIC = 6437.2, which shows a clear improvement over the intercepts-only

model.

It is possible to restrict the intercepts βrs.0 in such a way that the hazards for moving

to a no-job state are the same: βr,r+6.0 = βB.0 for r ∈ {1, ..., 5}, and the hazards for

leaving a no-job state are the same: βr,r−5.0 = βC.0 for r ∈ {7, ..., 11}. This defines

7 independent intercepts. Adding the 12 parameters for the dummy variables, the

resulting model has AIC = 6453.9. The increase of the AIC compared to the previous

model shows that it is worthwhile to distinguish the transition hazards for the five

no-job states. This implies that we should not merge the five no-job states into one

general no-job state.

To investigate non-constant transition hazards, we discuss two models. For the first

model, we add Gompertz ξ-parameters to the first four transitions from one job to

the next; that is, we add ξrs for (r, s) = (r, r + 1), r ∈ {1, 2, 3, 4}. Because data are

scarce for the transition from state 5 to state 6, we do not extend the model for this

transition. The Gompertz model yields an AIC = 6400.9, which shows that allowing

hazards to change over time can lead to a model with better fit.
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Table 1 shows that there is good information for moving out of states 1 and 2. To

allow for more flexible parametric shapes, we fit generalised gamma distributions for

(r, s) ∈ {(1, 2), (1, 7)}. The shape parameters are q12 and q17, and the scale parameters

are

σ12 = exp(ψ12) σ17 = exp(ψ17).

For (r, s) ∈ {(2, 3), (2, 8), (3, 4), (4, 5)}, we use Gompertz distributions. Note that this

also implies a non-constant hazard for moving from state 2 to no-job state 8. For the

remaining transitions we fit exponential distributions. The covariate effects are again

as specified in (6.1). We call this Model A. It has AIC = 6379.6, and shows a further

improvement over the earlier models.

Next, we extend Model A with two latent classes (K = 2). We define class-specific

distributions via the location parameters for the first four direct job changes. To im-

pose the mover/stayer distinction, the class effect for the four job changes is assumed

to be the same. For k ∈ {1, 2}, this implies the following change for the location

parameters:

µrs.k = βrs.0 + bk + βA.1x1 + βA.2x2 + βA.3x3 + βA.4x4 , (6.2)

for (r, s)=(r, r+ 1), r ∈ {1, ..., 4}. The model is identified by the sum-to-zero restric-

tion for the class-specific effects; that is, b1 + b2 = 0. We call this Model B. It has

two more parameters (π1 and b1) compared to Model A, and has AIC = 6366.8.

Model B is a better model than A given the improvement in AIC. In the remainder

of this section we present statistical inference for Model B.

Estimated parameters are presented in Table 2. The probability π1 to be in class 1 is

estimated at 0.276 (with estimated standard error 0.083). For this class, the additive
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effect b1 on the location parameters in (6.2) is 0.641 (0.108). Given that b1 > 0, class

1 represents the movers—those individuals who are more likely to move directly to a

next job when compared to individuals in class 2.

For women born in 1939-41 and with less than 12 years of education, Figure 3 depicts

the hazards in Model B that are time dependent. The difference between the two

classes is illustrated with the black lines representing class 1, and the grey representing

class 2. Confidence bands in this figure are derived by simulation; see end of Section

5. For 1 → 7 and 2 → 8, the hazards are restricted to be the same for both classes.

Hazards are modelled conditional on current state. For example, if the women are in

state 3 quickly after having entered the labour market, then the model implies a high

hazard for moving the state 4.

The flexibility of the generalised gamma distribution is illustrated in Figure 3 by the

arc-shape hazards transitions 1→ 2 and 1→ 7. For example, the hazard for moving

directly to the second job increases in the first four to five years, and shows a decrease

afterwards. This can be linked to the estimated scale σ̂12 = exp(ψ̂12) and shape q̂12 < 0

in Table 2. This combination of values is in the set {(σ, q)|q < min{σ, 1/σ}} that

defines arc-shape hazards, starting and ending at zero (Cox et al., 2007). For the

Gompertz model, the estimated ξ-parameters for transitions 2 → 3, 2 → 8, 3 → 4

and 4→ 5 are negative and illustrate a negative time effect on the hazard.

Looking at the estimated standard errors in Table 2, we see that there are clear cohort

effects. The younger cohorts have higher hazards for all transitions. The effects for

gender illustrate that men (coded by x3 = 1) are more likely to move directly to a new

job and also more likely to move from having no job to the next job. Women have

a higher hazard for moving to a no-job state. Given that the population in GLHS
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Table 2: Parameter estimates for the mover/stayer model for the GLHS data on

employment history (Model B). Time scale is months since entry into the labour

market. Estimated standard errors in parentheses. Estimated intercepts are not

included.

Location Scale and shape

βA.1 0.417 (0.201) βA.3 0.200 (0.160) ψ12 0.044 (0.197)

βB.1 0.497 (0.205) βB.3 −0.631 (0.177) ψ17 0.311 (0.086)

βC.1 0.539 (0.231) βC.3 2.107 (0.202) q12 -2.038 (0.760)

βA.2 0.228 (0.211) βA.4 0.003 (0.188) q17 -0.439 (0.459)

βB.2 0.599 (0.206) βB.4 −0.160 (0.202)

βC.2 0.429 (0.254) βC.4 −0.717 (0.262) ξ23 -0.004 (0.002)

ξ28 -0.007 (0.002)

Class 1 ξ34 -0.003 (0.002)

π1 0.276 (0.083) b1 0.641 (0.108) ξ45 -0.004 (0.002)

is born before 1951, this higher hazard can be explained by women dropping out of

the labour market due to marriage or pregnancy. The estimated effects for years of

education have high standard errors. More years of education seems to be negatively

associated with moving out of a no-job state when controlling for the effects of time

and gender. We do not have a good explanation for this effect. Note that when

someone is in the no-job state, this does not imply that this individual is looking for

a new job. For example, when people are retired, they are also classified in this state.

Goodness of fit for Model B can be checked visually by comparing model-based sur-

vival with Kaplan-Meier survivor curves; see Figure 4. The solid lines are the model-
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Figure 3: Transition-specific hazards for women born in 1939-41 and with less than

12 years of education. Black curves for class 1, and grey curves for class 2 (with 95%

confidence bands).

based survival predicted using the baseline data only. The survival is defined for a

progressive series of sets of states. The first graph is for survival prior to state 2;

that is, survival in state 1. The second graph is for survival prior to state 3; that is,

survival in states 1, 7, or 2. The graphs for the higher states are defined analogously.

The model-based prediction is derived as the mean of the survivor curves for the 201

individuals in the data. The latent-class structure is taken into account by predicting

survival for each individual twice: once assuming the individual is in class 1, once

assuming the individual is in class 2. The individual survivor curve is then defined

as a weighted sum of the class-specific survival where the weights are the estimated

probabilities πk for k ∈ {1, 2}. The dashed lines are the Kaplan-Meier survivor curves

(with 95% confidence intervals), where the plus-symbols depict right-censored times.
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Figure 4: Comparison of predicted model-based survival and Kaplan-Meier survivor

curves. Solid lines for mean of predicted survival given baseline GLHS data for the

201 individuals. Dashed lines for the Kaplan-Meier curves (with 95% confidence

intervals).

For survival prior to state 2 and for survival prior to state 3, the model-based curves

are close to the Kaplan-Meier curves. For the higher states, Figure 4 shows some lack

of agreement at the later times—part of which is due to the right-censoring. Using the

non-parametric Kaplan-Meier estimation as a data summary, the overall similarity

with the model-based prediction validates the main features of the fitted model.

Hazards such as the ones in Figure 3 inform about employment history in the sense

that they show the differences between the classes and the rates of moving to a next

job. Transition probabilities can be used for additional inference. For example, to

compare the two classes, we can look at the probabilities for changing states within a



22 Ardo van den Hout and Wenhui Tan

five-year period. Say we do this for a man in birth cohort 1949-51, with more than 12

years of education, who has been in the labour market for five years, and is currently

in his second job. The probability to move to (or stay in) state s ∈ {2, 3, 4, 5, 6} is

given by

p2s

(
t1 = 60, t2 = 120

∣∣ class = k, (x1, x2) = (0, 1), x3 = 1, x4 = 1
)
,

which we will denote p2s, for short. If this man is in class k = 1, then we get

p22 = 0.231, p23 = 0.343, p24 = 0.226, p25 = 0.097, and p26 = 0.025.

If this man is in class k = 2, then we get

p22 = 0.572, p23 = 0.283, p24 = 0.052, p25 = 0.005, and p26 = 0.001.

For the computation of these probability, we used a piecewise-constant approximation

(defined by a one-month grid) to take the non-constant hazards into account. These

transition probabilities illustrate the differences between the classes on the scale of

probabilities. For example, we see that for staying in the second job, the difference

between the classes already quite large (0.231 vs. 0.572 for class 1 and 2, respectively).

When in class 1, the man has a consistently higher chance to be in another job after

five years then when he is in class 2, illustrating that class 1 is the class of the movers.

If we want to allocate the above specified man (with identifier i, say) to class k ∈ {1, 2}

we can compute the probability

P (i ∈ class k|ti, δi,yi,xi;θ = θ̂)

=
g(yini

..., yi2|yi1, i ∈ class k;θ = θ̂)P (i ∈ class k|θ = θ̂)∑K=2
`=1 g(yini

..., yi2|yi1, i ∈ class `;θ = θ̂)P (i ∈ class `|θ = θ̂)
,

where g(yini
..., yi2|yi1, i ∈ class k;θ = θ̂) is short-hand notation for the likelihood

contribution for individual i conditional on being in class k; see Section 5. For
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example, if i is a job hopper in the sense that he changes job every year directly

with ti = (0, 12, 24, 36) and yi = (1, 2, 3, 4), then the probability to be in class 1

is estimated at 0.90 and we would allocate i to class 1. However, if i changes job

every 5 years, that is, ti = (0, 60, 120, 180) with the same yi, then this probability is

estimated at 0.36 and we would allocate i to class 2.

To summarise the GLHS data analysis, Model A shows that inference can improve by

fitting generalised gamma distributions in a model for employment history with time

since entry into the labour market as the time scale. Effects of cohort, gender and

education are important and have to be taken into account in the statistical inference.

In addition, we illustrated that the latent-class Model B is an interesting extension

of Model A, and allows to explore an assumed latent-class structure. Fitting a two-

class structure shows a clear distinction between stayers and movers with respect to

employment history. One possible way to extend the analysis would be to investigate

covariate effects for class membership. For example, the probability to be a mover

(π1) could be modelled using logistic regression with gender as a covariate.

7 Conclusion

This paper illustrates the use of the generalised gamma distribution for a progressive

multi-state process in demography. In addition, it is shown that an extension to a

latent-class structure is possible and can lead to improved statistical inference.

Because the multi-state process in the application is progressive, the likelihood func-

tion for the time-dependent model can be constructed using transition-specific hazard

functions and state-specific survivor functions. For multi-state processes where back-
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and-forth transitions between the states are possible, the distributional options are

the same, but the estimation becomes more complex. For such a case, we would

propose to use a piecewise-constant approximation to the continuous-time paramet-

ric shape. The approximation would consist of a series of exponential models with

changing hazard specifications; see, for example, Blossfeld and Rohwer (2002) and

Van den Hout (2017).

This paper combines parametric hazard models with a discrete distribution for un-

observed heterogeneity. Other options are possible. Putter et al. (2007) discuss a

semi-parametric alternative for the fixed-effects models, and Hougaard (2000) dis-

cusses parametric choices for the distribution for unobserved heterogeneity. Advan-

tages of parametric hazard models are efficiency and the option to predict the process

outside the range defined by the data. With respect to the discrete distribution for

unobserved heterogeneity, as long as this distribution is defined by a few classes, this

option is computationally advantageous and, of course, it circumvents the need to

specify a parametric shape for a latent characteristic.
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