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Abstract.  

In the boundary layer of fluid on a moving solid surface (such as on a moving vehicle e.g. ships) a thin body 

is translating parallel to the surface. The streamwise movement of the body relative to the solid surface is 

substantial, with the upstream or downstream velocity being comparable with the free-stream velocity. 

The dynamic fluid/body interaction here incorporates the effects of incident vorticity, nonlinear and 

separating flow. Modelling, analysis and reduced computation explore the all-important influences of body 

shape, moment of inertia and centre-of-mass location. These influences and the initial conditions affect 

whether nonlinear oscillations of the fluid and body motions continue or fully nonlinear focussing occurs 

after a finite time. 

1. Introduction. 

Of interest in this paper is the understanding and prediction of the motion of a body near the solid surface 

of a transport vehicle, or other moving solid surface, so near that the body lies within the comparatively 

thin boundary layer of fluid flow on the vehicle. The feedback effect of the body motion on the fluid flow is 

also of concern. The typical Reynolds number involved is large in the many relevant applications [1-14]. 

Sea-ice applications concern the hazard posed by ice shards or lumps impacting upon ships, submerged 

vessels, installations or their interaction with ice floes. Aircraft-ice applications are likewise for ice particles 

but impacting upon a fuselage, wing, blade or engine inlet. In addition there are a number of other 

application areas (for example food-sorting) that motivate explorations of dynamic fluid/body interactions.  

Modelling, analysis and allied computation provide the focus of study here. There is a series of such studies 

for oncoming uniform flow in [1-5]; in effect these cases correspond to the body lying outside the original 

boundary layer and so have negligible vorticity in the resulting fluid/body interaction. These include studies 

of multiple bodies in channels or ducts concerned with the modelling of food-sorting, as well as particle-

skimming on water, related entry and exit phenomena, liftoff of a body from a solid surface, and flooding 

and sinking of submerged bodies. In contrast with [1-5] the present study allows for substantial vorticity by 

virtue of the oncoming boundary layer velocity profile with no slip at the underlying solid surface or wall. 

Recent works also allowing for oncoming nonzero vorticity are in [6, 7] concerned with boundary layers and 

channel flows. We should note in addition a number of intriguing direct-computational investigations and 

experiments described in [5, 8-14] over various different parameter ranges. 

Nonzero velocity of the solid body in the streamwise direction relative to the wall is believed to be a 

potentially important factor in the evolving fluid/body interplay and it is addressed in the current 

investigation. This is as opposed to the assumption in [1-6] of zero relative velocity. A suggestion in [7] 

points to considerable changes taking place in the fluid flow and body motion when the relative velocity is 

increased from zero, and the current paper follows that suggestion through in detail. An assumption of 

quasi-inviscid fluid flow is consistent with the above suggestion and this is used here to shed light on the 

effects of nonlinearity and in particular separation or reversal of the fluid flow when interacting with the 

moving body. In view of the fact that the previous studies [6, 7] concentrate on linear properties the 

present treatment of nonlinear and separating-flow effects represents a new aspect. 

The body, if thin and at sufficiently small incidence, can move with constant velocity in the streamwise 

direction inside the boundary layer under a free stream because the forces in that direction are generally 

small compared with the mass-acceleration contributions in the same direction. This applies over a wide 
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range of conditions [1-7].  Further, if the velocity of the body relative to the wall is negative when measured 

in the streamwise direction then, relative to the body, we have a downstream-moving wall and a 

corresponding incident velocity profile which is positive at the wall. Conversely a downstream-moving body 

is associated with an upstream-moving wall in a coordinate frame moving with the body of course. See also 

[15-18]. Both scenarios are of concern. 

In producing this article, we have three main motivating examples in mind (amongst several avenues of 

interest) that relate to the hydrodynamics of ice. Two relate to the coupled movement of sea ice and 

aquatic vehicles, such as ships and boats. In the first configuration, the vehicle is moving through the body 

of water whereupon a piece of ice traverses alongside it, floating on the water surface. Here the lump 

interacts with the developing boundary layer along the side of the vehicle. The second scenario is similar, 

however now the lump of ice is submerged and traverses the underside of the hull, interacting with the 

boundary layer there. The third scenario relates to aircraft icing, which is a significant topic in aviation 

safety. Whilst cruising at high altitudes aircraft may be impacted by atmospheric ice crystals leading to the 

formation of ice on wings, fuselages and vital components such as engines and pitot tubes. In turn this can 

degrade the performance of the aircraft and at worst result in a system failure. The following analytical 

investigations provide physical insight for the above scenarios. They provide key details for understanding 

the underlying mechanisms that govern the development and structure of the fluid flow, and that 

determine the trajectory and potential impact of a piece of ice on a moving surface.  

The sections to come are as follows. Section 2 sets the scene for the fluid/body interaction of interest in 

nondimensional terms with a large Reynolds number 𝑅𝑒 based on the original flow development length. 

The body in question, which is taken to be thin and nearly aligned with the incident boundary-layer flow, is 

moving upstream or downstream with uniform 𝑂(1) streamwise velocity 𝑢𝑐 relative to the wall or ground, 

within the core of an 𝑂(𝑅𝑒−1/2) thick boundary layer. Laminar two-dimensional unsteady flow of an 

incompressible fluid of constant density is explored. The densities of the fluid and the solid body are �̌�𝐹, �̌�𝐵 

where the “check” denotes a dimensional quantity. The representative streamwise length of the boundary 

layer is written 𝑙, for example its development length. We work in a non-dimensional form with velocity 

components (𝑢, 𝑣), pressure variation 𝑝, Cartesian coordinates (𝑥, 𝑦) and time 𝑡 based on �̌�, �̌�𝐹 , �̌�2, 𝑙 and 

𝑙/�̌� respectively. The dimensional mass is written �̌�𝐵 �̌�𝐵 𝑀𝑁, with 𝑀𝑁 being nondimensional and with �̌�𝐵 

standing for the cross-sectional area of the two-dimensional body, and similarly the nondimensional 

moment of inertia is written 𝐼𝑁. Section 3 addresses reduced body speeds where the nonlinear effects 

persist and so flow separation can occur.  Computational solutions and analytical features are described in 

sections 4 and 5 respectively. A discussion of the results is presented in section 6. Section 7 presents 

further comments and conclusion. 

2. Interaction in a boundary layer. 

The fluid/body interaction takes place with the relative velocity of the body 𝑢𝑐 = 𝐶 being of order unity 

and with a single thin body within the boundary layer. Mainly we consider negative 𝐶 values and so we put 

𝐶 = – 𝐷 where the constant 𝐷 is positive; we discuss positive 𝐶 values later on. See figure 1. The flow 

behaviour is quasi-inviscid for the most part although it is worth noting that there is a connection with 

recent viscous/inviscid work in [7] as their assumed small streamwise velocity increases. We expect the 

pressure variation 𝑝 in the gap between the body under-surface and the wall, and the streamwise velocity 

component 𝑢, to all be of order unity. Also, the normal velocity component 𝑣 in the oncoming boundary 

layer is smaller, having the classical scaling of order 𝛥 where 𝛥 = 𝑅𝑒−1/2. The interactive effects here are 

expected to cover the whole boundary layer and to be influenced by the whole incident velocity profile 𝑢 =

𝑢0(𝑌) of the boundary layer over the fixed solid plane wall, with 𝑢0(0) = 0, because of no slip at that wall 

and the scaled skin friction constant 𝜆 = 𝑢0
′ (0) > 0. That is ahead of the body.  
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Figure 1. The fluid/body configuration with, in the upper diagram, the body translating upstream or 

downstream at uniform speed relative to the wall. The lower diagrams are drawn in a coordinate frame 

moving with the body. (The sketches are not to scale.) Here 𝑢0(𝑌) is the incident velocity profile in the 

boundary layer and 𝐿, 𝛥 are nondimensional length scales.  

Continuing this work in a frame moving streamwise with the body, it is implied that the incident flow 

upstream (ahead of the Euler zone described below) has an effective velocity profile 𝑢0(𝑌) + 𝐷, hence the 

incident fluid motion is forward at the wall (when 𝐷 is positive) and is taken to be forward across the entire 

boundary layer.  

The appropriate coordinate scalings here for the interaction between the fluid flow and the body are 𝑥 =

𝐿𝑋, 𝑦 = 𝛥𝑌 where L is the body length as shown in the sketch in figure 1. The body length is assumed to 

satisfy 𝛥 <<  𝐿 << 1, meaning that the body is long compared with the thickness of the incident boundary 

layer and short relative to the development length of the boundary layer. The body occupies 0 < 𝑋 < 1 

and is supposed to be of thickness 𝑂(𝛥) such that there is a fluid gap of thickness 𝑂(𝛥) between the body 

and the wall 𝑌 = 0. The time scale is such that 𝑡 = 𝜎𝑇 where the constant 𝜎 is the typical translation time 

along the body, which is of order 𝐿, and 𝑇 is of order unity. Thus the scaled governing equations for the 

fluid motion in the gap give the nonlinear unsteady inviscid system: 

𝑢𝑋 + 𝑉𝑌 = 0,     𝑢𝑇 + 𝑢𝑢𝑋 + 𝑉𝑢𝑌 = – 𝑝𝑋 (2.1a,b) 

with the unknown scaled pressure 𝑝 = 𝑝(𝑋, 𝑇) being independent of 𝑌 from the normal momentum 

balance. Here 𝑣 = 𝐿– 1 𝛥 𝑉 to leading order with 𝑉 being of order unity. The system is subject to a kinematic 

boundary condition (2.2a), a tangential flow requirement (2.2b), an incident profile condition (2.2c), a Kutta 

effect (2.2d) and the unknown body movement (2.2e, f): 

𝑉 = 𝐹𝑇 + 𝑢𝐹𝑋  at  𝑌 = 𝐹(𝑋, 𝑇) = 𝑓𝑢(𝑋) + ℎ(𝑇) + (𝑋– 𝛽)𝜃(𝑇) ,  

𝑉 = 0  at  𝑌 = 0, 

𝑝 = 0, 𝑢 = 𝑤0(𝑌)  given at  𝑋 = 0−  but  𝑝 = 𝑝+,   𝑢 = 𝑤0
+(𝑌)  at  𝑋 = 0+ , 

(2.2a) 

(2.2b) 

(2.2c) 

𝑝 = 0  at  𝑋 = 1 , 

and 𝑀ℎ𝑇𝑇 = ∫ 𝑝
1

0  𝑑𝑋 ,   𝐼𝜃𝑇𝑇 = ∫ (𝑋– 𝛽) 𝑝
1

0  𝑑𝑋 .   

 (2.2d) 

(2.2e, f) 



4 
 

Commenting further on these conditions, we remark first that it is an Euler effect that leads to (2.2c) where 

the upstream conditions at 𝑋 = 0− are prescribed but the pressure 𝑝+ and velocity profile 𝑤0
+(𝑌) at 𝑋 =

0+ are to be determined (as explained shortly).  The centre of mass of the body is assumed to be at the 

midway station 𝑋 = 𝛽, 0 < 𝛽 < 1. The normalised height ℎ of the centre of mass and the angle 𝜃 of 

inclination of the body centre-line curve are scaled on Δ, while 𝑀, 𝐼 are the scaled mass and moment of 

inertia as in (2.3) below. The incident velocity profile ahead of the body in this frame is 𝑤0 = 𝑢0 + 𝐷: the 

relation between the profiles 𝑤0, 𝑤0
+ is explored below, and we observe that 𝑤0(0) = 𝐷 is prescribed. The 

underbody shape 𝑓𝑢(𝑋) relative to the body centre-line curve is independent of time 𝑇 and is taken such 

that 𝑓𝑢(0) = 𝑓𝑢(1) = 𝑓0 for convenience and without loss of generality, where 𝑓0 is a given positive 

constant. The Kutta condition (2.2d) at the trailing edge of the body is as in [1-7]. (We remark in passing 

that the assumption of 𝛥 << 𝐿 implies the body cannot rotate sufficiently to change the body length from 

unity and so the Kutta condition is always applied at 𝑋 = 1.) It is notable that unsteadiness appears in both 

the fluid and the body equations, contrasting with [6, 7]. The presence of nonzero vorticity is also 

noteworthy, entering because of the non-uniform incident flow in (2.2c). Moreover, the pressure on the 

top surface of the body is equal to the local free-stream pressure which is here taken to be zero for 

convenience: the unknown pressure in (2.1a)-(2.2f) is the excess pressure in the gap. (The flow on top of 

the body is as in [7], and further relatively thin viscous layers are present on the body surface and on the 

wall.) Finally here, we remark that the nonlinear system is basically the same as in [1] except for the 

incident nonzero vorticity (𝑑𝑤0/𝑑𝑌, 𝑑𝑤0
+/𝑑𝑌) in the current scenario. 

The scaling requirements on the body mass 𝑀𝑁 and moment of inertia 𝐼𝑁 stem from the physical balances 

in (2.2e, f) and are, on the mass, 

𝑀𝑁 ~ 𝑀
 �̌�𝐹 𝐿2

�̌�𝐵 𝛥2
 . 

(2.3) 

Here the dimensional cross-sectional area �̌�𝐵 of the body is taken to be 𝑙2 𝐿𝛥 as a representative value. It is 

supposed that 𝐼, 𝑀 are both of the same 𝑂(1) order of magnitude here. 

The relation between the velocities w0 ahead of the body and 𝑤0
+ in the gap entry depends on the 

unknown pressure jump from zero incident pressure upstream (at 𝑋 = 0−) to 𝑝+ downstream (at 𝑋 = 0+) 

across the Euler region wherein 𝑥, 𝑦 are both 𝑂(𝛥). Here 𝑝+ = 𝑝(0+, 𝑇) is unknown in advance. The 

governing equations in that region are the quasi-steady Euler equations, which lead to conservation of 

vorticity and conservation of the Bernoulli property 𝑝 + 1/ 2 (𝑢2 + 𝑣2) along streamlines of constant 𝜓 

passing through the region. The quasi-unidirectional flow profiles at 𝑋 = 0 ± are therefore related by  

𝑌 = ∫ 𝑤0(𝜂) [(𝑤0(𝜂))
2

– 2𝑝+]
–1/2

𝑑𝜂
1

0

 . (2.4a) 

as far as the mapping of coordinates from 𝑧 upstream to 𝑌 downstream is concerned for a given 

streamline. See appendix A. The result (2.4a) is valid for completely forward flow. From (2.4a) we can also 

determine the velocity profile 𝑤0
+(𝑌) as 𝑑𝜓 𝑑𝑌⁄ , whereas upstream 𝑤0(𝑧) is 𝑑𝜓 𝑑𝑧⁄ , as shown in figure 2 

for the sample profile 𝑢0(𝑧) = 𝑧 + 1– 𝑒𝑥𝑝(– 𝑧). In figure 2(a), the velocity profiles 𝑤0, 𝑤0
+ are plotted in 

terms of 𝑌 just prior to (𝑋 = 0−) and just after (𝑋 = 0+) the Euler region, while 𝜓 gives the stream 

function. In this example the relative translational velocity 𝐷 is 0.7 and the pressure rise 𝑝+ is 0.2 as a 

motivational case. See (2.4a-c). Figure 2(b) is as in figure 2(a) except that the vertical coordinate 𝑧 upstream 

is also shown for comparison and this example has 𝐷 = 0.1, 𝑝+ =  0.3𝐷2, again to provide motivation for 

subsequent study. Figure 2(c) is for 𝐷 = 0.1 (black, magenta, cyan curves) and 0.05 (yellow, grey) with 

𝑝+ = 0.3𝐷2 for comparison purposes; the cases in figures 2(b,c) are in anticipation of the scalings 

investigated subsequently in the section 3. Additionally we have  

𝑤0
+(0) = 𝐷+  where  𝐷+2

= 𝐷2– 2𝑝+ . (2.4b) 
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in view of the Bernoulli property. Here 𝐷+ is defined as the positive square root, +(𝐷2– 2𝑝+)1/2 . Thus 

𝑤0
+(0) > 0 in the case of forward flow. Moreover the wall where 𝑌 is zero corresponds to 𝜓 zero. The 

formula (2.4a) enables the effective captured mass flux 𝜓 to be found at the leading edge of the body 

undercarriage in terms of a guessed 𝑝+, for a prescribed input 𝑤0, at least if the 𝑌 value of the leading edge 

is known at any particular instant 𝑇. This, when combined with (2.2a,b), allows the gap-flow solution to be 

determined progressively from the leading edge to the trailing edge station. Hence the Kutta condition 

(2.2d) applied at the latter station can act to yield a condition to pin down the 𝑝+ guess. The spatially 

elliptic nature of the flow problem for 0 < 𝑋 < 1 stands out. 

If the velocity profile at 𝑋 = 0+ becomes partially reversed for an extent 0 < 𝑌 < 𝑌0 say, where 𝑌0  is in 

general time-dependent but acts as if constant as far as the local jump conditions are concerned, then an 

extra displacement takes place. This is across the Euler zone due to eddy formation and is such that (2.4a) is 

altered to  

𝑌 = ∫ 𝑤0(𝜂) [(𝑤0(𝜂))
2

– 2𝑝+]
–1/2𝑧

0

𝑑𝜂 + 𝑌0 .  (2.4c) 

The wall streamline upstream at 𝑋 = 0− continues forward into the dividing streamline at height 𝑌0. 

Underneath the latter the velocity profile 𝑤0
+(𝑌) in 0 < 𝑌 < 𝑌0 is not determined so directly by the 

incident profile 𝑤0 but we suppose that it is a smooth continuation of the profile holding for 𝑌 > 𝑌0. 

(Discontinuities might be admissible over the present length scales in some circumstances but we shall seek 

a smooth form here.) The property (2.4b) continues to hold since the streamlines of the reversed-flow part 

of the eddy become those of the forward-flow part; here however the value – 𝐷+ < 0 is the appropriate 

root because of the reversed flow at the wall. In the example of incident uniform shear 𝑤0(𝑧) = 𝜆𝑧 + 𝐷 

the resulting profile 𝑤0
+(𝑌) is 𝜆(𝑌– 𝑌0) + 𝐷+ for 𝑌 ≥ 𝑌0   to preserve vorticity. Using continuation and the 

result that 𝑤0
+(0) = – 𝐷∗ then gives 𝑌0 = 2𝐷+/𝜆 as the dividing streamline position.   

Figure 2a. Velocity profiles 𝑤0, 𝑤0
+

  in terms of 𝑌 just prior to (𝑋 = 0−) and just after (𝑋 = 0+) the Euler 

region, with stream function 𝜓. Relative velocity and pressure rise are (𝐷, 𝑝+) = (0.7, 0.2).  
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Figure 2b. As in (a) but with normal coordinate 𝑧 upstream shown for comparison, where (𝐷, 𝑝+) = (0.1,

0.3𝐷2).  

 

Figure 2c. As (b) but compared with (0.05, 0.3𝐷2).   
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3. Nonlinear effects at reduced body speeds. 

The question now arises of: what occurs if the relative wall velocity 𝐷 is small? Suppose the incoming flow 

has 𝐷 = 𝜀�̅� with the uniform parameter 𝜀 small and �̅� of order unity. We then expect to have typical 𝑝+ 

small, say 𝑝+ = 𝜀2𝑝+̅̅̅̅ + ⋯, and from (2.4a-c) the response 𝐷+ = 𝜀 𝐷+̅̅ ̅̅ + ⋯ with 𝐷+̅̅ ̅̅ = (�̅�2– 2𝑝+̅̅̅̅  )
1/2

 

being the positive square root. Two flow regions are induced in the gap as follows, subject to assuming the 

𝑋 scale remains comparable with the body length of 𝑂(1) and the body shape is comparatively thin, i.e. 𝑓𝑢 

is equal to the constant 𝑓0 to within an 𝑂(𝜀) perturbation. Here the initial velocity profile 𝑤0
+(𝑌) in the gap 

becomes 𝑢0(𝑌) + 𝑂(𝜀) for the majority of the gap flow as described in Appendix A and as found in figure 

2(c), where the 𝑂(𝜀) term is a displacement effect proportional to 𝑢0
′ (𝑌). There is also a crucial sublayer 

arising at small 𝑌 values. Subsections 3.1 and 3.2 below consider the two flow regions in turn followed by 

(c), (d) on the consequent dynamics. 

3.1. The majority or bulk. 

In the majority of the fluid: 

𝑢 = 𝑢0(𝑌) + 𝜀(±𝐷+̅̅ ̅̅ + 𝑢1) + ⋯ ,   𝑉 = 𝜀𝑣1 + ⋯ ,   𝑝 = 𝜀2𝑝1 + ⋯,  for 𝑌 of 𝑂(1). (3.1a-c) 

 with time 𝑇 = 𝜀−1�̅� being relatively slow. See Appendix A regarding the 𝐷+̅̅ ̅̅  contribution in (3.1a). We note 

that 𝑢0(𝑌) is zero at the wall and so we can expect 𝑢1(0+, 0, �̅�) to be zero as well. The ± sign on 𝐷+̅̅ ̅̅  is as 

described near the end of section 2 as well as in (3.3d) below. The time scale and the pressure size in (3.1c) 

are inferred from the form in subsection 3.2 below. Substitution into (2.1) gives us the quasi-steady linear 

response 

𝑢1𝑋 + 𝑣1𝑌 = 0, 𝑢0(𝑌) 𝑢1𝑋 + 𝑣1𝑢0
′ (𝑌) = 0 ,  (3.2a,b) 

to leading order. So the flow suffers an unknown negative displacement 𝐴1(𝑋, �̅�) such that 

𝑢1 = 𝐴1(𝑋, �̅�)𝑢0
′ (𝑌), 𝑣1 = – 𝐴1𝑋

(𝑋, �̅�)𝑢0(𝑌) .  

 

(3.3a,b)   

The prime denotes the derivative with respect to 𝑌. The behaviour in (3.3a, b) is consistent with the 

requirement (2.2a) provided that  

𝐴1(𝑋, �̅�) =  −ℎ̅(�̅�) − (𝑋 – 𝛽)�̅�(�̅�) – 𝑓�̅�(𝑋) + �̅�(�̅�) .  
 

(3.3c)   

The essential Kutta function �̅� is an unknown function of time �̅�; and also we have used [ℎ, 𝜃, 𝐹, 𝑓𝑢]  =

 [0, 0, 𝑓0, 𝑓0] + 𝜀 [ℎ̅, �̅�, �̅�, 𝑓�̅�] + 𝑂(𝜀2) scaled appropriately. The other original conditions (2.2b-f) remain to 

be addressed later on. Also, we have that  

�̅�(�̅�) = ℎ̅(�̅�) – 𝛽�̅�(�̅�)– 𝜆−1{�̅�– 𝐷+̅̅ ̅̅ }– 𝑌0̅  ,    

 
from comparing (3.3c) with the jump conditions (2.4a,c): see Appendix A which shows that 𝑌0 = 𝜀𝑌0̅ =

2𝜀𝐷+̅̅ ̅̅   to leading order with flow reversal as opposed to forward flow which has 𝑌0̅ being zero. The above 

can thus be written conveniently as 

�̅�(�̅�) = ℎ̅(�̅�) – 𝛽 �̅�(�̅�) + 𝜆−1{±𝐷+̅̅ ̅̅ – �̅�}   , (3.3d)   

for the totally forward and partially reversed cases respectively. Once we know 𝑝+̅̅̅̅  then, for given ℎ̅, �̅� 

values, the result (3.3d) determines �̅� explicitly. 

3.2. Near the solid wall. 

A sublayer is induced in which the pressure, being independent of 𝑌, is as in (3.1c) but the velocities have 

𝑢 = 𝜀(±𝐷+̅̅ ̅̅ + �̅�) … , 𝑉 = 𝜀2�̅� + ⋯,  for 𝑌 = 𝜀�̅�. (3.4a,b) 
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Here we obtain from (2.1) the nonlinear unsteady flow equations 

�̅�𝑋 + �̅��̅� = 0, �̅��̅� + (±𝐷+̅̅ ̅̅ + �̅�)�̅�𝑋 + �̅��̅��̅� = – 𝑝1𝑋 ,   (3.5a,b) 

which are subject to  

�̅� = 0 at 𝑌 = 0, �̅� ~ 𝜆�̅� + 𝜆𝐴1 as �̅� → ∞ ,  (3.5c,d) 

from (2.2b) and from matching with (3.1a, b) in turn. The complete solution here (see also [19]) is simply 

�̅� = 𝜆�̅� + 𝜆𝐴1 , �̅� = – 𝜆�̅�𝐴1𝑋 , (3.5e,f) 

provided that from substitution into (3.5a, b) the functions 𝐴1, 𝑝1 are related by  

𝜆𝐴1�̅� + 𝜆(± 𝐷+̅̅ ̅̅ + 𝜆𝐴1)𝐴1𝑋 = – 𝑝1𝑋 .   (3.5g) 

We find that this form agrees with that in [7] for the steady case when 𝑢𝑐  is smaller. Unlike in [7] both the 

scaled pressure 𝑝1 and the scaled uniform velocity �̅� are discontinuous across the leading-edge station 𝑋 =

0, as is 𝐴1 which is discontinuous in general because of the response (3.3c). Thus we have the two 

requirements  

𝑝1 = 𝑝+̅̅̅̅  at 𝑋 = 0+ ,  𝑝1 = 0 at 𝑋 = 1, 
(3.6a,b) 

 

on the main pressure response 𝑝1, with 𝑝+̅̅̅̅ (�̅�) to be found. 

The remaining equations for determining 𝐴1, 𝑝1 come from the body-motion balances in (2.2e,f). These 

yield 

�̅� ℎ̅�̅��̅� = ∫ 𝑝1
1

0
𝑑𝑋 ,   𝐼 ̅�̅��̅��̅� = ∫ (𝑋 − 𝛽)𝑝1

1

0
𝑑𝑋, (3.7a, b) 

where (�̅�, 𝐼)̅ = 𝜀 (𝑀, 𝐼) are assumed to be of 𝑂(1) with respect to 𝜀. We thus have four equations (3.3c), 

(3.5g), (3.7a,b) for 𝐴1, 𝑝1, ℎ̅, �̅� spatially in effect along with temporal conditions (3.6a,b). 

3.3. Interaction equations.  

From (3.5g), making use of (3.3c) and writing �̅�ℎ̅ = �̅�– ℎ̅, we obtain 

–
𝑝1𝑋

𝜆
= �̇̅�ℎ̅– (𝑋– 𝛽)�̇̅� + 𝜆{𝜙 + [(𝑋– 𝛽)�̅� + 𝑓�̅�(𝑋)]}{�̅� + 𝑓𝑢

′̅(𝑋)} ,   (3.8a) 

where the function 𝜙 = – (�̅�ℎ̅ ± 𝐷+̅̅ ̅̅ /𝜆).  Hence integration in 𝑋 gives, with unknown function 𝐸1(𝑇), 

–
𝑝1

𝜆
= �̇̅�ℎ̅ 𝑋– (

1

2
 𝑋2– 𝛽𝑋) �̇̅� +

𝜆

2
{𝜙 + [(𝑋– 𝛽)�̅� + 𝑓�̅�(𝑋)]}

2
+ 𝐸1(�̅�) . (3.8b) 

Now condition (3.6a) imposed at the leading edge requires 

𝐸1(�̅�) = –
𝑝+̅̅ ̅̅

𝜆
–

𝜆

2
{𝜙 – 𝛽�̅�}2 . 

(3.9a) 

since 𝑓�̅� is zero at the leading edge. Similarly the Kutta condition (3.6b) at the trailing edge leads to  

𝐸1(�̅�) = – �̇̅�ℎ̅  –
𝜆

2
 {𝜙 + (1 − 𝛽)�̅�}2 + (

1

2
− 𝛽) �̇̅�.   

(3.9b) 
 

Note that for 𝛽 = 0.5 the �̇̅� disappears. Elimination of 𝐸1(�̅�) therefore gives us 

– �̇̅�ℎ̅  – 
𝜆

2
{𝜙 + (1 − 𝛽)�̅�}2 + (

1

2
− 𝛽) �̇̅� = –

𝑝+̅̅̅̅

𝜆
–

𝜆

2
 {𝜙 – 𝛽�̅� }2 . 

(3.10a) 

  and so from the definition of 𝜙 we find the nonlinear equation  
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�̇̅�ℎ̅  – (𝜆 �̅�ℎ̅ ± 𝐷+̅̅ ̅̅ )�̅� =
𝑝+̅̅̅̅

𝜆
+ (

1

2
− 𝛽) �̇̅� − 𝜆 (

1

2
− 𝛽) �̅�2 . 

(3.10b) 

 linking �̅�ℎ̅ , �̅�, 𝑝+̅̅̅̅ .    

Meanwhile substituting (3.8b) into the body-motion equations (3.7a,b) gives two equations between 

�̅�, �̅�ℎ̅  and 𝑝+̅̅̅̅    and ℎ̅; so that makes three equations so far. The other two equations are the definition of 

the relative lateral distance �̅�ℎ̅ = �̅�– ℎ̅ from the previous paragraph and the Euler jump effect from 

Appendix A, namely (3.3d) between �̅�, �̅�ℎ̅ and 𝑝+̅̅̅̅   . Thus we have 5 equations for the 5 unknowns 

�̅�, �̅�ℎ̅ , 𝑝+̅̅̅̅ , �̅� and ℎ̅ as functions of �̅�. 

3.4. Governing equations for a parabolic underbody shape. 

A useful basic case is the constant-curvature underbody for which 

𝑓�̅�(𝑋) = 𝑏𝑋(1– 𝑋) for 0 < 𝑋 < 1 .  (3.11b) 

Here b is a given positive or negative constant. So now (3.8b) yields the pressure distribution 

𝑝1 = ∑ 𝜋𝑛𝑋𝑛4
𝑛=0  ,  (3.12a) 

where the coefficients are time-dependent, being 

𝜋0 = 𝑝+̅̅̅̅
 

𝜋1 =– 𝜆 �̇̅�ℎ̅  – 𝛽𝜆 �̇̅� – 𝜆2(𝜙 – 𝛽�̅�) (�̅� + 𝑏) , 

𝜋2 = ½ 𝜆 �̇̅� –
𝜆2

2
 { – 2𝑏 (𝜙 – 𝛽�̅�) + (�̅� + 𝑏)2} , 

𝜋3  =  𝜆2 𝑏 (�̅� + 𝑏)  , 

𝜋4 = –
𝜆2

2
𝑏2 .  

(3.12b) 

(3.12c) 

(3.12d) 

(3.12e) 

(3.12f) 

Hence the body-motion balances take on the explicit forms 

𝑀 ℎ̈̅ = ∑ (𝑛 +  1)–1 𝜋𝑛
4

𝑛=0
 ,   

𝐼 �̈̅� =
1

2
∑ 𝑛(𝑛 + 1)–1 (𝑛 + 2)–1 𝜋𝑛

4

𝑛=1
 .   

(3.13a) 

(3.13b) 
 

and we have four equations for �̅�, �̅�, ℎ̅, 𝑝+̅̅̅̅  namely (3.13a,b) with (3.10b), (3.3d). We recall that in (3.3d) �̅� 

is a prescribed positive constant. As far as conveniently calculating solutions is concerned however, say for 

time-marching, we can first see three equations (3.13b), (3.10b), (3.3d) for (�̅�, �̅�ℎ̅ , 𝑝+̅̅̅̅ )(�̅�) and secondly 

one equation (3.13a) for ℎ̅(�̅�). In that sense the angular momentum balance (3.13b) dominates over the 

normal momentum balance (3.13a). The three equations (3.13b), (3.10b), (3.3d) effectively represent the 

body motion, the fluid motion and the pressure conditions respectively; the three unknowns themselves 

dictate how much of the flow enters the gap and how much goes over the body. 

4. Computational results. 

Numerical solutions for the constant-curvature-underbody case are produced using a fourth-order Runge 

Kutta method. The system of equations (3.3d), (3.10b) and (3.13b) are solved simultaneously to understand 

the evolution of �̅�, �̅�ℎ̅ and 𝑝+̅̅̅̅  over time. The solution presented in figure 3 is the case where the initial 

conditions are �̅�(0) = −1, �̇̅�(0) = −1, �̅�ℎ̅(0) = 1, ℎ̅(0) = 0, ℎ̇̅(0) = 0, 𝐼 = 1, 𝑀 = 5𝐼, 𝑏 = 1, 𝛽 = 1/2 

and �̅� = 1, 𝜆 = 1 (without loss of  generality �̅� = 1, 𝜆 = 1 for all scenarios in the present downstream-

moving wall configurations, in contrast with upstream-moving wall configurations which are addressed later 

in section 6). Subsequent computational studies will use these initial conditions with any changes to the input 

parameters stated. Moreover time �̅� is written as 𝑡 for convenience in our figures and 𝐾ℎ, 𝜃, 𝑝 stand for 

�̅�ℎ̅ , �̅�, 𝑝+̅̅̅̅  respectively. 
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After an initial positive increase, the pressure 𝑝+̅̅̅̅  decreases until 𝑡 = 12, reaching a negative stagnation 

point/minimum. A clockwise rotation is induced in the body position, increasing �̅� in the negative direction, 

whilst for the fluid motion, after initially falling, �̅�ℎ̅ begins to increase steadily, peaking at 𝑡 = 12. The trend 

in �̅�ℎ̅ roughly mirrors that of 𝜃. Accordingly, as the pressure begins to increase, after 𝑡 = 12 rotation of the 

body reverses and �̅�ℎ̅ begins to fall. Notably, finite time break-up (FTBU) occurs or at least is suggested 

after 𝑡 = 25 with the pressure falling rapidly and both �̅� and �̅�ℎ̅ increasing sharply. 

Regarding the slip velocity about the body, flow reversal is seen across the body length. At the trailing edge, 

𝑋 = 1, the positive slip velocity mirrors the behaviour at the leading edge. At the middle of the body, after 

an initial positive velocity, a slip velocity of zero is maintained until 𝑡 = 24. At the leading edge, 𝑋 = 0, the 

body initially experiences a positive slip velocity which quickly becomes negative. In line with the flow 

progression seen above, the velocity decreases until 𝑡 = 12, increasing back to zero thereafter. The flow 

again reverses to positive, with each velocity becoming equal, as the FTBU takes over around 𝑡 = 25.  

Considering this example behaviour, of particular interest is the effect that changes in body curvature 𝑏 and 

the moment of inertia 𝐼 has on the FTBU and the relationship between fluid body motion (�̅�), fluid motion 

(�̅�ℎ̅) and the pressure conditions (𝑝+̅̅̅̅ ). 

Figure 3: Evolution of the coupled fluid-body motion for a particle with constant curved underbody of 𝑏 = 1 

and moment of inertia 𝐼 = 1, and mass 𝑀 = 5𝐼. The body begins with an initial orientation of �̅�(0) = −1 

and angular velocity  �̇̅�(0) = −1, submerged in a fluid with initial �̅�ℎ̅ = 1. The progression of the slip 

velocities about the body is also presented, showing flow reversal across the submerged body. 

4.1. Varying the body curvature parameter 𝒃. 

The body parameter may be varied both positively and negatively, inducing different responses in the flow-

body motion and different behaviour thresholds. In figure 3, where 𝑏 = 1, the apparent FTBU began to 

occur after 𝑡 = 25. In the scenarios shown in figure 4 the body parameter is varied slightly to show how the 

evolution of the system changes for values of 𝑏 about 0. As shown, decreasing 𝑏 leads to the time until 
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FTBU increasing. Otherwise the system continues to behave in a dynamically similar fashion for �̅�, 𝑝+̅̅̅̅  and 

�̅�ℎ̅. 

Figure 4: Evolution of the coupled fluid-body motion for a particle with curved underbody of 𝑏 = −0.5, 0 

and 0.5. �̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line. 

Continuing for large negative body curvature, figure 5 presents results for 𝑏 = −1, −10, −100  and −200. 

For 𝑏 = −1, the trend of increasing time to FTBU is seen. In each of the other solutions, the system 

dynamics change  significantly. At some value 𝑏 = 𝑏−
+ ,   − 1 > 𝑏−

+ > −10, the FTBU behaviour no longer 

occurs over the short time frame with the body’s response and fluid motion now becoming increasingly 

oscillatory with greater amplitude and frequency (numerical investigation found 𝑏−
+ ≈ −2.5 for the given 

initial conditions). For 𝑏 < 𝑏−
+,  𝑝+̅̅̅̅ < 0 and �̅� < 0 throughout the solution, and  𝑝+̅̅̅̅  now achieves minimal 

values that are far less than the minimum of �̅�. 

The dynamics for positively increasing body curvature are presented in figure 6 for 𝑏 = 1, 10, 100 and 200. 

Unlike the behaviour seen in figure 5, as 𝑏 increases the time to FTBU falls for values up to 𝑏 = 100. As 𝑏 

increases further, at some value 𝑏 = 𝑏+
+ > 100, the dynamics again switch to an oscillatory response in the 

both the body motion and fluid motion (numerical investigation found 𝑏+
+~101 for the given initial 
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conditions). Notably, for 𝑏 > 𝑏+
+ the behaviour of the oscillatory system differs from the 𝑏 < 𝑏−

+ scenario as 

𝑝+̅̅̅̅  may now take positive values. Additionally, the �̅� response is now out of phase with the 𝑝+̅̅̅̅  response. 

To investigate further, slip velocities across the body for 𝑏 = 200 and 𝑏 = −200 are shown in figure 7. For 

𝑏 = 200, the slip velocity at 𝑋 = 0 and 𝑋 = 1 oscillates taking positive values and proceeding slightly out 

of phase with one another. Notably, there is only a small difference between the two solutions.  However, 

the slip velocity at 𝑋 = 0.5 shows significant flow reversal, portraying a comparatively large and negative 

response. For 𝑏 = −200 a very different response occurs. The slip velocity at the leading edge and trailing 

edge now mirror one another, as in figure 3, oscillating at a similar frequency and magnitude. For 𝑋 = 0.5 

the slip velocity oscillates about small positive values over the computed interval.  

Figure 5: Evolution of the coupled fluid-body motion for a particle with curved underbody of 𝑏 = −200,  

−100, −10 and −1. �̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line.  

4.2. Varying the moment of inertia 𝑰. 

The moment of inertia 𝐼 is now varied positively for large and small values. In figure 8, with 𝑏 = 1, 

increasing 𝐼 greatly increases the time to FTBU in a manner similar to initially varying 𝑏. In comparison, as 𝐼 

becomes larger the magnitude of the pressure response increases, maintaining a negative value 
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throughout. For some value of 𝐼, its minimum value becomes significantly lower than the minimum �̅� 

response.  

Figure 6: Evolution of the coupled fluid-body motion for a particle with curved underbody of 𝑏 =

200, 100, 10 and 1. �̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line. 

In figure 9, again with 𝑏 = 1, 𝐼 is decreased to 𝐼 = 0.0005, 0.001, 0.02 and 0.025. For 𝐼 =

0.0005, 0.001 and 0.02  both 𝑝+̅̅̅̅  and �̅�ℎ̅ have a small initial oscillation, which quickly settles to 0. In these 

cases, the body begins to rotate with �̅� progressing as a damped wave, eventually settling to a constant 

orientation. The system then runs in a steady state. For 𝐼 = 0.025, the wave response is still seen, however 

its frequency has greatly reduced. Further increases in 𝐼 subsequently result in the FTBU behaviour. 
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Figure 7: Evolution of the slip velocities about the body at 𝑋 = 0, 0.5 and 1 are presented showing different 

flow reversal behaviour across the submerged particle for 𝑏 = 200 and 𝑏 = −200. 𝑋 = 0, solid line; 𝑋 =

0.5, dotted line; 𝑋 = 1, dashed line. 
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Figure 8: Evolution of the coupled fluid-body motion for a particle with inertia value 𝐼 = 1, 25, 100 and 400. 

�̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line. 

4.3. Influence of the centre-of-mass position. 

The effect of changing the centre of mass (COM) on the fluid-body motion is shown in figure 10. Shifting 

the centre of mass to the extremities of the particle, using the initial conditions for the case shown in figure 

3, changes the time until FTBU. As the COM is moved to the leading edge, 𝑋 = 0 and 𝛽 = 0.01, the time to 

FTBU falls, whilst moving it towards the trailing edge, 𝑋 = 1 and 𝛽 = 0.99, the time increases. Otherwise, 

the system continues to behave in a dynamically similar fashion for �̅�, 𝑝+̅̅̅̅  and �̅�ℎ̅ for the given initial 

conditions. 
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Figure 9: Evolution of the coupled fluid-body motion for a particle with inertia value 𝐼 = 0.0005, 0.001,  

0.002 and 0.025. �̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line. 
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Figure 10: Evolution of the coupled fluid-body motion for a particle with a shifted centre of mass, 𝛽 = 0.01,  

0.25, 0.5, 0.75 and 0.99. �̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line. 

To further understand the dynamics highlighted in the above numerical study, analytical results are now 

sought, presented in section 5 

5. Analysing parametric effects. 

Analytical features are also of much interest and shed light on the interactive properties concerning finite-

time blow-ups, limit cycles, extreme values of the governing parameters and initial conditions, as follows. 

5.1. Large-amplitude blowup or limit cycles.  

Although limit cycles are clearly possible in certain regimes, a singular response at finite time seems a quite 

common occurrence across much of the parameter space according to the computational work above. This 

finite-time blowup at some time �̅� = �̅�0 – say has the analytical form: 

(�̅�ℎ̅ , �̅�, 𝐷+̅̅ ̅̅ ) = (�̅�0– �̅�)–2 (𝐾1, 𝜃1, 𝐷1
+) + ⋯,   𝑝+̅̅̅̅ = (�̅�0– �̅�)−4 𝑝1

+ + ⋯ ,   (5.1) 

implied by the orders of magnitude present in the system (3.3d), (3.10b) and (3.13b). Substitution of (5.1) 

into that system leads to the following balances being obtained between the coefficients, 

72 𝐼 = 𝜆 (𝜆 𝐾1  ± 𝐷1
+),   

(𝜆 𝐾1 ± 𝐷1
+)𝜃1 = –

𝑝1
+

𝜆
  ,    

𝐾1 =–
𝜃1

2
±

𝐷1
+

𝜆
 ,   

(5.2a) 

(5.2b) 

(5.2c) 

along with 𝐷1
+ being the positive square root of – 2𝑝1

+. It is notable that among the time derivatives present 

in the original system only the double time derivative multiplying the moment of inertia 𝐼 affects the 
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balance in (5.2a-c). It follows from the above balance that the possible values of the coefficient 𝐷1
+ are 

found to be 

𝐷1
+ = 288 (𝑠1 ±

3½

2
)

𝐼

𝜆
 . 

(5.3) 

Here 𝑠1 = ±1 nominally but the requirement of positive 𝐷1
+ allows only the value 𝑠1 = 1. From the above 

it then follows that the results 

𝐾1 = – 72 (3½ ± 2)3½ 𝐼

𝜆2  ,   𝜃1 = 144 (7 ± (4)3½)
𝐼

𝜆2    ,    𝑝1
+ = −

𝐷1
+

2
 𝐼2 , (5.4a-c) 

apply for the other coefficients in (5.1). The asymptotic behaviour in (5.1) appears to explain well the 

singular-looking trends seen in the numerical results of the previous section, while the fact that 𝜃1, − 𝑝1
+ 

must be positive from (5.4b, c) whereas 𝐾1 may be positive or negative is also in line with the numerical 

findings. 

The physical mechanism driving the breakup is based on a self-sustaining nonlinear interaction between the 

body motion and the fluid motion. The scaled pressure is approximately −1/2 (𝑠𝑝𝑒𝑒𝑑)2 from the fluid 

momentum in (3.5b) as well as from the Bernoulli property. The speed however is proportional to the 

variation in displacement or the scaled angle 𝜃 from (3.5e) with (3.3c). Hence a pressure proportional to  

−1/2 𝜃2 is provoked. This pressure then acts over the whole under-surface of the body to give a moment 

force proportional to 𝜃2 as far as the body movement is concerned. So the body motion involves a balance 

between the rotational mass-acceleration, proportional to the second derivative of the angle 𝜃 with respect 

to time, and the pressure force which is proportional to 𝜃2. The balance implies a 𝜃 response going like the  

−2 power of time, (�̅�0– �̅�). This agrees with the asymptotic result for the scaled angle in (5.1). The 

coefficients in (5.4a-c) stem from the details of the pressure force on the body. The pressure itself goes like 

the −4 power of (�̅�0– �̅�) because of the 𝜃2 feature above. Further, the blowup is independent of the body-

curvature parameter 𝑏 and so can occur for any value of 𝑏 whether positive or negative and it can also 

occur for any moment-of-inertia factor 𝐼 since the latter has to be positive. 

5.2. Small amplitudes.  

The behaviour at small amplitudes can be shown to match with that in [7] as mentioned earlier.  

5.3. Varying 𝒃 and 𝑰.  

The effects of varying the body-shape parameter 𝑏 and the scaled moment of inertia 𝐼 warrant 

consideration. When 𝑏 is large and positive for example assuming 𝑝+̅̅̅̅ , �̅� and �̅�ℎ̅  remain of mild size and 

other parameters are of order unity we find that the leading terms of 𝑂(𝑏2) in the right-hand side of 

(3.13b) cancel out but the 𝑂(𝑏) terms are nonzero. Hence predominantly the equation  

2 𝐼
𝑑2�̅�

𝑑�̅�2  = –
𝜆2𝑏�̅�

60
  , (5.5a) 

holds, giving oscillations. This also implies that the time scale is short and the scaled oscillation frequency 𝜔 

(say) is large, 

�̅� = 𝑂 (𝑏−
1

2) , 𝜔 = 𝜆 [
𝑏

120 𝐼
]

½
  ,  

(5.5b) 

from the balance in (5.5a). The predictions in (5.5b) are seen to be close to the computational results for 𝑏 

large and positive. The high-frequency behaviour here is physically in keeping with the high curvature of the 

body. 

When 𝑏 is large and negative, on the other hand, large oscillations are obtained and the relevant time scale 

becomes small of order |𝑏|–1/2 , while the relevant expansion of the interactive solution turns out to be 

(�̅�ℎ̅ , �̅�, 𝑝+̅̅̅̅ , 𝐷+̅̅ ̅̅ ) = (|𝑏|𝐾2, |𝑏|𝜃2, |𝑏|2 𝑝2
+, |𝑏|𝐷2

+) + ⋯ . (5.6a) 
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Substitution into the system  (3.3d), (3.10b) and (3.13b) then yields the following governing equations at 

leading orders, respectively, 

12𝐼
𝑑2𝜃2

𝑑�̃�2 = 𝜆2 (– 𝜙2 +
1

10
) 𝜃2  , 

(𝜆 𝐾2 ± 𝐷2
+)𝜃2 = –

𝑝2
+

𝜆
 , 

𝐾2 = –
𝜃2

2
±

𝐷2
+

𝜆
 , 

(5.6b) 

(5.6c) 

(5.6d) 

where 𝜙2 = – (𝐾2 ± 𝐷2
+/𝜆), 𝐷2

+ = (– 2𝑝2
+)½ and �̅� = |𝑏|– ½ �̃� with �̃� of 𝑂(1). This system can be 

manipulated into the relatively simple nonlinear form of an equation involving 𝜃2 alone, 

(
𝑑𝜃2

𝑑�̃�
)

2
= (𝑎2 𝜃2

3 + 𝑏2 𝜃2
2 + 𝑐2)

𝜆2

𝐼
 ,   (5.6e) 

where 𝑐2 is an arbitrary constant of integration (determined by the initial conditions). The known constants 

𝑎2 =  (7 ± (4)3½)/36 and 𝑏2 = 1/120 are positive. When 𝑐2 is positive the reduced system thus admits 

nonlinear periodic solutions for a finite range of negative values of 𝜃2, in keeping with the oscillations seen 

in the numerical solutions. (Comparing further, we see that for the computed case of 𝑏 equal to −100 the 

values of �̅� are always negative, as the analysis suggests, and when �̅� is at a minimum of about −400 the 

analysis implies a 𝑝+̅̅̅̅  value of –  ½𝐸2, giving – 5,600 approximately. That is not far from the computed 

values of 𝑝+̅̅̅̅ . The latter values are varying slowly with time whereas the main period is short and quite 

possibly of the order |𝑏|−1/2 suggested by the analysis.) Outside the above range, the system admits a 

finite-time blowup whereby 𝜃2 tends to ∞ owing to the nonlinear contribution involving 𝑎2 in (5.6e), in a 

form identical with that in (5.1). Again, the high-frequency behaviour arising here for given high curvature 

of the body appears to make good sense dynamically. 

For small values of 𝑏 the solution appears to be a regular perturbation from the form holding when 𝑏 is 

zero. 

When 𝐼 is large and positive, the typical range of interest has (�̅�ℎ̅ , �̅�, 𝑝+̅̅̅̅ ) of order unity and slow evolution 

in the sense that �̅� = 𝐼½ �̂�. This slowness in response is physically sensible for such a relatively large 

moment of inertia. In this case the single derivatives with respect to time in 𝜋1, 𝜋2 and (3.10b) become 

negligible and so we are led to two equations controlling �̅�, 𝐷+̅̅ ̅̅ , namely 
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𝑑2�̅�

𝑑�̂�2 = 𝐷+̅̅ ̅̅ 2
− 1 −

𝑏�̅�

5
 ,   

(±2𝐷+̅̅ ̅̅ − 1 −
�̅�

2
) �̅� =

𝐷+̅̅ ̅̅ 2
–1

2
 . 

(5.7a) 

(5.7b) 

Here 𝜆, �̅� are normalized to unity and 𝑝+̅̅̅̅  is given by (1– 𝐷+̅̅ ̅̅ 2
)/2. The nonlinear pair (5.7a, b) may be 

integrated with respect to �̂� in principle to provide an energy-like equation for (𝑑�̅�/𝑑�̂�)
2

  as in (5.6e). Limit 

cycles and finite-time blowups remain the possible end-states of the system here; the blowup properties 

(5.1)-(5.4c) can be checked as being present still in this simpler system. Computational findings tend to 

agree with the asymptotic form here especially in terms of the slow time scale. 

When 𝐼 is small there is a similar physical effect in the sense that the representative time scale also 

becomes small. Thus the orders of magnitude 

�̅� = 𝑂(𝐼), �̅� = 𝑂(𝐼−1) ,   
(5.8) 

are implied analytically by the balances in the governing equations. Numerical results appear to conform 

with the trend in (5.8). 

5.4. Initial conditions. 
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The influence of the initial conditions is significant as well because they help to dictate whether the 

interactions develop eventually into periodic or quasi-periodic limit cycles or, rather, into blow-ups within a 

finite time. This influence is seen clearly in the computations of the previous section and also in the 

analytical results such as in (5.6e). 

6. Discussion.  

The present work has described through modelling, analysis and reduced computations the nonlinear 

effects and flow separations that can take place during a fluid/body interaction within a boundary layer. 

This is in the context of a single body translating near a solid surface and it appears to be a new 

development. Concerning main outcomes of the work, we find here that not all such bodies are likely to 

impact upon the wall; some oscillate. Additionally the quite common occurrence of a blowup within a finite 

scaled time implies a substantial change of amplitude in both the fluid and the body motions as follows. 

(We note in passing the relatively large numerical values of |𝑏| observed in some of the results, such as in 

figures 5, 6, and likewise for some of the coefficients such as in (5.4a-c), but these do not fundamentally 

disturb the asymptotic orders of magnitude addressed in section 3. Smaller-scale breakup of the thin 

viscous layers on the body and the wall is another interesting factor but seems unlikely in the presence of 

the increasingly positive slip velocities arising as the finite-time break-up of this article is approached: see in 

figure 3.) 

The blowup trend in (5.1) forces the original small displacement contribution 𝐴1 in (3.1a) to grow like 

(�̅�0 – �̅�)–2 as �̅� tends to the finite time �̅�0–
, since 𝐴1 depends linearly on �̅�ℎ̅  and �̅� and both of these are 

singular as in (5.1). Moreover 𝐷+̅̅ ̅̅  exhibits the same growth in (5.1) and thus adds to the (�̅�0 – �̅�)–2 

enhancement of the originally small 𝑂(𝜀) term on the right-hand side in (3.1a). Therefore that term 

overtakes the first O(1) term 𝑢0 when �̅�– �̅�0 decreases to the order 𝜀½. At that stage the pressure response 

also rises considerably, having begun small of 𝑂(𝜀2) in (3.1c) but growing as (�̅�0– �̅�)–4 by virtue of (5.1) and 

hence becoming of 𝑂(1). The consequence of these relatively rapid growths is that the interaction process 

becomes fully nonlinear at a time given by 𝑇 = 𝜀−1 �̅�0 + 𝑂(𝜀–½), with the complete system of (2.1a)-(2.2f) 

then being set into action, despite the small amplitude of the initial disturbance in (3.1). An important point 

for future study, however, is that the fluid flow becomes quasi-steady then and the body-motion 

unsteadiness dominates. We should comment further that acceleration and inertial effects dominate 

throughout and lubrication effects are negligible in all of these settings. The overall emphasis has been on 

the understanding of possible mechanisms in play when a body enters a boundary layer. On the other 

hand, there is the issue of whether the study or this type of study provides useful insight for practical 

advances; that remains to be seen. 

When the body is translating downstream relative to the wall the given constant 𝑢𝑐 = 𝐶 is positive. In the 

reduced-body-speed case 𝐶 then becomes 𝜀𝐶̅. A simple replacement of �̅� by – 𝐶̅ applies through the whole 

system (3.3d), (3.10b), (3.13b), including replacing  – �̅� by +𝐶̅ in (3.3d), and, following this, we can 

normalise 𝐶̅ to be unity without loss of generality. Hence effectively we can just set �̅� = – 1 in the system. 

This formally yields the sample result in figure 11. Our initial concentration in this paper on negative 𝑢𝑐, 

where 𝐷, �̅� are positive, is due to the fact that the downstream-moving wall in combination with forward 

flow would allow a laminar boundary layer to stay attached. The sublayers of concern here are unsteady 

ones however and so may remain attached for a finite time in line with the evolving flow found outside the 

sublayer. Turbulent sublayers also tend to remain attached. In addition it is helpful to consider the flow 

induced in the Euler zone. When 𝐷 is positive then totally forward flow can hold in that zone at those times 

when the downstream flow (with +𝐷+ present) is also forward and this is subject to an adverse or 

favourable pressure gradient depending on whether the incremental pressure 𝑝+ is positive or negative 

respectively. When 𝐷 is positive but the downstream flow (having – 𝐷+) is reversed then a stagnation point 

occurs on the wall. When 𝐶 is positive corresponding to reversed incident motion and the downstream flow 

(with +𝐷+) is forward then again a stagnation point occurs on the wall. When 𝐶 is positive but the 

downstream flow (with – 𝐷+) is also reversed then we expect that no stagnation point occurs on the wall, 
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the flow there being completely reversed throughout the Euler zone. The second scenario here yields 

effectively a rear stagnation point on the wall and this is the most likely to promote secondary separation, 

depending on whether the sublayer motion is laminar or turbulent, whereas the third scenario induces 

effectively a front stagnation point and no secondary separation. Some finer details of the viscous laminar 

or turbulent sublayers close to the solid surface here and in earlier results are evident in [15-18]. 

Future work in the area has many different aspects to explore. For the current boundary-layer setting the 

effects of a number of bodies stacked normally above each other, essentially in parallel, is of concern. It is 

equivalent to the formulation in [1] but with nonzero vorticity present now, and the occurrences of clashes 

in this case would be interesting to investigate. Whether bodies placed in series can readily be treated 

theoretically is unknown as yet. There is also the alternative setting of channel flow, where the original 

problem (2.1)-(2.4b) largely remains intact for a single body. Returning to the important influence of 

nonlinearity, we note that the fully nonlinear regime delineated in section 2 is of much interest. As well as 

the possibility of a clash between bodies as in [1] a clash with the underlying solid wall may induce further 

separations. Also of concern are the effects of nonlinearity in the configurations of [6, 7] where the body 

velocity relative to the wall is negligible. Above all perhaps interactions in three spatial dimensions and with 

more bodies present need much further consideration. 

Figure 11: Evolution of the coupled fluid-body motion for a particle with �̅� = −1 ; thus the body is 

translating downstream relative to the wall. The body begins with the same initial conditions as in figure 3. 

�̅�, solid line;  𝑝+̅̅̅̅ , dotted line; �̅�ℎ̅, dashed line. 

 

7. Conclusions. 
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Given the motivating examples within the hydrodynamics of ice, the findings from this work provide some 

key insights that have not been covered within previous studies. In particular, they suggest that several 

underlying mechanisms are important within the noted fluid-body scenarios. The effects of nonlinearity 

form an important element in the understanding and prediction of body movement in a sheared fluid flow 

such as the presently studied boundary-layer flow. The presented work is believed to be the first such 

nonlinear analysis-based study, addressing fairly low-amplitude but nonlinear interactions between the 

fluid flow and the body motion and so contrasting with linearized theories developed in recent works. This 

allows separation in the sense of flow reversal to be included in the evolution of the combined body and 

fluid motion, separation being another physically important element in practice.  

The model interaction leads to two main outcomes: a blowup singularity after a finite scaled time or 

continuing nonlinear oscillations. Transient separations occur in many cases, although the finite-time 

blowup scenario is separation-free. The dynamics involved here at high Reynolds number is predominantly 

inviscid, as previous viscous-inviscid theory suggested, and it is also assumed that the body is thin. In many 

cases the thin body seems destined to impact upon the wall eventually or to continue to fly away from the 

wall, thereby exiting the boundary layer, but not all cases do so; some seem destined to remain fluctuating 

within the boundary-layer flow until further physical effects come into play. 

The various influences from the scaled moment of inertia of the body, the body shape and the position of 

the centre of mass have been examined. The scaled mass of the body plays only a secondary role as far as 

the dynamic fluid /body interaction is concerned in the current nonlinear regime. Upstream and 

downstream translation of the body relative to the solid wall underneath the boundary layer has also been 

incorporated. It is interesting that the finite-time blowup discovered here is independent of the direction of 

that translation, a feature which needs further investigation for more highly nonlinear situations. This 

blowup is also unaffected by several other factors, such as the detailed body shape.  

Finally, this work is of scientific and industrial benefit for the hydrodynamic modelling of ice. It indicates 

both that several important physical phenomena and dynamics should be considered when modelling 

scenarios as suggested in the Introduction (and thus converted into industrially applicable methods), and 

that further investigation is required to continue to understand better the wide range of scenarios that 

such fluid-body systems represent. Moreover, these detailed findings and explorations of parameter 

space are intended for use in increasing the understanding of ice-particle behaviour and 

consequent hazards near vehicles in motion.  
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Appendix A.  

The Euler jump when the body speed is 𝑶(𝟏) or small. 

For general body velocity 𝑢𝑐 we have from (2.4a,c) the jump relation 

𝑌 =  ∫ [ 𝑢0(𝜂) + 𝐷][(𝑢0(𝜂) + 𝐷)2 – 2𝑝+]–½𝑧
0 𝑑𝜂 + 𝑌0 ,     (A1) 

between the velocity profiles on either side of the leading edge region. Here 𝑢𝑐 = – 𝐷 and we recall 𝑢0(𝑌) 

is the original no-slip profile of the boundary layer; 𝑧 is used as a marker upstream of the leading edge for 

arguments regarding streamlines. In terms of infinitesimal increments, immediately downstream of the 

leading edge 𝑑𝑌 =  𝑑𝜓/𝑤0
+(𝑌), which traced back upstream is 𝑑𝜓/[ 𝑤0(𝑧)2– 2𝑝+]½ on the same 

streamline and so gives 𝑤0(𝑧)𝑑𝑧/[ 𝑤0(𝑧)2– 2𝑝+]½. This coupled with 𝑢0 + 𝐷 = 𝑤0 confirms the result 
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(A1). The result applies with 𝑌0 zero for completely forward flow whereas in the presence of reversed flow 

the dividing streamline height 𝑌0 is added as in (A1). 

When 𝐷 is small the pressure 𝑝+ is expected to be small also, such that 𝐷 = 𝜀�̅� and 𝑝+ = 𝜀2𝑝+̅̅̅̅  to leading 

order, where 𝑝+̅̅̅̅ < ½ (�̅�)2. Then two tiers in 𝑌 emerge. First, near the wall 𝑌 = 𝜀�̅� , the corresponding 

𝑧 = 𝜀𝑧̅ and so 𝑢0(𝑧) = 𝜆𝜀𝑧̅ + 𝑂(𝜀2) gives uniform shear flow as the leading approximation. Hence (A1) 

gives to leading order      

𝑌 = 𝜀�̅� = 𝜀𝜆−1{[(𝜆𝑧̅ + �̅�)2– 2 𝑝+̅̅̅̅  ]
½

 – 𝐷+̅̅ ̅̅  } + 𝜀 𝑌0̅ .    (A2) 

If the flow is partially reversed the expectation is that 𝑌0 = 𝜀𝑌0̅ predominantly and so the contribution 𝜀 𝑌0̅ 

is added on the right in (A2). As a check, 𝑌 is zero at the wall when 𝑌0 is zero. On the other hand at large 𝑧̅ 

and �̅� values (A2) gives 

�̅�~𝜆−1{𝜆𝑧̅ + 𝐸+ + 𝑂(1/𝑧̅)} + 𝑌0̅ ,  with 𝐸+ = �̅�– 𝐷+̅̅ ̅̅ ,     (A3) 

where 𝐸+ acts as a displacement effect. Second, in the bulk of the flow 𝑌 is 𝑂(1) and there (A1) leads to 

the relation  

𝑌 = 𝑧 +  𝜀𝜆−1𝐸+ + 𝜀𝑌0̅ + 𝑂(𝜀2)       (A4) 

which matches with (A3). The result (A4) agrees well with the full computational values in figure 2 at small 

𝐷 values. The bulk thus feels only a uniform 𝑂(𝜀) displacement of the original velocity profile. 

Accompanying this is an 𝑂(𝜀2) change in pressure; the dependence between displacement (proportional to 

𝐸+) and pressure (proportional to 𝑝+) at 𝑋 = 0+ is as displayed in the second equation of (A3), given that 

𝐷+̅̅ ̅̅  =  (�̅�2– 2 𝑝+̅̅̅̅  )
1/2

. The value of 𝑌0̅ is either zero for forward flow or, for reversed cases, 2𝐷+̅̅ ̅̅ /𝜆 

according to section 2’s final paragraph. 

From the above we can determine the 𝑌(𝑧) dependence across the leading edge Euler region. Additionally 

we know 𝜓(𝑧) there and hence we can find 𝑌(𝜓), thence 𝜓(𝑌) by inversion, and then obtain the 

corresponding velocity profile. Clearly a main effect however is the pressure-free displacement in the bulk 

such that  

𝑢 = 𝑢0(𝑧 + 𝜀𝜆−1𝐸+ + 𝜀𝑌0̅) + ⋯  𝑢 = 𝑢0(𝑧) + 𝜀(𝜆−1𝐸+ + 𝑌0̅)𝑢0
′ (𝑧) ,        (A5) 

is the velocity solution at 𝑋 = 0+ to 𝑂(𝜀). This indicates that in terms of the main text  

𝐴1 (0+, �̅�) =– (𝜆−1𝐸+ + 𝑌0̅) .     (A6) 

Recall that 𝐸+, 𝑌0̅ are time-dependent unknowns since 𝑝+̅̅̅̅  is: see (A3). See also below for an alternative 

derivation of (A5), (A6). 

An alternative approach for the main result (A6) is as follows. The profile at 𝑋 = 0− is given as 𝑢0(𝑌) + 𝐷 

with 𝑢0(𝑌)~𝜆𝑌 near the wall and the incident pressure is taken as zero. To establish what the starting 

velocity profile is at 𝑋 = 0+, for the case 𝐷 << 1 of interest where 𝐷 = 𝜀�̅�, we argue that in the sublayer 

where 𝑌 = 𝜀�̅� we have  

𝑢 = 𝜀𝜆�̅� + 𝜀𝐷+̅̅ ̅̅ , at 𝑋 = 0+.     (A7) 

This conserves vorticity there and gives the correct velocity at the wall, namely 𝜀𝐷+̅̅ ̅̅  where 𝐷+̅̅ ̅̅ =

+ (�̅�2– 2 𝑝+̅̅̅̅  )
1/2

 from Bernoulli. On the other hand in the region above that where 𝑌 is 𝑂(1) three effects 

act together. The velocity profile at 𝑋 = 0+ is a pressure-free 𝑂(𝜀)-displaced form of the incident profile, 

thus conserving vorticity along streamlines. Second, that incident profile is 𝑢0(𝑌) + 𝜀�̅�. Hence 𝑢 = 𝑢0(𝑌 +

𝜀𝐵+̅̅ ̅̅ ) + 𝜀�̅� + ⋯ at 𝑋 = 0+ with 𝐵+̅̅ ̅̅  unknown; i.e.  
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𝑢 = 𝑢0(𝑌) + 𝜀𝐵+̅̅ ̅̅  𝑢0
′ (𝑌) + 𝜀�̅� + ⋯ at 𝑋 = 0+.      (A8) 

Third, matching at small 𝑌 requires the present region’s 𝜆𝑌 + 𝜀𝐵+̅̅ ̅̅ 𝜆 + 𝜀�̅� + ⋯ from (A8) to match with the 

sublayer’s 𝜀𝜆�̅� + 𝜀𝐷+̅̅ ̅̅  from (A7). So we find that  

𝐵+̅̅ ̅̅ 𝜆 = 𝐷+̅̅ ̅̅ – �̅� .    (A9) 

The result (A9) agrees with (A6), i.e. it imposes 𝐴1 (0+, �̅�) = 𝜆–1(𝐷+̅̅ ̅̅ – �̅�), which is the same as – 𝜆–1𝐸+. 

This yields the same results as before for the starting profile. We have considered the forward flow 

scenario but identical results apply for the partly reversed flow scenario with the minus sign on the square 

root holding then. 
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