Privacy-Preserving Crowd-Sourcing of Web Searches with
Private Data Donor

Vincent Primault
University College London

Ingemar J. Cox
University College London & University of Copenhagen

ABSTRACT

Search engines play an important role on the Web, helping users
find relevant resources and answers to their questions. At the same
time, search logs can also be of great utility to researchers. For
instance, a number of recent research efforts have relied on them
to build prediction and inference models, for applications rang-
ing from economics and marketing to public health surveillance.
However, companies rarely release search logs, also due to the
related privacy issues that ensue, as they are inherently hard to
anonymize. As a result, it is very difficult for researchers to have
access to search data, and even if they do, they are fully dependent
on the company providing them. Aiming to overcome these issues,
this paper presents Private Data Donor (PDD), a decentralized and
private-by-design platform providing crowd-sourced Web searches
to researchers. We build on a cryptographic protocol for privacy-
preserving data aggregation, and address a few practical challenges
to add reliability into the system with regards to users disconnect-
ing or stopping using the platform. We discuss how PDD can be
used to build a flu monitoring model, and evaluate the impact of the
privacy-preserving layer on the quality of the results. Finally, we
present the implementation of our platform, as a browser extension
and a server, and report on a pilot deployment with real users.

ACM Reference Format:

Vincent Primault, Vasileios Lampos, Ingemar J. Cox, and Emiliano De Cristo-
faro. 2019. Privacy-Preserving Crowd-Sourcing of Web Searches with Pri-
vate Data Donor. In Proceedings of the 2019 World Wide Web Conference
(WWW’19), May 13-17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3308558.3313474

1 INTRODUCTION

Over the past few years, researchers have demonstrated how online
search data can be used to infer contextual information related to
both individual users and populations, with examples ranging from
consumer behavior modeling [19], macroeconomic statistics [14],
and sales forecasting [8, 40], to early detection of cancers [30, 39]
and disease monitoring at a national level [18, 21, 32].

Typically, individual-level studies rely on acquiring access to
the (anonymized) search history of multiple users. However, this
prompts significant ethical and privacy issues: search history often
contains sensitive data on topics such as income, sexual orientation,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW’19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313474

1487

Vasileios Lampos
University College London

Emiliano De Cristofaro
University College London

religion, and health. Furthermore, anonymization has proven to
be very difficult to guarantee [17]. A case in point is the AOL
search logs, which were released in 2006: several users were easily
de-anonymized, leading to a public outcry that resulted in the
resignation of AOL’s CTO [44]. Therefore, search engine providers
seldom, if ever, provide such data, even for research purposes.

On the other hand, estimating properties of a population may be
done over aggregate data, i.e., how many users have searched for
specific keywords over a time frame, which is much less sensitive.
In particular, in this paper, we focus on inferring population
health statistics from Web query data, and experiment with
a use-case related to estimating the prevalence of a disease such
as influenza [18, 21]. Unless the population and/or region size is
very small, or the queries contain many outliers, aggregates do
not permit de-anonymization. One possible data source for search
statistics is Google, which offers services like Google Trends and the
Health Trends API (see Section 2). However, it is still quite possible
that these products will not be maintained or may cease in the
future. Moreover, they might not provide information on specific
keywords, or sufficient geographic granularity. Also, and perhaps
more importantly, since aggregation is performed by a third party,
it actually provides no privacy with respect to that party.

Aiming to fill this gap, this paper investigates how to pri-
vately crowd-source Web search data. To this end, a number
of challenges need to be addressed, including: (i) recruitment and
retention, (i) human-computer interaction, and (iii) privacy. This
paper primarily focuses on a technical solution to the privacy is-
sue. In theory, a straightforward implementation to collect users’
Web search data, without the search engine’s involvement, would
attempt to anonymize the user and transmit data to a trusted third
party, which would then aggregate data before releasing it to a
researcher. However, both steps involve significant risks to individ-
uals’ privacy, with de-anonymization and security breaches of the
third party being the most obvious.

By contrast, we propose a solution that does not require a fully
trusted third party, and which only collects aggregate statistics
on search behavior at a population level. More specifically, we
present the Private Data Donor (PDD) platform: PDD consists
of a lightweight Web browser extension, which users (data donors)
install, and that monitors the searches performed by them. Users
are assigned to groups, and each group uses a protocol based on
homomorphic encryption to encrypt and transmit the number of
times a user searched for specific queries to a server. For each user
in the group, the server adds their encrypted count together. The
resulting sum is an unencrypted value representing the aggregate
count of the group. Data from each group is then aggregated to

https://doi.org/10.1145/3308558.3313474
https://doi.org/10.1145/3308558.3313474

determine the counts for the entire population, so that at no time is
the server able to determine the query frequencies of an individual.

Contributions. Overall, we make the following contributions:

(1) We propose PDD, a new platform to handle privacy-preserving
crowd-sourcing of Web search queries, decentralized, and scal-
ing up to millions of users.

(2) We analyze the impact of different system parameters on the be-
havior of our platform, aiming to find the best balance between
the privacy of users and the utility of collected results.

(3) We study how our platform can be applied to a real-life use
case, i.e., building a flu monitoring model.

(4) We implement and deploy our platform, and use it for real-life
data collection.

2 RELATED WORK

Studies using Web searches. Search engines such as Google, Bing,
DuckDuckGo, etc. respond to billions of queries every day [37].
Users ask search engines a wide range of questions, and these
often include personal and contextually rich information. In 2016,
Google reported that at least 1% of their searches were related to
symptoms, and started to provide structured information about the
health conditions associated to those symptoms [31]. Overall, Web
searches can often be a treasure trove for researchers, with notable
examples including the applications mentioned earlier [8, 14, 19, 40].
Of particular interest to us is research relying on search data
for health purposes [18, 21, 30, 32, 39], and more specifically based
on crowd-sourced information [22, 36, 38, 42]. In this paper, we
essentially aim to introduce a privacy-preserving layer on top of
those studies, which might encourage users to donate their data,
and help researchers comply with regulations, while removing the
dependence on limited statistics given by search engines.

Aggregate search data. Popular search engines do not have in-
centives to share search data, as this information is of commercial
value and, as discussed earlier, sensitive in nature. Google provides
two ways to gain insights into the searches it receives, at an aggre-
gate level: (1) Google Trends and (2) the Health Trends API. The
former is a Web interface offering a global, longitudinal view of the
interest for one or more queries, provided as a normalized number
between 0 and 100. The latter is a service offered to researchers,
with access to the interest of search queries related to health topics
(see also [23, 46]). Here, the interest is provided as a frequency, i.e.,
the number of times the queries were searched during a time period
normalized by the total number of searches in the same period.
Note that this is only computed from a subset of all searches (10%-
15%), and various anonymization measures are taken to remove
low-count searches. With the former, the number of times a query
was issued is not made available—only some normalized measure,
which does not allow evaluation of the absolute popularity of a
query. Moreover, statistics are only provided at a country-level
or state-level granularity. Finally, relying on these two platforms
means that the researchers are directly dependent on a third-party
company, whereas, we envision a decentralized scenario where
researchers could be autonomous in collecting the data they need.

Privacy-preserving data aggregation. Researchers have also
studied the generic problem of collecting statistics from users in
a privacy-preserving manner. To this end, cryptographic schemes

1488

have been proposed for privacy-preserving data aggregation, e.g.,
in the context of smart grids [20], wireless sensor networks [4], and
streaming data [5, 26]. Our work builds on the homomorphic en-
cryption protocol proposed in [26], which we review in Section 3.2;
however, since it was originally designed for real-time applications
like counting viewers of streaming videos, we need to address a
number of challenges to adapt it to our setting (see Section 3.3).

An alternative approach is to add noise to the statistics so that
they do not leak information about any particular individual, thus
guaranteeing Differential Privacy (DP) [12]. Typically, this approach
relies on a central curator, which receives raw data, aggregates it,
applies a differentially-private algorithm, and releases the protected
version of the data to researchers (see for example [25, 27]). How-
ever, this central entity needs to be a fully trusted entity and as
such could be vulnerable to attacks or a subpoena. Another possible
setup is known as local differential privacy, where noise is applied
at the user-side before sending the data, thus preventing the entity
collecting data from learning anything sensitive [13]. However, this
requires very large numbers of users in order for the noise to cancel
out and yield reasonably accurate results [16].

Privacy-preserving crowd-sourcing. Finally, prior work specific
to crowd-sourcing data from users includes systems allowing third-
parties to gather Web analytics [7, 15], location statistics [33], and
surveys [10]. Some also provide DP guarantees [1, 6, 13]. As opposed
to this line of work, we aim to provide a distributed platform that
does not rely on: (i) a central anonymization server and, (ii) a
persistent connection between the clients and the server.

3 PRIVACY-PRESERVING AGGREGATION

This section presents our approach to privacy-preserving collection
of aggregate data, a key component of our PDD platform. After
providing a high-level overview, we formalize the underlying pro-
tocol. We then discuss how to adapt it to build a large-scale system
for crowd-sourcing Web searches; finally, we present the enhanced
version, which we release, open-source, for public use.

3.1 Overview
Terminology. Throughout the paper, we use the following terms:

e Server:in PDD, the server is a piece of software running for an
institution interested in gathering Web searches statistics.

e Users: people willing to contribute their searches (in aggregate
form) to a research project. They install a client, i.e., a browser
extension communicating with the server. We use the terms
“users” and “clients” interchangeably in the rest of the paper.

e Query: a string that can interpreted by a search engine (e.g.,

Google, Bing, DuckDuckGo) to retrieve matching Web re-

sources, e.g., “world cup odds,” “will it rain today,” etc.

Monitored query: a query for which the server collects and

provides statistics.

e Search: a query that was sent by a user to a search engine. A
search is thus the association of a user, a query, and a timestamp.

o Analyst: a researcher having access to the data collected by
PDD and using it for further analyses.

Data Aggregation. We build on an underlying privacy-preserving
data collection protocol - specifically, the one presented by Melis

et al. [26] - to create a fully-fledged crowd-sourcing platform for
Web searches. The protocol encompasses three steps:

(1) Setup: Users willing to contribute their searches (in aggregate
form) install a browser extension; upon installation, the exten-
sion generates a pair of cryptographic keys, registers itself to
the server with its public key, and is assigned a client identifier.

(2) Reporting: Clients regularly obtain the set of monitored queries
and the public keys of the other clients. They generate a (se-
cret) blinding factor for each query, in such a way that the sum
of blinding factors of all users, for a given query, will equal
zero. Using their browsing history, clients fill a vector of counts,
where each value corresponds to the number of times a mon-
itored query was searched in the previous day: the vector is
encrypted using the blinding factors and sent to the server.

(3) Aggregation: Once the server has received the encrypted vectors
of all clients, it can decrypt the encrypted counts by summing
them up.

Adapting Melis et al’s protocol to our setting immediately
prompts two main challenges. A first issue is the impact of a client
being unable to report his encrypted data to the server; in this
case, the sum of all blinding factors is not equal to zero, and the
encrypted data cannot be decrypted by the server. In other words,
a single user failing to report his data on a given day will result
in the inability to retrieve the statistics for a particular day, which
is not acceptable. Our PDD platform introduces two measures to
build more reliability into the protocol: (1) We organize clients into
smaller groups, each one running its own instance of the protocol;
(2) We introduce some additional delay before “giving up,” leaving
more time for clients to send their data.

Another issue is that [26] requires a persistent connection be-
tween the server and the clients. This allows the server to learn
when users are online, which may introduce a new privacy threat,
and also increases the load on the server. We remove this require-
ment by letting clients communicate with the server at most once
a day, which significantly lowers the privacy threat.

3.2 Privacy-Preserving Aggregation
We now formally present Melis et al.’s protocol [26].

Notation. First, let us introduce notation, also summarized in
Table 1. We use N to denote the numbers of clients in the system,
and L the number of monitored queries. C;, i € [1, N] denotes the
i-th client, and W}, j € [1, L] denotes the j-th monitored query. Let
G be a cyclic group of prime order g for which the Computational
Diffie-Hellman problem [11] is hard, and g be the generator of
the same group. Also, we use a cryptographic hash function, H :
0,1* — Zg4, mapping strings of arbitrary length to integers. Let "||"
denote the string concatenation operator, and a €, A indicate that
a is sampled at random for A.

Algorithms. The protocol involves the following algorithms:

e Initialization. Each client C; generates a private key x; €, G
and a public key y; = ¢g* mod g, and then sends its public key
along with its identifier i to the PDD server to be registered.

e Encryption. At each round s, client C; holds a counts vector
Vsi = (vj € N,j € [1,L]), where v; represents the number of
times the query W; was searched for. To encrypt this vector,
client C; first generates a blinding factors vector:

1489

Symbol Meaning
G Cyclic group of prime order g, whose generator is g
H Hash function mapping strings to integers
Il String concatenation operator
s Current round number (0-based)
N Total number of clients
C Set of all clients
C; i-th client, i € [1, N]
(xi, yi) Private and public keys of client C;
L Total number of monitored queries
We £-th monitored query, j € [1, L]
K; Blinding factors of client C; at round s
Vsi True counts vector of client C; at round s
Vi Encrypted counts vector of client C; at round s
05 : C = B | Whether client C; was online during round s

Table 1: Notation.

N
Ksi=(D H@IIEDX (=) mod ¢,¢ € [1,1]) (1)
j=Lj#i
where (—1)!>J = —1 for i > j and 1 otherwise. Then, each C;

encrypts its counts vector Vg; into an encrypted vector Vi =
Vsi + Ksi, which is then to be sent to the server.

o Decryption. Once the server has received the encrypted vectors
for all clients at round s, it can decrypt it by summing them:

N N N N
VS—ZVSL—ZVsi"'ZKst—ZVsz (2)
i=1 i=1 i=1 i=1
Indeed, the sum of all K;; is a zero vector:
N N N o
Ve [1,L],) Keip = » > H(y1IElls) x (1) = 0. (3)
i=1 i=1 j=1
j#i

3.3 Challenges

As mentioned above, using Melis et al’s protocol [26] in our setting
(i.e., crowd-sourcing Web searches) poses a few challenges, as it
was designed for a different set of applications, namely, counting
the viewers of streaming videos or the number of requests to Tor
Hidden Service directories. In other words, [26] targets real-time
data collection in a context where users are expected to all be online
at the same time and the cryptographic code actually runs directly
in the browser in Javascript (specifically, as a Node.js package). At
some point, the server decides to gather statistics, issues a request to
the clients to encrypt and send their counts, and decrypts/publishes
the aggregate results after decrypting the clients’ contributions.

However, if some clients disconnect during the process, e.g., the
user goes offline or closes the browser tab, the server will not receive
some of the encrypted counts, and cannot decrypt the aggregate
counts since the blinding factors no longer sum up to zero. Also,
the protocol requires a persistent connection between clients and
server (e.g., via a web-socket or a regular ping). We discuss these
two challenges in more detail next.

Disconnections. To mitigate the issue of disconnections, [26] pro-
poses two solutions: (1) organizing users in smaller groups, and
(2) running a recovery protocol. Specifically, the protocol can be
applied independently on several groups, and the decrypted count
vectors of each group summed to obtain the global decrypted count
vector. In this setting, the size of each group becomes a critical
parameter, impacting both privacy (i.e., among how many other

users is each user hidden) and utility (i.e., the likelihood the group’s
count vector can be decrypted). Put simply, the larger the group,
the better the privacy, but the more at risk is utility. Another open
question, which was not handled in [26], is how to organize users
into groups. At the same time, the recovery protocol allows the
users that are still online to compute a recovery factor, which will
then be used to “reverse” the effect of the blinding factors of missing
users. However, users might in turn disconnect during this recovery
protocol, making the recovery protocol fail in turn.

Persistent connection. In our setting, the need for a permanent
bi-directional connection between the server and its clients is very
undesirable, for two main reasons. First, having a permanent con-
nection between the server and every client requires non-negligible
computing resources, while we need the platform to be as oper-
ationally simple as possible, allowing researchers to deploy it on
a single server with limited computing power. Second, this also
raises orthogonal privacy issues, as the server will know the times
at which users are online, learning information about users’ behav-
ior which can potentially to be a side-channel for privacy attacks. In
theory, privacy-preserving presence protocols have been proposed
(e.g., [3]), but they rely on having multiple non-colluding servers,
which we do not have.

Requirements. Overall, as mentioned, Melis et al’s protocol [26]
was designed for different applications, while we are interested
in collecting Web searches. This distinction has two practical im-
plications in the requirements of our platform: (1) Our client-side
platform needs to access browsing history to collect the search
queries (specifically, the monitored queries), thus, it needs to run
as a browser extension (and not directly on a particular web page);
(2) We do not need real-time statistics, but rather daily aggregates.

Next, we discuss how we modify the platform to accommodate
our requirements and overcome these challenges.

3.4 Enhanced Aggregation Protocol

The main idea is that the server prepares itself at the beginning of
every day to gather statistics about the past day. To do so, it pre-
computes, each night, groups of clients based on their past activity
patterns. Then, throughout the day, when they come online, clients
ask the server which groups they are part of, and retrieve the list of
monitored queries. Each user is only part of at most one group each
day, but the server may return several groups for the past few days,
if necessary to recover from past days where the user was inactive.
Clients then use their browsing history to compute the counts
vector for each requested group, encrypt it using the public keys
of the other members of the group, and send the encrypted counts
vectors to the server. In this setup, the round number s becomes
the number of days elapsed since the data collection began.

Handling disconnections. As proposed in [26], we organize
clients into groups. However, as we only have at most one contact
with each client per day, the challenge is to be able to pre-compute
groups without knowing for sure which users will be active the next
24 hours. To this end, we leverage historical knowledge about past
clients’ activity. More specifically, at the beginning of day d, when
statistics about day d — 1 need to be gathered, the server knows
which clients were active during day d — 1. Therefore, the server
includes only the clients active on day d — 1 in the groups formed

1490

on day d, which reduces the number of clients actually involved
in the protocol every day, and improves the reliability of the data
collection. Indeed, the less users are involved in the protocol, the
lower the probability that some of them will not be active on day d
and hence the lower the probability to lose data.

Creating groups introduces, obviously, the need for setting a
group size, which is a system parameter controlling the number of
clients into each group. Concretely, groups formed at the beginning
of day d are composed of only clients that were active on day d — 1,
and affected to groups in a round-robin fashion. All groups will
hence have the same number of clients, except one group which
may contain less clients. We will explore, in Section 4.4, a more
advanced strategy, selecting users by their past activity, trying to
maximize the probability for them to be online.

Nonetheless, the main drawback of pre-computing groups is that
there is still a risk that some clients involved in the protocol will
not be active the next day, which may prevent the encrypted data
from some groups to be decrypted. For that reason, we introduce
the notion of a delay, i.e., a number of days during which the server
will wait for the encrypted counts to be sent by the clients. Waiting
a few more days will allow the inactive clients to come online later
on, thus improving the quality of the results.

Removing persistent connections. Because clients only contact
the server at most once a day, the privacy threats are dramatically
lowered as compared to having a persistent connection, because
the server does not anymore know, in real-time, which users are
active. It also significantly lowers the computational pressure on
the server, which is only expected to handle a couple of requests
from each client every day. (Rate limiting strategies should also be
used to protect against DDoS attacks [43].)

Confidence. It might still happen that a client does not come online
on day d, and neither in the additional delay that may be granted.
In that case, it means that the encrypted data for this client, and
for all this group, will never be decrypted and is considered as lost.
Although lost data should be considered impossible to recover at
that point, we can provide a confidence measure to the data analysts,
computed as the ratio of successfully decrypted users. This adds
transparency to the figures provided to them by the PDD platform.

Threat Model. The security of this approach relies on that of
the aggregation scheme presented by Melis et al. [26], which is
proven secure in the honest-but-curious (HbC) model under the
Computational Diffie-Hellman assumption [2]. Here the HbC model
means that both the clients and the server, although they may
attempt to violate privacy of their counterparts, do not deviate
from the protocol specification. For instance, malicious users could
report fake values in order to invalidate the final aggregation values,
while the server could maliciously manipulate the number and
identity of clients in the same group. This is a common assumption
in cryptography, which can be mitigated using verifiable tools such
as zero-knowledge proofs, cryptographic commitments, and code
attestation. We leave such extensions as part of future work, as they
are orthogonal to the challenges we face in this work.

3.5 Example

To clarify how our platform works, we use an example, as pictured
in Figure 1. We consider five clients (4, . . ., E), who participate in

day 0 day 1 day 2 day 3

®e06e ®ee® ©6 ®®

group 1.0 group 2.0 group 3.0

group 1.1 group 2.1

©® e®

Figure 1: Example of how users can be added to groups based on
their past activity.

data collection, a group size of two, and a delay of one additional
day. At the beginning of day 1, A, B, C and E, who were seen online
on day 0, are put into two groups of two clients each. On day 1,
A, B and C were seen online, as well as client D, who is not part
of any group. Then, A, B and C will be tasked with sending their
encrypted count vectors to the server, while D will not have any
task to perform. At the end of day 1, data of group 1.0 has been
decrypted, but data of group 1.1 is still missing E’s counts vector.

At the beginning of day 2, A, B, C, D (who were seen online on
day 1) are put into two groups. At the end of day 2, because E has
eventually come online within the one additional day of delay, data
of group 1.1 has been decrypted. However, groups 2.0 and 2.1 are
still un-decrypted, because A, B and C were not online on day 2. At
the end of day 3, group 2.1 has been decrypted within the one-day
delay, but group 2.0 is lost since A was not active on days 2 and 3.

Eventually, data for day 0 has been made available at the end
of day 2 (with a confidence of 100%), while data for day 1 has
been made available at the end of day 3 (with a confidence of
50%). Overall, this simple example illustrates the usefulness of both
dividing users into groups (allowing to decrypt half of the data for
day 1) and the additional delay (allowing to decrypt all, instead of
only half, of data for day 0).

4 CONFIGURING PDD THROUGH
SIMULATION

We use extensive simulations to determine the configuration of the
PDD platform. Specifically, we evaluate the impact of the two main
system parameters (see Section 3.4): the group size and the delay.
As PDD is a distributed system, potentially involving thousands or
even millions of users, we use simulation to better understand its
behavior and test different parameterizations.

4.1 The PDD Simulator

We now introduce the simulation environment used in our experi-
ments. It involves two distinct modules, simulating: (1) user activity,
and (2) the PDD protocol itself. The former simulates how users
interact with their browser, while the latter simulates the interac-
tion between clients and the server. The simulator is implemented
in Python (for data pre-processing and analysis) and Scala (for the
main workflow).

User activity module. The user activity module is made of three
distinct parts, each simulating: (i) connectivity, i.e., which days

1491

0.9

Actual distribution ===
0.8+ Fitted distribution
0.7 +
. 06}
o
£ 05}
? 04t
=03}
0.2 |
0.1} /47{%74
0 f
1 2 3 4 5 6 7
Number of active days
Figure 2: Distribution of users’ activity.
Actual distribution =2
Fitted distribution
0.8 t
g 06}
=t
g o4l
0.2
0 L

0 1 2 3 4 5 6
Number of searches per user per active day
Figure 3: Distribution of search volume.

users are active and using their browser, (ii) search volume, i.e.,
how many searches users are performing on active days, and (iii)
search content, i.e., what are users actually looking for.

Overall, accurately simulating users’ browsing activity is a very
challenging task, mainly due to the lack of publicly available
datasets. To overcome this challenge, we turn to the datasets re-
leased by Mozilla in 2010 to shed light on how users interact with
their browsers [28]. We use the most complete dataset, which con-
tains data for 4,802 users, collected over a week in December 2009.
For each user, we have the number of browsing sessions (i.e., how
many times each user started his browser during the week) and
the average duration of those browsing sessions. We use the data
to “replay” such sessions since, unfortunately, the dataset does
not contain the times at which users were active. We obtain a dis-
tribution with the number of days (out of seven) during which
the users have been effectively using their browser. Due to the
randomness of this process, we run 100 iterations, and eventually
select the Beta distribution with the lowest distance, according to a
Kolmogoroc-Smirnov test [24]. More specifically, we end up with a
Beta distribution with @ = 2.2170 and f = 0.4634.

The original frequencies and the fitted distribution are shown
in Figure 2. Note that the fitted distribution has a mean of 82.7%
- i.e,, on average, users are using their browsers between 5 and 6
days every week. This is consistent with a more recent study from
Mozilla [9], which reports how long Mozilla’s data scientists have to
wait for telemetry data to be available, estimating that, on average,
95% of telemetry data was received within a single day. For each
user, we sample a number of active days from the Beta distribution,
scaled to the total number of days considered in our experiments
(rounded to the closest integer). Simulations in Section 4 involve
100k simulated users over 100 days.

Next, we simulate search volume using the Yahoo dataset [35],
which provides search logs collected over a month (July 2010),
featuring 29M users, 67k unique queries and 80M searches. From
this dataset, we extract the daily number of queries performed by
each user, and fit a normal distribution on it (1 = 1.3020, o? =
0.7603). Figure 3 reports the original data along with the fitted
distribution. For every day a user is active, we sample a number
of searches to be performed from the distribution (rounded to the
closest integer). Finally, we simulate searches by extracting the
frequency of each of query included in Yahoo’s dataset, which
spans over an entire month. Note that the data is truncated after
more than 10k searches of a given query, which may limit the
precision of the simulation for very frequent queries. However, it
still allows us to capture that a few queries are searched very often
(e.g., 2k queries more than 10k times), with a long tail of infrequent
queries (e.g., 11k queries less than 10 times). We simulate searches
by randomly sampling a query from this distribution, as a random
choice weighted by the frequency of each query.

PDD protocol module. This module trivially simulates the behav-
ior of the PDD server by implementing the protocol described in
Section 3.4. We assume that network communication is reliable
(using TCP), thus, we do not need to simulate network communi-
cations and failures. Because we rely on simulation instead of a
real-life system, we also have access to the ground-truth data (i.e.,
the Vs;’s, the counts vectors of each client at each round), which
we can use to evaluate our solution. The simulation essentially
produces as output, for every day, a report about the true count
and estimated count (i.e., after decrypting data) of each query, the
total number of searches and the confidence.

Evaluation metric. We use the mean relative error (MRE) of the
decrypted counts as the main metric to evaluate the quality of the
collected data, averaged out across all queries, all users, and all
rounds. Formally, it is defined as:

1 Vs ip — Vsig

MRE =
{Vsi, # 0}

, 4

Vsi[

#0
where VS i is the estimated counts vector received by the server for
client C; at round s. In practice, Vs; = Vg; if the data of client C; was

successfully decrypted at round s, or Vs; = (0, ..., 0) otherwise.

4.2 Group Size

We start by using simulations to study the impact of the group size.
First, users are put into groups following the heuristic described
in Section 3.4, considering only the users who were online the
previous day, i.e., at day d, {C; € Clog_1(Ci)}.

Group size is inherently responsible for the trade-off between
privacy and utility. Here the level of privacy provided to the users
is akin to k-anonymity [12], meaning that every client part of an
aggregate will be hidden among k — 1 other clients being part of the
same aggregate, whereas, utility is measured via MRE as discussed
above. On the one hand, creating groups of very few clients would
yield near-optimal utility, but at the cost of providing little or no
privacy to the users. On the other hand, putting all clients into
a single group would provide the best levels of privacy, but can
dramatically decrease the utility, since even a single client not
sending its data will prevent the decryption of everybody’s data. It

1492

0.9
0.8 F
0.7 ¢
0.6 ¢
0.5 F
04

Mean relative error

0.2 |

10 100 1000
Group size
Figure 4: Impact of the group size on utility.

also means that system designers have no control on the impact
that increasing/decreasing numbers of clients will have.

Therefore, we seek to find a middle ground, providing reason-
able privacy guarantees, while still allowing reported counts to
be accurate enough for data analysts to work with it. In Figure 4,
we report the impact of the group size on the MRE of decrypted
counts with a delay of two days. We report results with group sizes
between 10 and 1000, as suggested in [26]. We note that MRE varies
between 16% and 100%, increasing quite quickly: a group size of 100
already yields an 81% MRE. The privacy-utility trade-off is pretty
clear: groups should not be too small because of privacy (in fact,
we would not recommend less than 50 clients per group), however,
large group sizes do not seem very practical, e.g., MRE is 100%
with 750 users per group. Therefore, in Sections 4.3-4.5, we will
experiment with group sizes between 50 and 500, and study how
we can improve the utility without degrading privacy.

4.3 Delay

Next, we study the impact of utility when waiting for a few more
days to provide aggregate counts to the analysts. As opposed to
the group size, the delay does not play a central role in the privacy-
utility trade-off, as it does not impact the privacy. Instead, it imposes
a trade-off between utility and the availability of the results. Fig-
ure 5a shows the evolution of MRE with delay varying between 0
and 5 days, for group size gs € {50, 100, 500}. We note a significant
positive impact on MRE starting with a delay of two days.

Choosing the right delay is inherently application-dependent:
some use-cases might accommodate well delays of a week, while
others need near-real-time results. Nevertheless, Figure 5a shows
that a group size of 500 is still not very practicable, because the
MRE remains around 80% in the best case, while groups of 50 clients
with 5 days of delay reduces MRE to 15%.

Our simulations also highlight that some errors are not recover-
able, even while waiting up to five additional days. We believe this
is due to the behavior of users, as shown in Figure 2, with a very
small fraction of the users being active only once in a while. Next,
we study how to mitigate the impact of inactive users on MRE.

4.4 Improving Client Selection

Aiming to improve the privacy-utility trade-off presented above, we
present a novel approach to organize clients in groups. The basic
idea is to only put into groups clients that are likely to be active
the next few days, assuming that some additional delay is allowed.

0.8
0.7 :
0.6
0.5
0.4
0.3
0.2 |
0.1}

Mean relative error

gs=50 --+--
2s=100 —+—
g5=500 -+
0 1 2 3 4 5
Delay (days)

(a) Naive approach.

Mean relative error

0.9 .
0.8
0.7 N
0.6 :
0.5 .
0.4
0.3 :
0.2 1 gs=50 --+-- e
0.1 L gs=100 —— B
’ gs=500 -+
[) = L n
0 1 2 3 4
Delay (days)

o

(b) Improved selection algorithm.

Figure 5: Impact of the delay on utility.

Indeed, we want to maximize the probability that all users inside
groups will be active in the next days, even if it implies losing out
on the data of some users that are generally not very active.
Ideally, one would rely on machine learning techniques to learn
user behavior patterns. However, because of the lack of real-life
browser usage traces, this approach is not viable since we would
not be able to effectively train prediction models. Therefore, we set
to improve our heuristic to select users to put into groups more
effectively. As shown in Figure 2, while most users are active every
day, there is a non-negligible tail of users that are much less active.
Basically, if we have a delay of § days, we want to only select
users that are active on average at least one out of § days. More
formally, at the beginning of day d, when the delay is configured
to § days, we only select users satisfying the following constraint:

[{d’ € [0,d - 2],04:(Ci)}] _ 1
d-1 = 5} - O

{Ci € Clog_1(Ci) A

The above criterion is applied when § > 0 and d > §, meaning that
we effectively have some additional delay and have accumulated
enough data about users’ past behavior to decide whether it is
worth including them into a group.

Figure 5b shows the impact of this new heuristic on MRE. When
compared to Figure 5a, we observe a noticeable decrease in the
error. For instance, with a group size of 100 and 2 days of delay, the
MRE goes from 0.82 to 0.60 (a 26% improvement). In fact, the best
improvements with the heuristic are obtained with 2 days of delay.
With 1 day of delay, we do not have enough past activity history to
yield enough impact, while further increasing the delay is sufficient
to lower MRE without the need for our heuristic.

4.5 Building Confidence in the Platform

Finally, we set to provide a confidence metric to the analysts in
order to capture the expected quality of the aggregate statistics.
Essentially, we use the percentage of users that were successfully
involved in the data collection process. That is, we define confidence
as the ratio of clients whose data was successfully decrypted and
the total number of clients who were active on the target day. For
example, a confidence of 60% for day d means that we were able
to decrypt data for 60% out of all clients who were active that day.
Recall that the missing counts can be due to clients that never sent

1493

0.9 ‘ |
gs=b0 --+--

0.8 b gs=100 —+—

07 L gs=500 4

0.6 Frae
0.5 ’
0.4
0.3
0.2
0.1

Confidence

0 1 2 3 4
Delay (days)
Figure 6: Confidence levels, i.e., ratio of clients whose data was suc-
cessfully decrypted, for increasing delay.

o4

their encrypted counts to the server, or by clients who were part of
a group where a client never sent their data.

In Figure 6, we plot the evolution of the confidence depending
on the delay and the group size. Unsurprisingly, this is closely
related to MRE (cf. Figure 5b), i.e., a high MRE is associated to low
confidence. However, while MRE can only be computed through
simulation (since it relies on the ground truth), confidence can
actually be computed in real production environments. Therefore,
we believe it can constitute a simple yet effective tool for analysts to
understand the accuracy of the statistics at their disposal. However,
it is not so easy to understand the actual impact of MRE, and what
is the threshold differentiating between a “good enough” and a
“bad” MRE. In the next section, we will experiment with the PDD
platform on a real-life use-case, and study the actual impact of the
privacy “layer” on the accuracy of the results obtained by analysts.

5 BUILDING A SYNDROMIC SURVEILLANCE
MODEL FOR INFLUENZA-LIKE ILLNESS

In this section, we experiment with a health-related use-case, show-
ing how data collected through PDD can be used to monitor
the prevalence of influenza-like illness (ILI). By using an estab-
lished model for this task that provides a significant level of ac-
curacy [21, 22], we are particularly interested in quantifying the
impact that introducing PDD may have on its performance.

True query frequencies Estimated query frequencies
Flu season | —ore™—2MsE - MAE RMSE r
2014/15 25211 37022 0.8631 | 3.0163 (0.6112) 4.0382 (0.6251) 0.8574 (0.0211)
2015/16 2.1023 2.8766 0.9439 | 2.4415(0.1949) 3.1805 (0.2586) 0.9202 (0.0140)
2016/17 2.1907 33163 09165 | 2.0212(0.2980) 2.6704 (0.3501) 0.9020 (0.0313)
Avg. 2.2714 3.2984 0.9078 2.4930 3.2964 0.8932

Table 2: Performance of the ILI rate estimation task

5.1 Methodology

Starting from the simulator described in Section 4.1, we modified the
users’ activity module to sample the searches from a set of actual flu-
related queries. More specifically, we use data from Google Health
Trends to accurately model the behavior of users when interacting
with the Google search engine. We retrieve the daily frequencies of
1k flu-related queries from January 1, 2008 to December 31, 2017
(10 years). We follow the approach presented in [23] to extract
and filter queries based on their semantic relationship with the
topic of flu. Note that we only have access to frequencies (and not
absolute counts), i.e., the number of times a query was issued over
the total number of queries issued that day. For every query, we fit
a frequency distribution using a maximum likelihood estimation.
We split the queries in two classes: sparse queries, which are fitted
to a beta distribution, and denser queries, fitted to a generalized
extreme value distribution. During the simulation, we use those
distributions to sample, for each query and every day, a frequency.

In total, the added frequencies of the 1k queries of interest ac-
count on average for about 0.34% of the daily number of searches.
This means that, as opposed to the previous behavior, the large
majority of the searches that are generated are not of interest for
influenza modeling. Consequently, we run a much larger-scale sim-
ulation in order to collect enough search samples, even for sparse
queries; to this end, we simulate 1 million users over 20 years, which
yields 825k samples for the 1k queries of interest. We use a delay
of 2 days and a group size of 100 clients.

We then use the outputs of the simulation to compute daily query
frequency estimates, which are then compared with their corre-
sponding true values. We use a relative error metric, i.e., (fi — fe)/ft,
where fi, fo, denote the true and the estimated query frequency,
respectively. Note that, on the frequency space, errors may be pos-
itive as well as negative. Given that positive and negative errors
have different properties, we model them separately using two
Weibull distributions per query (different distribution parameters
for each query). Moreover, we capture the overall tendency for
positive versus negative errors during daily data extracts, modeled
by a Gaussian distribution. We filter out queries with less than a
100 nonzero true frequency estimates from this process, as their
error samples are very sparse (466 from 1k queries were kept).

Finally, we use the fitted error distributions to introduce errors
to true query frequencies from Google Health Trends. We rely on a
two-step sampling process, where first the error signs are drawn
for all queries for particular day, and then for each query, based on
its allocated error sign, a relative error is drawn from its positive or
negative error distribution. We deploy 50 sign draws per day, and
for each one 50 error distribution draws per query, which generates
2,500 query frequency data sets where errors have been propagated.

1494

5.2 Evaluating the Impact of PDD

Next, we set to assess the effect of the errors discussed above in the
context of a practical task. To this end, we used the estimated query
frequency datasets as inputs for modeling ILI rates in England — a
well-studied task in the literature [18, 21, 23, 41].

Model structure. Disease rate estimation from online search data
is commonly formulated as a regression task [18, 21]. The aim is
to learn a function g: X — y that maps the input space of search
query frequencies, X €R™ ™ to the target variable, y e R", repre-
senting disease rates; n denotes the number of samples and m is
the number of unique search queries we are considering. The time
interval for each sample is set to a week to match the frequency of
syndromic surveillance reports. Here, we use elastic net [47] as our
regression function, similarly to previous work on the topic [21, 22].
Elastic net combines ¢1-norm and {2-norm regularization to obtain
sparse solutions and to address model consistency problems that
arise when collinear predictors exist in the input space [45]. It is
formulated by the following optimization problem:

argmin (||y - Xw - BI5 + A1 ||W||§ + A2 ||W||1)) (6)

W’ﬁ

where A; > 0, A2 > 0 are respectively the £;-norm and {3-norm
regularization parameters, and f denotes the intercept term.

Metrics. We assess the performance of elastic net models in esti-
mating ILI rates in England during three flu seasons (2014-2017).
Test periods are 1-year long (52 weeks) and training sets include
all data prior to the corresponding test period. Prior to applying
elastic net, we filter out queries with a Pearson correlation < 0.3
with the ground truth (per training set). We measure performance
using mean absolute error (MAE), root mean squared error (RMSE),
and Pearson correlation (r).

Results. We report performance figures in Table 2. Overall, we see
that the average performance (based on the 2,500 trials) obtained by
the estimated query frequency data does not differ much to the one
obtained by the error-free data. There is a 9.7% increase in MAE,
a 1.6% decrease in correlation, while RMSE remains unaffected.
Figure 7 depicts ILI rate estimates across all the test periods in
comparison to ground truth data. We plot the mean ILI rate across
the 2,500 trials and use two standard deviations as a confidence
interval. There are minor differences in the estimates of the privacy-
preserving and true frequency models, although overall the time
series appear as visually similar.

Overall, our analysis shows that both provide good estimates
of the actual ILI rates, which serves as a practical indication that
the error introduced by the privacy-preserving scheme does not
severely affect the utility of the search data.

W ow
S O
I I

N
a

B
o o

ILI rate per 100,000 people
o 3

o

- = Ground truth — Google search ——Privacy-preserving searchr

2015 2016
Time (weeks)

2017

Figure 7: ILI rate estimates based on true and estimated (privacy-preserving) query frequency values compared to the ground truth. Confidence
intervals depict two standard deviations from the mean for the 2,500 drawn query frequency estimates.

6 REAL-WORLD DEPLOYMENT

As mentioned earlier, we have implemented PDD as a fully-
functional platform, which is freely available to health researchers.
In this section, we detail our prototype, presenting its architecture
as well as a real-world experiment with it.

6.1 System Architecture

PDD follows a classical client-server architecture, as depicted in
Figure 8. The client-side is deployed to each user as a browser
extension for Google Chrome/Chromium. The server is hosted by
the research institution in charge of running the data collection
campaign. A Web dashboard is also available to administrators and
data analysts, allowing them to tune the data collection parameters
and to export the results once they are available.

Server. The PDD server is the central component of our architec-
ture, implementing three core services. First, it provides the concept
of a campaign, which corresponds to a set of queries being moni-
tored over some period of time. Several campaigns can be running
independently in parallel, allowing different research teams to rely
on a common crowd-sourcing infrastructure for their research. Sec-
ond, the server is in charge of regularly initializing empty count
vectors. Once a day, it scans the active campaigns and clients and or-
ganizes the latter into groups according to the algorithms described
in Section 4. One or several empty count vectors are then initialized
for each client that is expected to contribute some data to one or
more campaigns. Each time a client pings the server, the latter will
look for all those yet-to-be-filled vectors, and asks the client for the
missing data. Third, the server is responsible for the aggregation
of count vectors. Once a day, this service collects the encrypted
vectors sent by the clients, decrypts them whenever possible, and
updates the global count vector for the target day.

Each campaign has its own system parameters (i.e., delay and
group size) as well as a distinct list of queries of interest. Note that,
while Section 3 only describes the ability of monitoring queries, our
implementation can monitor both keywords as well as queries. That
is, by splitting every search around whitespaces, we can extract
tokens and monitor the searches that contain them or combinations
of them. For instance, instead of monitoring the query “symptoms of
flu,” an analyst might choose to track the keywords “symptoms” and
“flu;” allowing to match different variations such as “flu symptoms”

Communication between the clients and the server is through
a REST API, secured by TLS. The REST API itself is divided in

1495

Vectors

Daily ping creation

Vectors

i — | REST
aggregation

— API
Chrome clients

Database

Campaigns
Web management

ul

Data analyst
Figure 8: Architecture of the PDD system.

two parts: a public and a private APIs. The former is accessible
to the clients and essentially contains three endpoints: (i) client
registration, used when a Chrome extension is installed, (ii) ping,
used by clients to get their instructions, and (iii) vector submission,
used to update the vectors back as instructed by the server. The
latter is only accessible to the analysts and is used for administrative
operations. The server is written in Scala (a language running on
the Java Virtual Machine), while the dashboard in Javascript. The
data is stored in a MySQL database, although the persistence layer
is designed to be pluggable to accommodate other storage systems.

Client. The client-side is implemented as a Google Chrome exten-
sion, although it can be ported to other browsers, such as Firefox,
with minimal effort. The extension includes 733 source lines of code
written in Javascript. The main goal of the extension is to contact
the server on a daily basis (whenever possible) via a ping. The re-
sponse of a ping is a set of instructions about some information
to compute in order to fill empty count vectors. Each instruction
contains a set of monitored queries, the period of interest (typically
a day), the round number and the public keys of the members of the
group. The client is then in charge of computing the count vectors,
thanks to the API provided by Chrome, by locating the Google
searches from their URL, extracting the query, tokenizing it into
keywords and aggregating them with respect to the set of mon-
itored keywords. This vector is then encrypted, using the public
keys provided and round number, and sent back to the server.
The browser extension also has a lightweight interface for the
user, providing transparency about the collection process. Notably,
it allows the user to see which searches are going to be sent to
the PDD server at the beginning of the next day. If the user does
not want some of this data to be contributed (even though it is
aggregated and encrypted), he has the option of creating a blacklist.

100

60

Number of active users
=

0012345678 910111213
Day
Figure 9: Daily activity during the real-life experiment.

The latter contains a list of keywords that the user does not want
to be sent to the server, permanently.

Source Code. The PDD platform is available in open source, un-
der the GNU General Public License v3, on GitHub.! The Chrome
extension is also available on the Chrome Web Store.?

6.2 Real-World Experiment

In order to experiment with our prototype and real-life users, we
used the Prolific.ac [29] website to recruit a pool of (paid) volunteers.
Our study received ethics approval from University College London.
In total, we ran two studies. The first one aimed to validate that
the system was actually working and reliably collecting data, and
involved 10 participants for a week. A couple of months later, we
launched a larger-scale study involving 100 participants over two
weeks. In the following, we report on the latter.

Participants were asked to install our Chrome extension and
leave it active, but were not otherwise asked to alter their behavior
in any way. We only required them to be active for at least 10
days (out of 14 in total), in order to prevent dishonest participants
claiming a reward without actually contributing any data. Because
the season was not favorable to experiment with flu-related searches
(it was done during summer 2018), we instead monitored the usage
of the 10k most common English words.®

User behavior. To analyze the activity of the participants, in Fig-
ure 9, we show the number of daily active users throughout our
experiment. The plot highlights that there are indeed variations
in the number of daily active users, varying between 60% and 90%.
This also confirms that we cannot realistically expect, even with as
little as 100 paid users, that all users will be active on a single day.
In fact, on average, users were active 10 days out of 14. Overall, we
detected a total of 3000 to 5000 keywords per day. This rather high
number is due to the fact that we are monitoring the 10k most com-
mon English words, meaning that each search will likely generate
several keywords, one for each of the common words in it.

Error. Because we had a small number of users, we used a group
size of only 10, fixing the delay to 2 days. Figure 10 plots the con-
fidence throughout the 14 days of our experiment. The average
confidence is 71.3%, even though there are significant variations.
Note that the results for the first day exhibit very low confidence,
because of the participants who left the experiment and were never

!https://github.com/pddisense/pdd
Zhttps://chrome.google.com/webstore/detail/private- data-donor/
ipeekohlgfhagcopnndkgoommcihmdmk
3https://github.com/first20hours/google- 10000-english

1496

0.8 I /\ . /
or LN/]
06 || VoL
0.5 / X

0l \/
0.3 /

0.1
001234567 8910111213
Day
Figure 10: Daily confidence during the real-life experiment.

active again. The confidence for day 7 is also low at 28%; it corre-
sponds to a turning point between both a peak of active users at
day 5 and the lowest number of active users at day 9 (cf. Figure 9),
meaning the users’ future activity was overestimated when creating
groups for day 7.

Performance. The PDD server is packaged as a Docker image and
deployed on a single virtual machine equipped with 4 X 2.1 GHz
and 16 GB of RAM. Over the 2 weeks, the user CPU usage was
on average 0.2%, while the memory consumption was on average
2.1GB. We did not experience any crash, and the resource usage
leaves plenty of room to grow to more users.

7 CONCLUSION

This paper introduced PDD, a platform enabling researchers to
access crowd-sourced Web searches, collected in a privacy-friendly
way. We built on an existing cryptographic protocol for privacy-
preserving data aggregation [26], adapted it to our settings, and
evaluated our solution through extensive simulations. In particu-
lar, we highlighted the importance of two parameters, delay (i.e.,
the number of days to wait for the results) and group size (i.e.,
the anonymity of users). We then validated the suitability of our
approach on a real-life use case, building a model monitoring the
prevalence of influenza from Web searches. We compared the qual-
ity of the model produced when using PDD to both ground truth
and the model obtained from raw Google searches, and observed
very similar performance. Finally, we deployed our PDD prototype
in the wild and ran a small pilot deployment involving 100 paid
participants, achieving a reasonable confidence (more than 70%)
while keeping resource requirements low.

Although we focus on health-related use cases, we believe that

PDD can accommodate other contexts. Overall, we envision the
opportunity to build a fully-fledged privacy-preserving analytics
platform on top of this work, paving the way to more use cases
while enforcing strict privacy guarantees. Our experimental eval-
uation showed opportunities to improve even more the way we
select and organize users into groups; we believe that leveraging
machine learning, in addition to our heuristics, could greatly in-
crease the confidence while lowering error. In future work, we also
plan to study the feasibility of possible inference attacks against ag-
gregate statistics (e.g., membership [34]), and mitigate them using
differentially private mechanisms.
Acknowledgments. This work has been supported by the EPSRC
grants EP/K031953/1 and EP/R00529X/1. We also wish to thank
Google for providing access to the Health Trends API and Lukasz
Olejnik for early work on the PDD prototype.

https://github.com/pddisense/pdd
https://chrome.google.com/webstore/detail/private-data-donor/ipeekohlgfhagcopnndkgoommcihmdmk
https://chrome.google.com/webstore/detail/private-data-donor/ipeekohlgfhagcopnndkgoommcihmdmk
https://github.com/first20hours/google-10000-english

REFERENCES

(1]
(2]
(3]
(4]
(5]

[12]
[13]

[14

[15]

(16

[17]

[18]

[19

[20]

[21]

[22]

[23]

[25]

I. E. Akkus, R. Chen, M. Hardt, P. Francis, and J. Gehrke. Non-tracking Web
Analytics. In ACM CCS, 2012.

F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In ICICS,
2003.

N. Borisov, G. Danezis, and I. Goldberg. DP5: A Private Presence Service. In
PoPETS, 2015.

C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient Aggregation of encrypted
data in Wireless Sensor Networks. In Mobiquitous, 2005.

T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with
fault tolerance. In Financial Cryptography, 2012.

R. Chen, I E. Akkus, and P. Francis. SplitX: High-performance Private Analytics.
In SIGCOMM, 2013.

R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards statistical queries
over distributed private user data. In NSDI, 2012.

H. Choi and H. Varian. Predicting the Present with Google Trends. Economic
Record, 88(s1), 2012.

:chutten. Two Days, or How Long Until the Data is In. Online at https://blog.
mozilla.org/data/2017/09/19/two- days- or-how-long-until-the-data-is-in/, 2017.
H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable Computation
of Aggregate Statistics. In NSDI, 2017.

W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 22(6), 1976.

C. Dwork. Differential Privacy. In ICALP, 2006.

U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized Aggregatable
Privacy-Preserving Ordinal Response. In ACM CCS, 2014.

M. Ettredge, J. Gerdes, and G. Karuga. Using Web-based Search Data to Predict
Macroeconomic Statistics. Communications of the ACM, 48(11), 2005.

L. Fan and H. Jin. A Practical Framework for Privacy-Preserving Data Analytics.
In The World Wide Web Conference, 2015.

G. Fanti, V. Pihur, and AZlIfar Erlingsson. Building a RAPPOR with the Unknown:
Privacy-Preserving Learning of Associations and Data Dictionaries. In PoPETS,
2016.

A. Gervais, R. Shokri, A. Singla, S. Capkun, and V. Lenders. Quantifying Web-
Search Privacy. In ACM CCS, 2014.

J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Bril-
liant. Detecting influenza epidemics using search engine query data. Nature,
457(7232), 2009

S. Goel, J. M. Hofman, S. Lahaie, D. M. Pennock, and D. J. Watts. Predicting
consumer behavior with Web search. Proceedings of the National Academy of
Sciences, 107(41), 2010.

K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly Aggregation for the
Smart-grid. In PETS, 2011.

V. Lampos, A. C. Miller, S. Crossan, and C. Stefansen. Advances in Nowcasting
Influenza-like Illness Rates using Search Query Logs. Scientific Reports, 5(12760),
2015.

V. Lampos, E. Yom-Tov, R. Pebody, and L. J. Cox. Assessing the Impact of a Health
Intervention via User-Generated Internet Content. Data Mining and Knowledge
Discovery, 29(5), 2015.

V. Lampos, B. Zou, and L. J. Cox. Enhancing Feature Selection Using Word
Embeddings: The Case of Flu Surveillance. In The World Wide Web Conference,
2017.

F.]J. Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American statistical Association, 46(253), 1951.

F. D. McSherry. Privacy Integrated Queries: An Extensible Platform for Privacy-
preserving Data Analysis. In SIGMOD, 2009.

1497

(38]

(39]
[40]

[41

[42]

"~
&

[44

[45]
[46]

[47]

L. Melis, G. Danezis, and E. De Cristofaro. Efficient Private Statistics with Succinct
Sketches. In NDSS, 2016.

P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT: Privacy Preserving
Data Analysis Made Easy. In SIGMOD ’12, 2012.

Mozilla Labs. A Week in the Life of a Browser: Aggregated Data Sam-
ple. https://web.archive.org/web/20110711092459/https://testpilot.mozillalabs.
com/testcases/a-week-life/aggregated-data.html, 2011.

S. Palan and C. Schitter. Prolific.ac — A subject pool for online experiments.
Journal of Behavioral and Experimental Finance, 17, 2018.

J. Paparrizos, R. W. White, and E. Horvitz. Screening for Pancreatic Adenocarci-
noma Using Signals From Web Search Logs: Feasibility Study and Results. Journal
of Oncology Practice, 12(8), 2016.

V. Pinchin. I'm Feeling Yucky :(Searching for symptoms on
Google. Online at https://www.blog.google/products/search/
im-feeling-yucky-searching-for-symptoms/, 2016.

P. M. Polgreen, Y. Chen, D. M. Pennock, F. D. Nelson, and R. A. Weinstein. Using
Internet Searches for Influenza Surveillance. Clin. Infect. Dis., 47(11):1443-1448,
2008.

A. Pyrgelis, E. De Cristofaro, and G. J. Ross. Privacy-friendly mobility analytics
using aggregate location data. In SIGSPATIAL, 2016.

A. Pyrgelis, C. Troncoso, and E. De Cristofaro. Knock Knock, Who'’s There?
Membership Inference on Aggregate Location Data. In NDSS, 2018.

Y. Research. L18 - Anonymized Yahoo! Search Logs with Relevance Judgments.
Online at https://webscope.sandbox.yahoo.com/catalog.php?datatype=I.

L. Soldaini and E. Yom-Tov. Inferring Individual Attributes from Search Engine
Queries and Auxiliary Information. In The World Wide Web Conference, 2017.
D. Sullivan. Google now handles at least 2 trillion
searches per year. Online at https://searchengineland.com/
google-now-handles-2-999-trillion-searches- per-year-250247, 2016.

M. Wagner, V. Lampos, E. Yom-Tov, R. Pebody, and I. J. Cox. Estimating the
Population Impact of a New Pediatric Influenza Vaccination Program in England
Using Social Media Content. Journal of Medical Internet Research, 19(12), 2017.
R. White and E. Horvitz. Evaluation of the feasibility of screening patients for
early signs of lung carcinoma in web search logs. JAMA Oncology, 3(3), 2017.
L. Wu and E. Brynjolfsson. The Future of Prediction: How Google Searches Fore-
shadow Housing Prices and Sales. University of Chicago Press, 2015.

S. Yang, M. Santillana, and S. C. Kou. Accurate Estimation of Influenza Epidemics
using Google Search Data via ARGO. Proceedings of the National Academy of
Sciences, 112(47), 2015.

E. Yom-Tov. Crowdsourced Health — How What You Do on the Internet Will Improve
Medicine. MIT Press, 2016.

S. T. Zargar, J. Joshi, and D. Tipper. A Survey of Defense Mechanisms Against
Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Communications
Surveys Tutorials, 15(4), 2013.

T. Zeller. AOL executive quits after posting of search data. https://web.archive.org/
web/20061126162350/http://www.iht.com/articles/2006/08/22/business/aol.php,
2006.

P. Zhao and B. Yu. On Model Selection Consistency of Lasso. Journal of Machine
Learning Research, 7, 2006.

B. Zou, V. Lampos, and I. Cox. Multi-Task Learning Improves Disease Models
from Web Search. In The World Wide Web Conference, 2018.

H. Zou and T. Hastie. Regularization and Variable Selection via the Elastic Net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2),
2005.

https://blog.mozilla.org/data/2017/09/19/two-days-or-how-long-until-the-data-is-in/
https://blog.mozilla.org/data/2017/09/19/two-days-or-how-long-until-the-data-is-in/
https://web.archive.org/web/20110711092459/https://testpilot.mozillalabs.com/testcases/a-week-life/aggregated-data.html
https://web.archive.org/web/20110711092459/https://testpilot.mozillalabs.com/testcases/a-week-life/aggregated-data.html
https://www.blog.google/products/search/im-feeling-yucky-searching-for-symptoms/
https://www.blog.google/products/search/im-feeling-yucky-searching-for-symptoms/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-year-250247
https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-year-250247
https://web.archive.org/web/20061126162350/http://www.iht.com/articles/2006/08/22/business/aol.php
https://web.archive.org/web/20061126162350/http://www.iht.com/articles/2006/08/22/business/aol.php

	Abstract
	1 Introduction
	2 Related work
	3 Privacy-Preserving Aggregation
	3.1 Overview
	3.2 Privacy-Preserving Aggregation
	3.3 Challenges
	3.4 Enhanced Aggregation Protocol
	3.5 Example

	4 Configuring PDD through simulation
	4.1 The PDD Simulator
	4.2 Group Size
	4.3 Delay
	4.4 Improving Client Selection
	4.5 Building Confidence in the Platform

	5 Building a syndromic surveillance model for influenza-like illness
	5.1 Methodology
	5.2 Evaluating the Impact of PDD

	6 Real-world deployment
	6.1 System Architecture
	6.2 Real-World Experiment

	7 Conclusion
	References

