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Abstract 

This thesis describes computational modelling of information gathering behaviour 

under active inference – a framework for describing Bayes optimal behaviour. Under 

active inference perception, attention and action all serve for same purpose: 

minimising variational free energy. Variational free energy is an upper bound on 

surprise and minimising it maximises an agent’s evidence for its survival. An agent 

achieves this by acquiring information (resolving uncertainty) about the hidden states 

of the world and uses the acquired information to act on the outcomes it prefers. In 

this work I placed special emphasis on the resolution of uncertainty about the states 

of the world. I first created a visual search task called scene construction task. In this 

task one needs to accumulate evidence for competing hypotheses (different visual 

scenes) through sequential sampling of a visual scene and categorising it once there 

is sufficient evidence. I showed that a computational agent attends to the most salient 

(epistemically valuable) locations in this task. In the next, this task was performed by 

healthy humans. Healthy people’s exploration strategies provided evidence for 

uncertainty driven exploration. I also showed how different exploratory behaviours can 

be characterised using canonical correlation analysis. In the next study I showed how 

exploration of a visual scene under different instructions could be explained by 

appealing to the computational mechanisms that may correspond to attention. This 

entailed manipulating the precision of task irrelevant cues and their hidden causes as 

a function of instructions. In the final work, I was interested in characterising impulsive 

behaviour using a patch leaving paradigm. By varying the parameters of the MDP 

model, I showed that there could be at least three distinct causes of impulsive 

behaviour, namely a lower depth of planning, a lower capacity to maintain and process 

information, and an increased perceived value of immediate rewards. 
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Impact statement 

The work presented in this thesis uses a number of discrete space models of active 

inference to describe how events evolve through time, giving rise to categorical 

outcomes at each discrete time point. The behaviour under these models depends 

upon prior beliefs and different combinations of these prior beliefs can account for 

diverse human behaviours. This makes this framework suitable for studying the 

differences between individuals in terms of their prior beliefs. Given that a number of 

clinical disorders (including mental disorders) are linked with abnormal prior beliefs, 

this framework can be used to study psychopathologies as well. Further advances in 

these models may allow them to be used as diagnostic tools in the future.  

The models presented here are not implausible in the sense that the hidden state 

space is factorised in a fashion that bears a resemblance to functional segregation in 

the brain. An example of this is given in the models of visual search presented in this 

thesis. These models make a distinction between ‘what’ and ‘where’ attributes of a 

visual scene. This is similar to the functionally segregated ventral (what) and dorsal 

(where) streams in the brain. Using the same principles used in these models one can 

create neurobiologically plausible models. 

Active inference describes a neuronal process theory by minimisation of variational 

free energy. This framework proposes that neuronal responses can be described in 

terms of belief propagation which rests upon a gradient descent on variational free 

energy. Under neurobiologically plausible models one can use these belief updates to 

predict the electrophysiological responses one might expect in empirical studies. 

Moreover, one can fit models to the electrophysiological responses from empirical 

studies (in a similar fashion as fitting models to behavioural responses) to estimate 

subject (or group) specific prior beliefs, which would allow for studying individual 

and/or group level differences. 

In summary, the work presented here creates an opportunity to answer many other 

research questions by using model simulations and model fitting. Ultimately, these 

methods have the prospect of being used as a diagnostic tool, distinguishing between 

different clinical conditions, providing better and more customised clinical therapies.  
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1. Introduction 

Perception of an environment is crucial to take appropriate actions. This process 

requires accumulation of evidence sampled through our sensory organs piece by 

piece. Here, what I refer to as evidence is observations (under the same or different 

modalities) made at each unit time. Then our job as living agents is to find (or make) 

the observations that acquire the most information about our environment and use this 

information to take the actions that achieve our goals. But what is information? 

Although there are a number of different accounts of what information is, the account 

I use in this thesis is based on the concept of Bayesian surprise (Itti & Baldi, 2009) 

which suggests that the informative observations cause big shifts in our beliefs about 

the world. As an example one might think that he/she has a large amount of money in 

his/her wallet judging by the wallet’s thickness. Finding nothing but blank banknotes 

in the wallet and not real money would suddenly shift the beliefs about having a large 

amount of money to having no money at all. But how do we sample the informative 

observations? In order to understand this, we first need to understand the 

computational mechanisms underlying our behaviour. One can then ask the question 

‘How these computations are carried out physiologically?’  

In this thesis, my objective is to introduce computational models of information 

gathering. I use models based upon a Markov decision process variation of active 

inference throughout the thesis. Active inference is a Bayesian model of decision 

making which expresses behaviour in terms of a generative model of the task at hand.  

A generative model is a joint probability distribution over the outcomes and their hidden 

causes. A generative model can be thought of as an agent’s internal model that 

describe how the real-world dynamics generate observations (which is expressed by 

the generative process). These models express how the observed outcomes might 

have been generated by specifying a likelihood mapping from the hidden causes 

(hidden states and model parameters) to the observed outcomes and they depend 

upon prior beliefs. The prior beliefs correspond to the parameters or the 

hyperparameters of probability distributions that define the model.  

The use of generative models affords an opportunity to compare competing 

hypotheses that may underlie information gathering behaviour in terms of model 
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evidence obtained under each model. This would allow for interpreting the 

computational mechanisms underlying people’s behaviour in terms of the parameters 

of the generative model (with the greatest log evidence). This is important as a number 

of clinical conditions (e.g., schizophrenia, autism, anxiety, etc.) have been associated 

with atypical exploratory (or information gathering) behaviour and yet the 

computational mechanisms underlying the behaviour under these conditions are 

poorly understood. The exploratory behaviour in schizophrenia, for example have 

been described in terms of fewer fixations, shorter mean scan-paths (Tsunoda et al., 

1992) and on tasks which require information gathering, the scan-paths are much 

more restricted compared to that of healthy human subjects (Kojima et al., 1992). 

According to aberrant salience hypothesis of schizophrenia (Kapur, 2003) there is an 

abnormal attribution of salience to objects. People with a diagnosis of anxiety 

spectrum disorder attend less to the core facial features of people’s faces (Pelphrey 

et al., 2002) and superior to controls on visual search tasks that involve visual illusions 

(Happé, 1996). It has been suggested that these behaviours might be due to 

diminished use of prior beliefs when contextualising sensory data (Frith, 2003). Threat 

of shock induced anxiety studies show that a threat of shock during a facial expression 

identification task enhances people’s perception of fearful faces (stimuli that are 

congruent with anxiety or threat condition) while leaving the perception of happy faces 

unchanged (Robinson, Charney, Overstreet, Vytal, & Grillon, 2012). This is a finding 

that suggests that anxiety might have adaptive value. These results suggest that there 

might be distinct computational mechanisms underlying information gathering 

behaviour. The atypical exploratory behaviours mentioned in schizophrenia, autism 

and anxiety might be due to a number of things such as making false inferences about 

context which leads to abnormal attribution of salience to task irrelevant objects, 

context insensitive behaviour which might be due to inferring each context to be 

equally likely as the others, increased sensory perception for context relevant stimuli, 

respectively. In addition to these, one might ask whether people who suffer from 

clinical conditions have a bad model of the task at hand or whether they do not know 

the mapping from hidden states to outcomes. 

In psychiatry, the symptoms under the same psychiatric diagnosis might differ 

substantially (Fernandes et al., 2017). The generative models can be used for 

subtyping under the same psychiatric condition (Stephan & Mathys, 2014) and 
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classifying people who suffer from these conditions as mainly deficient in certain 

computational mechanisms. Associating these aberrant computational mechanisms 

with the physiological processes underlying them may lead to more personalised and 

improved therapy choices in the future.  

This thesis comprises seven chapters. The first is an introduction about what is 

described in the subsequent chapters. The final chapter is a general discussion of 

results and how these relate to the other works in the literature. The following 

paragraphs summarise the contents of the chapters of this thesis. 

In the second chapter, I explain active inference and its underlying formalism. Active 

or embodied inference is a corollary of the free energy principle that tries to explain 

the function of nervous systems in terms of the minimisation of variational free energy. 

Variational free energy is an upper bound on surprise or similarly a lower bound on 

Bayesian model evidence. This means that minimising free energy corresponds to 

maximising model evidence or equivalently avoiding surprises. The embodied or 

situated aspect of active inference acknowledges the fact that we are the authors of 

the sensory evidence we garner. This means that the consequences of sampling or 

action must themselves be inferred. This means that the problem that is tackled is not 

choosing the optimal action but to make optimal inference about actions. In turn, this 

implies that we have (prior) beliefs about our behaviour. Active inference assumes that 

the only self-consistent prior belief is that our actions will minimise free energy; in other 

words, we (believe we) will behave to avoid surprises or resolve uncertainty through 

active sampling of the world. 

In the third chapter I consider the (difficult) problem of categorising a scene. In the 

‘scene construction’ task I devised, scene categories are defined by the spatial 

relationships among visual objects. The objects are sampled through a sequence of 

saccadic eye movements, and the subject must decide on the category of the scene. 

In this task the evidence for competing hypotheses (categories) about the scene has 

to be accumulated sequentially, calling upon both prediction (planning) and postdiction 

(memory). Here, postdiction refers to the integration of information that is already 

acquired, whereas prediction corresponds to choosing the best location to look at next 

to resolve uncertainty about the scene category and categorise it once sufficient 
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evidence has been accumulated. In this task the resolution of uncertainty about hidden 

states of the world is crucial for efficient categorisation of the scene.  

In the fourth chapter, I present the results of an empirical study. The scene 

construction task was performed by healthy human subjects. I use active inference to 

explain the visual searches of these subjects; enabling me to answer some key 

questions about visual foraging and salience attribution. First, I asked whether there 

is any evidence that subjects’ exploratory behaviour resolves uncertainty about hidden 

states (e.g. scene category). In brief, I used Bayesian model comparison to compare 

Markov decision process (MDP) models of scan-paths that did – and did not – contain 

the uncertainty-resolving imperatives for action selection. In the course of this model 

comparison, I discovered that it was necessary to include heuristic policies to explain 

some observed behaviour (e.g., a reading-like strategy that involved scanning from 

left to right). Despite this use of heuristic policies, model comparison showed that there 

is substantial evidence for uncertainty driven visual exploration in even simple scenes 

like the ones I used. Second, I compared MDP models that did – and did not – allow 

for changes in prior expectations over successive blocks of the visual search 

paradigm. I found that implicit prior beliefs about the speed and accuracy of visual 

searches changed systematically with experience. Finally, I characterised intersubject 

variability in terms of subject-specific prior beliefs. Specifically, I used canonical 

correlation analysis to see if there were any mixtures of prior expectations that could 

predict between-subject differences in performance; thereby establishing a 

quantitative link between different behavioural phenotypes and Bayesian belief 

updating. I demonstrated that better scene categorisation performance is consistently 

associated with lower reliance on heuristics; i.e., a greater use of a generative model 

of the scene to direct its exploration.   

In the fifth chapter, I engage with the problem of how exploration strategies can be 

affected by a global context in a visual search task similar to the scene construction 

task. In active inference uncertainty resolving behaviour favours actions whose 

(sensory) consequences acquire information about the hidden states of the world (i.e. 

are salient). In other words, the actions that would cause the greatest shift in beliefs 

about the hidden states that define an environment. However, not all the information 

about the hidden states of an environment is relevant to the task at hand. While it may 
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be crucial to acquire information about one hidden state of an environment under one 

context, this information may completely be irrelevant under another context. In this 

chapter, I introduce a contextual epistemic search scheme, based upon active 

inference. I show that the salience of a visual cue depends upon contextual beliefs. 

Such beliefs ensure a new observation only causes a large shift in beliefs about the 

hidden aspects of an environment if it is task relevant (context dependent). 

The sixth chapter is about characterising impulsive behaviour using a patch leaving 

paradigm and active inference. This paradigm comprises different environments 

(patches) with limited resources that decline over time at different rates. Looking at 

this task from the perspective of the exploration and exploitation trade-off, it is highly 

relevant to computational modelling of information gathering as the challenge is to 

decide when to stop exploiting the current patch and explore other patches, to 

maximise reward. I chose this task because it offers an operational characterisation of 

impulsive behaviour; namely, maximising proximal reward at the expense of future 

gain. I use a Markov Decision Process (MDP) formulation of active inference to 

simulate behavioural and electrophysiological responses under different models and 

prior beliefs. My main finding is that there are at least three distinct causes of impulsive 

behaviour, which I demonstrate by manipulating three different components of the 

MDP model. These components comprise i) the depth of planning, ii) the capacity to 

maintain and process information, and iii) the perceived value of immediate (relative 

to delayed) rewards. I show how these manipulations change beliefs and subsequent 

choices, through variational message passing. Furthermore I appeal to the process 

theories associated with this message passing to simulate neuronal correlates.   
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2. Active inference 

Active inference is based upon the premise that every living thing minimises variational 

free energy. This single premise leads to some surprisingly simple update rules for 

action, perception, policy selection, and the encoding of salience or precision. In 

principle, the active inference scheme described below can be applied to any 

paradigm or choice behaviour. Indeed, earlier versions have already been used to 

model waiting games (K. Friston et al., 2013), two-step maze tasks (K. Friston et al., 

2015), the urn task and evidence accumulation (FitzGerald, Schwartenbeck, 

Moutoussis, Dolan, & Friston, 2015), trust games from behavioural economics 

(Moutoussis, Trujillo-Barreto, El-Deredy, Dolan, & Friston, 2014) and addictive 

behaviour (Schwartenbeck et al., 2015). It has also been used in the setting of 

computational fMRI (P. Schwartenbeck, T. H. FitzGerald, C. Mathys, R. Dolan, & K. 

Friston, 2014). 

2.1.  Variational free energy 

A characteristic attribute of biological systems is their adaptive exchange with 

changing  environments (K. Friston, 2010). This adaptive exchange requires i) the 

change in the environment to be recognised (perception), and ii) action to be taken, in 

order to keep a biological system in the environmental states conducive to existence 

(K. Friston, Kilner, & Harrison, 2006), e.g. living creatures can only exist in a narrow 

range of all possible temperatures. Another way to put this is that they must maintain 

a low entropy, or surprise (averaged over time). Active inference describes how an 

agent’s adaptive exchange with its environment can occur in a Bayes optimal fashion 

by minimising variational free energy.  

An agent’s perception of its environment and the actions it takes both suppress 

variational free energy. For an agent to infer (perceive) the state of its environment, it 

requires a generative model that describes how observed outcomes are generated by 

the environment (K. Friston, 2010; Thomas Parr, Rees, & Friston, 2018). Variational 

free energy F  is a functional of two things: the generative model  , |P o x m , and an 

approximate posterior distribution over the hidden causes  Q x  (Eq 1).  
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Variational free energy is an upper bound on surprise  ln |P o m , and minimising it 

minimises surprise. One can show this using Jensen’s inequality for concave 

functions: 

   

 
 

 
 

 
 

     

Variational free energy 

ln | ln , |

, | , |
ln ln

ln , | (1)

x

x x

F

Q x

P o m P o x m

P o x m P o x m
Q x Q x

Q x Q x

F E P o x m H Q x

  

  

        



    

Here F  is variational free energy, o  represents the sequence of observations over 

time 1 2[ , ,..., ]T

To o o o , x  represents the hidden causes and  Q x  is the approximate 

posterior distribution over the hidden causes and m  represents the model under which 

surprise is evaluated. 

Rearranging Eq 1 reveals that the variational free energy is an upper bound on 

surprise because the KL divergence in Eq 2 can never be less than zero. 

     

       

log evidenceRelative entropy

|| | ln | (2)

|| ln | (3)

KL

KL Q x

complexity accuracy

F D Q x P x o P o m

D Q x P x E P o x

    

        

  

Rearranging free energy reveals that it can be expressed as a mixture of different 

components. Eq. 3 shows that free energy is expressed in terms of complexity and 

accuracy. This means that minimising free energy is equivalent to minimising the 

complexity of accurate of explanations for observed outcomes. 

In variational Bayesian inference, model inversion entails minimising variational free 

energy with respect to the sufficient statistics (i.e., parameters) of the posterior beliefs 

(see Table 1 for a glossary of expressions). Minimising the variational free energy 

shows that the Jensen’s inequality is a good way to upper bound the surprise (or 

negative log evidence) as minimising the variational free energy minimises the 

distance between the approximate and true posterior distributions over the hidden 

causes, making this distribution an approximation of the true distribution. The 
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approximate posterior distribution becomes exact when the KL divergence in Eq. 2 is 

equal to zero and the variational free energy becomes the negative log-evidence 

obtained under the generative model.   

( )( ) arg min (4)

( | )

Q xQ x F

P x o




  

2.2.  Markov decision processes 

The Markov decision process (MDP) models use a discrete state space to describe 

how events evolve through time, giving rise to categorical outcomes at each (discrete) 

time point (T. Parr & Friston, 2018). Below is a graphical representation of this process. 

The graphical representation of Markov decision process is shown in Fig 2.1. This 

graph shows that the outcomes at each time step 
to  depend only on the hidden states 

in the same time step 
ts  and nothing else. Hidden states in the current time step 

ts  

depend on the hidden states in the previous time step 
1ts 
 and the policies  . A policy 

prescribes the sequence of actions one takes over time. Crucially, in active inference 

the agent has some control over parts of the environment. This means that the agent 

can control the transitions between some of the hidden states, through actions 

sampled from beliefs about policies  . This means that the observed sensory input 

depends on the hidden states that can be controlled through actions. 

 

Figure 2. 1 Markov decision process 

This graph shows a graphical representation of the Markov decision process and the conditional 

dependencies among the terms in the model.  
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Expressing variational free energy in terms of policies  , hidden states s  and 

outcomes o  reveals that it consists of three main terms. 

   

   

         

   

    

,

|

E [ ln ( , ) ln ]

E [ ln ( , , ) ln , ]

E [ln ln ( )] E [ ln ( , | ) ln | ]

[ ( ) || ( )] E [ ]

. ln (5)

Q s

Q s

Q Q s Q

Q

F P o s Q s

P o s Q s

Q P P o s Q s

D Q P F

G F


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

 

   

  

 

  

  
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The final equation above shows that variational free energy is formulated in terms of 

the posterior beliefs about the policies  Q  , expected free energy under a policy 

   G ln P    and free energy of hidden states under a policy  F  , where  Q    

is represented by  , and a particular policy is represented by  . Minimising free 

energy ensures expectations encode posterior beliefs, given observed outcomes. 

However, beliefs about policies rest on future outcomes. This means that policies 

should, a priori, minimise the free energy of beliefs about the future. This can be 

formalised by making the log probability of a policy proportional to the free energy 

expected in the future (K. Friston et al., 2015). The free energy of hidden states and 

the expected free energy are given below: 
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where ( , | ) ( | ) ( | ) ( , | , )Q Q o s P o s Q s P o s o            and    | , |Q o s P o s      

for t  . 

Expected free energy can be interpreted in several different ways. The second line in 

Eq. 7 shows that the expected free energy can be expressed in terms of epistemic 

and extrinsic value. Epistemic value is the expected information gain about the hidden 

states. It expresses how much the beliefs about the hidden states would be shifted by 

taking into account the expected outcomes in the future. Essentially, informative – 

epistemically valuable – observations are the ones that cause the biggest shifts in prior 

to posterior beliefs about hidden states. Epistemic value is Bayesian surprise (Itti & 

Baldi, 2009) expected under (expected) outcomes in the future. Extrinsic value 

expresses how much utility is expected to be acquired by pursuing different policies. 

Rearranging the expected free energy shows that it can be written in terms of risk and 

ambiguity (see Eq. 7 third line). Risk is the expected divergence from preferred 

outcomes, whereas ambiguity is the expected uncertainty in the mapping from hidden 

states to observations. Policies that minimise both risk and ambiguity are more likely 

to be chosen. 

2.3. Markovian generative model 

Active inference rests upon a generative model of observed outcomes. This model is 

used to infer the most likely causes of outcomes in terms of expectations about states 

of the world. These states are called hidden states because they can only be inferred 

indirectly through, possibly limited, sensory observations. In terms of active inference, 

making inferences about the hidden states corresponds to perception. Crucially, 

observations depend upon action, which requires the generative model to entertain 

expectations under different policies or action sequences. This means that under any 

policy the agent will form beliefs about the hidden states and evaluate the policies in 

terms of their free energy. Because the model generates the consequences of 

sequential action, it has explicit representations of the past and future; in other words, 

it is equipped with a working memory and expectations about future (counterfactual) 

states of the world under competing policies. While the working memory allows the 

generative model to accumulate information for competing hypothesis, the 

expectations about the future enables the generative model to have a free energy map 
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over policies, given the previously observed outcomes. These expectations are 

optimised by minimising variational free energy, which renders them (approximately) 

the most likely (posterior) expectations about states of the world, given the current 

observations.  

One crucial aspect of the free energy principle is that the free energy itself is a function 

of policies. Under each policy the agent entertains a free energy. This allows the 

generative model to evaluate the quality of each policy in terms of its free energy. A 

policy is more likely to be chosen if it returns the least free energy (or greatest model 

evidence). As I showed above, this expected free energy can be expressed in terms 

of epistemic and extrinsic value, where epistemic value scores the information gain or 

reduction in uncertainty about states of the world – and extrinsic value depends upon 

prior beliefs about future outcomes. These prior preferences play the role of utility in 

economics and reinforcement learning. A softmax function of free energies of all 

policies returns the relative probability of each policy with respect to each other. This 

softmax function is almost identical to the Boltzmann or Gibbs distribution in 

thermodynamics. In active inference, one can think of different policies as different 

models. Because expected free energy is a function of policies, one can evaluate the 

evidence for each policy in terms of the expected free energy obtained under different 

policies. Note that expected free energy is expressed in terms of log probabilities and 

therefore it is necessary to exponentiate it to convert to a probabilistic quantity. To 

ensure this quantity is a true probability distribution (i.e. sums to one), one needs to 

normalise it. Applying a softmax function (normalised exponential operator) to the 

(negative) expected free energies under all policies returns a probability distribution 

over policies. A policy with a high probability is more likely to fulfil an agent’s goals 

expressed in terms of extrinsic value (pragmatically driven behaviour) and epistemic 

value (uncertainty driven behaviour).  

Having evaluated the relative probability of different policies, expectations under each 

policy can then be averaged in proportion to their (posterior) probability. In statistics, 

this is known as Bayesian model averaging, given that each policy is considered as a 

model. 

     p s | o p s | o, p | o d                                                                                          (8) 
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where s  is the hidden states, o  is the observed outcomes and    refers to the models.  

The results of this averaging specify the next most likely hidden states and through 

that the most likely outcomes, which determines the next action. Once an action has 

been sampled, the generative process produces a new outcome and the (perception 

and action) cycle starts again. The resulting behaviour is a principled interrogation and 

sampling of sensory cues that has both epistemic and pragmatic aspects. Generally, 

behaviour in an ambiguous and uncertain context is dominated by epistemic drives 

until there is no further uncertainty to resolve. Once the level of uncertainty is reduced 

substantially extrinsic value takes over and drives the behaviour. At this point, 

explorative behaviour gives way to exploitative behaviour. In this thesis, I am primarily 

interested in the epistemic behaviour, and only use extrinsic value to encourage the 

agent to report its decision, when it is sufficiently confident. 

 

Figure 2. 2 Formal specification of the generative model 

These equations specify the form of the (Markovian) generative model used in this thesis. A generative 

model is essentially a specification of the joint probability of outcomes or consequences and their (latent 

or hidden) causes. Usually, this model is expressed in terms of a likelihood (the probability of 

consequences given causes) and priors over the causes. When a prior depends upon a random variable 

it is called an empirical prior. Here, the generative model specifies the mapping between hidden states 

and observable outcomes in terms of the likelihood. The priors in this instance pertain to transitions 
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among hidden states that depend upon action, where actions are determined probabilistically in terms 

of policies (sequences of actions). The key aspect of this generative model is that, a priori, policies are 

more probable if they minimise the (path integral of) expected free energy G. Bayesian model inversion 

refers to the inverse mapping from consequences to causes; i.e., estimating the hidden states and other 

variables that cause outcomes. 

In more detail: expectations about hidden states (and the precision of beliefs about 

competing policies) are updated to minimise variational free energy under a generative 

model. The generative model considered here is fairly generic (see Fig 2.2). Outcomes 

at any particular time depend upon hidden states, while hidden states depend upon 

action and the hidden states in the previous time step (as the Markov property 

mandates), and the policies depend on the inverse temperature or precision 𝛾. 

Formally, this model is specified by two sets of matrices (strictly speaking these are 

multidimensional arrays). The first is a likelihood matrix, 
m

A , that probabilistically maps 

from hidden states to the m-th outcome. The m-th sort of outcome here can be 

considered the m-th modality; for example, exteroceptive or proprioceptive 

observations. The second set of matrices  n aB , encode the transitions among the n-

th dimension of hidden states, given an action, a. The n-th sort of hidden state can 

correspond to different factors or attributes of the world; for example, the location of 

an object and its identity. These different hidden state dimensions can account for 

different characteristics of the world, such as what object is located where in the world.  

The remaining parameters encode prior beliefs about the initial states 
n

D , the 

precision of beliefs about policies  , where a policy returns an action at a particular 

time ( )a t  and prior preferences 
m

C  (see Fig 2.2). 

The form of the generative model in Fig 2.2 means that outcomes are generated in the 

following way: first, a policy is sampled from the beliefs about the repertoire of policies 

using a softmax function of expected free energy for each policy, where the inverse 

temperature or precision is selected from a prior (exponential) density. The sampled 

policy and the hidden states of different dimensions in the previous time step then 

determines the hidden states of different dimensions in the current time step. The 

hidden states in the current time step then generates outcomes under each modality. 

These new outcomes are available for the agent to observe and thus the perception 

and actions cycle starts again. Perception or inference corresponds to inverting or 
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fitting this generative model, given a sequence of outcomes. This corresponds to 

optimising the expected hidden states, policies and precision with respect to 

variational free energy. These (posterior) estimates constitute posterior beliefs, usually 

denoted by the probability distribution  Q x , where , ,x s    are the hidden or 

unknown variables. 

 

Figure 2. 3 Approximate posterior distribution 

In variational Bayesian inversion, one has to specify the form of an approximate posterior distribution. 

This particular form uses a mean field approximation, in which posterior beliefs are approximated by 

the product of marginals or factors. Here, a mean field approximation is applied both to posterior beliefs 

at different points in time and different sorts of hidden states. See the main text and Table 1 for more 

detailed explanation of the variables. 

I now turn to belief updating that is based on minimising free energy under the 

generative model described above. 

2.4.  Belief updates and message passing 

Under active inference, perception arises as a result of minimising variational free 

energy with respect to beliefs about hidden variables. Mathematically, this is 

implemented by using a gradient descent on the variational free energy for each 

hidden variable. It is easy to see that the updates minimise variational free energy 
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because they converge when the free energy gradients are zero: i.e., 0F  . The 

resulting belief update equations show how message passing occurs under this 

scheme (see Fig 2.4). 

Taking the gradient of variational free energy with respect to the hidden states after 

observing a new outcome gives the optimal solution to state estimation shown with *s  

(state estimation: first equation). The difference between *s  and the current beliefs 

about the hidden states s  generates a state prediction error 


  (second equation). A 

gradient descent on state prediction errors is used to infer the most likely hidden states 

(third equation). Here   represents the time steps from 1 to 1t  . When t  , the term 

in brackets (first equation) returns 1 and otherwise it returns 0. This means that the 

inference about the hidden states at the current time step t  depends on the observed 

outcomes from time step 1 to t , which allows for evidence accumulation over time. 

When t   beliefs about the hidden states do not depend on the outcomes as the 

outcomes have not been observed yet. This means that beliefs about the hidden states 

at t   depend only upon beliefs about hidden states in the previous 1s   and next 

1s   time steps. 

Beliefs about the inferred hidden states are projected into the future to form 

expectations about the most likely observations in the future under different policies. 

These expectations are used to compute the probability distribution over policies   

(policy evaluation: first equation) such that the most likely policy is that with the 

smallest free energy F  (second equation) and expected free energy G  (third 

equation). F  and G  are vectors with elements corresponding to each policy. The free 

energy F  under a policy is a function of the state prediction errors under that policy 

and the beliefs about states under that policy. The expected free energy G  is 

expressed in terms of risk and ambiguity. Risk is the expected divergence from 

preferred outcomes and expressed as the (expected) difference between (log) 

expected outcomes ln 

o  and preferred (log) outcomes C  expected under beliefs 

about future outcomes  ln 

   o o C . Ambiguity is the expected uncertainty in the 

mapping from hidden states to observations expected under beliefs about the hidden 
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states H s , where H  is the entropy of outcomes under all possible combinations of 

hidden states.  

The gradient of the variational free energy with respect to the temperature parameter 

(inverse precision) gives the optimal solution to this parameter 
*  (precision: first 

equation). The second equation shows that the prior beliefs about policies is 

expressed in terms of a softmax function of precision and expected free energy. The 

difference between 
*  and the current temperature parameter   generates a precision 

prediction error (third equation). A gradient descent on precision prediction error is 

used to update the inverse temperature parameter whose inverse is equal to the 

precision term   (fourth equation). 

In the action selection phase an action ta  is sampled from the most likely policies 

(action selection: first equation), where   corresponds to the beliefs about the 

policies. The expected states and outcomes are acquired by taking Bayesian model 

averages of the states s   (second equation) and outcomes o  (third equation) 

expected under each policy. Once an action is selected the environment will generate 

a new outcome that can be fed back to the generative model and thus the perception 

and action cycle begins again. 

These updates are remarkably plausible in terms of neurobiological schemes – as 

discussed elsewhere (K. Friston et al., 2014). For example, expectations about hidden 

states are a softmax function (c.f., neuronal activation function) of two terms. The first 

is a decay term, because the log of a probability is always zero or less. The second is 

the free energy gradient, which is just a linear mixture of (spiking) activity from other 

representations (expectations). Similarly, the precision updates are a softmax function 

of free energy and its expected value in the future, weighted by precision or inverse 

temperature. The expected precision is driven by the difference between the dot 

product of expected free energy with posterior beliefs about policies and the dot 

product of expected free energy with prior beliefs about policies. While the posterior 

beliefs about the policies   depend upon both the free energy based upon previous 

observations F  and the expected free energy G  (weighted by its precision  ), the 
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prior beliefs about the policies depend only upon the expected free energy G  

(weighted by its precision  ). If the dot product of the posterior beliefs about policies 

(which is based upon previous observations and future expected outcomes) and the 

expected free energy is smaller than the dot product of the prior beliefs (which is based 

upon only the future expected outcomes) about policies and the expected free energy, 

the temperature parameter   decreases and precision   increases (see Fig 2.4). 

This is very much like how dopamine is driven by the difference in expected and 

observed rewards (Schultz, Dayan, & Montague, 1997). See (K. Friston et al., 2015) 

for further discussion. 

 

Figure 2. 4 Belief update equations 

The belief update equations shown in this panel summarise the variational message passing. Belief 

updates occur through three phases, namely perception, policy evaluation and action selection. See 

the main text for details. 
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The key thing about these updates is that they provide a process theory that 

implements the normative theory offered by active inference. In other words, they 

constitute specific processes that make predictions about neuronal dynamics and 

responses. Although the focus of this paper is on behaviour and large-scale functional 

anatomy, I will illustrate the simulated neuronal responses associated with active 

inference in later sections.  
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3. Scene construction, visual foraging and active inference 

We have a remarkable capacity to sample our visual world in an efficient fashion, 

resolving uncertainty about the causes of our sensations so that we can act 

accordingly. This capacity calls on the ability to optimise not just beliefs about the world 

that is ‘out there’ but also the way in which we sample information (Andreopoulos & 

Tsotsos, 2013; Howard, 1966; Pezzulo, Rigoli, & Chersi, 2013; Shen, Valero, Day, & 

Paré, 2011; Wurtz, McAlonan, Cavanaugh, & Berman, 2011). This is particularly 

evident in active vision, where discrete and restricted (foveal) visual data is solicited 

every few hundred milliseconds, through saccadic eye movements (S Grossberg, K 

Roberts, M Aguilar, & D Bullock, 1997; K Srihasam, D Bullock, & S Grossberg, 2009). 

In this chapter, I consider the principles that underlie this visual foraging – and how it 

is underwritten by resolving uncertainty about the visual scene that is being explored. 

I approach this problem from the point of view of active inference; namely, the 

assumption that action and perception serve to minimise surprise or uncertainty under 

prior beliefs about how sensations are caused.  

I consider the problem of categorising a scene based upon the sequential sampling of 

local visual cues to construct a picture or hypothesis about how visual input is 

generated. This is essentially the problem of scene construction (Hassabis & Maguire, 

2007; Zeidman, Lutti, & Maguire, 2015), where each scene corresponds to a 

hypothesis. The main point that emerges from this perspective is that the scene exists 

only in the eye of the beholder: it is represented in a distributed fashion through 

recurrent message passing or belief propagation among functionally segregated 

representations of where (we are currently sampling) and what (is sampled). This 

application of active inference emphasises the epistemic value of free energy 

minimising behaviour – as opposed to the pragmatic (utilitarian) value of searching for 

preferred outcomes. Although the exploratory behaviour is driven by epistemic value, 

ensuing behaviour, namely, reporting beliefs about the hypothesis (or picture) requires 

pragmatic value to play a role. However, having said this, the theory (resp. simulations) 

uses exactly the same mathematics (resp. software routines) that is previously used 

to illustrate foraging behaviour in the context of reward seeking (K. Friston et al., 2015).  
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My aim is to introduce a model of epistemic foraging that can be applied to empirical 

saccadic eye movements and, ultimately, be used to phenotype individual subjects in 

terms of their prior beliefs: namely, the prior precision of beliefs about competing 

epistemic policies and the precision of prior preferences (c.f., ‘incentive epistemic’ and 

motivational salience). This may be particularly interesting when looking at 

schizophrenia and other clinical phenotypes that show characteristic abnormalities 

during visual (saccadic) exploration. For example, schizophrenia has been associated 

with ‘aberrant salience’, in which subjects attend to – and hence saccade to – 

inconsequential features of the environment (Beedie, Clair, & Benson, 2011; Kapur, 

2003). It is unclear, however, whether ‘aberrant’ salience is epistemic or motivational, 

or both; put simply, do subjects with schizophrenia fail to gather information, and/or 

fulfil their goals?  

This chapter comprises four sections. The first section describes a scene construction 

task and how this task is modelled using the active inference formalism. In brief, this 

paradigm requires agents to categorise a scene based upon sampling discrete (visual) 

cues. These visual cues are located in four quadrants in the scene and the agent starts 

engaging with this task from a central fixation location. The category of a scene is 

defined in terms of the relative locations of these visual cues, which means that the 

absolute locations of these cues (on what quadrant the cue is) by themselves do not 

speak to the category of a scene. To get the agent to report its beliefs about the 

category of a scene, equipped the agent’s generative model is equipped with 

preferences for correct feedback and a dislike of incorrect feedback. The second 

section describes mean field assumption and functional segregation. In the third 

section, agent’s exploratory behaviour has been described using simulated saccadic 

patterns. The variational belief updating that has occurred in the course of a trial has 

been used to emulate the electrophysiological responses observed in empirical 

studies. Simulated behavioural and electrophysiological responses have been shown 

on a sequence of trials as well. The fourth section shows how exploratory behaviour 

and the ensuing categorization change on trials under different levels of prior precision 

and preferences (for avoiding incorrect feedback). The results are characterised in 

terms of simulated saccadic intervals, and the usual behavioural measures of speed 

and accuracy. I conclude with a discussion of how this model might be used in an 

empirical (computational psychiatry) setting. 
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3.1.  Active inference and visual foraging 

This section uses active inference for Markov decision processes to illustrate 

epistemic foraging in the setting of visual searches. Here, the agent has to categorise 

a scene on the basis of the relative position of various visual objects – that are initially 

unknown.  The agent samples one location (thus one cue) at a time and accumulates 

evidence for how the scene was generated. When the agent is sufficiently confident 

about its perceptual categorisation, it makes a saccade to a choice location – to obtain 

feedback (‘right’ or ‘wrong’). A priori, the agent expects to obtain ‘correct’ feedback 

and not ‘incorrect’ feedback. I first illustrate a single trial in terms of behaviour and 

underlying electrophysiological responses. The next section then considers 

sequences of trials and how average behaviour (accuracy, number of saccades and 

saccadic intervals) depends upon prior preferences and precision. 

This demonstration uses a mean field approximation to the posterior over different 

hidden states (context, sampling location, and spatial transformations). In addition, two 

outcome modalities (exteroceptive or ‘what’ and proprioceptive or ‘where’) are 

considered.  In this example, the agent has to categorise a scene that comprises cues 

at four peripheral locations, starting from a central fixation point. This involves a form 

of scene construction, in which the category of the scene is determined by the spatial 

relationship between various cues. The scene always contains a bird and seed, or a 

bird and a cat. If the bird is next to the seed or the cat, then the scene is categorised 

as ‘feed’ or ‘flee’ respectively. Conversely, if the seed is diagonally opposite the bird, 

the category is ‘wait’. As long as the relative locations of the cues remain the same, 

the absolute locations of the cues in the scene do not change the context of the scene, 

e.g. if the bird is next to seed then the particular locations of these objects (whether 

they are in the bottom or top quadrants) in the two by two grid wouldn’t matter in terms 

of the context, this scene would always be of the context ‘feed’. This means hidden 

states have to include spatial mappings that induce invariances to spatial 

transformations. These are reflections around the horizontal and vertical axes. 

Fig 3.1B shows the hidden states and outcomes in more detail: there are two outcome 

modalities (what and where), encoding one of six cues (distractor, seed, bird, cat and 

right or wrong feedback) and one of eight sampled locations (central fixation, four 

quadrants and three choice locations that provide feedback about the respective 
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decision). There are four dimensions of hidden states; corresponding to context (feed, 

flee and wait), the currently sampled location (one of the eight locations above) and 

two further dimensions modelling the absolute locations of the cues in a scene (i.e., 

with and without reflections about the vertical and horizontal axes). The three scenes 

under each context (flee, feed and wait) in the top panel of Fig 3.1B are referred to as 

base scenes. The context or category defines the objects (distractor, seed, bird and 

cat) and their relative locations. The hidden states mediating (vertical and horizontal) 

transformations define the absolute locations and are implemented with respect to the 

base scenes. For example, in the case of a flee scene, the bird and cat may exchange 

locations under a vertical transformation. Since the absolute and relative positions of 

the objects (and the objects themselves) are hidden causes of the scene’s 

appearance, they are not affected by the agent’s actions. 

 

Figure 3. 1 Graphical model corresponding to the generative model 

A) The structure of the environment is expressed in terms of the transition and likelihood matrices. The 

likelihood matrix ( A ) is a mapping from the hidden states ( ts ) to the outcomes ( to ). The state 

transitions are mediated by the transition matrix ( B ) which expresses how likely the current state ( ts ) 

is given the previous state ( t-1s ). Crucially, the transition matrix is a function of action which can be 
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sampled from the beliefs about the policies. The beliefs about the policies ( ) depend on the expected 

free energy ( G ) and the precision of policy selection (  ). The expected free energy comprises extrinsic 

and epistemic values. Extrinsic value is a function of the prior preference matrix ( C ) which encodes 

how much one outcome is expected relative to another. Precision of policy selection ( ) is a function 

of the temperature term (  ). The smaller the temperature the more deterministic the policy selection 

becomes. B) The right panels show an example of different hidden states and outcomes modalities. 

This particular example will be used later to model perceptual categorisation in terms of three scenarios 

or scenes (flee, feed or wait). The two outcome modalities effectively report what is seen and where it 

is seen. See the main text for a more detailed explanation. 

Given that every context is equally likely, the relative locations of the cues render 

certain locations more informative than others based on the first seen cue. This means 

that certain locations become more attractive or salient because of the information 

they hold. Crucially, there are better ways of exploring a scene. Given that the first 

seen cue is bird, the quadrant adjacent to where the bird is, is more informative. Fig 

3.2 shows certain ways of exploring a scene given the first seen cue in order to 

categorize the scene, taking minimum number of actions. Obviously the exploratory 

behaviour is belief based and is dependent on the agent’s perception of the scene. 

There are certain parameter combinations that enable the agent to explore the scene 

that is described as in Fig 3.2. 

Heuristically, the model in Fig 3.1 generates outcomes in the following way. First, one 

of the three canonical scenes or contexts is selected. This scene can be flipped 

vertically or horizontally (or both) depending upon the spatial transformation states. 

Finally, the sampled location specifies the exteroceptive visual cue and the 

proprioceptive outcome signalling the location. This model can be specified in a 

straightforward way by specifying the two outcomes for every combination of hidden 

states in 1 6 (3 8 2 2)   A  and 1 6 (3 8 2 2)   A . The arrays in these two matrices just 

contain a one for each outcome when the combination of hidden states generates the 

appropriate outcome, and zeros elsewhere. These two matrices encode the 

observation likelihoods in the two outcome modalities what and where. Here, 

𝐀1 defines the identity (what) of objects that are likely to be sampled (i.e., observed), 

under all possible combinations of hidden states, while 𝐀2 defines the likely locations 

(where) of the objects. The transition matrices are similarly simple: since the only 

hidden state that can change is the sample locations, the other states that define the 
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scene (through context and spatial formations) map onto themselves (identity 

matrices). Action dependent transition matrix encoding the transitions among locations 

is given by: 

2 (8 8) 8
1,

( )
0,

ij

i k
k

i k

 


  


B                   (9) 

where {1, 2,...,8}k  . Prior beliefs about the initial states n
D  (context and projections) 

were uniform distributions; apart from the sampled location, which always started at 

the central fixation 2 [1,0, ,0]D  where 2
D  is a one by eight vector. Here, 𝑛 indicates 

the dimension of the hidden states with 𝑛 ∈ {1,2,3,4}. There are four dimensions of 

hidden states, namely context or category of the scene, sampling location (one of eight 

locations), and the two spatial transformations (horizontal and vertical flips). 

 

Figure 3. 2 Minimum number action policy 

There are certain ways of exploring the scene making minimum number of saccades before 

categorizing the scene, given the first seen cue. If the first seen cue is a null content then a good way 

to explore the scene is to look at the quadrant that is on the same diagonal as the ‘null’. If the first seen 

cue is the ‘bird’ then looking at the quadrant adjacent to where the bird is ensures taking the minimum 

number of actions. Given the first seen cue is the ‘seed’ there are two possible good ways to explore 

the scene, these are either exploring the juxtaposed quadrant or the diagonal. Finally if the cat is seen 

first then there is no reason to explore the scene, since the cat only exists in the scenes of flee context.   

After the generative model has been specified, all its parameters are specified through 

minimisation of free energy. This means there are only two parameters that can be 
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adjusted; namely, prior preferences about outcomes, 𝐶 and prior precision or 

confidence in beliefs about policies, 𝛾. In this case, the agent has no prior preference 

(i.e., flat priors) about locations but believes that it will correctly categorize a scene 

after it has accumulated sufficient evidence. Prior preferences over the outcome 

modalities were therefore used to encourage the agent to choose policies that elicited 

correct feedback 𝐶1 = [0, … ,0, 𝑐, −2𝑐]: 𝑐 = 2, with no preference for sampled locations 

𝐶2 = [0, … ,0]. Here, 𝑐 is the utility of making a correct categorization, −2𝑐 is the utility 

of being wrong. These preferences mean that the agent expects to obtain correct 

feedback exp(𝑐) times more than visual cues – and believes it will solicit incorrect 

feedback very rarely. Although the main role of these utilities is to encourage the agent 

to categorize the scene correctly, the relative utility of the correct and incorrect 

feedback can change the way the agent explores the scene. If the balance between 

these two utilities is off, the agent may get too eager to categorize the scene, 

neglecting the importance of information accumulation, e.g. the utility of the correct 

feedback is much greater than incorrect feedback or it may get apathetic to categorize 

the scene, e.g. the utility of correct feedback is much smaller than the incorrect 

feedback. The prior precision of beliefs about behaviours (policies or future actions) 

𝛾 =
1

𝛽
 plays the role of an inverse temperature parameter. As the precision increases, 

the sampling of the next action tends to be more deterministic; favouring the policy 

with the lowest expected free energy. Conversely as the precision of beliefs decreases 

the distribution of beliefs over the policies becomes more uniform; i.e., the agent 

becomes more uncertain about the policy it is pursuing.  

With these preferences, the agent should act to maximise epistemic value or resolve 

uncertainty about the unknown context (the scene and its spatial transformations), until 

the uncertainty about the scene is reduced to a minimum. At this point,  agent’s beliefs 

about the context of the scene allows it to maximise extrinsic value by sampling the 

choice location it believes will provide feedback that endorses its beliefs. This speaks 

to the trade-off between exploration and exploitation. Essentially, actions associated 

with exploration of the scene (one of four quadrants) have no extrinsic value - they are 

purely epistemic. In contrast, actions associated with the choice locations (locations 

that are used to report the scene’s category) have extrinsic value, because the agent 

is equipped with prior preferences about the consequences of these actions. The 
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contributions of epistemic and extrinsic value to policy (and subsequent action) 

selection are determined by their contributions to expected free energy (see Eq 7). In 

other words, there is only one imperative (to minimise free energy); however, free 

energy can always be expressed as a mixture of epistemic and extrinsic value. The 

relative contribution is determined by the precision of prior preferences, in relation to 

the epistemic part. The exploration and exploitation dilemma is resolved such that 

when the extrinsic value of the policies associated with a choice is greater than the 

epistemic value, the agent terminates the exploration and exploits one of the choice 

locations (i.e. declares its decision). This reflects a general behavioural pattern during 

active inference; namely, uncertainty is resolved via minimising a free energy that is 

initially dominated by epistemic value – until extrinsic value or prior preferences 

dominate and exploitation supervenes. Notice that pragmatic behaviour (choice 

behaviour) is driven by preferences in one modality (exteroceptive outcomes), while 

action is driven by predictions in another (proprioceptive sampling location). Despite 

this, action brings about preferred outcomes. This rests upon the recurrent belief 

updating that links the ‘what’ and ‘where’ streams in Fig 3.3. In this graphic, I have 

assumed that proprioceptive information has been passed from the trigeminal nucleus, 

via the superior colliculus to visual cortex (Donaldson, 2000). 

Notice that in this work, the agent cannot resolve uncertainty about the sampling 

location afforded by the observations since there is no posterior uncertainty about the 

sampled locations. The resolution of uncertainty in terms of epistemic value gains 

information about the rest of the hidden state dimensions, namely, the context and the 

two spatial transformation dimensions.  

3.2.  Functional segregation and the mean field approximation 

An important aspect of the belief updating in Fig 2.4 is that it is formulated for a 

particular form of posterior density. This form rests upon something called a mean field 

approximation, which is a ubiquitous device in Bayesian statistics (and statistical 

physics) (Jaakkola & Jordan, 1998). Fig 2.3 expresses the posterior as a product of 

independent marginal distributions over different sorts of hidden states (i.e., factors) 

at different time points, distributions over the policies and precision. Instead of 

encoding expectations of a full joint distribution over several factors (e.g., where an 

object is and what an object is), one just needs to represent both attributes in terms of 
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their marginal distributions. Similarly, instead of representing the entire trajectory of 

hidden states over time, one can approximate the trajectory by encoding expectations 

at each time point separately. This leads to an enormous simplification of the numerics 

and belief updating. However, there is a price to pay: because the posterior beliefs are 

conditionally independent, dependencies among the factors are ignored. Generally, 

this leads to overconfidence, when inferring hidden states – there is an example of this 

in simulated responses (see the next section). 

From a neurobiological perspective, the mean field approximation corresponds to the 

principle of functional segregation, in which representations are anatomically 

segregated in the cortical mantle (Zeki & Shipp, 1988). A nice example of this is the 

segregation of ventral and dorsal visual processing streams that deal with ‘what’ and 

‘where’ attributes of a visual scene respectively (Ungerleider & Mishkin, 1982). In the 

absence of a mean field approximation, there would be neuronal representations of 

every possible object in every location. It is this aspect of approximate (variational) 

Bayesian inference I emphasise in this chapter, by sketching the implications for large-

scale functional anatomy. The segregation or factorisation into ‘what’ and ‘where’ 

attributes is particularly prescient for the oculomotor control of saccadic eye 

movements. This is because action is only specified by the states or attributes of the 

world that it can change. Clearly, saccadic eye movements only change where one is 

looking but not any other aspect of the world (e.g. what is sampled). This means that 

only one factor or posterior marginal is sufficient to prescribe action. 

In visual search paradigms one can use the saccadic choices of the subjects as a 

surrogate for the brain responses as the cognitive processes give rise to vision. In 

theory one can fit neurobiologically plausible models (such as the one introduced in 

this chapter) to the choice behaviour of the subjects and estimate subject specific 

model parameters. Crucially, these model parameters are hypothesised to be related 

to distinct neural circuits. Estimating these model parameters and validating their 

associations with distinct neural components may allow for bridging the gap between 

the behaviour under psychiatric conditions and their pathophysiologies.  
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Figure 3. 3 Schematic overview of the belief updates describing active inference 

In this figure the quantities that are updated (sufficient statistics or expectations) are assigned to various 

brain areas. The implicit attribution should not be taken too seriously but serves to illustrate the 

functional anatomy implied by the form of the belief updates. Here, observed outcomes have been 

assigned to visual representations in the occipital cortex; with exteroceptive (what) modalities entering 

a ventral stream and proprioceptive (where) modalities originating a dorsal stream. Hidden states 

encoding context have been associated with the hippocampal formation, while the remaining states 

encoding sampling location and spatial invariance have been assigned to the parietal cortex. The 

evaluation of policies, in terms of their (expected) free energy, has been placed in the ventral prefrontal 

cortex. Expectations about policies per se and the precision of these beliefs have been associated with 

striatal and ventral tegmental areas to indicate a putative role for dopamine in encoding precision. 

Finally, beliefs about policies are used to create Bayesian model averages of future outcomes (in the 

frontal eye fields) – that are fulfilled by action, via the deep layers of the superior colliculus. The arrows 

denote message passing among the sufficient statistics of each factor or marginal. Please see the text 

and Table 1 for an explanation of the equations and variables. 
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For illustrative purposes, Fig 3.3 shows how the variables and model parameters in 

this scheme could be encoded in the brain. The encoding of object identity is assigned 

to inferotemporal cortex (Seeck et al., 1995). The representation of location is 

associated with (dorsal) extrastriate cortex (Haxby et al., 1994). Beliefs about 

sampling locations and spatial invariances are attributed to parietal cortex, which 

anticipates the retinal location of stimuli in the future and updates the locations of 

stimuli sampled in the past (Duhamel, Colby, & Goldberg, 1992). Inference about 

scene identity (based on the spatial relationships among objects) is attributed to the 

hippocampus (Rudy, 2009). Beliefs about policies are assigned to the striatum (Frank, 

2011), which receives inputs from prefrontal cortex, ventral tegmental area 

and hippocampus to coordinate planning (in prefrontal cortex, see (Tanji & Hoshi, 

2001)) and execution (VTA/SN), given a particular context. In active inference, action 

selection depends upon the precision of beliefs about policies (future behaviour), 

encoded by dopaminergic projections from VTA/SN to the striatum (Philipp 

Schwartenbeck, Thomas HB FitzGerald, Christoph Mathys, Ray Dolan, & Karl Friston, 

2014).  Frontal eye fields are involved in saccade planning (Krishna Srihasam, Daniel 

Bullock, & Stephen Grossberg, 2009) and the superior colliculus mediates eye 

movement control (Stephen Grossberg, Karen Roberts, Mario Aguilar, & Daniel 

Bullock, 1997) – by fulfilling expectations about action that are conveyed from frontal 

eye fields. 

Summary 

By assuming a generic (Markovian) form for the generative model, it is fairly simple to 

derive Bayesian updates that clarify the interrelationships between perception, policy 

selection, precision and action. In brief, the agent first infers the hidden states under 

each model or policy based on the outcomes it observes. It then evaluates the 

evidence for each policy in terms of the free energy of hidden states, expected free 

energy and precision. Beliefs about policies are used to form a Bayesian model 

average of the next states and thus outcomes, which is realised through action. The 

anatomy of the implicit message passing is not inconsistent with functional anatomy 

in the brain: see (K. Friston et al., 2014) and Fig 3.3. Fig 3.3 shows the functional 

anatomy implied by the mean field approximation and belief updating in Fig 2.3 and 

Fig 2.4, respectively. Here, I have assumed two input modalities (what and where) and 
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four sets of hidden states; first one encodes the context of the scene, second one 

encodes the location that the agent sampled, and the last two encode spatial 

transformations that define the absolute locations of the cues.. The anatomical 

designation in Fig 3.3 should not be taken too seriously – the purpose of this illustration 

is to highlight the recurrent message passing among the expectations that constitute 

beliefs about segregated or factorised states of the world. Here, I emphasise the 

segregation between what and where streams – and how the dorsal where stream 

supplies predicted outcomes (to frontal eye fields) that action can realise (via the 

superior colliculus). The precision of beliefs about policies has been assigned to 

dopaminergic projections to the striatum. I will use this particular architecture in the 

next section to illustrate the behavioural (and electrophysiological) responses that 

emerge under this scheme.  

The following simulations can be reproduced (and modified) by downloading the DEM 

Toolbox and invoking DEM_demo_MDP_search.m. This annotated code can also be 

edited and executed via a graphical user interface; by typing >> DEM and selecting 

the Visual foraging demo. This demo can be compared with the equivalent variational 

filtering scheme (for continuous state-space models) in the Visual search demo, 

described in (K. Friston, Adams, Perrinet, & Breakspear, 2012).  

3.3.  Simulating saccadic searches 

Fig 3.4 shows the results of updating the equations in Fig 2.4, using 16 belief updates 

between each of five saccades. Beliefs about hidden states are updated using a 

gradient descent on variational free energy. This gradient descent usually converges 

to a minimum within about 16 iterations. I therefore fixed the number of iterations to 

16 for simplicity. This imposes a temporal scheduling on belief updates and ensures 

that the majority (here, more than 80%) of epochs attain convergence (this 

convergence can be seen in later figures, in terms of simulated electrophysiological 

responses). The belief updates are shown in terms of posterior beliefs about hidden 

states (upper left panels), posterior beliefs about action (upper centre panel) and the 

ensuing behaviour (upper right panel). Here, the agent constructed policies on-the-fly 

by adding all possible actions (saccadic movement to the eight possible locations) to 

previous actions. This means that the agent only looks one move ahead – and yet 

manages to make a correct categorisation in the minimum number of saccadic eye 
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movements: in this trial, the agent first looks to the lower right quadrant and finds a 

distractor (omitted in the figures for clarity). It then samples the upper quadrants to 

resolve uncertainty about the context, before soliciting feedback by choosing the 

(correct) choice location. The progressive resolution of uncertainty over the three initial 

saccades is shown in more detail in the lower panels.   

Here, posterior beliefs about the state of the world (the nature of the canonical scene 

and spatial transformations) are illustrated graphically by weighting the predicted 

visual cue – under each state – in proportion to the posterior beliefs about that state. 

Each successive image reports the posterior beliefs after the first three saccades to 

the peripheral locations, while the insert in the centre is the visual outcome after each 

saccade. Initially, all four peripheral cue locations could contain any of the visual 

objects; however, after the first saccade to the lower right quadrant, the agent believes 

that the objects (bird and seed or cat) are in the upper quadrants. It then confirms this 

belief and resolves uncertainty about vertical reflection by sampling the upper right 

quadrant to disclose a bird. Finally, to make a definitive decision about the underlying 

scene, it has to sample the juxtaposed location to resolve its uncertainty about whether 

this contains seed or cat. Having observed cat, it can then make the correct choice 

and fulfil its prior beliefs or preferences by reporting its beliefs about the category of 

the scene.  

This particular example is interesting because it illustrates the overconfidence 

associated with a mean field approximation. Note that after the first saccade the agent 

assumes that the scene must be either a feed or flee category, believing the scene is 

flipped horizontally. This is reflected in the fact that the lower quadrants are perceived 

as empty and the belief that the bird cannot exist in the top left quadrant under its 

posterior beliefs. If the agent was performing exact Bayesian inference it would allow 

for the possibility of a wait scenario, with the bird and seed on the diagonal locations. 

In this instance, it would know that there must have been either a vertical or horizontal 

reflection (but not both). However, this belief cannot be entertained under the mean 

field approximation, because inferring a vertical or horizontal reflection depends on 

whether or not the scene is a wait category, and the beliefs about the hidden state 

dimensions that encode the spatial transformations and the context are conditionally 

independent. These conditional dependencies are precluded by the mean field 
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approximation; in other words, posterior beliefs about one hidden states (e.g., 

reflection) cannot depend upon posterior beliefs about another (e.g., scene category). 

The agent therefore finds the most plausible explanation for the current sensory 

evidence, in the absence of conditional dependencies; namely, there has been no 

vertical reflection and the scene is not ‘wait’. If the brain does indeed use mean field 

approximations – as suggested by the overwhelming evidence for functional 

segregation – one might anticipate similar perceptual synthesis and saccadic eye 

movements in human subjects. In principle, one could compare predictions of 

empirical eye movements under active inference schemes with and without mean field 

approximations – and test the hypothesis that the brain uses marginal representations 

of the sort assumed here (see discussion). 

 

Figure 3. 4 Simulated visual search 

A) This panel shows the expectations about hidden states and the expectations of actions are shown 

in B) (upper middle), producing the search trajectory in C) – after completion of the last saccadic 

movement. Expectations are shown in image format with black representing 100% probability. For the 

hidden states each of the four factors or marginals are shown separately, with the true states indicated 

by cyan dots. Here, there are five saccades and the agent represents hidden states generating six 

outcomes (the initial state and five subsequent outcomes). The results are shown after completion of 

the last saccadic, which means that, retrospectively, the agent beliefs it started in a flee context, with 

no horizontal or vertical reflection. The sequence of sampling locations indicates that the agent first 

interrogated the lower right quadrant and then emitted saccades to the upper locations to correctly infer 
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the scene – and make the correct choice (indicated by the red label). The lower panel D) illustrates the 

beliefs about context during the first four saccades. Initially, the agent is very uncertain about the 

constituents of each peripheral location; however, this uncertainty is progressively resolved through 

epistemic foraging, based upon the cues that are elicited by saccades (shown in the central location). 

The blue dots indicate the sampling location after each saccade. 

3.3.1. Electrophysiological correlates of variational belief updating  

Fig 3.5 shows the belief updating during the above visual search to emulate 

electrophysiological responses measured in empirical studies. The upper left panel 

shows simulated neuronal activity (firing rates) for units encoding the first (scene 

category) hidden state using an image (or raster) format. Each row of blocks shows 

the beliefs about the category of the scene over six time steps. In each row of blocks 

the top, middle and bottom lanes correspond to the beliefs about the scene categories 

flee, feed and wait respectively (the change in beliefs about the context are shown 

with colours grey, white and black). Units here correspond to the expectations 

(posterior probabilities) about hidden states of the world. Each block (square) of the 

raster encodes the activity over 16 time bins (belief updates) between one saccade 

and the next, with one hidden state in each row. The beliefs about the context (flee, 

feed or wait) hidden state dimension are shown over 6 different time steps. Crucially, 

there are two sorts of time shown in these responses. Each row of blocks reports 

expectations about one of the three categories at different times in the future (or past) 

– here, beliefs about the context following each of the six saccades. Each column of 

blocks shows the expectations (about the past and future) at a particular point during 

the trial. These expectations in the columns show the agent’s beliefs about the context 

projected into the future and the past. This effectively shows the beliefs about the 

hidden states in the past and the future. For example, the second row of blocks 

summarises belief updates about the second epoch over subsequent saccades; i.e., 

expectations about the context in the second saccade are updated in the following 

saccades (blocks to the right), while the first column of blocks encodes beliefs about 

future states prior to emission of the first saccade; i.e., expectations about the context 

in the second time step is projected into the past (one block above) and into the future 

(one block below). This means beliefs about the current state occupy blocks along the 

leading diagonal (highlighted in red), while expectations about states in the past and 

future are above and below the diagonal respectively. For example, the colour density 
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in the first row denotes the posterior probability of the context being ‘flee’ during the 

first epoch at different saccades: this expectation about context prior to the first 

saccade only becomes definitive at around 0.9 s (during the fourth saccade). 

Conversely, row 12 denotes the posterior probability of ‘wait’ during the fourth epoch: 

note that this converges to zero before the fourth saccade has occurred. 

This format illustrates the encoding of states over time, emphasising the implicit 

representation of the past and future. To interpret these responses in relation to 

empirical results, one can assume that outcomes are sampled every 250 ms (K 

Srihasam et al., 2009). Note the changes in activity after each new outcome is 

observed. For example, the two units encoding the first two hidden states start off with 

uniform expectations over the three scenes that switches after the second and fourth 

saccade to eventually encode the expectation that the first (flee) scene is being 

sampled. Crucially, by the end of the visual search, these expectations pertain to the 

past; namely, the context at the start of the trial. In other words, these memories are 

based upon postdiction. Postdiction allows two things here. Firstly, it enables evidence 

accumulation under each policy (one of eight) by projecting the beliefs about the 

hidden states into the past as new observations become available. This means that 

the beliefs about the hidden states become approximately equal. Secondly, since the 

evidence under each policy (one of eight) is approximately equal, the agent needs to 

consider only one of eight actions when looking one step ahead while having the same 

accumulated evidence under each policy in the past time steps. Postdiction allows 

evidence accumulation and reduces the computation burden of having a large policy 

tree. Although not illustrated here, this can be very useful when updating beliefs 

between trials (when the context does not change). 

The upper right panel plots the same information (expectations about the hidden 

states) to highlight saltatory evidence accumulation, in which expectations diverge as 

the search progresses. This belief updating is very similar to evidence accumulation 

described by drift diffusion or race-to-bound models (de Lafuente, Jazayeri, & 

Shadlen, 2015; Kira, Yang, & Shadlen, 2015). Drift diffusion models describe evidence 

accumulation for different alternatives over time and this process is subject to noise. 

Under these models a response is initiated once a decision boundary is reached as a 

result of evidence accumulation. This is similar to how evidence accumulation occurs 
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under active inference where the evidence for different alternatives is accumulated as 

new observations are made. One can define a decision boundary – a criterion to 

terminate belief updates over the hidden states – in terms of the entropy over the 

posterior probability distribution over the hidden states as well. 

 

Figure 3. 5 Simulated electrophysiological responses 

This figure reports the belief updating behind the behaviour shown in the previous figure. A) The upper 

left panel shows the activity (firing rate) of units encoding the context or scene in image (raster) format, 

over the six intervals between saccades. These responses are organised such that the upper rows 

encode the probability of alternative states in the first epoch, with subsequent epochs in lower rows. B) 

The upper right panel plots the same information to illustrate the evidence accumulation and the 

resulting disambiguation of context. C) The simulated local field potentials for these units (i.e. the rate 

of change of neuronal firing) are shown in the middle left panel. D) The middle right panel shows 

average local field potential over all units before (dotted line) and after (solid line) bandpass filtering at 

4 Hz, superimposed upon its time frequency decomposition.  

Furthermore, the separation of timescales implicit in variational updating reproduces 

the stepping dynamics seen in lateral intraparietal responses during decision-making 

in macaque studies (Latimer, Yates, Meister, Huk, & Pillow, 2015). The middle left 
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panel shows the associated local field potentials, which are simply the rate of change 

of neuronal firing (beliefs about contexts) shown on the upper right panel. The bottom 

right panel of Fig 3.5 shows the simulated local field potential averaged over all units 

before (dotted line) and after (solid line) bandpass filtering at 4 Hz. These responses 

are superimposed on its time frequency decomposition. The key observation here is 

that depolarisation in the theta range coincides with induced responses – a theme that 

is pursued elsewhere in terms of theta-gamma coupling in the brain (Canolty et al., 

2006; K. Friston et al., 2014; J. Lisman & Redish, 2009). Theta-gamma coupling has 

been observed in hippocampal place cell activity in rodent studies (J. E. Lisman & 

Jensen, 2013). Although not shown here, the same variational message passing 

scheme can produce phase precession effect seen in hippocampal place cells (K. 

Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2017). Moreover, studies on 

rodents suggest that theta-gamma coupling in the hippocampus might be necessary 

for memory retrieval (Shirvalkar, Rapp, & Shapiro, 2010).  

Collectively, these simulated electrophysiological responses are not dissimilar to the 

sorts of responses recorded in empirical studies; however, in this chapter, I am 

primarily interested in modelling (epistemic) behaviour. Fig 3.5 shows some of the 

expectations that are updated using the equations presented in Fig 2.4. These 

simulated electrophysiological responses can be associated with activity in the various 

brain regions in Fig 3.3; e.g.., expectations about hidden states encoding context 𝑠𝜏
1,𝜋

 

with the hippocampus. In the final section, I consider multiple trials and how 

performance depends upon prior preferences and precision. 

3.3.2. Sequences of simulations 

Fig 3.6 summarises the (simulated) behavioural and physiological responses over 32 

successive trials in which the context (scene and spatial transformations) was selected 

at random. Each trial comprises six saccades following an initial fixation. The first 

panel shows two sorts of things. Firstly, the coloured circles from one to four on the y-

axis show the initial states on each trial. These are context, sampling location on the 

first time step (always central fixation first), horizontal and vertical flips, respectively. 

The initial states (except for the sampling location) determines how the scene is going 

to look like in terms of the absolute and relative locations of the visual cues. Secondly, 

the numbers one to eight on the same y-axis show the subsequent policy selection (in 
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image format) over the eight actions (i.e., locations) considered on the final time step. 

Here, the actions 1 to 5 correspond to visiting the central fixation point and quadrants 

with cues (locations 2 to 5), whereas actions 6-8 select the locations reporting the 

choice (flee, feed and wait). Choice locations are just there to enable the agent to 

report its beliefs about the scene category. Since the agent usually arrives at a 

decision in a few saccades, the selected action on the final time step is usually one of 

the choice locations, with the exception of the third trial where the agent fails to 

categorize the scene even after the 6-th saccade and chooses the sampling location 

two (the top left quadrant). The second panel shows three sorts of quantities; namely, 

agent’s decision about the category of the scene and whether this categorization is 

correct (encoded by coloured circles) and performance in terms of expected utility and 

reaction time. The first row of coloured dots shows the sampled choice location (flee, 

feed or wait) on the last saccade, whereas the second row of dots shows whether the 

agent’s beliefs about the category of the scene is correct. Only on the third trial agent 

is unable to correctly categorize a scene, here the brown dot shows that the sampled 

cue on the last saccade is seed and not the cue associated with the correct feedback. 

Second quantity, expected utility (black bars), is the utility of the observed outcomes 

averaged over time and defined with the following formula: 
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Where 𝐶𝑔 is the preference matrix over the outcome modality 𝑔 and 𝑜𝑡
𝑔
 designates the 

entry in the preference matrix on the o-th row and t-th column under the modality g. 

The utility of an outcome is defined by the prior preference. Note that because 

preferences are log probabilities they are always negative – and the best outcome is 

zero. The performance measure differs across trials because the number of saccades 

the agent employs before categorizing a scene differs from trial to trial. The third 

quantity, reaction times or saccadic intervals (cyan dots), here are based upon the 

actual processing time in the simulations and are shown after normalisation to a mean 

of zero and standard deviation of one. Reaction time is defined as the actual 

processing time (using Matlab tic-toc facility) in the simulations. This definition is based 

upon the assumption that belief updates in the brain – via neuronal message passing 
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– follow a similar scheduling to the exchange of sufficient statistics described in Fig 

3.3.  

 

Figure 3. 6 Simulated responses over 32 trials 

This figure reports the behavioural and (simulated) physiological responses during 32 successive trials. 

The scenes in these 32 trials were specified via randomly selected hidden states of the world. A) The 

first panel shows the hidden states of the scene (as coloured circles) and the selected action (i.e. the 

sampled location) on the last saccade. The y-axis on this panel shows two quantities. The selected 

action is shown using black bars. The agent can saccade to locations 1 to 8, where the locations 6 to 8 

correspond to the choice locations the agent uses to report the scene category. The true hidden states 

are shown with coloured circles. These specify the objects in the scene and their locations (in terms of 

the context and spatial transformations). The second row of cyan dots indicates that the agent always 

starts exploring a scene from the central fixation point. Individual rows in the y-axis indicate the sampled 

locations according to the following: Fix (Fixation), U. Left (Upper left), L. Left (Lower Left), U. Right 

(Upper Right), L. Right (Lower Right) and Ch. Flee (Choose Flee), Ch. Feed (Choose Feed) and Ch. 

Wait (Choose Wait). B) The second panel reports the final outcomes (encoded by coloured circles) and 

performance measures in terms of preferred outcomes (utility of observed outcomes), summed over 

time (black bars) and standardized reaction times (cyan dots). The final outcomes are shown for the 

sample location (upper row of dots) and outcome (lower role of dots): yellow means the agent made a 

correct choice. C) The third panel shows a succession of simulated event related potentials following 
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each outcome. These are taken to be the rate of change of neuronal activity, encoding the expected 

probability of hidden states encoding context (i.e., simulated hippocampal activity).  

These simulations show that, with the exception of the third trial, the agent makes 

veridical decisions on every occasion. Interestingly, the third (incorrect) trial is 

associated with the greatest reaction time. Reaction time here varies because the 

minimisation of free energy converges on different number of iterations under a certain 

tolerance (here, the variational updates terminate when the decrease in free energy 

falls below 1/128). The lower panel shows the simulated electrophysiological 

responses using the same format as in the previous figure. Here bursts of high-

frequency activity is seen every hundred milliseconds or so; in other words, a nesting 

of gamma activity in the alpha range. 

The associated behaviour, over the first nine trials is depicted in Fig 3.7. Again, with 

the exception of the third trial, optimal search behaviour is seen, with a correct choice 

after the minimum number of saccades. For example, on the first trial, the first saccade 

samples a bird, which just requires a second saccade to the adjacent location in order 

to completely disambiguate the context (see Fig 3.2). A detailed analysis of the belief 

updating for the failed trial suggested that this was an unlucky failure of the mean field 

approximation; particularly the factorisation over time – and a partial failure of 

convergence due to the use of a fixed number (i.e., 16) of iterations. These sorts of 

failures highlight the distinction between exact Bayesian inference and approximate 

Bayesian inference that may underlie bounded rationality in real agents. With these 

simulated responses is at hand, I can now assess the effects of changing prior 

preference and priors over the precision of beliefs about action or policies. 

Clearly, there are many model parameters (and hyperparameters) one could consider, 

in terms of their effects on simulated behaviour. Here, I focused on the precision of 

preferences and policies because these correspond intuitively to the different aspects 

of salience. Motivational salience can be associated with the preferences that 

incentivise choice behaviour. Conversely, the precision of beliefs about policies 

speaks to the visual salience associated with information gain and epistemic value, 

and confidence in beliefs about policies. Heuristically, one might expect different 

patterns of behaviour depending upon whether subjects have imprecise preferences 

(i.e., are not confident about what to do), as opposed to imprecise beliefs about the 
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consequences of their actions (i.e., not confident about how to do it). In what follows, 

I address this heuristic using simulated behaviour. 

 

Figure 3. 7 Sequences of saccades 

This figure illustrates the behaviour for the first nine trials shown in the previous figure using the same 

format as Fig 3.4C. The numbers on the top left in each cell show the trial number. With the exception 

of the third trial, the agent is able to recognise or categorise the scene after a small number of 

epistemically efficient saccades. 

3.4. The effects of priors 

Finally, Fig 3.8 reports the performance during presentations of 300 trials, where 

hidden states of the world were selected randomly – and the agent was allowed to 

make up to 8 saccades. I measured the performance over these trials in terms of 
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percent accuracy (a correct choice in the absence of an incorrect choice), decision 

time or number of saccades until any (correct or incorrect) choice and reaction time or 

saccadic interval (measured in seconds). Here, I repeated the 300 trial paradigm over 

all combinations of nine levels of prior preference and precision. To manipulate the 

precision of preferences, I increased the parameter c – specifying the prior preference 

for not making an incorrect decision from no preferences to very precise preferences 

(from zero to four), while keeping the prior preference for making a correct decision 

fixed.  

The left panel in Fig 3.8 (Accuracy) shows that accurate categorisation requires both 

precise preferences and a high precision. Interestingly, precise prior preferences 

degrade accuracy when the prior precision is very low, as it can be seen on the first 

column. With greater prior preference, the agent does not want to make mistakes. 

However a low prior precision precludes a resolution of uncertainty about the scene. 

The combination of these two priors discourages the agent from making a choice, 

resulting in an incorrect categorization. The trials where agent doesn't attempt to 

categorize the scene are considered an incorrect categorization. When prior 

preferences are less precise, the agent is less afraid of making an incorrect choice 

thus allowing the agent to make some categorizations which turn out to be correct 

(notice that the accuracy is still below the chance level). Similarly, greater prior 

precision does not improve accuracy when prior preference is low. In short, the agent 

only respond accurately when prior preference and precision are high, as seen on the 

upper right portion of the image. 

The centre panel (Decision Time) shows decision time in terms of number of saccades 

before choosing a choice location. When prior preferences are high and prior precision 

is very low (first column), it takes 7 or 8 saccades for the agent to make a decision. 

Comparing this figure with the accuracy results, it can be seen that accuracy is low 

even though the agent is making more saccades; i.e. taking its time. This is because 

the agent accumulates information against the competing hypothesis but in the 

absence of precise preferences, it is unable to fulfil its goal of categorizing the scene. 

When prior precision is high but prior preference is very low, the agent rushes to make 

a decision – but in the absence of precise prior preferences it makes mistakes (see 
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left panel). In short, the agent successfully categorizes a scene when it deploys 3-4 

saccades (upper right quadrants), under precise preferences and high precision. 

The right panel (Reaction Time) shows the reaction time in terms of actual processing 

time of the simulations. Although, quantitatively, reaction times only vary between 

about 800 and 900 ms, there seems to be a systematic effect of prior precision, with 

an increase in reaction time at very low levels. 

 

Figure 3. 8 Performance and priors 

This figure illustrates the average performance over 300 trials. A) The insert (lower panel) shows the 

prior parameters that were varied; namely, prior preference and precision. These parameters are varied 

over nine levels. B) For each combination, the accuracy, decision and reaction time were evaluated 

using simulations (upper row). The accuracy is expressed as the percentage of correct trials (defined 

as a correct choice in the absence of a proceeding or subsequent incorrect choice). Decision time is 

defined in terms of the number of saccades until a (correct or incorrect) decision. Reaction time or the 

interval between saccades is measured in seconds and corresponds to the actual computation time 

during the simulations. 
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Crucially, results demonstrate a distinct dependency of accuracy and decision time on 

prior preference and prior precision. This speaks to the possibility of distinct 

behavioural phenotypes that are characterised by different combinations of prior 

preference and precision. For example, agents who do not expect themselves to make 

mistakes may choose more assiduously, inducing a classical speed accuracy trade-

off. Conversely, subjects with more precise beliefs about their choices may behave in 

a more purposeful and deliberate fashion, taking less time to obtain preferred 

outcomes. I pursue this theme in the discussion. 

3.5. Discussion 

In this chapter, I have presented an active inference formulation of epistemic foraging 

that provides a framework for understanding the functional anatomy of visual search 

entailed by sequences of saccadic eye movements. This formulation provides an 

elementary solution to the problem of scene construction in the context of active 

sensing and sequential policy optimisation, while incidentally furnishing a model of 

spatial invariance in vision.  

Although the problem considered in this chapter is relatively simple, it would confound 

most existing approaches. For example, reinforcement learning and optimal control 

theories are not applicable because the problem is quintessentially epistemic (belief-

based) in nature. This means that the optimal action depends on beliefs or uncertainty 

about hidden states. This context sensitivity precludes any state-action policy and 

implicitly any scheme based on the Bellman optimality principle (Bellman, 1952). This 

is because the optimal action from any state depends upon beliefs about that state 

and all others. Although, in principle, a belief-state (partially observed) Markov 

decision process could be entertained (Bonet & Geffner, 2014), the combinatorics of 

formulating beliefs states over 3 8 2 2 96     hidden states are daunting and 

computationally burdensome. Furthermore, given the problem calls for sequential 

policy optimisation – and that five moves are necessary to guarantee a correct 

categorisation – one would have to evaluate 58 32768  policies. Use of the postdiction 

in this application of active inference eliminates the issue of evaluating large number 

of policies.  
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The active inference solution offered here is based upon minimising the path-integral 

of (expected) free energy under a mean field approximation. The exciting thing about 

this approach is that, computationally, it operates (nearly) in real-time. For example, 

the reaction times in Fig 3.8 are based on the actual computation time using a standard 

desktop personal computer. This computational efficiency may be useful for 

neurorobotic applications. Having said this, the primary motivation for developing this 

scheme was to characterise empirical (human) visual searches given observed 

performance, eye movement and electrophysiological responses. 

The example in this chapter has some limitations: for example, all potential spatial 

combinations of objects can be obtained using just two transformations (e.g. the cat 

can never be below the bird), and scenes in larger grid worlds may not be describable 

in terms of simple transformations from a small number of contexts. Clearly, the brain 

does not use the mean field approximation used to illustrate the scheme – but 

questions about different forms of meaningful approximations can, in principle, be 

answered empirically using Bayesian model comparison of such approximations when 

explaining behavioural or neuroimaging data. 

This toy example shows how a scene comprising 2x2 quadrants can be explored using 

the resolution of uncertainty. A scene of this small size could be explored 

systematically, if inefficiently, (e.g., in a clockwise manner) or by just visiting all 

locations randomly. However, more complex scenes – which I hope to use in future 

work – could not be categorised efficiently in such a fashion.  I used this paradigm to 

characterise different behavioural phenotypes in terms of the free parameters of this 

model (see chapter 4). 

Although the accuracy, number of saccades and saccadic intervals (Fig 3.8) provide 

a degree of validation for active inference in this setting, it is unlikely that these 

responses will provide an efficient estimate of subject-specific priors, such as prior 

preferences and precision. However, it is relatively easy to fit the individual saccadic 

eye movements by evaluating the probability of each saccade in relation to posterior 

beliefs about action, using the history of action and outcomes in the model above. This 

allows estimating things like prior preference and precision efficiently, given the 

sequence of eye movements from any subject. I used the active inference scheme 

described in this chapter to explain empirical eye movements in terms of subject-
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specific priors (see chapter 4). This enables one to simulate or model 

electrophysiological responses or identify the regional correlates of belief updating, 

using functional magnetic resonance imaging. 

In chapter 4, I implement the scene construction task described above for visual 

searches on human subjects. I investigate the behavioural measures and the saccadic 

choices of the subjects that are registered using an eye-tracking device. Using a model 

inversion scheme formulated in terms of active inference (Schwartenbeck & Friston, 

2016), I estimate model parameters from the MDP model (e.g. prior precision) by fitting 

a model to the saccadic choices of the subjects. 
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4. Characterising salience attribution under active inference 

This chapter is about salience attribution in visual searches. In other words, how do 

we identify salient targets during saccadic (visual) searches of our visual scenes – and 

what sorts of policies and prior beliefs underwrite this attribution and subsequent 

epistemic foraging. To address this question, I applied the model described in the 

previous chapter in normal subjects and tried to explain their eye movements in terms 

of Bayes optimal epistemic sampling. In this chapter, I consider the evidence that 

normal subjects conform to normative (i.e., Bayesian) principles and how this can be 

used to characterise individual differences.  

Visual exploration entails seeking out relevant information, given a context. But what 

is information? Shannon’s definition of information (Shannon, 1948) implies that an 

outcome that is less predictable contains more information. Shannon entropy is the 

average or expected information. Shannon entropy is highest when all outcomes are 

equally likely; i.e., when the outcome is most unpredictable. However, Itti and Baldi 

(2009) demonstrated that whilst human visual attention is attracted to areas of high 

Shannon information, it is attracted most strongly to areas that cause the greatest 

shifts in our beliefs about the world. This notion is formalised as ‘Bayesian surprise’ 

(Itti and Baldi 2009): the KL divergence between prior and posterior beliefs about how 

our sensory data are generated. In the active inference framework, stimuli of greater 

Bayesian surprise have more epistemic value and this is the formal basis of the current 

work.  

In the previous chapter I introduced an active inference scheme for visual searches 

using a scene construction task. I showed how a scene currently explored optimally, 

when a synthetic subject engages in epistemic foraging. In this chapter, I ask whether 

human subjects perform the same task in an epistemic fashion; i.e., resolving 

uncertainty about the hidden states of the world. To test this hypothesis I fitted an 

active inference model to the saccadic choices of my subjects and evaluated the 

evidence for epistemic foraging.  

This chapter comprises three sections. In the first section I reiterate the MDP formation 

for the scene construction task and preview the analyses of the saccadic scan-paths 

of subjects performing the scene construction task. The second section describes the 
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empirical methods for the gaze-contingent protocol I used in the eye-tracking study, 

the subjects that performed the task and scan-path recording methods. In the third 

section, I report behavioural results that characterise task performance. This is 

followed by the analysis of the scan-path choices, using the model of the first section 

to estimate their prior beliefs. I then report the canonical correlations between prior 

beliefs and the behavioural measures to understand overt behaviour in terms of 

characteristic subject ‘types’. In the discussion, I discuss the results in terms of active 

inference and their implications for computational phenotyping of individual subjects. 

4.1.  Active inference and visual search 

4.1.1. The MDP formation 

The Fig 3.1A shows the generic form of the MDP model and the conditional 

dependencies in the generative models. This panel shows how the outcomes are 

generated from the hidden states in terms of probabilistic transitions that depend on 

policies. To accommodate the fact that subjects may have preferred heuristic 

strategies for visual search, the model of their policies included a fixed-form (i.e., 

heuristic) policy that was estimated on a subject by subject basis. This fixed-form 

policy corresponds, technically, to a state-action policy. In other words, it is a policy 

that prescribes (in a probabilistic way) the next target location given the current 

location. This can be encoded as a single policy in terms of a probability transition 

matrix among different saccade locations. The heuristic policy was estimated using 

the empirical transition frequencies for every sequence of saccadic eye movements 

analysed – and included in the repertoire of policies for each subject. Although this 

policy is subject-specific, it plays exactly the same role in every instance; namely, a 

state-action policy that has no uncertainty reducing or epistemic aspects. This can be 

seen easily because the most probable next action or saccade does not depend upon 

posterior beliefs that would otherwise contextualise an epistemic saccade.  

Operationally, I parameterised the propensity of a subject to engage in a fixed-form 

(heuristic) policy with a single log probability (an Eheurisitc coefficient). This value was 

specified relative to a value of zero for the remaining (eight) policies that could be 

deployed in an epistemic fashion. Including the heuristic policy allowed the evaluation 

of how likely different subjects were to engage in epistemic versus non-epistemic 
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searches – and whether this propensity changed with exposure to the task. 

Interestingly, I found that the fixed-form policies in several subjects resembled a 

reading-like strategy, while in others there was a tendency to proceed clockwise 

around the quadrants. See the rightmost side of Fig 4.1B for an exemplar empirical 

probability transition matrix encoding these subject-specific policies (in this case the 

reading-like strategy). To include the propensity of a subject to engage in a fixed-form 

(heuristic) policy in the MDP scheme, the priors are added to the variational free 

energy scoring the evidence for each policy based upon past outcomes (F) and 

expected free energy in the future (G) weighted by their inverse precision (β). This 

leads to a posterior belief over policies: 

     π E F G                    (11) 

where ln EE and E corresponds to the prior preferences over the policies. See 

(Friston et al. 2017) for the details.  All the remaining update equations remained the 

same as in the previous chapter. 

The generative model used to generate stimuli in our experimental paradigm (see the 

next section) is illustrated in Fig 4.1. The likelihood matrices mapping from hidden 

states to outcomes are shown in the upper panel. For illustrative purposes, the 

likelihood matrices are provided for the sampling of the second location (the top left 

quadrant) under a vertical transformation of the scene. The middle panel shows the 

action-dependent transition matrices that generate transitions among hidden states 

following each action. Crucially, the first eight action-dependent transition matrices – 

that encode the transition probabilities between sampled locations – map 

deterministically onto the same location as the action; whereas the transition matrix 

for the ninth action corresponds to a fixed-form (heuristic) state-action policy. This 

prescribes the next location given the current location in a deterministic way. The 

transition matrices for the other hidden state dimensions; namely, the what or scene 

context and spatial transformations are identity matrices (because these do not 

change within each trial). The rules of the game, in terms of scoring points, have been 

modelled in terms of the prior preferences over outcomes in the C matrices. These 

rules are explained in detail in the next section. As noted above, prior preferences over 

the policies correspond to E. Finally, the generative model assumes uniform beliefs 
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about the hidden states of the world, apart from the initial sampling location; namely, 

central fixation. 

4.1.2. Characterising empirical behaviour in terms of active inference 

I summarised the hundred trials within each of five blocks in terms of scan-paths 

(sequences of saccadic locations). Using the stimuli that were disclosed during each 

epoch of every trial, I was then able to optimise the parameters of an MDP scheme 

that best explained each subject's behaviour. The (free) parameters of the MDP 

scheme included a hyperprior on the (inverse) precision of beliefs about policies 

(Beta), prior preferences for outcomes (Cost) and a prior expectation (Expectations) 

or bias towards non-epistemic (heuristic) policies. These (B, C, E) parameters encode 

prior beliefs (about behaviour, preferences and prior policies respectively). This 

enabled me to optimise the model of each subject’s responses, while accommodating 

subject-specific preferences. As a prelude to analysis of empirical data, I ensured that 

fitting the MDP model to observed behaviour has face validity. To do this, I estimated 

the model parameters using the saccadic choices of the first subject (on the third 

testing block) and used them to simulate a block of 100 trials. Using the simulated 

data, I then estimated the MDP parameters to ensure that I could recover the same 

values used to generate the data. The results of an exemplar analysis are shown in 

Fig 4.2. One can see that the scheme was able to recover the parameters used to 

generate the data, with a reasonable degree of confidence (the pink bars correspond 

to 90% Bayesian confidence intervals). This inversion scheme was applied to the 

empirical data to address the hypotheses about whether subjects evidence epistemic 

behaviour and whether this behaviour increases with exposure to the paradigm 

described here. The subsequent analysis of the empirical behavioural data comprised 

three components. 

 First, I assessed the evidence that subjects engaged in epistemic searches – as 

described by minimising expected surprise (i.e. free energy), under ideal Bayesian 

assumptions. I therefore compared models of each subject’s responses (during the 

last blocks of each session), under models that did – and did not – contain a 

salience or uncertainty-reducing term (i.e., epistemic or intrinsic value). Removing 

this epistemic value from expected free energy reduces it to an expected utility, 

scored in terms of prior preferences or cost (K. Friston et al., 2015). The evidence 
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for epistemic imperatives in visual searches was assessed for each subject 

individually in terms of the difference in log evidence for the two models – and then 

pooled (i.e. summed) to provide inference based on all the subjects’ data. 

 

 Second, I asked which parameter combinations account for the exploratory 

behaviour the best by evaluating the model evidence obtained under each model 

by using Bayesian model reduction and averaging, where each parameter 

combination corresponds to a model. This was assessed for each subject 

individually and then the model evidence under all models was pooled together 

over all subjects to produce an overall Bayes factor to find which model best 

accounts for subjects’ behaviour overall.  

 
 

 Finally, to characterise intersubject variability, I used canonical correlation analysis 

(CVA) to see whether there were significant relationships between the behaviour 

of our subjects and their prior beliefs, as estimated in terms of the parameters of 

the MDP model. This involved creating a matrix of independent or explanatory 

variables corresponding to the free parameters for each subject and trying to 

explain the corresponding dependent or response variables based upon subjects’ 

performance. In this instance, I summarised behaviour in terms of their 

accumulated score over all trials and performance improvement from the first to 

the last block. These behavioural measures were supplemented with (partially 

redundant) performance measures; reflecting the percentage correct 

categorisations and the number of saccades emitted on average over trials. This 

analysis returned significant pairs of canonical vectors and variates describing how 

prior parameters or beliefs are manifest behaviourally. Note that these 

performance scores are distinct from the scan-path data used to estimate the prior 

beliefs of each subject. 
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Figure 4. 1 ABCDE of generative model 

A) This panel shows the likelihood matrices for the top left quadrant (location 2), under the vertical (but 

not horizontal) spatial transformation. The likelihood matrices encoded the probability of outcomes 

given (the four dimensions of) hidden states. B) This panel shows the action-dependent state transition 

matrices. In this scene construction task, only the sampling location (where) hidden state is action-

dependent. The other transition matrices associated with the context and spatial transformations are 

identity matrices. The action-dependent transition matrix maps to the sampling locations associated 

with each action (for the first eight policies). However, this mapping changes in the case of a fixed-form 

policy, which corresponds to a repeating the ninth action in the MDP model. The mapping between 

sampling locations for the reading-like policy is shown on the rightmost side of the middle panel. C) This 

panel shows two priors. Firstly, the prior preferences over the what and where outcome modalities in 

the first six saccades are shown. Here, the columns of the matrices show the preferences (or utilities) 

over successive time steps; whereas the rows designate the outcomes (six cues under the what 

modality and eight locations under the where modality). The utilities in the first time step are zero (shown 

with the white colour), under both modalities; since the sampled location in the first time step is the 

central fixation. Different shades of grey indicate the absolute value (intensity) of the utilities, where the 

darker shades are associated with higher utilities. The prior preference matrix under the what modality 

equips the agent with beliefs that it expects to categorize correctly. The increasing utility over the 

columns in the prior preference for the where modality means that the tardy sampling (i.e., being 

undecided) becomes costly. Plus and minus signs indicate the valence of the utilities. The prior 

preferences over policies are shown on the right. One can define a propensity for a policy in the vector 

E, which encodes the prior preferences over the policies. An example E is shown at the rightmost side. 

The utility of the ninth policy (heuristic strategy, Eheuristic) is defined as  log 2 , relative to a value of 

zero for the remaining (eight) policies. The first eight policies correspond to the policies that take the 

agent to the locations associated with the central fixation, four quadrants and three choice locations. 

This renders the ninth policy 3 times more likely. 

The number of significant canonical correlations defines the dimensionality of a 

phenotypic space in which different subjects lie. In other words, it provides a way of 

characterising the ‘type’ of each subject along different dimensions. For example, one 

type of subject may have very precise (hyperprior) beliefs about policy selection and 

therefore be relatively confident in how they prosecute the visual search. Furthermore, 

these subjects may adopt a fixed-form (heuristic) search strategy and consequently 

take a longer time to resolve uncertainty – but will, on average, be more accurate in 

their decisions. Another type of subject may be more epistemic in nature; reducing 

their uncertainty about the scene category more efficiently; thereby using shorter scan-

path. By simulating responses for characteristic parameter values within the canonical 
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correlation space, one can illustrate the impact of different prior beliefs on behaviour 

and underlying confidence in decisions and uncertainty about the scene category. In 

this chapter, I focus on intersubject variability in a healthy human population. My hope 

is to show that there are systematic differences in prior beliefs and salience attribution 

(i.e., the ability to identify salient or epistemically valuable saccadic targets). 

 

Figure 4. 2 Parameter estimation, simulation and re-estimation 

This simulation shows that the estimates of the model parameters, given the saccadic scan-paths, can 

be recovered accurately. The estimated parameters are prior inverse precision, heuristic bias and prior 

preferences – β, Eheurisitc, Ccorrect  and Cquick. Here, a sequence of saccadic choices was simulated using 

the estimated β and Eheuristic parameters from fitting a model to the saccadic choices of the first subject 

on the third testing block (shown with green dots). The left panel shows how the estimated β and Eheuristic 

parameters change with each iteration, when a model is fit to the simulated data (from red to blue). The 

middle panel shows how the free energy changes with each iteration during the model inversion. The 

right panel shows the means (grey bars) and the variances (pink bars) of the probability distributions 

over the estimated parameters. 

4.2. Empirical Methods 

The experimental design allowed participants to explore the scene by disclosing 

objects placed at each quadrant of the visual field using eye movements. Upon arriving 

at a decision, the participants reported their categorisation of the scene using a button 

box that was placed either to the right or to the left of the head-mount, depending on 

whether the individuals were right or left-handed. 

Each subject underwent a pre-training phase comprising twenty trials; ensuring that 

they were accustomed with the experimental setup, head-mount, controller etc. They 

then performed five blocks of the task: two training blocks and then three test blocks. 
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Between each block the subjects rested for a few minutes. Each block consisted of a 

hundred trials. A fixation cross was displayed on the screen prior to the beginning of 

a trial. Looking at the fixation cross triggered the trial. After the beginning of the trial, 

the visual stimuli were displayed in a two-by-two grid; in which each square consisted 

of a grey dot within a black circle (see Fig 4.3). The visual display was gaze-contingent; 

in other words, the grey dots turned into objects (null, bird, seed and cat) when looked 

at. This allowed the subjects to accumulate evidence as they explored the scene within 

a given trial. At the beginning of a block, the subjects were given 100 points. Subjects 

were rewarded two points for making a correct categorization and penalized four 

points for an incorrect one. Both correct and incorrect categorizations were followed 

by auditory and visual feedback. 

I incentivised the participants to sample locations that were more informative using a 

sampling cost. The penalty of attending to the n-th square was given by −0.25 × 𝑛. 

The cost of exploration stacked cumulatively as the exploration proceeded; i.e., 

looking at two squares would cost −0.25 + (−0.5) = −0.75. These task instructions 

instantiate a particular task set or prior belief that was included in the model or prior 

preferences (i.e., the probability of not making a decision became less likely with the 

number of saccades). This introduces a distinction between Ccorrect and Cquick that 

encode preferences about being right or wrong and preferences about being 

undecided as time progresses. See Fig 4.1C.  

There was a fixed time limit for each subject of between two and four seconds on each 

trial. Exceeding this time limit (without choosing) cost the subjects four points. Time 

limits for each subject were obtained using a staircase procedure during both the 

training and testing blocks. This staircase procedure was a function of the minimum 

number of saccades necessary for an efficient categorisation. For instance, if the first 

object was bird, then the most efficient way to explore the scene is to look at the square 

next to the bird. One only needs to make two saccades to categorize the scene in this 

case. The number of saccades was summed over 10 trials. Making 10% more 

saccades than was necessary increased the time limit by 200 ms: it decreased by 200 

ms otherwise.  
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Figure 4. 3 Experiment flowchart 

This flowchart shows how a single trial evolves. Firstly, the total score is displayed. Then a fixation cross 

appears in the centre of the screen. Upon looking at the fixation cross the trial begins. In this particular 

trial, the participant looks at the top left quadrant and observes a seed, and then looks at the top right 

quadrant and observes a bird. At this point it is obvious that the category of the scene is Feed. On the 

fifth action, the participant chooses the Feed category by pressing the green button on the controller. 

This is followed by an auditory feedback, associated with the correct decision. Consequently a feedback 

screen shows whether the chosen category was correct, the number of quadrants one looked at and 

the points lost by looking at those quadrants. Finally, the total score is displayed. 

The training and testing blocks differed in two ways. In the training phase, the colours 

of the buttons on the controller were displayed as dots in the lower half of the screen 

(below the two-by-two grid scene) with the same colours (and in the same order) as 

the button press box, to ensure subjects learned to press the correct buttons as quickly 

as possible. In the testing phase, the coloured dots were removed from the screen 

and the grid scene was centred on the screen. The sequence of frames in Fig 4.3 

shows the steps of this gaze-contingent paradigm. Stimuli were delivered using 

Cogent 2000 (developed by the Cogent 2000 team at the FIL and the ICN and Cogent 

Graphics developed by John Romaya at the LON at the Wellcome Department of 

Imaging Neuroscience) and Psychtoolbox (Brainard & Vision, 1997; Kleiner et al., 

2007; Pelli, 1997). 
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Subjects: In total 22 subjects were recruited (9 males, 13 females) through the 

Institute of Cognitive Neuroscience subject database. All subjects gave informed 

written consent, and the study received ethical approval from the UCL ethics 

committee (4356/002). The majority of the subjects were students of University 

College London. The age of the participants ranged between 19 and 57, with mean 

25.7 years and standard deviation 9.3 years.  

Recording method: Subjects were seated 70 cm from the screen on which visual 

stimuli were displayed – and they rested their chins on a head-mount. Using the 

Eyelink 1000 eye-tracker their gaze coordinates were recorded as they performed the 

task. The grid scene was displayed on a 408𝑚𝑚 × 306𝑚𝑚 screen with a resolution of 

1600x1200. The angle of sight was ≈ 32.5° visual angles horizontally and ≈ 24.4° 

vertically. The angle of sight of the two-by-two grid scene was ≈ 20.3° during the 

training phase and ≈ 24.4° during the testing phase, both horizontally and vertically. 

The size of each object in each square was ≈ 5° and the centre of each object was 

≈ 8.5° from the centre in terms of visual angles. 

4.3.  Results 

4.3.1. Behavioural results 

I first characterised performance across training and testing blocks in terms of their 

mean score per trial, percentage correct categorizations, mean time interval between 

saccades and mean number of saccades per trial. These performance measures were 

averaged over all subjects and are shown across the five blocks in Fig 4.4. The panels 

in this figure show that the score per trial increases over blocks and the percentage 

correct on the fifth block is greater compared to the first block. The middle panels show 

that both mean saccades per trial and mean time between saccades follow a 

decreasing trend across blocks. Separate two sample t-tests for these behavioural 

measures (between the fifth and the first blocks) show that the performance measures 

in the first and fifth blocks are significantly different. Finally the histogram in the lower 

panel shows the probability distribution over the saccades.  

Given that there are four locations in the task and given the subjects do not revisit 

locations, there can be 4! = 24 different ways of exploring the scene. Diverse patterns 
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of exploratory behaviour were observed. Some patterns can be described as 

heuristics, in that they were used repeatedly within subjects, independently of the 

context. Other subjects attended to different locations in a seemingly random fashion 

and some explored in a way to reduce uncertainty about the scene efficiently. 

Prominent among the heuristics were reading-like and clockwise strategies.  

 

Figure 4. 4 Performance measures 

The performance measures in the panels of this figure are averaged over all blocks and subjects. The 

means and standard error of the means (error bars) are plotted per measure. The top left and right 

panels show the mean score per trial and the percentage correct categorization over five blocks, 

respectively ( ( ) 4388t df  , 
* 0.001p  ; ( ) 4393t df  , 

** 0.001p  ). The middle left panel shows 
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the mean saccades per trial (before categorizing the scene) and the middle right panel shows the mean 

time between saccades in seconds across five blocks ( ( ) 4392t df  , 
*** 0.001p  ; ( ) 7774t df  , 

**** 0.001p  ). The histogram on the bottom panel reports the probability distribution over the number 

of saccades the participants made before arriving at a decision about the category of the scene. 

There are commonalities in the heuristic strategies: e.g. the first two quadrants under 

the reading and clockwise policies (see the two rightmost scan-paths in Fig 4.5) are 

the same. Fig 4.5 shows the proportion of all trials in which the individual subject’s 

most commonly used heuristic strategy was employed. There were six distinct 

heuristic strategies used by 22 subjects. By far the commonest policies are reading-

like and clockwise strategies (used 47% and 42% of the time respectively), whereas 

the next most commonly used heuristic was at 12% (shorter scan-paths can be 

explained by multiple heuristic policies; hence these percentages do not add up to 

100). 

 

Figure 4. 5 Probability of subjects’ favourite heuristics 

The bar plot shows the probability of each participant’s favourite heuristic in terms of the frequency with 

which the scan-path on a given trial accords with the scan-path of a heuristic strategy. This was 

repeated over all trials and blocks in each subject. The participants used six distinct heuristic strategies 
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and the scan-paths of these strategies are plotted in the upper panel and linked with subjects that used 

these strategies (see the number above each bar for each subject’s favourite heuristic). 

An epistemic policy can be defined as a policy (based on the current beliefs about the 

hidden states) that causes the greatest change in beliefs (aka information gain, 

Bayesian surprise or salience) about the hidden states. In contrast to the heuristic 

policies, the sequence of actions is not predetermined in the epistemic policies, and 

they can therefore accumulate information more efficiently, because they are belief 

based.  

4.3.2. Scan-path results 

I first tested whether subjects’ scan paths evidenced the use of epistemic policies. The 

upper panel of Fig 4.6 shows the difference between the log evidences obtained with 

the models that did – and did not – contain epistemic value. The model that 

incorporates epistemic value had substantially more evidence for every subject. 

Pooling the log evidence over all subjects the epistemic model scored ≈ 888 more log 

evidence than the model that contained extrinsic value (i.e., prior preferences) only. 

This result suggests that the subjects indeed engaged in epistemic visual foraging – 

and that the epistemic affordance or salience of visual targets was necessary to 

explain their eye movements. 

I then tested whether subjects showed evidence for changes in their prior beliefs from 

block to block. Fig 4.6 shows the results of Bayesian model comparison of these 

between-block or experience-dependent effects. This analysis used parametric 

empirical Bayes (Friston et al. 2007) to test for systematic (monoexponential) changes 

over blocks prior beliefs; namely, prior inverse precision, heuristic bias and prior 

preferences – β, Eheuristic, Ccorrect and Cquick. This model of exposure-dependent 

changes assumes that the greatest change in prior beliefs occurs at the start (in the 

first blocks) and then plateau in the last blocks. β (shown in red in Fig 3.1A) determines 

the confidence subjects place in their prior beliefs about policies. Ccorrect and Cquick 

(shown in red Fig 4.1C) are scaling coefficients on the log prior preferences about 

outcomes (in what and where modalities respectively) that tune the precision of 

preferences. The higher these parameters, more precise the preferences become. 

Eheuristic (shown in red in Fig 4.1C) is the final element in the vector of prior preferences 
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over the policies. This encodes the prior propensity for a fixed-form policy (e.g. reading 

like strategy) specified relative to a value of zero for the remaining (eight) policies.  

The changes in these prior beliefs were modelled by specifying a simple general linear 

model at the between block level that comprised a constant term and a 

monoexponential decay with a time constant of one block. The between-block 

parameters of this hierarchical model comprised a constant and decay parameter for 

each of the four (prior) parameters at the within-block level. Bayesian model reduction 

was then used to compare all combinations of the ensuing 4 x 2 = 8 between-block 

effects, for each subject. There are in total 28 = 256 models. 

 

Figure 4. 6 Bayesian model comparison and reduction 

The top panel shows the difference between free energies obtained with the full model (epistemic and 

extrinsic values) and the model with only extrinsic value. The model that contains the epistemic value 

(full model) has more evidence than the model that does not on an individual basis and over all subjects. 

The colours of the bars indicate the ages of the subjects. Monoexponential changes in the parameters 

over blocks where tested using parametric empirical Bayes, implemented with a general linear model 

that consists of a constant and a decay term. This means that there are 4 × 2 = 8 between-block effects. 
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The lower left panel shows the log evidences for all combinations of between-block effects (28 = 256). 

Here, the model that excludes the change in β and Eheuristic (244th model) scores the greatest log 

evidence. The lower right panel shows the most likely model when a softmax function is applied to the 

log evidences on the top left panel. 

The results of this analysis are shown in terms of log evidence (pooled or summed 

over subjects) over the (most likely) 256 models in the lower row, left panel of Fig 4.6. 

These results show that full models (to the right of the bar plot) have much greater 

evidence than reduced models, with fewer parameters. To assess the most likely 

model over subjects, I applied a softmax function to the pooled log evidence. The 

resulting marginal likelihood or model evidence over models and subjects is shown in 

the lower row, right panel of Fig 4.6. This model likelihood suggests that one can be 

almost certain a nearly complete model is necessary to account for the data. The 

winning model identified the changes in prior precision (β) and heuristic bias (Eheuristic) 

over blocks as redundant. This was a little surprising because it suggests that 

systematic changes in subjects’ preferences – with increasing experience of the 

paradigm – are expressed largely in terms of their prior preferences (C) for being 

correct or for responding quickly.  

The upper panel of Fig 4.7 shows the Bayesian model averages of the (four) 

parameters for each subject. These parameter averages account for uncertainty about 

the model of between-block effects. The bar plot groups the Bayesian model averages 

for each parameter over subjects. The first four parameters correspond to the mean 

or constant effect, while the last four correspond to experience-dependent changes. 

One can see that there is a remarkably consistent profile of deviations from the prior 

mean over subjects (first four parameters). However, the experience-dependent 

effects are less consistent. As would be expected from the Bayesian model 

comparison, the changes in prior precision and heuristic bias are small; with the 

Bayesian model averages of heuristic bias (Eheuristic) over subjects shrinking to almost 

zero. The interesting results here are the more consistent and negative parameters 

controlling the monoexponential decay of prior preferences (C). As the subjects 

become more familiar or experienced with the paradigm they increase the precision of 

their prior preferences; especially the prior belief that they will respond more quickly.  
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These effects are shown in terms of the expected changes in prior preferences over 

blocks based on subject specific estimates (dotted lines) and the group mean (solid 

red lines) for prior preferences about being correct (lower left panel) and being quick 

(lower right panel) in the lower row of Fig 4.7. These results suggest that as blocks 

progress, subjects increase their prior beliefs that they will avoid sampling further 

(unnecessary) information later in the trials, which can be seen by the increase in 

Cquick over blocks. A key aspect of these subject specific effects is that there is a large 

intersubject variability that I characterised using canonical correlation analysis. 

 

Figure 4. 7 Bayesian model averaging 

The upper panel shows the Bayesian model averages for each parameter over subjects after Bayesian 

model reduction was applied to all 256 models (i.e., redundant parameters were eliminated). The left 

and right lower panels show the posterior estimates of the scaling coefficients that control the precision 

of the prior preference matrices about being correct (left) and quick (right). 
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4.3.3. Canonical correlation (variates) analysis of between subject effects 

Fig 4.8 illustrates between-subject effects; specifically, the canonical correlations 

between mixtures of behavioural scores and mixtures of subject specific prior beliefs 

and experience-dependent changes in those beliefs. This analysis summarised 

behaviour using four behavioural scores for each subject (normalised to a mean of 

zero and a sum of squares of one). These scores were as follows:  

 Trial performance (mean score per trial). 

 Percentage correct (how accurate they were at categorising scenes) 

 Mean saccades per trial (number of made saccades before categorizing a 

scene) 

 Mean time between saccades (time period between sampling two consecutive 

locations in seconds) 

These behavioural measures were correlated with the six (normalised) subject-

specific Bayesian model averages of the prior beliefs (excluding the experience 

dependent changes in β and Eheuristic) as explained in Fig 4.6 and Fig 4.7. These 

estimates correspond to a computational phenotype of each subject.  

Canonical correlation analysis (equivalently, canonical variates analysis) established 

that there were three very significant canonical correlations. In other words, there were 

three pairs of orthogonal mixtures that could not be accounted for by chance. The 

significance of these canonical correlations is shown in the upper left panel of Fig 4.8, 

in terms of the log probabilities of the four canonical correlations. There are four, 

because this is the minimum dimensionality of the multivariate variables (i.e., the 

behavioural measures). It can be seen that the first three canonical correlations are 

extremely significant. This is reflected in the tight correlations between the predicted 

and observed behavioural factors (shown on the upper right). The amount of 

behavioural variance that could be accounted for – in terms of the computational 

modelling – was incredibly high: 96% for the first canonical pairs of vectors, 92% for 

the second and 70% for the third. (There is minimal contribution of the score per trial 

to any of the canonical correlations because this score is explained entirely by two 

other factors – being correct or not and the number of saccades used.)  
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The canonical vectors themselves are shown in the lower panels. These correspond 

to the weights of linear mixtures of the behavioural and computational scores that 

show the greatest correlation. I have limited these to the three significant correlations 

(black, grey and white bars). The canonical vectors for the behavioural scores define 

three behavioural phenotypes (noting that the signs of the canonical vectors are 

arbitrary):  

 The first canonical correlation is driven largely by a correlation between the 

second behavioural score (percentage correct) and a prior bias towards the 

heuristic policy. If the signs of the first (black) canonical vectors are flipped, 

these results suggest that more accurate and quick subjects are those subjects 

who, computationally, have a lower prior bias towards heuristic use (Eheuristic).  

In other words, subjects who rely more on epistemic policies tend to categorise 

scenes more accurately and use fewer saccades. 

 

 The second canonical correlation is dominated by the prior bias towards the 

heuristic policy that is expressed largely in the percentage correct and, to a 

certain extent, the mean saccades per trial and time between saccades. This 

behavioural phenotype is of a careful subject who is accurate and takes her 

time between eye movements. This sort of subject has a large negative 

heuristic bias (Eheuristic); in other words, a careful subject will not appeal to the 

heuristic search strategies and will prioritise being correct (Ccorrect) over using 

fewer saccades (Cquick). 

 
 

 The third canonical correlation involves the most pronounced experience-

dependent changes in beliefs during exposure to the paradigm. This appears 

to be expressed behaviourally in the percentage correct and time between 

saccades. This behavioural phenotype is dominated by a negative loading on 

mean time between saccades and can be regarded as a hasty subject, who 

trades-off between prior beliefs about being correct and being quick in the 

opposite direction to the careful subject. Crucially, these hasty subjects are the 

only sort of subjects that change their prior preferences from block to block. 
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In summary, there is clear evidence that both subjects’ beliefs and their ability to 

change those prior beliefs with experience have predictive validity in relation to 

behavioural performance; enabling the prediction of most of the behavioural variance 

between subjects, given their computational phenotyping under the active inference 

(MDP) scheme. 

 

Figure 4. 8 Results from Canonical correlation analysis 

The correlations between the Bayesian model average of parameters (among 256 models) and the 

behavioural measures were analysed using CVA. These parameters are means of the prior inverse 

precision β, heuristic bias Eheuristic, scaling coefficients Ccorrect and Cquick, and the decay terms 𝐂𝐜𝐨𝐫𝐫𝐞𝐜𝐭
∗

 

and 𝐂𝐪𝐮𝐢𝐜𝐤
∗ . The behavioural measures are: mean score per trial, percentage correct, mean number of 

saccades per trial and the mean time interval between saccades. The top left panel shows the results 

of a chi-squared analysis of the canonical correlations. The first three of four canonical correlations are 

statistically significant; whereas the fourth canonical correlation is not. The top right panel shows the 

predicted and observed behavioural canonical variates. The bottom left and bottom right panels show 
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the corresponding canonical vectors. The three canonical variates are each composed of a pair of 

canonical vectors whose scores on behavioural measure and parameter are illustrated on the left and 

right bar charts respectively. 

4.4. Discussion 

In this chapter, I have shown that healthy subjects’ visual exploration – of even simple 

scenes – provides substantial evidence for the use of epistemic affordance or salience 

in visual exploration (upper panel of Fig 4.6) by fitting models that did and did not 

contain epistemic, uncertainty-resolving imperatives for policy selection to saccadic 

behaviour.  

Strikingly, a bias towards using heuristic policies to explore visual scenes was 

associated with lower accuracy (i.e. percentage of correctly categorised trials) in all 

three canonical variates relating model parameters to behaviour. Note that while one 

might expect heuristic policies would reduce the time between saccades (as in the 2nd 

and 3rd canonical variates) at the expense of increasing the mean number of saccades 

(as in the 1st canonical variate), there is no a priori reason accuracy should be affected 

by heuristic use. The association between diminished heuristic use and improved 

accuracy indicates that having a model of the task structure to direct one’s behaviour 

not only permits epistemic foraging but also improves overall performance.  

I have further shown that one can use canonical correlation analysis to quantify 

behavioural phenotypes and their underlying computational bases – in this case, the 

tendency to use efficient epistemic search, the tendency to be careful (using epistemic 

search but also extra saccades), and the tendency to be hasty but also refine one’s 

behaviour over blocks.  

Finally, I have demonstrated the use of parametric empirical Bayes to infer changes 

in parameters within subjects over the course of the experiment. Interestingly, subjects 

did not change their prior beliefs about the inverse precision parameter β and the 

heuristic bias Eheuristic consistently. The change in the subjects’ prior preferences 

about being ‘correct’ and ‘quick’ best accounts for performance improvements from 

the first to the last block (lower panel of Fig 4.7). In other words, a simple change in 

the way that people expected themselves to behave was sufficient to explain changes 

in behaviour. This does not mean to say that the subjects were more confident about 
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their policy selection; rather, they were more confident about the consequences or 

outcomes of their selected policy.  

In recent decades several models have been introduced to explain what may drive 

visual attention. Some of these models map the features of objects (or image patches) 

such as colour, intensity, orientation (Itti and Koch, 2000; Parkhurst et al., 2002), 

motion (Rosenholtz, 1999), local contrast and two point intensity correlation (Parkhurts 

& Neibur, 2003) onto a saliency map. There are crucial differences between these 

formulations of salience and the one I used in this work: First, my model is not 

designed to process the visual features of the objects – it deterministically knows 

where it looks (where) and what it sees (what). Second, unlike early formulations, my 

model is endowed with a natural curiosity about the hidden causes of the world that 

drives its visual search and the prior preferences that encourage it to make accurate 

and timely choices. In short, salience in active inference is an attribute of a policy that 

has outcomes – not an attribute of stimuli. This is not to say that stimuli do not have 

an epistemic affordance but it is the sampling of that affordance that is underwritten 

by salience. 

Another perspective on visual attention suggests that cognitive control processes drive 

visual search behaviour. Under this hypothesis the context in which the visual search 

tasks are performed drives exploratory behaviour (Chun and Jiang, 1998; Chun, 2000; 

Neider and Zelinsky, 2006; Yarbus, 1967). In my paradigm, however, the context is 

revealed as a result of gathering information; in other words, it has to be inferred. Thus 

a deterministic knowledge of potential contexts, but not the actual context, guides the 

agent’s search behaviour. 

It has also been shown that in a set of expected stimuli, the abrupt appearance and 

disappearance of an object (Brockmole & Henderson, 2005a, 2005b) or the presence 

of improbable stimuli given a context (Loftus & Mackworth, 1978) can drive visual 

attention. These results suggest that novelty or information in Shannon’s terms attract 

visual attention. However, Itti & Baldi (2009) showed that areas of high Bayesian 

surprise (i.e. that cause greater shifts in beliefs) are more potent attractors of human 

visual attention; i.e., more salient  than informative areas in Shannon’s terms. One 

difference between the various approaches above is that in Itti and Baldi’s work, 

Bayesian surprise is computed over low level visual features, rather than hidden states 
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of the world as in active inference. Nevertheless, the principle of Bayesian surprise 

underwriting visual salience is likely to hold throughout the cortical hierarchy.  

The work in this chapter has some limitations. The small size of the grid scene in the 

simple visual task used in this work limits the potential benefit of using an epistemic 

strategy – as it is possible to explore all the quadrants in the time allotted. In a larger 

grid, the contribution of epistemic strategies to exploration may be even more 

pronounced. For the reasons of simplicity I did not use the explicit distractors (that are 

uninformative about the scene category) – I simply used a null or grey background. 

Under the aberrant salience hypothesis of schizophrenia (Kapur, 2003), one might 

predict that subjects with schizophrenia may sample stimuli of no epistemic value. A 

more complex visual task may incorporate sub-goals; i.e., utilities attached to objects 

and not only to right and wrong feedback. Such tasks may allow more thorough 

investigation of the exploration/exploitation trade-off. Finally, the visual search model 

that I used here does not explicitly model the processing of visual features of the 

objects. More ecological paradigms might also incorporate Bayesian surprise about 

lower level visual features; e.g., uncertainty in the identification of objects themselves.  

In summary, chapter 3 has shown how (synthetic) subjects can evaluate (expected) 

Bayesian surprise – i.e. epistemic value – and use it to drive Bayes optimal search 

behaviour or ‘epistemic foraging’. In this chapter, I have demonstrated that even in a 

very simple task, model comparison indicates strong evidence for epistemic foraging 

(alongside the use of fixed-form or heuristic policies) in healthy subjects. Furthermore, 

this epistemic foraging is associated not just with more efficient exploration but also 

with more accurate scene categorisation. In addition, I have shown how canonical 

correlation analysis can distinguish different behavioural phenotypes and their 

underlying computational parameters.  
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5.  Contextual exploration and active inference 

We are living in an age characterised by an overwhelming access to information. 

However our survival does not depend on seeking out any information but seeking out 

that which is relevant to our survival. The relevance of information depends on one’s 

situation, or context. This means that the correct recognition of a context is essential 

to seek out the “correct” information.  

Context can drive visual attention. In his classic study investigating exploratory eye 

movements, Yarbus asked his participants to look at the very same painting of a family 

while changing the participants’ instructions (or the rule). These instructions were to 

either evaluate the material circumstances of the people in the picture or to guess their 

ages. Under the first instruction the participants paid more attention to the clothing of 

the people and the furniture whereas under the second they paid the most attention to 

people’s faces. Yarbus concluded that what attracts human visual attention is 

information that is useful (Yarbus, 1967). This context-dependence in visual 

exploration is now a well-established phenomenon (Castelhano, Mack, & Henderson, 

2009). The scene context can be a background that is consistent or inconsistent with 

a foreground object (Biederman, Mezzanotte, & Rabinowitz, 1982; Davenport & Potter, 

2004; Neider & Zelinsky, 2006), or it can be defined in terms of the spatial layout of 

the objects (Chun, 2000; Chun & Jiang, 1998; Peterson & Kramer, 2001). Visual 

search performance has been shown to benefit from this contextual cueing as in each 

case, some parts of a scene become task relevant and contain more information. 

This raises the question: What is information? Shannon proposed that an outcome 

contains more information if it is less predictable (Shannon, 1948). Itti and Baldi argue 

that regardless of how unexpected an outcome is, only the observations that causes 

a significant shift in prior belief distributions yield information gain. This notion, known 

as Bayesian surprise, (Itti & Baldi, 2009) conceptualises a unit of surprise – a “wow” – 

in terms of the KL divergence between the prior and posterior beliefs about the world. 

This forces us to think in terms of the mutual information between an observation, and 

the unobservable (hidden) states of the world that give rise to it. A new observation is 

presumed to be more surprising if the posterior distribution (about hidden states) is 

more dissimilar to the prior distribution. Observations that yield high amounts of 
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Bayesian surprise attract human visual attention, but also note that “The same data 

may carry different amounts of surprise for different observers, or even for the same 

observer taken at different times” (Itti & Baldi, 2009). However it has not been shown 

how Bayesian surprise can orient attention to different observations under different 

contexts. Here, I show, using active inference, how contextual exploration can occur 

– using Bayesian surprise – if beliefs about context influence beliefs about the mutual 

information between certain kinds of hidden state and sensory data. 

In previous work, it has been suggested that perception corresponds to inference 

about hidden states and attention corresponds to optimisation of the precision of 

sensory inputs and their causes (Feldman & Friston, 2010; K. Friston, 2009). In this 

work I consider a generative model that can change the precision of different sensory 

signals depending on the states of the world. Active inference implies that we weight 

sensory inputs from different sensory channels in proportion to the precision, given 

our goals. In the context of rule based or contextual exploration this entails down-

weighting the sensory precision of the stimuli (objects) and their causes irrelevant to 

the context. In this way, epistemic exploration guides the sensory organs to the stimuli 

that matter in a given context. My objective here is to introduce a computational model 

that can selectively attend to the task relevant stimuli and acquire useful information 

under a context. 

This paper comprises five sections. In the first, I explain the computational mechanism 

that may underlie attention. In the second, I introduce a contextual exploration task 

called colour/shape task. In this task a scene can be categorised in different ways 

depending on what the rule is. The relevant information that can be acquired by 

exploring the scene depends on the rule. In the third section I describe the MDP model 

of this task. In the fourth section I explain how contextual exploration may arise by 

appealing to mechanisms of attention in an MDP model of active inference. In the final 

section I show the simulations of this task. Using the same principles described for this 

task, I also show that this computational mechanism may explain the scan-paths of 

the people who performed free scene exploration tasks under different instructions. I 

conclude with a discussion of how the model presented here relates to/diverges from 

the models of visual search in the literature and how this model could be used in 

computational psychiatry. 
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5.1.  Attention 

Attention has been suggested as the inference about the precision of the causes of 

sensory inputs (Feldman & Friston, 2010; K. Friston, 2009). In an MDP setup this 

precision corresponds to the precision of the mapping from hidden states to the 

observations. The probability of an observation given the hidden states is encoded by 

the likelihood matrix  |m m

ijA P o i s j    , where the superscript m  indicates the 

m th  outcome modality. I now introduce a precision term to modulate the uncertainty 

of this mapping in the generative model (but not in the generative process). 
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The right-hand side of this equation can be referred to as a Gibb’s distribution, where 

the denominator normalises each entry in the likelihood matrix to a range of 

[0 1]ijA   and the sum over rows to 1m
kj

k

A  . Here 
m
j  is a term that modulates 

the precision of the likelihood matrix. This plays the role of an inverse temperature 

parameter. There exists such a precision term for each outcome modality m M  and 

each level of hidden states j J . When 0m

j   the mapping between the hidden 

states and observations becomes very ambiguous (low sensory precision), whereas 

when 
m

j   this mapping becomes very precise (high sensory precision). This 

precision term changes the state estimation equations introduced in Fig 2.4 in a way 

it is shown in Fig 5.1. 
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Figure 5. 1 Computational mechanism underlying attention 

State prediction errors are used to infer the most likely hidden states of the world in the perception 

phase of the variational updates. The precision term   (shown in red) multiplies the logarithm of the 

likelihood matrix ln A , in the first equation under perception which shows that when the sensory 

precision is very low 0   the observation o  does not contribute to state prediction errors in the 

second equation and do not influence the inference stage of the variational updates. 

In order to understand how this precision term works, consider the following example 

in which a distinction between a generative process and a generative model is made. 

Assume that you observe a series of coin flip outcomes, not seeing the coin that is 

being flipped. The process that generates the coin flip outcomes (generative process) 

is such that one of two coins is flipped at a time. These coins are unfair coins such 

that coin 1 is responsible for the heads outcomes and coin 2 is responsible for the tails 

outcomes (see the top panel of Fig 5.2). These two coins are the hidden states that 

generate the observations heads and tails. Now assume that you know the exact 

relation between the outcomes and the coins, i.e. the generative process and 

generative model are identical (see the bottom left panel of Fig 5.2). If you observe 

another coin flip outcome then you would know which coin is responsible for the 

observed outcome. In this case the observed outcomes can acquire information about 

the hidden states, e.g. if a heads is observed, the hidden state responsible for the 

outcome is coin 1. If the process that generates the coin flip outcomes uses the very 

same unfair coins but this time you believe that it is equally likely to observe heads 

and tails under both coins (i.e. the generative process and generative model are 

different), you can no longer tell which coin is responsible for the outcomes (see the 

bottom right panel of Fig 5.2). With the beliefs that there is an imprecise mapping 

between the hidden states and the outcomes the agent cannot resolve uncertainty 

about the hidden states of the world (i.e. inducing irreducible uncertainty). In the active 

inference formalism an agent would not pursue the policies that cannot acquire 

information about the hidden states because epistemic exploration seeks out the 

policies that can change the prior beliefs about the hidden states substantially.  
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Figure 5. 2 Precise vs imprecise likelihood matrices 

This figure shows how manipulating the precision of the likelihood matrix in the generative model 

changes the inference about the hidden states under the same generative process. The top panel 

specifies the likelihood matrix in the generative process for a coin flip, i.e. there are two different unfair 

coins where coin 1 is responsible for the heads outcomes and coin 2 is responsible for the tails 

outcomes. The lower left and right panels show what the beliefs in the generative model are like, namely 

very high    and very low 0  , respectively. When the sensory precision is very high 0  , 

one would know coin 1 and coin 2 are responsible for heads and tails outcomes, respectively. However, 

when the sensory precision is very low 0  , one would no longer know which coin is responsible for 

the observed heads or tails, even when the generative process is exactly the same as in the top panel. 

5.2.  A contextual exploration task 

In this section I introduce a contextual visual search task called the colour/shape task. 

The colour/shape task is performed on a two-by-two grid scene whose quadrants are 

masked in the beginning. Attending to a quadrant unmasks the object in that quadrant 
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(see Fig 5.3). In this task certain objects are associated with certain contexts. These 

contexts can be seen as rules that state what information should be sought out, very 

much like the instructions given in Yarbus’ experiment (Yarbus, 1967). The goal in this 

task is to categorise the scene that is being explored. Crucially a scene can be 

categorised either in terms of its colour or its shape. The agent is informed about the 

categorisation rule before performing the task. The colour category is determined by 

mixtures of colours in top left and top right quadrants (the top left is always red, and 

the top right can be red, yellow or blue). The category of the scene is red, orange or 

purple if the object in the top right quadrant is red, yellow or blue, respectively given 

that the rule is categorise colour. The shape category of the scene is square, circle or 

triangle, if the object in the bottom left quadrant is square, circle or triangle, 

respectively given that the rule is categorise shape (see Fig 5.4). Beliefs about the 

category of the scene are reported by attending to one of the three choice locations at 

the bottom of the scene. These choice locations either correspond to colour or shape 

categories depending on what the rule is (see the rightmost panels in Fig 5.3). Upon 

making a categorisation, feedback of right or wrong is given.  

 

Figure 5. 3 Sequence of observations 

The sequence of scenes shows an example scene exploration. In the beginning each quadrant is 

greyed out. Attending to each quadrant reveals the content of each quadrant. In this case the order of 

explored locations are top left, bottom left and top right quadrants.  
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Epistemic exploration of a scene would continue until all uncertainty about the hidden 

states of the world (here, colour and shape categories) is resolved. However, rule 

based exploration requires one to resolve uncertainty only about the relevant hidden 

states. There is no reason why one should resolve uncertainty about the shape 

category when the rule is categorise colour. 

 

Figure 5. 4 Scene categories 

A scene can be categorised in two different ways, either by its colour or its shape. The categories of 

the scenes are shown on the left and on top when the rule (context) is to categorise the scene in terms 

of its colour and shape, respectively. 

In the next section I introduce the MDP model of the colour/shape task. 

5.3.  MDP model of the colour/shape task 

This section describes the MDP model for the colour/shape task. In this MDP model I 

considered four sets of hidden states, namely Rule, Where, Category: colours and 

Category: shapes. The first set of hidden states Rule defines the context in which the 

scene will be categorised. A scene can be categorised in two ways, either in terms of 

its colour or its shape, depending upon the rule. The second set of hidden states 
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Where corresponds to the locations in the scene. There are eight locations in this task: 

central fixation (location 1), the four quadrants (locations 2-5) and three choice 

locations (locations 6-8) at the bottom. The choice locations are associated with the 

categories red, orange and purple when the rule is categorise colour, and square, 

circle and triangle when the rule is categorise shape. The third set of hidden states 

Category: colours controls what colours will appear on the top left and top right 

quadrants under the colour categories red, orange and purple, e.g. if the colour 

category is purple then the colours red and blue will be in these two locations. The 

fourth set of hidden states Category: shapes determines which shape will be in the 

bottom left quadrant under the shape categories square, circle and triangle. 

 

Figure 5. 5 Structure of the generative model 

A) This panel shows the graphical representation of the MDP model and the conditional dependencies 

among the terms in the model. See Fig 3.1A for details. B) This panel shows the four sets of hidden 
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states and outcome modalities in the colour/shape task. There are four sets of hidden states, namely 

Rule, Where, Category: colours and Category: shapes. There are four outcome modalities, namely 

Rule, Where, What: colours and What: shapes. 

I considered four outcome modalities, namely Rule, Where, What: colours and What: 

shapes. The first outcome modality Rule unambiguously cues the context, either 

categorise in terms of colour or shape. The second outcome modality Where signals 

the sampled location in the scene (one of eight locations). This can be thought of as a 

proprioceptive (or dorsal visual) signal. The third outcome modality What: colours 

signals which colour is observed in the sampled location. It can be red, yellow, blue or 

null (no colour). The fourth outcome modality What: shapes signals which shape is 

observed in the sampled location. It can be square, circle, triangle or null (no shape). 

Under both What: colours and What: shapes modalities there are two additional 

feedback outcomes, right and wrong. An agent can report its beliefs about the category 

of the scene by choosing one of the three choice locations associated with the 

categories under the rules categorise colour or categorise shape and obtain feedback 

about whether its choice was right or wrong. See Fig 5.5 for the hidden states and 

outcome modalities. 

In this setup the Rule and Where hidden states directly map to the Rule and Where 

outcomes. The hidden states Category: colours and Category: shapes map onto What: 

colours and What: shapes objects as a function of Where and Rule hidden states, e.g. 

sampling location 8 when the rule is categorise colours would generate a right 

feedback if the scene category is purple. All the transition matrices are identity 

matrices except for the action dependent where transition matrix. The identity matrices 

indicate that the rule and the scene category do not change in the course of a trial. 

The action dependent where transition matrix specifies that the agent would attend to 

the location indicated by the action, e.g. if the sampled action is 4 then the agent would 

go to the top right location. In this setup, I defined prior preferences over right (utility 

or relative log probability of 2  nats) and wrong (utility of 4 ) outcomes under both What: 

colours and What: shapes modalities. With these utilities the agent avoids categorising 

the scene prematurely and categorises only once it has accumulated sufficient 

evidence. See Fig 5.6 and Fig 5.7 for the likelihood, prior preference and transition 

matrices. 
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Figure 5. 6 Likelihood and prior preference matrices 

This figure shows the likelihood and prior preference matrices used in the colour/shape task. A) The 

colour category of the scenes shown on the left is purely determined by the colour in location 4 (top 

right quadrant). The panels on the right show the likelihood ( A ) matrices for location 4. The likelihood 

matrices encode the probability of outcomes ( to ) given the hidden states ( ts ). The first likelihood matrix 

1A  (Rule) signals what the rule is, either categorise colour or shape. The second likelihood matrix 
2A  

(Where) signals the sampled location on the scene, one of eight locations. The third likelihood matrix 

3A  (What: colours) encode the probability of colours red, yellow and blue under different colour 

categories red, orange and purple. The final likelihood matrix 
4A  (What: shapes) encode the probability 

of shapes square, circle and triangle under different shape categories square, circle and triangle. 

Because the colour and shape are mutually exclusive modalities, the probability of colour and shape 

objects are encoded by separate likelihood matrices 
3A  and 

4A .  The likelihood matrix under the colour 
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modality for location 4 
3 ( 4)A k   shows that the colour category of a scene is purely determined by 

the colours in this location, however under the shape modality 
4 ( 4)A k   the object in this location 

does not give any information about the shape category, i.e. null. B) The prior preference matrices are 

shown in this panel. The prior preference matrices encode how much one outcome is preferred relative 

to another outcomes as a function of time. The only preferences are defined over the columns of 
3C  

(What: colours) and 
4C  (What: shapes). Under both 

3C  and 
4C  the utility of making a right 

categorisation and wrong categorisation is 2  and 4 , respectively. With these utilities the agent 

expects to categorise a scene correctly while avoiding to make an incorrect categorisation. 

 

Figure 5. 7 Transition matrices 

This panel shows the transition matrices. All the transition matrices are identity matrices except for the 

action dependent transition matrix 2B , which encodes the most likely location to be sampled as a 

function of action, e.g.  
2 ( 4)B k   shows that under action 4, the top right quadrant is the most likely 

location to be sampled in the next time step. The identity transition matrices 
1B  (Rule), 

3B  (Category: 

colours) and 
4B  (Category: shapes) express that the rule and the colour and shape objects in the scene 

do not change in the course of a trial. 

Epistemic exploration seeks out the information that can be acquired about an 

environment. However more often than not, the information out there is not useful to 

the task at hand. In the next section I show that attentional mechanisms need to be in 
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play for contextual exploration to occur and how information that is task relevant can 

be acquired. 

5.4.  Contextual epistemic exploration 

In the model described above, the uncertainty that can be resolved through exploration 

is about the scene category in terms of its colour and shape. Epistemic exploration 

favours saccades to the locations that offer information about colour and shape 

categories of the scene regardless of what the Rule is. Rule based (contextual) 

exploration requires an agent’s attention to be directed such that only relevant 

information under a context matters.  The most salient actions are then those that yield 

observations (in this case colour and shape modalities) that are generated by hidden 

states (objects under colour and shape categories) with a high fidelity (precision). 

Here, I show that beliefs about the uncertainty in the mapping from the hidden states 

of the world ts  to sensory observations to  can modulate the salience associated with 

saccades to each location (T. Parr & Friston, 2017a).  

In the colour/shape task, the precision of the sensory signals is modulated as a 

function of the Rule hidden state dimension in the generative model. This works such 

that when the Rule hidden state is categorise: colour the sensory precision of the 

shape objects is set very low while the sensory precision of the colour objects is set 

very high, and vice versa for hidden state categorise: shape. This can be formally 

expressed with the equations below. 
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Equation 13 expresses the likelihood of the outcome mo n  in the generative process 

given the hidden states 1s i , 2s j , 3s k  and 4s l  with m M , n N , i I , 

j J , k K , l L  where M  is the number of different outcome modalities (Rule, 

Where, What: colours and What: shapes), N  is the number of outcomes in an 

outcome modality (e.g. under the What: colours modality red, yellow and blue colours) 

and,  ,I categorise colour categorise shapes ,  1, , 8J location location , 

 , ,K red orange purple  and  , ,L square circle triangle   are the number of states 

under different hidden state dimensions (e.g. under the first hidden state dimension 

1s , Rule states categorise: colours and categorise: shapes).  

Equation 14 expresses the likelihood of the same outcome in Equation 13 but this time 

for the generative model. This likelihood mapping is subject to the precision terms 

. The precision term 
m

i  is applied to the logarithm of the likelihood matrix for the m-

th outcome modality mA  given the i-th level of the first hidden state 1s i . Finally a 

softmax function is applied to the resulting term to normalise the columns of the 

likelihood matrix to the range of probabilities. 

The matrix in Equation 15 is a precision matrix which shows the values of the precision 

terms 
m

i  for different outcome modalities m  and different levels of the first hidden 

state dimension 1s i  which specifies what the rule is (categorise: colour or categorise: 

shape). This matrix shows that this precision term 
m

i  is infinitely big under the 

modalities Rule and Where for i , which means that there is a deterministic mapping 

to the outcomes under these two modalities. The crucial manipulation is implemented 
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under What: colours and What: shapes modalities. When the first hidden state 

dimension 1s  is on the :i categorise colours  level (see the first column of the precision 

matrix) there is a very precise mapping to the colour objects (
m

i   ) under the 

What: colours modality. With the beliefs of this precise mapping agent thinks that it 

can resolve uncertainty about the Category: colours hidden state (see the left panel of 

Fig 5.8). The precision of the mapping from :i categorise colours  to shape objects 

under What: shapes modality is expressed as a function of z . When 0z   the mapping 

to the shape objects become very imprecise which makes the agent believe it cannot 

resolve uncertainty about Category: shapes hidden state. Therefore the agent’s 

attention would be focused only on task relevant objects, namely colour objects (see 

the right panel of Fig 5.8). When z   the mapping to the shape objects are very 

precise which means that the agent’s attention would be divided between two different 

outcome modalities, namely What: colours and What: shapes, that could resolve 

uncertainty about two different hidden states, namely Category: colours (task relevant) 

and Category: shapes (task irrelevant) categories (see the middle panel of Fig 5.8). A 

similar formulation is expressed in the second column of the precision matrix when the 

rule is categorise: shapes. 

In the next section I show how changing the precision terms introduced in this section 

can give rise to contextual exploration with simulated responses. 

5.5.  Simulations of the colour/shape task 

5.5.1. Colour/shape task 

The information gained from observing a stimulus depends critically on the precision 

  of the likelihood mapping between that stimulus and an uncertain hidden state, e.g. 

the degree to which seeing ‘blue’ means the scene must be a ‘purple’ category. By 

reducing the   of the task irrelevant likelihood, an agent can reduce the expected 

information gained from observing task irrelevant objects, and thus ‘attend away’ from 

them. 

Let us assume that the rule is to categorise the scene in terms of its colour. Under this 

rule, colour objects are task relevant and shape objects are task irrelevant. Thus, when 
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performing the contextual scene categorisation task, an agent would only attend to the 

colour objects if 
colour  is maximised (Fig 5.8, left panel) and 

shape  is minimised, i.e. 

0shape   (Fig 5.8, right panel). If 
shape is maximised (i.e. 

shape  ,  see Fig 5.8, 

middle panel), the agent becomes more likely to attend to the task irrelevant objects.  

Note that the agent’s beliefs about the likelihood mapping and the mapping in the real 

world may not be the same: i.e. the generative model (internal beliefs) and generative 

process (real-world) may be different. In the right panel of Fig 5.8 the agent believes 

that there is an imprecise mapping between shape categories and objects (generative 

model) but this mapping is very precise in the process that generates outcomes 

(generative process). In fact the middle and right panels of Fig 5.8 show the cases 

when the generative model and generative process are identical and different, 

respectively. These panels show how varying 
shape  changes the mapping between 

the task irrelevant shape category and objects when the rule is categorise colour. The 

mapping between colour category and objects are changed in the very same way 

using 
colour  when the rule is categorise shape.  

 

 

Figure 5. 8 Likelihood matrices under different precisions 

In this figure the rule is to categorise a scene in terms of its colour. The objects that resolve uncertainty 

about the colour category are task relevant, and the objects that resolve uncertainty about the shape 
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category are task irrelevant. The likelihood matrix on the left shows the mapping between the task 

relevant objects and categories (in this case colour objects and categories) under high precision 

colour  . The likelihood matrices in the middle and right panels show how the mapping between 

the task irrelevant objects and the categories (in this case shape objects and categories) change under 

two levels of precision 
shape . Under a high precision 

shape    this mapping is very precise, 

however under a low precision 0shape   it becomes very ambiguous. When this mapping is very 

imprecise the agent no longer acts to resolve uncertainty about the task irrelevant category. The task 

relevant and irrelevant likelihood matrices are illustrated for locations 3 and 4, because these are the 

only locations that hold the objects that can resolve uncertainty about the shape and colour categories, 

respectively. The precision term 
colour  is used to change the mapping between colour objects and 

categories in the same way when the rule is categorise shape. 

The upper and lower left panels of Fig 5.9 show the quadrants that the agent attended 

to in the course of a trial under high shape   and low 0shape   levels of task 

irrelevant precision, while keeping the task relevant precision high 0colour   for both 

trials. The heat maps in the right panels show how likely the agent is to attend to a 

particular location in the scene, expressed in terms of a softmax function of expected 

free energy under eight policies (i.e. visiting one of the eight locations in the scene). 

On the trials shown in Fig 5.9, the rule is to categorise the scene in terms of its colour. 

When the agent believes that it can acquire information about the task irrelevant shape 

category (i.e. shape  ; upper panel), it finds that it is equally likely to attend to the 

top right (colour) and bottom left (shape) quadrants at 1t  , even though the only 

object that can resolve uncertainty about the colour category is in the top right 

quadrant. The agent chooses between the two randomly, in this case the bottom left 

(shape) quadrant, and only then attends to the top right (colour) quadrant at 2t  , 

successfully categorising the scene as purple at 3t  . Conversely, when the agent 

does not believe that it can resolve uncertainty about the task irrelevant shape 

category 0shape   (lower panel), it ignores the bottom left (shape) quadrant and 

categorises the scene as purple one timestep earlier.  
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Figure 5. 9 Exploratory behaviour under different precisions 

The upper and lower left panels show how the exploratory behaviour changes under two different levels 

of task irrelevant precisions 
shape   and 0shape  , while keeping taks relevant precision high 

colour  . The subsequent panels show how likely an agent is to sample a location in the course of a 

trial, expressed in terms of prior probabilities for each policy. At the beginning of each trial, the agent 

fixates at the centre of the screen (location 1). Under high task irrelevant 
shape   and task relevant 

colour   precisions  the agent finds that it is equally likely to attend to the task relevant colour 

objects in location 4 as the task irrelevant shape objects in location 3, in the beginning. The agent first 

attends to location 3 where it finds a circle and then it attends to location 4 where it finds the colour 

blue. Subsequently the scene is categorised as purple. Under a low task irrelevant precision 0shape   

and high task relevant precision 
colour    the agent finds that the only location that matters is 

location 3 which holds the task relevant colour objects. In the next time step it attends to location 3 and 

finds the colour blue and subsequently categorises the scene as purple. 

5.5.2. Yarbus’ free exploration task 

The same principles that are applied in the task above can be applied to Yarbus’ free 

exploration task. Just like in the colour/shape task, the scene can be explored in two 

different ways depending on what the instruction is. When the instruction is estimate 

the family’s material circumstances, the only objects that matter are the furniture and 
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the people’s clothing, whereas when the instruction is give the ages of the people, the 

faces of the people hold the most information.  
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Figure 5. 10 Yarbus’ free exploration task and simulations 

A) The painting An Unexpected Visitor by Ilya Repin is shown on the left. The panel on the right 

highlights 13 locations that can give information about either material circumstances of the family or the 

ages of the people in the painting. The first location is the centre of the scene. Furniture and people’s 

clothing appear on locations 2, 4, 6, 9, 10 and 11. People’s faces appear in locations 3, 5, 7, 8, 12 and 

13. For illustrative purposes the location 3 has been chosen to show that one can see young, middle 

aged or old faces in locations a face can appear. Location 6 has been chosen to show that one can see 

an antique, a modest or a common chair in locations a piece of furniture (or man’s/woman’s clothing) 

can appear. B) This panel shows the simulated exploratory behaviour of a context naïve agent (unaware 

of the instructions and thus exploring the scene freely). The agent starts exploring from the centre of 

the scene (location 1). C) This panel shows how the agent explores the painting under the instructions 

estimate material circumstances of the family. D) This panel shows the responses of the agent when 

exploring the painting under the instructions give the ages of the people. Please compare the simulated 

scanpaths in panels B, C and D with the scanpaths of the subjects from Yarbus’ work (see the first three 

scanpaths in Fig 109 from Yarbus (1967)). The painting Unexpected Visitors (or They did not expect 

him) by Ilya Repin has been downloaded from 

https://en.wikipedia.org/wiki/File:Ilya_Repin_Unexpected_visitors.jpg (Repin, 1884-1888). Wikipedia 

contributors. (2019, January 21). Ilya Repin. In Wikipedia, The Free Encyclopedia. Retrieved 14:37, 

February 15, 2019, from https://en.wikipedia.org/w/index.php?title=Ilya_Repin&oldid=879516824. The 

simulated scanpaths are superimposed on this painting to produce the responses seen in the panels 

B, C and D. 

The subjects in Yarbus’ study knew where to expect certain objects in the painting 

because they were instructed to explore the scene freely before exploring the same 

scene under different instructions, and secondly one  expects the objects in the world 

to appear in certain locations (Biederman, 2017) e.g. furniture and faces tend to 

appear at different heights, and different positions relative to other objects. These 

locations are highlighted with numbers between 1 and 13, where location 1 

corresponds to the centre of the scene (see the right panel of Fig 5.10A). The furniture 

and clothes appear in locations 2, 4, 6, 9, 10, 11 whereas the faces appear in locations 

3, 5, 7, 8, 12, 13.  

I considered that each of these locations could hold a number of objects: i.e. faces of 

different ages at the higher locations (e.g. location 3, Fig 5.10A), and a variety of 

furniture or clothes at the lower locations (e.g. location 6, Fig 5.10A). The presence of 

an antique, a modest or a common chair at location 6 cues the material circumstances 

of the family: wealthy, middle class or poor. The presence of different faces cues the 

https://en.wikipedia.org/wiki/File:Ilya_Repin_Unexpected_visitors.jpg
https://en.wikipedia.org/w/index.php?title=Ilya_Repin&oldid=879516824
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average age of the people in the picture: young, middle aged or old. In this setting, a 

very low precision 0   would induce imprecise likelihood matrices for the task 

irrelevant objects and categories, e.g. when the instruction is to estimate material 

circumstances of the family, the likelihood matrix for the ages becomes very imprecise.  

Fig 5.10 shows the simulated saccadic patterns generated using the same principle 

described for the colour/shape task. In Yarbus’ work the participants were first asked 

to explore the painting freely, then to estimate the material circumstances of the 

people, or their ages (see the first three scanpaths in Fig 109 from Yarbus (1967)). 

Like Yarbus’ participants, the agent attends to all the faces and most of the furniture 

(and clothing) in the scene during free exploration (Fig 5.10B), i.e. when the agent is 

unaware of the instructions, but when the instructions are estimate the material 

circumstances of the family or give the ages of the people the agent selectively attends 

to the furniture and clothing (Fig 5.10C) or faces (Fig 5.10D) respectively. 

Model behind the simulations of Yarbus’ task 

The hidden state and outcome spaces used to generate the simulated saccadic 

patterns in Yarbus’ experiment (see Fig 5.10) is fairly similar to the model described 

above. The hidden state space consists of five dimensions, namely Instruction, Where, 

Category: wealth, Category: age, and Scene type. Instruction is either estimate 

material circumstances or give the ages of the people. Where encodes one of thirteen 

locations in the scene. Category: wealth encodes the material circumstances, which 

could be wealthy, middle class and poor. Category: age encodes the average age of 

the people in the scene and these are young, middle aged or old. Scene type consists 

of a number of different scenes that map onto the same states in Category: wealth 

and Category: age state dimensions. Essentially young, middle aged and old faces 

can appear under different age categories. A scene whose category is young contains 

predominantly young faces. Each scene under the category young can contain other 

type of faces, e.g. middle aged and old. Scene type encodes the number and locations 

of  these faces. Scene type encourages exploration of the scene. There are four 

outcome modalities, namely Instruction, Where, What: object and What: face. 

Instruction and Where states directly map onto Instruction and Where outcomes. 

What: object outcome contains antique, modest and common chairs, whereas What: 
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age outcome contains young, middle aged and old faces. See Fig 5.11 for the 

generative model used to simulate the scan-paths in Fig 5.10.  
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Figure 5. 11 Structure of the generative model – Yarbus’ task 

A) This panel shows the graphical representation of the MDP model and the conditional dependencies 

among the terms in the model. See Fig 3.1A for details. B) This panel shows the five sets of hidden 

states and four outcome modalities in our MDP version of Yarbus’ task. There are five sets of hidden 

states, namely Instruction, Where, Category: wealth, Category: age and Scene type. There are four 

outcome modalities, namely Instruction, Where, What: object and What: face. See the main text for 

details. 

5.6. Discussion 

In this chapter I showed that a computational agent can selectively attend to the 

information that is useful under a context by inferring the appropriate attentional 

targets. Computationally, this corresponds to modulating the precision of the mapping 

(encoded by the likelihood matrix) between task irrelevant sensory inputs (stimuli that 

aren’t informative in a certain context) and their hidden causes. When the precision of 

the task irrelevant likelihood is very low, an agent only attends to the task relevant 

stimuli. This model reproduces the saccadic patterns in empirical studies of context-

dependent human exploratory behaviour (Yarbus, 1967).  

The exploratory behaviour of the agent described in this chapter is driven by epistemic 

value (Mirza et al., 2016) a.k.a. Bayesian surprise. Bayesian surprise attracts human 

attention (Itti & Baldi, 2009): in other words, a stimulus attracts attention if it changes 

an observer’s beliefs significantly. Clearly, this depends upon what beliefs an observer 

currently holds. I demonstrated the capacity for an agent to revaluate beliefs about 

context, given a cue, such that the same stimulus can carry different levels of surprise 

in different contexts.  

Most computational models of visual search are bottom-up models of visual attention 

that do not take into account the contextual information inherent in visual scenes. 

These models usually create a ‘saliency map’ based on the features of the objects in 

the scene. These features include orientation, intensity, colour information (Itti & Koch, 

2000; Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985; Parkhurst, Law, & Niebur, 

2002), luminance (Achanta, Hemami, Estrada, & Susstrunk, 2009), contrast (Ma & 

Zhang, 2003) and motion (Rosenholtz, 1999). Typically, the locations in these saliency 

maps are attended in order of decreasing salience – often requiring an inhibition-of-

return rule to be explicitly introduced. Although these models provide relatively good 
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predictions of where visual attention will be deployed in pop-out visual search tasks, 

they do not incorporate contextual information. There is no reason why a bottom-up 

visual search model would find the faces of people more salient when an instruction 

such as ‘give the ages of the people in the scene’ is given. Only models with a top-

down element have the potential to make use of such instructions.  

There are a number of visual attention models that can incorporate top-down 

knowledge during visual search. Top-down instructions in these models are usually 

given in the form of prior knowledge about the features of an object of interest. While 

some top-down models evaluate the similarity (or dissimilarity) of the features of the 

object of interest with the features in the scene that is being explored (Torralba, Oliva, 

Castelhano, & Henderson, 2006), there are other models that either modulate or select 

feature outputs such that the features of the object of interest during visual search 

become more salient (Navalpakkam & Itti, 2006; Wolfe, 1994). A noteworthy model 

defines image categories as different visual patterns and approaches the scene 

categorisation problem by maximising the mutual information between scene 

categories and pixel values at possible fixation locations (Yang, Lengyel, & Wolpert, 

2016). A similar approach maximises the pointwise mutual information between a 

target object and visual features (Zhang, Tong, Marks, Shan, & Cottrell, 2008). There 

are also other top-down models that either use iconic scene representations to predict 

the location that holds the object of interest (Rao, Zelinsky, Hayhoe, & Ballard, 2002) 

or models that equate salience to discrimination and consider the features that best 

distinguish the object of interest from the other objects as salient (Gao & Vasconcelos, 

2005).  

Similar to some of the models above, the model I introduced in this work is equipped 

with an information acquiring component, namely epistemic value. Epistemic value 

resolves uncertainty about the hidden states of the world and it is defined as the mutual 

information between the hidden states and the observations. This model diverges from 

the above models in a number of ways. In this model contextual exploration arises due 

to entertaining imprecise beliefs about context irrelevant objects, which precludes 

information gain about context irrelevant hidden states (scene categories). This is the 

first model that can explore scenes under a context using this mechanism to my 

knowledge. Furthermore, this model can successfully report its beliefs about the scene 
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category by exploiting extrinsic value (expected utility).  I emphasise the top-down 

inferential processes that use relatively abstract semantic representations. This 

contrasts with the lower level representations used in other models to describe 

features of visual scenes. While I have not addressed the contributions of early visual 

pathways here, I could interpret the sensory outcomes as alternative hypotheses 

about the continuous variables describing simple visual features of the objects (K. J. 

Friston, Parr, & de Vries, 2017). Furthermore, my approach makes use of an explicit 

generative model that depends upon prior beliefs. This is important, as a number of 

clinical conditions have been associated with abnormalities in prior beliefs, and this 

paradigm might afford an opportunity to investigate these changes quantitatively. 

People with a diagnosis of autism spectrum disorder (ASD) are known to explore 

visual scenes (especially faces) differently than neurotypicals. In free visual search 

tasks that contain pictures of faces, people with ASD attend less to the core features 

of faces (e.g., eye, nose and mouth) and more to the non-feature regions of faces 

(Pelphrey et al., 2002) and they are slower at discriminating faces in face 

discrimination tasks (Behrmann et al., 2006). In contrast, people with ASD have been 

shown to be superior to controls on visual search tasks that involve visual illusions 

(Happé, 1996) and faster on tasks that involve spotting a target object that shares 

certain features with the distractors (Plaisted, O'Riordan, & Baron-Cohen, 1998). The 

exploratory behaviour of people with ASD may be due to one or more perturbations in 

this model: altered model structure (not knowing the mapping from e.g. gaze to mental 

states), reduced recognition of context (e.g. not realising that a given situation 

warrants information gathering about mental states) where context can be defined as 

the global configuration of features and objects, or a difficulty in down-modulating the 

precision of task irrelevant object mappings. Paradoxically, the latter would imply a 

more accurate generative model – consistent with superior (pop-out) visual search 

performance in autism (O'riordan, Plaisted, Driver, & Baron-Cohen, 2001).  

Autism is not the only condition that has been associated with abnormal precision 

weighting. The aberrant salience hypothesis of schizophrenia proposes that altered 

attribution of salience to sensory stimuli may underwrite perceptual and attentional 

changes in psychosis (Kapur, 2003). Aberrant attribution of salience may be 

exacerbated by deficits in context processing (J. D. Cohen, Barch, Carter, & Servan-
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Schreiber, 1999), but there is thought to be much more impairment in the control of 

attention (i.e. feature selection) in schizophrenia than in the subsequent inference 

using those features (Luck & Gold, 2008). Indeed, whilst subjects with schizophrenia 

may be unimpaired or even show enhanced performance in simple attentional cueing 

tasks (Spencer et al., 2011), in more complex tasks, such as viewing natural images, 

they consistently fixate less on informative areas (Beedie et al., 2011). The model I 

have presented here illustrates a potential computational mechanism behind the 

intimate connection between attentional control and the efficient sampling of 

information.   
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6.  Patch leaving paradigm and active inference 

Our everyday lives present us with different paths that lead to different outcomes. 

When choosing among alternative courses of action, we take into account the overall 

reward we are likely to get, if we were to follow a certain path – and the time it would 

take to obtain the reward. While some of us care more about long term goals, others 

have a tendency to act for immediate gratification; even when the latter is less 

beneficial in the long run (Logue, 1995; Strotz, 1955). This sort of behaviour can be 

characterized as impulsive. More precisely, impulsive behaviour can be operationally 

defined as seeking proximal rewards over distal rewards. A common theme in many 

impulsivity scales (S. B. Eysenck & Eysenck, 1978; Patton, Stanford, & Barratt, 1995; 

Whiteside & Lynam, 2001) is a failure to plan ahead. In this chapter I show that at least 

three different factors can lead to impulsive behaviour. To show this formally, I use a 

Markov decision process formulation of active inference in a patch leaving paradigm.  

In the patch-leaving paradigm (Charnov, 1976; Gibb, 1958; MacArthur & Pianka, 1966) 

the problem is deciding when to leave an environment with exhaustible resources. In 

my version of this task, there are several patches with unique reward-probability decay 

rates. Although a general notion, I can make it more intuitive with an example. A patch 

can be thought of as a bag of chocolates and stones, where chocolate is a rewarding 

and stone is a non-rewarding outcome. One can successively draw single items from 

the bag. Crucially, there is a hole at the bottom of the bag and the chocolates are 

falling from the bag faster than the stones. This means that the probability of drawing 

a chocolate decreases with time. At each time point one is presented with the choices 

stay and leave. Choosing to stay entails drawing a chocolate from the same bag that 

one has been foraging in. Choosing to leave entails moving onto a new bag that might 

have more chocolates. However, leaving has a cost – and the cost (i.e. switching 

penalty) is to forfeit attempts at drawing a chocolate for the time taken to find the new 

bag. The new bag can be a new kind of bag or the same kind of bag as the previous. 

Crucially, the holes at the bottom of each kind of bag have different sizes. This means 

that the chocolates are dropping from each kind of bag with a different rate. This task 

requires one to decide when to leave a patch to maximize reward. In this task, I equate 

staying longer in a patch (compared to a simulated reference subject) with more 

impulsive behaviour. Intuitively, a greater emphasis on proximal outcomes means a 
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greater reluctance to accept the switching penalty compared to accepting a small 

probability of immediate reward. 

In the next section, I describe the Markov decision process used to define the patch 

leaving paradigm. Through simulation I illustrate the different deficits that can lead to 

impulsive behaviour. This illustration entails manipulating how deeply a synthetic 

subject looks into the future (expressed in terms of her policy depth), its capacity to 

maintain and process sequential information (expressed in terms of the precision of 

beliefs about transitions) and how much immediate rewards and penalties are 

discounted compared to distant ones (expressed in terms of a discount slope of 

preferences over time). These manipulations will be unpacked in subsequent sections 

and their effects on the simulated responses will be compared to a MDP model that 

serves as a point of reference (a canonical model). 

This chapter comprises three sections. The first section describes a parameter of the 

MDP model, namely policy depth. I will explain how this parameter affects variational 

message passing. I will also explain the simulated electrophysiological responses as 

a consequence of this message passing scheme in greater detail. The second section 

describes a Markov Decision Process formulation of active inference for the patch 

leaving task. The third section illustrates how manipulating the three components of 

the MDP model (see above paragraph) can produce impulsive behaviours. These 

manipulations will underline the prior beliefs that can lead to impulsive behaviours. I 

present the associated (simulated) electrophysiological responses and how these 

responses change with the above manipulations. I conclude with a brief discussion. 

6.1.  Variational message passing and policy depth 

The belief update equations introduced in Fig 2.4 shows that a policy is more likely if 

it minimises the expected free energy G  (see policy evaluation in Fig 2.4). Computing 

the variational free energy, under competing policies, requires an agent to have 

expectations about the past and future states of the world. Optimising these (posterior) 

expectations entails minimising the variational free energy under a policy, given the 

current observations. These posterior expectations are then projected into the future 

to obtain the expected states (and outcomes). How far into the future the posterior 

expectations are projected depends on the policy depth.  
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The policy depth (shown with the subscript PD  in PDs   in the lower half of Fig 6.1) 

determines how many epochs beliefs about hidden states are projected into the future. 

An important feature of this scheme is that a synthetic subject holds beliefs about 

‘epochs’ in both the past and the future. This means that there are two sorts of times. 

The first is the actual time that progresses as the subject samples new observations. 

The second (epoch) time is referenced to the onset of a trial and can be in the past or 

future, depending on the actual time. Posterior expectations about the hidden states 

of the world can change as the actual time progresses and are projected to both future 

and past epochs. In this (variational message passing) scheme, it is assumed that 

beliefs at the current epoch are projected: i) back in time to all epochs from the current 

epoch to the initial epoch, and ii) forward in time (to form future beliefs) to a number of 

epochs corresponding to the policy depth.  
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Figure 6. 1 Generative process and belief updates 

The upper half of this panel shows the generative process. This process specifies that the hidden state 

of the world in the current epoch ( ts ) depends on the hidden state in the previous epoch ( 1ts  ) and 

the action ( ta ). The hidden state in the current epoch then produces a new observation ( to ). The lower 

half of this panel shows the Bayesian belief updates (variational message passing). The new 

observations are used to infer the most likely causes ( τ
s ) of the observations. The beliefs about the 

hidden states ( τ
s ) are then projected backwards ( τ -1 1

s ,...,s ) and forwards ( τ+1 τ+PD
s ,...,s ) in time. 

Here, PD  is a variable that specifies how far into the future these beliefs should be projected. This 

term will be used later in the simulations. The expected hidden states in the future ( τ+1 τ+PD
s ,...,s ) 

are used to specify expected observations in the future ( τ+1 τ+PD
o ,...,o ). Only τ+1

s  and τ+1
o  are 

shown for simplicity. Then these expectations are used along with the entropy of the likelihood matrix (

H ) to compute the (path integral of) expected free energy (G ) under all policies. A softmax function of 

expected free energies under all policies provides the posterior distribution over policies. Finally, an 

action is sampled from the posterior distribution over the policies. The conditional dependencies in the 

generative process are shown with blue arrows, whereas the message passing – implementing belief 

updates – is shown with black arrows.  

The ensuing belief updates are used to mimic electrophysiological responses obtained 

in empirical studies. I have previously used a similar approach to simulate 

electrophysiological responses during a scene construction task (see Fig 3.5). I will 

now explain these responses greater in detail. Fig 6.2 shows how beliefs about hidden 

states change at different epochs as new observations are made, and how these 

beliefs are passed to other epochs. The actual time that progresses as new 

observations are made is shown on the x-axis. After each observation, expectations 

about the hidden states are optimised. In this case, there are four hidden states. Each 

set of four units on the y-axis corresponds to expectations about these hidden states 

on different epochs (e.g. 1st, 5th, 9th and 13th rows show the expectations about the first 

hidden state in epochs one to four). Expectations about hidden states in each epoch 

are updated as new observations are made. In Fig 6.2, the current time is shown on 

the diagonal (with red squares), whereas the past and future epochs are shown above 

and below the diagonal, respectively. In this example the policy depth is one, which 

means that expectations about hidden states at the current time are projected one 

epoch into the future (i.e. there is only one epoch represented below the diagonal in 



107 

 

each column). This shows that beliefs about hidden states reach one epoch into the 

future. 

 

Figure 6. 2 Variational message passing 

This figure shows how the expectations about hidden states are optimised at the current time and 

projected to (past and future) epochs. The actual time – that progresses as new observations are made 

– is shown on the x-axis. Epochs occupy a fixed time frame of reference and are shown along the y-

axis. In this example, there are four hidden states that repeat over epochs on the y-axis. This figure 

shows that expectations about hidden states at the present time (shown on the diagonal in blue 

squares) are projected backwards to the past (above diagonal) and forwards into the future (below the 

diagonal) epochs. 

The panels in Fig 6.3 shows the how far the beliefs are projected into the future when 

different policy depths are used. From left to right the policy depths are two, four and 

six. One can see that the number of epochs current beliefs are projected to, is two, 

four and six from left to right, respectively. Later I will show how the policy depth 

changes the simulated electrophysiological responses mentioned above – and can 

have a substantial effect on policy evaluation and subsequent choice behaviour. 
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Figure 6. 3 Varying the depth of policy 

These panels show that using different policy depths project expectations about hidden states to n 

number of epochs in the future, where n is chosen as 2, 4 and 6 from left to right, respectively. 
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Figure 6. 4 Simulated electrophysiological responses 

A) This panel shows the variational message passing in the context of identifying someone by 

accumulating evidence in a sequential manner across different epochs. Here, one sees someone that 

resembles one of four people at 12:30pm. These four identities are Gabi, Jane, Sophie and Lisa. Over 

time the identity is disclosed as one gets a better view of the person. Finally at 12:33pm the person that 

was seen is identified as Gabi. In this example the policy depth is one. This means that expectations 

about hidden states are projected one epoch into the future. B) The left panel shows the expectations 

of hidden state that encodes the identity of Gabi over different epochs, using curves rather than using 

a raster plot (as shown in the panels above). These epochs correspond to 12:30, 12:31, 12:32 and 

12:33pm. The middle panel shows this for all possible identities. Each colour in the legend corresponds 

to the identity of each person in this panel. The right panel shows the local field potentials, defined in 

terms of rate of change of expectations about hidden states; i.e., the gradient of each curve in the 

middle panel. 

To gain further intuition about this way of how sequences of states and actions might 

be modelled, consider the example in Fig 6.4A. Assume that you are walking behind 

someone that you think you recognise. At 12:30pm you can only see this person from 

behind – and she resembles one of four people you know; e.g., Gabi, Jane, Sophie, 

Lisa. These identities are the four hidden states in this case. At 12:31pm you get closer 

and now you are sure that she is not Lisa. At 12:32 you catch up and see her from the 

side. Now you are convinced this person is not Sophie either. At 12:33pm you finally 

see the person’s face and you recognise her as Gabi. This resolves all uncertainty 

over the identity of the person. The belief that the person you see at 12:33pm is 

projected backwards in time to 12:30pm – this can be seen clearly in the final column. 

Intuitively, at 12:33 you know that the person you saw at 12:30pm was Gabi. 

The left panel of Fig 6.4B shows the same expectations about the hidden states that 

encode Gabi’s identity as in Fig 6.4A over all epochs (see the 1st, 5th, 9th and 13th rows 

in Fig 6.4A). The figure in the middle panel of Fig 6.4B shows the same as the left 

panel but for each identity. The right panel of Fig 6.4B shows the simulated local field 

potentials in terms of the rate of change in the expectations about the hidden states 

(shown in the middle panel of Fig 6.4B). See section 3.3.1 for a brief discussion on 

what type of cells might be involved in generating these responses. 

6.2.  MDP model of the patch leaving paradigm 
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This section describes a Markov decision process model of active inference for the 

patch leaving paradigm. The model is used to simulate behavioural responses (i.e. 

choosing to stay or leave) when the reward probability in a patch declines 

exponentially as one stays in a patch. In this paradigm, there are several patches with 

their own unique reward probability decay rates. Choosing to leave a patch warrants 

one epoch to be spent in a reward-free state (i.e., a switch state). In the next epoch, 

one enters a patch randomly and all reward probabilities reset to their initial values. 

This means one needs to consider how many epochs to spend in a patch before 

leaving to realise prior preferences; i.e., being rewarded as much as possible. 

In this MDP (see Fig 6.5), I considered two dimensions of hidden states, namely where 

and when. The first hidden dimension, where, corresponds to the patch identity. There 

are four hidden states under this dimension, namely patch 1, patch 2, patch 3 and a 

switch state. Under the action stay, the where state does not change unless it is in the 

switch state. Under the action leave, the where state changes to the switch state, 

except for the switch state itself. Under both stay and leave the switch state transitions 

to one of the first three patches with equal probabilities. The second hidden state 

dimension, when, keeps track of the number of time-steps since a switch state. The 

time since a switch state is represented by st . This state st  increases by one up to a 

maximum of four. The hidden state associated with the fourth epoch since a switch 

state 4st   is an absorbing state and does not change over subsequent epochs. The 

reward probability in a given patch declines with st  and does not change after 4st  , 

even if one chooses to stay after the fourth epoch, i.e. reward probability under a patch 

is the same for 4st   as 4st  . Choosing to leave at any point in time resets st  to one; 

i.e., 1st  . 

There are two outcome modalities. The first modality signals the feedback (reward or 

no reward). The probability of reward declines exponentially under all patches as st

increases (up to a maximum of four). There are three different patches with unique 

rates of decline in reward probability. The rate at which the reward probability declines 

under the first patch exp((1 ) /16)st  is slower than the second exp((1 ) / 8)st  and the 
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third exp((1 ) / 4)st  patches, where {1, 2,3, 4}st   respectively. The reward probabilities 

under different patches are shown on the left panel in Fig 6.6A. The second outcome 

modality, where, signals the patch identity. Notice that the patch identity (where) 

appears both as an outcome and as a hidden state. This is because where (patch 

identity) as an outcome is used to inform the agent about the where hidden state.  

 

Figure 6. 5 Graphical representation of the generative model 

A) This panel shows the graphical representation of the MDP model and the conditional dependencies 

among the terms in the model. See Fig 3.1A for details. B) The right panels show different sets of hidden 

states and outcome modalities in the patch leaving task. There are two sets of hidden states, namely 

the patch identity and the time since a switch state st   (where and when respectively). There are two 

outcome modalities, namely the feedback and where. The feedback modality signals whether an agent 

receives a reward or not, whereas the where modality signals on which patch an agent is in.  

In this MDP scheme, I consider prior preferences over only the feedback modality such 

that the agent expects reward (utility or relative log probability of 2 nats) more than no 

reward (utility of -2 nats). I defined no prior preferences over the where modality, which 
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means that there were no preferences over patch identity. See Fig 6.6 for the 

likelihood, transition and prior preference matrices provide a complete specification of 

this patch leaving paradigm. 
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Figure 6. 6 ABC of generative model 

A) The panel on the left shows how the reward probability decreases in different patches as a function 

of time since a switch state st . The subsequent two panels show the likelihood (A) matrices. The 

likelihood matrices specify the probability of outcomes given two sets of hidden states, namely where 

(the patch the agent is in, shown with magenta colour) and when ( st  is shown with blue colour). Here 

the likelihood matrices are shown for patch 3 (shown with red colour) as a function of when hidden state 

st . The first likelihood matrix 1A  shows that the probability of reward (shown with green tick) decreases 

as st increases. The second likelihood matrix 2A  signals the patch the agent is in (in this case patch 3) 

with respect to the when hidden state. B) This panel shows the transition matrices for where and when 

( st ) dimensions of hidden states. The state transitions depend on the actions. The first (where) transition 

matrix, shows that under the action stay 
1B (a stay) , the agent stays in the same patch it is in 

currently; except when the agent is in the switch state. Under the action leave 
1B (a leave) , the agent 

enters the switch state, given that the agent is not in the switch state. The probability of entering one of 

the three patches is equally likely when the agent takes the actions stay or leave given it is in the switch 

state. The second (when) transition matrix under a stay 
2B (a stay)  increases by one – up to a 

maximum of four. The fourth epoch is an absorbing state – and an agent would have to take the action 

leave to leave this state. Under a leave 
2B (a leave) , st  is reset to one, i.e. 1st  . C) This panel 

shows the prior preferences over outcomes as a function of time (relative to the current time). I only 

define a prior preference over reward and no reward outcomes, under the feedback modality and do 

not define any preference over the patches (where modality). Plus and minus signs show the valence 

of the utilities; whereas different shades of grey indicate their magnitude. The model described in this 

figure is the canonical model. The policy depth in this model is chosen as 4. 

6.3. Simulated responses 

6.3.1. Simulating impulsivity 

Impulsivity can be characterised as a tendency to act to require immediate rewards, 

rather than planning to secure rewards in the long run. In the patch leaving paradigm, 

one is always presented with the choices stay and leave. The experimental design for 

this paradigm is such that it requires one to spend one epoch in a reward-free switch 

state upon leaving a patch (i.e., switching penalty). However, staying in a patch always 

has the prospect of reward. Acting on the proximal reward requires one to choose 
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stay, whereas acting on the distal reward requires one to choose leave at some point. 

Here, I operationally define impulsivity as staying longer in a patch because only stay 

has the prospect of an immediate – if less likely – reward. This raises the question 

‘longer than what?’ To address this, I introduce an agent who serves as a reference 

or canonical model. 

In this section, I show how impulsive behaviour can be underwritten by changes in 

prior beliefs about the different aspects of the MDP model. For this purpose, I use the 

MDP described in Fig 6.6 to as a canonical model. The simulated responses obtained 

under the canonical model will be compared with the models that deviate from this 

reference, in terms of the policy depth, precision of the transition matrices and the 

discount slope of the prior preferences over time (i.e., time discounted reward 

sensitivity). These models will be compared with the canonical model in terms of dwell 

times. Dwell time is the average time spent in a patch upon entering it. The models 

that induce an agent to stay longer than the canonical model are considered to exhibit 

impulsive behaviour. These models are as follows: 

 Varying the policy depth. The policy depth of the canonical model is four. This 

model is compared with the models where the policy depth is varied over three 

levels; namely, 3PD   (deep policy), 2PD   (intermediate policy) and 1PD    

(shallow policy) models. See Fig 6.7 for a comparison between the canonical 

model and the models above. The policy depth for all remaining models was 

4PD  . 

 

 Varying the precision of the transition matrices. Here, the precisions of 

state transitions were rendered less precise. In other words, I modelled a loss 

of confidence in beliefs about the future. Operationally, this is implemented by 

multiplying the columns of the (log) transition matrices (shown on Fig 6.6B) with 

a constant, lnij ijb  B  and then applying a softmax function. This ensures 

each column corresponds to a probability distribution, 
ij kjb b

ij

k

e e B  . The 

precision, also known as an inverse temperature, was varied over three levels: 

16   (high precision), 8   (medium precision) and 0   (low precision). 

The lower the precision, the more uniform the distributions over state transitions 
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become from any given state. This manipulation is only applied to the transition 

matrices in the generative model (i.e. the subject’s beliefs about transitions) and 

not to the generative process (that actually generates the data presented to the 

subject). See Fig 6.8 for the difference between an example transition matrix 

with a low precision. In this figure, although only one transition matrix is shown 

(transition matrix for where under the action stay), the precision of all transition 

matrices under all actions are subject to the same manipulation. The precision 

was 16  in all other models. 

 

 Varying the discount slope. In this model, the prior preferences over 

outcomes are equal to the prior preferences in the canonical model on average. 

In the canonical model, the utilities for reward and no reward are fixed at 2 and 

-2, respectively. These utilities are not discounted as the agent plans into the 

future. However, in models where I manipulate the slope of prior preferences, 

they change in the following way: 

     2rewardC slope x     and    2No rewardC slope x     ,  

where  2.25,0.75, 0.75, 2.25x     and {1, 2,3, 4}  . Here   represents the 

future epochs; e.g. 1   means 1 epoch in the future. These equations show 

that the agent discounts utilities as it plans into the future. The term slope took 

the following values: 0.75 (high slope), 0.5, (medium slope), or 0.25 (low slope). 

Manipulating the slope makes the utility of reward in the near future appear 

larger (and no reward smaller), and the opposite effect for the distant future. 

This means that proximal rewards will always be regarded as more valuable 

and distal rewards as less valuable, compared to the canonical model (this 

comparison is illustrated in Fig 6.9). The slope term was 0slope   in all other 

models. 
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Figure 6. 7 Varying policy depth 

This figure shows the difference between the canonical model and the model in which the policy depth 

is changed. The policy depth in the canonical model is four. The policy depths in the models that are 

compared with the canonical are one, two and three. 
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Figure 6. 8 Varying the precision of the transition matrices 

This figure shows the difference between the canonical model and the model in which the precision of 

transition matrices is changed. For illustrative purposes only the transition matrix for where under the 

action stay is used in this panel; however, the changes are applied to all transition matrices under all 

actions. The precision of the transition matrices are changed over three levels. These are high, medium 

and low levels of precisions. The higher the precision the more similar the transition matrices approach 

those of the canonical model. With lower precisions the uncertainty in the probability distributions over 

the columns of the transition matrices increases. 

 

Figure 6. 9 Varying the discount slope 

This figure shows the difference between the canonical model and the model in which the discount 

slope is changed. In the canonical model, the prior preferences over a reward and no reward are fixed 

at 2 and −2 (i.e., they are not time sensitive). However, the model in which the discount slope is changed 

is subject to the following equation    2rewardC slope x     and 

   2No rewardC slope x     , where  2.25,0.75, 0.75, 2.25x      and  1,2,3,4  . Here 

  represents the future the box, e.g. 1   means 1  epoch into the future. The intercepts of these 

equations are set to the prior preferences over reward (and no reward) in the canonical model, which 

is 2  (and 2 ). The slope term endows prior preferences with time sensitivity, when planning future 

actions. The slope is changed over three levels; namely, high slope ( 0.75 ), medium slope ( 0.5 ) and 

low slope ( 0.25 ). The lower panel shows how the utility of reward changes over future epochs with 
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different slopes. The utility of no reward (under different slopes) is just a mirrored version of this figure 

(since the utility of no reward is negative). With these equations the agent discounts the utility of reward 

and no reward outcomes as it plans further into the future. 

Comparing the simulated behaviour of the canonical model and the above models 

shows that all manipulations resulted in longer dwell times. In other words, all of the 

above manipulations induced more impulsive, short-term, behaviour; in which 

synthetic subjects found it difficult to forego the opportunity for an immediate reward – 

and overcome the switching cost of moving to a new patch. The bar plots in Fig 6.10 

show the increase in dwell times under the three models (over three different levels of 

each model) compared to the canonical model. The average increase in dwell times 

over all patches is shown on the top panel of Fig 6.10. The three panels below show 

the same results for each patch separately. 

 

Figure 6. 10 Average time spent in patches under different models 

This figure show the increase in dwell time under the alternative models, compared with the canonical 

model. In the alternative models, the policy depth, precision of transition matrices and the slope of prior 

preference matrices are changed (over three levels) with respect to the canonical model. The policy 

depth in the canonical model is chosen as four. In the models compared to the canonical model the 

policy depth is varied over three levels, namely deep ( 3PD  ), intermediate ( 2PD  ) and shallow (
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1PD  ), respectively. The precision of the transition matrices is varied over three levels, namely high 

( 16  ), medium ( 8  ) and low ( 0  ). The discount slope are changed over three levels, 

namely high ( 0.75slope  ), medium ( 0.5slope  ), low ( 0.25slope  ).The top panel shows the 

increase in dwell time, averaged over patches; whereas the below three panels show the increase in 

dwell times in each patch separately. The panels of this figure show that manipulating the policy depth, 

precision of the transition matrices and the discount slope all cause the dwell time to increase. 

The policy depth, precision of the transition matrices and the slope of the prior 

preference matrix have similar kinds of effects on dwell times. With deeper policies, 

the agent leaves the patches earlier in order to exploit the distal rewards. With shallow 

policies the agent stays longer in the patches and exploits proximal rewards (see blue 

bars in Fig 6.10). With less precise transition matrices the agent remains longer in any 

patch. This is because imprecise transition matrices mean that the further one looks 

ahead, the less precise one’s beliefs become and the future becomes uncertain. 

These beliefs are about both where (which patch) and when st  the agent is. With 

uncertainty over where and when, the agent prefers proximal rewards, rather than 

risking leaving a patch for an uncertain outcome (see green bars in Fig 6.10). With 

more time sensitive prior preferences, the agent discounts the utility of reward more 

steeply over time. This means that the agent prefers proximal rewards, however 

unlikely they may be, over distal rewards: hence, the agent stays longer in each patch 

to exploit rewards in the near future (see the red bars in Fig 6.10). 

In the following, I ask whether the different models examined above can be 

distinguished by observing their choice behaviour. This entails fitting models to the 

simulated choice behaviour and using the resulting Bayesian model evidence to 

perform Bayesian model selection (assuming uniform priors over models). (K. Friston, 

Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007; Mirza et al., 2018; 

Schwartenbeck & Friston, 2016). The models that were used to generate (synthetic) 

behavioural data were the above models, in which the policy depth, precision of the 

transition matrices and the discount slope varied over 3 levels (see Fig 6.7, Fig 6.8 

and Fig 6.9) and the canonical model (10 models in total). These 10 models were then 

fit to the data generated with each model to create a confusion matrix of model 

evidences (i.e., the probability that any one model was evidenced by the data from 

itself or another). The posterior distributions over the models suggest that these 

models can indeed be disambiguated in terms of their Bayesian model evidence (see 
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Fig 6.11). This shows that although the resulting behaviour under these models looks 

similar – namely, staying longer in patches (greater dwell times) – subtle differences 

in choice behaviour can still inform model comparison. 

 

Figure 6. 11 Bayesian model comparison 

This figure shows the posterior distribution over models, when these models are fit to data generated 

by the same models. The simulated data are generated with the models on the y-axis. The models 

shown on the top are fit to the data to estimate the log-evidence for each model. These simulations 

show that these models considered (see previous figures) can be distinguished in terms of their model 

evidence. In this figure LPB , MPB  and HPB  correspond to low, medium and high precision transition 

matrices, respectively. LSC , MSC and HSC  correspond to low, medium and high slopes over the prior 

preferences, respectively. 1PD , 2PD  and 3PD  correspond to policy depths 1, 2 and 3, respectively. 

The canonical model 4PD  is included in these simulations. 

In summary, I have shown distinct differences in the form and nature of prior beliefs 

that underlie generative models of active inference can all lead to impulsive behaviour. 

In the next section I will simulate and characterise the electrophysiological responses 

I would expect to observe under these distinct causes of impulsivity. 



121 

 

6.3.2. Simulated electrophysiological responses 

In this section, I show how simulated electrophysiological responses vary with the 

policy depth, precision of the transition matrix and the slope of prior preferences. The 

simulated responses under question are local field potentials (LFPs). As new 

observations are made, evidence for the competing hypotheses (hidden states) is 

acquired. Variational message passing that mediates belief updates over these 

hypotheses, where I assume that activity in different neural populations reflects belief 

updating over different hypotheses. The simulated depolarisation of these ‘neural 

populations’ are combined to simulate LFPs. In this setting, a simulated LFP is defined 

as the rate of change in expectation about a hidden states over an epoch; i.e. the rate 

of change in v

  (see Fig 2.4). There are 16 epochs in each trial and on each epoch 

the expectations are updated with 16 variational iterations of the above gradient 

descent.  

The local field potentials can be characterised by their amplitude and convergence 

time. Higher amplitudes are associated with greater belief updates that can be thought 

of in terms of larger state prediction errors. Convergence time can be defined as the 

time it takes before the local field potentials returned to zero, as belief updating 

converges on a new posterior belief. These two characterisations speak to the 

confidence in beliefs about hidden states and how quickly that confidence is manifest.  

I characterised the responses of units encoding the hidden state dimension where 

(patch identity). First, I examined belief updates when the agent stays in the three 

patches for four consecutive epochs. The corresponding LFPs are shown in Fig 6.12. 

Smaller LFPs are generated when the reward probability decreases at a greater rate 

with st  (compare patches 1 to 3 from left to right in Fig 6.12). This follows because the 

subject’s belief about staying in a patch reaches a higher level of confidence when the 

reward probability declines at a slower rate (e.g., patch 1). This results in larger LFPs 

being generated under that patch. A second observation here is that the LFPs at the 

first epoch are greater than the LFPs in the subsequent epochs under all patches. This 

is because before entering a patch, the agent has uniform beliefs about what patch it 

will end up in. This means that once a patch is entered, there will be more belief 

updates initially; whereas later epochs just modify those beliefs already held.  
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Figure 6. 12 Simulated LFPs over different patches 

This panel shows the updates over expectations about (where) hidden states when the agent stays in 

different patches for four consecutive epochs. As the reward probability decreases faster with st the LFP 

peaks are attenuated and it takes longer for them to converge. The inconsistency in the degree of belief 

updating in later epoch – in patch 3 compared with the other patches – is because the agent expects 

to leave this patch; however, it ends up staying in it due to an unlucky sampling of the action stay 

(sampling low probability stay rather than high probability leave), which induces more belief updating in 

later epochs. 

Secondly, I examined how the LFPs change with different policy depths. The LFPs 

have higher peaks, when the agent entertains a shallow representation of the future (

2PD  ) and peak less when it looks deeper into the future ( 4PD  ): see Fig 6.13. With 

deeper policies the beliefs (expectations) about the hidden states are projected further 

into the future, causing future epochs to be informed by the expectations over the 

hidden states at the present time. This causes the beliefs about being in a certain 

patch during an epoch to change less over time. A second observation here is that the 

expectations converge faster under shallow policies. Before these expectations are 

projected to any future epochs, the agent maintains uniform distributions over the 

hidden states. The further the expectations about the hidden states in the current 

epoch are projected to future, the more imprecise these expectations become, taking 

longer to converge; especially in the epochs in the distant future. This is why deeper 

policies require longer for expectations to converge. 
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Figure 6. 13 Simulated LFPs over different depth of policies 

This figure shows the effect of the policy depth on LFPs: with deeper policies the LFPs peak less and 

it takes longer for them to converge. 

Thirdly, the effect of the precision of the transition matrices on the LFPs is 

characterised. With precise transition matrices, the LFPs have greater amplitude – and 

it takes less time for these expectations to converge (see Fig 6.14). This follows 

because – with precise transition matrices – the expectations about the hidden states 

in the current epoch are projected forwards with greater fidelity than with less precise 

transition matrices. This induces large updates over expectations and more rapid 

convergence. 

Finally, the effect of the discount slope on the LFPs is shown on Fig 6.15. As shown 

in Fig 6.9, the utility over reward declines at different rates under different slopes, while 

the average over future times is conserved. When the discount slope is high, the agent 

values rewards in the immediate future more than the distant future. With a high slope 

over the prior preferences, the agent believes that it will stay in the same patch with a 

greater degree of confidence than with lower slopes. This causes the LFPs to peak 

higher. However, this does not affect the convergence time. 
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Figure 6. 14 Simulated LFPs over different precisions of transition matrices 

In this figure, the LFPs obtained with different precisions of transition matrices are shown: with more 

precise transition matrices, the LFPs peak higher and converge more quickly 

 

Figure 6. 15 Simulated LFPs over different prior preferences with different 
slopes 

This figure shows how the LFPs change when the discount slope varies over three levels; while keeping 

the average utilities over time fixed. With higher slopes the LFPs peak at higher levels, while the 

convergence does not appear to be sensitive to the different slopes. 

6.4.  Discussion 

The work in this chapter diverged from the work in the previous chapters in a way that 

the task that was used, namely the patch leaving task, was not tailored for a visual 
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search paradigm. However this paradigm is still relevant to computational modelling 

of information gathering in the context of exploration and exploitation dilemma, as it 

balances exploitation of the current patch against exploration of other patches.  

In this chapter, my objective was to show that there are different computational 

mechanisms that can lead to impulsive behaviour: lower depth of planning, poor 

maintenance of information, and preference for immediate rewards. For this purpose, 

I introduced a MDP formulation of active inference for the patch-leaving paradigm. I 

defined impulsivity as acting to gain temporally proximal rewards at the expense of 

more distal rewards. The patch-leaving task allows impulsivity to be addressed, as it 

places proximal and distal rewards in conflict. Although the reward probability declines 

as one stays in the same patch, only choosing to stay can deliver an immediate 

reward, however unlikely it may be. This means that acting to secure proximal rewards 

requires one to stay in a patch for longer. 

I introduced a canonical model that serves as a point of reference for the dwell time in 

various patches. This model was compared with deviant models in which the policy 

depth, precision of the transition matrix and the discount slope were manipulated. With 

shallow policies, the agent stays longer in each patch (see the light blue bars in Fig 

6.10). An agent that uses deep policies realizes how quickly (or slowly) the reward 

probabilities decline (see dark blue bars in Fig 6.10). This realization causes the agent 

to leave before the reward probability declines a great deal under the prospective 

belief it will secure rewards elsewhere.  

With imprecise beliefs about probability transitions, the agent places less confidence 

in its beliefs about future hidden states and outcomes. This means that it is difficult to 

infer what might happen after leaving a patch; since this requires the subject to look 

at least two epochs into the future to see if reward can be obtained.. In comparison, 

the expected outcome of staying in the same patch requires the agent to consider only 

one epoch into the future (anticipating the reward probability in the very next outcome). 

Since the agent is relatively more confident about the outcome of staying in a patch 

(and thus more certain about getting a reward upon staying in a patch) it chooses to 

stay for longer under less precise transition matrices than more precise transition 

matrices (see light and dark green bars in Fig 6.10). This result suggests that 

impulsivity can result from not being able to anticipate the future confidently. 
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Finally, manipulating the discount slope over time proves to have a profound effect on 

dwell times as well. When the time sensitivity of preferences is high, the agent values 

the immediate future much more – and hence dwells longer – than when the slope is 

low (see the light and dark red bars in Fig 6.10). This causes the agent to value 

proximal rewards more, even when they are less likely. 

The underlying causes of impulsivity under the three models mentioned above speak 

to different personality traits. The explanation for impulsivity under shallow policies is 

due to steep discounting of the future (Alessi & Petry, 2003), which may be due to a 

lack of future planning (Patton et al., 1995). Imprecise beliefs about environmental 

transitions impair an agent’s ability to maintain and process information when planning 

its future actions (T. Parr & Friston, 2017b). The kind of response obtained here is 

similar to acting impulsively due to high working memory load (Hinson, Jameson, & 

Whitney, 2003). The high temporal sensitivity of prior preferences causes the agent to 

act impulsively; despite an ability to plan deep into the future. This is because it prefers 

immediate rewards more than rewards in the distant future. These prior preferences 

can lead to risk-taking behaviour (Leigh, 1999; Lejuez et al., 2002) or 

‘venturesomeness’ (B.G. Eysenck, Pearson, Easting, & Allsopp, 1985; S. Eysenck, 

1993).  

I have also shown how the belief updates relate to (simulated) LFPs under these 

different models. Comparing the LFPs obtained with the canonical model on the first 

and subsequent epochs, I showed that the LFPs peak less as time progresses (see 

Fig 6.12). Comparing different patches, the LFPs peak less as the reward probability 

declines faster in a patch (compare patches 1 to 3 in Fig 6.12). This suggests that the 

amplitude of the LFPs correlate positively with the reward probability. Comparing 

different policy depths, the LFPs peak higher with shallow policies (compare 2PD   

with 4PD   in Fig 6.13). The LFPs peak higher with more precise transition matrices 

than less precise transition matrices (compare high to low precision in Fig 6.14). 

Finally, with high slopes over the prior preferences, the LFPs peak higher (compare 

high to low slope in Fig 6.15). The findings in the event related potential (ERP) 

literature show that the different components of ERPs can indeed be manipulated by 

reward probability (M. X. Cohen, Elger, & Ranganath, 2007; Eppinger, Kray, Mock, & 

Mecklinger, 2008; Walsh & Anderson, 2012) and reward magnitude (Bellebaum, 
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Polezzi, & Daum, 2010; Goldstein et al., 2006; Meadows, Gable, Lohse, & Miller, 

2016). Using the simulated LFPs I have shown that similar reward probability and 

magnitude effects are an emergent property of belief updating and neuronal 

(variational) message passing in synthetic brains. 

These simulated electrophysiological responses show that although the observed 

behaviours under different models (i.e. staying longer in a patch) are similar, different 

LFPs are generated. Comparing a shallow policy model (see the left panel of Fig 6.13) 

with the model in which the slope of the preferences is high (see the left panel of Fig 

6.15), the amplitude of the LFPs look similar; however, the LFPs in the model with 

shallow policies converge sooner. Comparing the model with low precision transition 

matrices (see the right panel of Fig 6.14) with the above two models, the LFPs neither 

peak as high nor do they converge as quickly.  

An influential model (Gläscher, Daw, Dayan, & O'Doherty, 2010) assesses the degree 

to which subjects are ‘model-based’ (i.e. learn the transition matrix and then use it to 

plan) versus ‘model-free’ (i.e. just repeating previously rewarded actions). It has been 

shown that various disorders of compulsivity (e.g. OCD, binge eating, drug addiction) 

are less ‘model-based’ in this task (Voon et al., 2015), as are high impulsivity subjects 

(Deserno et al., 2015), and that compulsivity in a large population sample also relates 

to this task measure (Gillan, Kosinski, Whelan, Phelps, & Daw, 2016). However, this 

model does not explain why the subjects are less model-based. My formulation 

suggests that one possibility for this is a less precise transition matrix and another is 

lower policy depth. 

This work has some limitations. The policy depth, the precision of the transition 

matrices and the discount slope cannot be manipulated experimentally in a 

straightforward way using the patch leaving paradigm described in this work. This 

means model selection given empirical choice behaviour can only be validated in 

relation to independent variables; e.g., correlations between working memory 

measures and transition matrix precision. Furthermore, I have only looked at model 

features that explain impulsivity relating to depth of planning, working memory and 

value discounting: I have not considered other causes, e.g. motor disinhibition or effort 

cost (Klein-Flugge, Kennerley, Saraiva, Penny, & Bestmann, 2015).  
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7.  Discussion 

In summary, I have used active inference to study Bayes optimal behaviour in different 

task setups, with a special emphasis on information gathering behaviour. Active 

inference provides computational accounts of perception, attention and action. All 

three of these mechanisms are essential for the adaptive exchange of biological 

systems (or agents) with their environments in the face of volatility and abnormalities 

in these mechanisms might have severe consequences on a biological agent’s 

existence. Perception allows the changes in the environment to be recognised, 

whereas attention allows an agent to selectively attend to different sensory stimuli 

under different contexts. Perception of changing contexts is essential for attending to 

the information that is relevant under a context. Finally, action is necessary to keep a 

biological agent in the environmental states that it can exist. In active inference these 

three mechanisms minimise variational free energy, which is an alternative to 

(negative) Bayesian model evidence, thus maximising an agent’s evidence for its 

existence. 

In active inference perception corresponds to inference about the hidden states of the 

world, whereas attention is inference about the uncertainty of sensory signals and their 

causes. Action arises as a result of minimising the expected free energy in the future. 

In this framework an agent a priori believes that it will minimise the expected free 

energy in the future, thus maximising the evidence for its existence in the future. 

Expected free energy is comprised of two main components, namely extrinsic value 

and epistemic value. Extrinsic value is the expected utility in the future, whereas 

epistemic value is the expected information gain about the hidden states of the world. 

It is important to express that both extrinsic and epistemic value are computed based 

on an agent’s beliefs. These beliefs include agent’s preferences for different sensory 

signals and its beliefs about the hidden states of the world. These hidden states can 

be seen as the hidden aspects that define an environment. Biological agents do not 

possess complete knowledge about the real world process that generates the 

outcomes that can be observed. Agents require a generative model to infer the most 

likely states of the world that the outcomes originated from and uses this model to form 

beliefs about the policies. Policies are sequences of actions that the agent can take in 

the future and each policy defines a different trajectory into the future. An agent is 
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more likely to pursue a policy if it believes that policy provides more evidence for its 

future existence (see chapter 2). 

I have used active inference to describe information gathering behaviour. For this 

purpose I created a number of tasks that require information gathering and evidence 

accumulation. Firstly, I introduced a new task called scene construction task. This task 

was performed on a two-by-two grid scene. The relative locations of the objects in this 

grid scene defined the category of the scene and the goal was to categorise the scene 

correctly attending to minimum number locations in the scene. The quadrants on the 

grid scene were masked and attending to them would disclose their contents. 

Essentially, seeing a particular object would make a certain location more salient than 

the others. I placed special emphasis on epistemic value on this task because 

successful categorisation of the task depends on the resolution of uncertainty about 

the hidden states of the scene. Once all the uncertainty about the hidden states is 

resolved, the scene category becomes apparent and the scene can be categorised. I 

have shown that an active inference agent attends to the locations that are 

epistemically valuable before categorising the scene (see chapter 3).  

In the follow up study the scene construction task was performed by healthy humans. 

Using an eye-tracker the saccadic choices of the people have been collected as they 

performed the task. Analysing the scanpaths of the participants revealed that they may 

have used heuristic strategies to explore scenes. The difference between heuristic 

and epistemic policies is that the epistemic policies take the agent’s beliefs into 

account and resolves uncertainty about the hidden states whereas the heuristic 

strategies are fixed in the sense that the order of locations that are visited do not 

change from one trial to the next. In a sense heuristic policies are non-epistemic 

policies that do not resolve uncertainty about the scene efficiently. Each subject’s 

favourite heuristic policy was included in the form of a prior preference in their 

repertoire of policies. In the next, I asked whether healthy people’s saccadic 

exploration while performing the task afforded evidence for epistemic exploration. I 

fitted two separate models to the saccadic choices of the subjects. Both of these 

models included the subject’s preferences (including a heuristic policy). The first model 

also included the uncertainty resolving component about the scene, namely epistemic 

value. Comparing the evidence under these models revealed that the model with 
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epistemic value yielded more evidence. This result suggests that the healthy people 

do resolve uncertainty (acquire information) about the hidden states of the visual 

scene. I then moved onto characterising different exploratory behaviours by using 

canonical correlation analysis. This entailed maximising the correlation between the 

linear mixtures of performance measures of subjects and the estimated parameters of 

the model by fitting models to the saccadic choices of the participants. I found that 

there are three distinct behavioural phenotypes (see chapter 4). In each of these 

behavioural phenotypes a preference for the use of heuristic policies was linked with 

a tendency to categorise the scene incorrectly. There is no reason for categorising the 

scene incorrectly under heuristic and epistemic policies, however in order to exploit 

epistemic policies one needs to have a model of the task. This result suggests that 

having a model of the task pays off. 

I then showed how contextual exploration of a visual scene can occur by appealing to 

a computational mechanism that may correspond to attention. To show this I used a 

visual search task that resembled the scene construction task. In this task a scene 

could be categorised in two different ways, depending on the context. This meant that 

a piece of information that is salient under one context could be completely irrelevant 

under another. This was accomplished by suppressing expected information gain 

(epistemic value) about the hidden states that are irrelevant to the current context 

while allowing information gain about the hidden states that are relevant to context. 

Crucially, epistemic value can acquire information only when there is a precise 

mapping between the sensory signals and their causes. Making this mapping very 

precise for the task relevant sensory signals and very imprecise for the task irrelevant 

sensory signals can explain exploratory behaviours under different contexts. By 

applying this principle on Yarbus’ task I showed that this model can generate saccadic 

patterns that resemble the ones seen in Yarbus’ empirical visual exploration paradigm 

(see chapter 5). In summary I showed how a global context can drive visual attention 

and relevance of information. This is important as a number of clinical conditions such 

as autism, schizophrenia and anxiety have been associated with an imbalance of 

precisions between top down and bottom up processes. 

In the final study, I showed that there could be distinct causes of impulsive behaviour 

by using an active inference model of a patch leaving paradigm. This paradigm 
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diverged from the above paradigms as it was not a visual search paradigm. This is still 

relevant to computational modelling of information gathering as this paradigm is 

concerned with the exploration-exploitation dilemma. The question in this paradigm is 

to decide when to leave an environment with limited resources for a new one to 

maximise reward in the long run. I showed that there are at least three distinct causes 

of impulsivity by manipulating the parameters of the MDP model, namely the depth of 

planning, the capacity to maintain and process information, and the perceived value 

of immediate rewards (see chapter 6). In addition to the simulated behavioural 

responses, I have also shown how the belief updates introduced in Fig 2.4 may relate 

to simulated local field potentials (see chapter 3 and 6). These simulated 

electrophysiological responses are obtained based on the assumption that the activity 

in different neural populations reflects belief updating over different hypotheses. 

Simulated LFPs were defined as the rate of change in expectations about the hidden 

states. Under different prior beliefs these simulated LFPs vary drastically (see Fig 6.12 

- 6.15). In theory one can fit a model to the electrophysiological responses in imaging 

studies and estimate the prior beliefs of individuals. This could be an effective method 

for characterising behaviour of the individuals (or groups) in terms of 

electrophysiological responses, and vice versa.  

Although the tasks described in this thesis are tailored for humans, they could be 

changed in various ways and used in rodent and non-human primate studies. 

Information gathering tasks have been extensively used in monkey and rodent studies 

(Deacon & Rawlins, 2006; Foley, Kelly, Mhatre, Lopes, & Gottlieb, 2017). The scene 

construction task can be translated in a way that it could be used in monkey studies 

by exposing monkeys to different scene categories and spatial transformations (the 

hidden state space). In this setup monkeys would use their eyes to report their 

saccadic choices and might learn the hidden state space by associating correct 

categorizations with a rewarding outcome such as food (or fluid). The choice about the 

scene category can be reported using saccades to separate choice locations (similar 

to choice locations shown in Fig 4.3). Adapting this task for rodents to perform might 

be more challenging. The scene construction task might be translated to a two-room 

by two-room maze that the rodents can enter and explore. Each room in the maze 

would be accessible through the other three rooms. Each room would contain a cue 

about the scene category. Including a decision room that contains three levers 
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(associated with different scene categories) that the rodents can use to report their 

beliefs about the scene category and get feedback (right or wrong categorization) 

might enable them to learn scene categories (and the hidden state space). Successful 

categorizations would yield food or fluid reward.  

Patch leaving paradigm has been employed in animal studies in various forms. 

Animals act in their ecological niche in a way to ensure they acquire enough food to 

survive and the exploration-exploitation dilemma, which lies at the heart of the patch-

leaving paradigm, is a part of their everyday life. Adaptations of the patch leaving 

paradigm usually involve a training period in which the primates are trained to report 

their decisions with their eyes by choosing one of two different sized objects (e.g. 

vertical bars) that shrink upon looking at them. In these versions of the patch leaving 

paradigm the delay in choosing different options is proportional to the length of the 

vertical bars. See (Blanchard & Hayden, 2015) for an example of this. In these versions 

of the patch leaving paradigm the rewarding outcomes are delivered in the form of 

fluid after the vertical bar associated with stay disappears. Once the chosen bar 

disappears, the same bars are displayed on the screen again but this time choosing 

the stay option delivers a smaller amount of reward. Leaving a patch requires choosing 

the other bar on the screen and upon doing so sets the reward amount to its maximum. 

Crucially the vertical bar associated with the leave option is longer than the vertical 

bar associated with stay option and looking at these bars shrinks them at the same 

rate. This means that choosing to leave has a cost (similar to a travel cost) which is to 

wait without having any reward until the bar associated with leave option disappears. 

Patch leaving paradigm can be adapted in a way that could be performed by rodents 

as well. One can have multiple T-maze like structures that has two alternative choices. 

One arm would be associated with the stay option, and the other would be associated 

with the leave option. With repeated stays the reward amount/probability would 

decrease. The arm associated with leave would connect the current T-maze to another 

T-maze with stay and leave arms. This way one can introduce travelling costs in a 

more ecological way. 

As opposed to the other models, in the MDP formulation of active inference there is a 

distinction between the beliefs about the real world dynamics that generates outcomes 

(generative process) and the beliefs about these real world dynamics (generative 
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model). Crucially the generative model depends upon prior beliefs and the different 

combinations of prior beliefs would allow for different optimal policies. This makes the 

active inference framework more suitable to studying differences between individuals 

in terms of their prior beliefs (see chapter 4 for details). Moreover, a number of clinical 

conditions have been hypothesised to be associated with abnormal prior beliefs. 

Different combinations of prior beliefs may lead to the same abnormalities in the 

observed behaviour. The model inversion methods used in chapter 4 may enable us 

to distinguish between these different prior beliefs. This is important as estimating 

these prior beliefs for different patient populations may give an opportunity to study 

psychopathologies. Moreover, estimating the subject specific prior beliefs may allow 

for more customized therapies to be administered to patient populations. Clinical trials 

that target specific populations can benefit from estimating the prior beliefs to validate 

the population that is intended to be studied.   

The hidden state spaces in the models used in this work are set in a way that they are 

not dissimilar to the functionally segregated brain regions. For example the visual 

search paradigms introduced in this thesis make a distinction between ‘what’ and 

‘where’ attributes of a visual scene, which is similar to the functionally segregated 

ventral (what) and dorsal (where) streams in the brain. These models set an example 

to show how neurobiologically plausible models can be created. Using these models 

one can simulate both behavioural and electrophysiological responses. Furthermore 

one can fit models to both behavioural and electrophysiological responses obtained in 

empirical studies to understand the computational goal of the brain and the neural 

mechanisms that underlie those computations. 
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Table 1 Glossary of expressions 

Expression Description 

1( , , )Mo o o     Outcomes in M modalities 

1( , , )to o o   Sequences of outcomes up until the 
current time 

1( , , )Ns s s     Hidden states in N factors (dimensions) 

1( , , )Ts s s   Sequences of hidden states up until the 
end of the current trial 

1( , , ), [0,1]K   π   Policies specifying action sequences and 
their posterior expectations 

1( ) ( , , )Na t a a    Action or control variables for each factor 
(dimension) of hidden states 

1
, γ

β
 

The precision (inverse temperature) of 
beliefs about policies and its posterior 
expectation 

   Prior expectation of temperature (inverse 
precision) of beliefs about policies 

m
A   Likelihood array mapping from hidden 

states to the m-th modality 

,( ), ( ( ))n n na a

   B B B  
Transition probability for the n-th hidden 
state under each action 

m

C   Logarithm of the prior probability of the m-
th outcome; i.e. preferences or utility 

n
D   Prior expectation of the n-th hidden state 

at the beginning of each trial 

,
: ( ) ( , ) ( , , )

n
F F F n  
       F F  Variational free energy for each policy 

,
: ( ) ( , ) ( , , )

m
G G G m  
       G G  Expected free energy for each policy 

m
H   Entropy of the m-th outcome 
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