| Main title | |--| | Clinical, genetic and neuroimaging features of frontotemporal dementia | | | | Running title | | FTD | | | | Authors | | Rhian Convery MSc ¹ , Simon Mead FRCP PhD ² , Jonathan D Rohrer FRCP PhD ¹ | | | | Affiliations | | ¹ Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of | | Neurology, London, WC1N 3BG, ² UCL Institute of Prion Diseases, MRC Prion Unit at UCL, 33 Cleveland St, | | London, W1W 7FF. | | | | Corresponding author | | Dr Jonathan Rohrer, Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square | | Institute of Neurology, Queen Square, London, WC1N 3BG, <u>i.rohrer@ucl.ac.uk</u> | All authors contributed to the literature review and subsequent writing of this review. Contribution #### Abstract Frontotemporal dementia (FTD) is a heterogeneous group of disorders causing neurodegeneration within a network of areas centred on the frontal and temporal lobes. Clinically, patients present with behavioural symptoms (behavioural variant FTD) or language disturbance (primary progressive aphasia), although there is an overlap with motor neurone disease and atypical parkinsonian disorders. Whilst neuroimaging commonly reveals abnormalities in the frontal and temporal lobes, a closer review identifies a more complex picture with a variable asymmetry of neuronal loss, widespread subcortical involvement, and in many cases more posterior cortical atrophy. An autosomal dominant genetic disorder is found in around a third of people with mutations in progranulin, *C9orf72* and the microtubule-associated protein tau being the commonest cause. In the other two-thirds, the disorder is sporadic, although recent genome-wide association studies have started to identify genetic risk factors within this group. Much of this knowledge has been understood only in the past ten years and so this review will discuss the current knowledge about the clinical, genetic and neuroimaging features of FTD. #### Introduction Frontotemporal dementia (FTD) is a term used to describe a clinically diverse group of disorders that are characterised by atrophy of the frontal and temporal lobes (Graff-Radford and Woodruff, 2007). This selective pattern of degeneration results in the clinical phenotypes of behavioural and language variants of FTD (Hodges, 2001; Rascovsky *et al.*, 2011; Gorno-Tempini *et al.*, 2011). Behavioural variant FTD (bvFTD) presents with a distinct change in behaviour and personality, whilst language variants, or primary progressive aphasias (PPA), are associated with the progressive decline in speech and language functions. There are a number of subtypes of PPA including the semantic variant (svPPA), nonfluent variant PPA (nfvPPA), and the logopenic variant PPA (lvPPA), although this latter form is commonly not incorporated into the FTD clinical spectrum due to its common association with Alzheimer's disease (AD) pathology (Gorno-Tempini *et al.*, 2004, 2008; Rohrer *et al.*, 2012). Overlap with other neurodegenerative conditions adds to the complexity of the FTD clinical spectrum: some patients with FTD can develop motor neurone disease (MND) or parkinsonian disorders such corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). FTD is not just clinically heterogeneous but is associated with diverse underlying pathology (inclusions of abnormal tau, TDP-43, or FUS protein), and in around a third of cases is caused by a genetic mutation, usually in the *MAPT*, *GRN*, or *C9orf72* genes. Clinico-pathological and clinico-genetic correlation is poor: bvFTD is associated with a range of underlying pathologies including tau, TDP-43, and FUS (Hodges *et al.*, 2004; Mackenzie *et al.*, 2010), and whilst svPPA is commonly associated with TDP-43 inclusions and nfvPPA with tau pathology (Mesulam *et al.*, 2008; Rohrer *et al.*, 2011; Leyton *et al.*, 2011), there is no absolute association between one of the clinical FTD subtypes and a single pathological entity. #### Clinical features #### Behavioural variant FTD (Table 1) BvFTD is the most common variant of FTD accounting for approximately 50% of all cases (Johnson *et al.*, 2005). The condition is associated with atrophy of the frontal and anterior temporal lobes (Seeley *et al.*, 2008), accounting for the hallmark changes in behaviour and personality which include disinhibition, apathy, lack of empathy, obsessiveness, and altered food preferences. Disinhibited behaviour may incorporate embarrassing social interactions, impulsivity, excessive spending, or even gambling (Bozeat *et al.*, 2000; Starkstein *et al.*, 2004; Manes *et al.*, 2010). Apathy is usually described as "blunted affect", or a decreased interest in engaging in social situations or activities that one previously found enjoyable (Grossman, 2002). Individuals with bvFTD that lack empathy are unable to read the emotions of others or understand their experiences (Rankin *et al.*, 2006). Obsessive behaviours that arise can be simple repetitive movements such as tapping, scratching, and rubbing, whilst more complex ritualistic behaviours include hoarding, cleaning rituals, and fixed walking routines (Snowden *et al.*, 2001). Finally, dietary changes can range from binge eating to idiosyncratic food preferences and are frequently associated with cravings for sweet foods (Piguet *et al.*, 2011). These behavioural symptoms start insidiously and gradually progress over time. Cognitively, bvFTD is most commonly associated with a decline in executive function. Individuals may struggle with tasks associated with planning, problem-solving, mental flexibility, attention, and working memory (Possin *et al.*, 2013). Problems in these tasks reflect a decline in frontal cortical functions (and their connections), whereas other cognitive abilities attributed to more posterior regions of the brain, such as episodic memory and visuospatial abilities, are commonly initially well preserved. However, there have been a number of people with pathologically-confirmed FTD who have been described with early semantic or even episodic memory impairment. A lack of insight is a common feature in bvFTD, as patients fail to recognise the changes in their behaviour and personality (Rankin *et al.*, 2005). Consequently, they rarely seek medical advice, and are often diagnosed due to a relative or colleague suggesting an appointment. Patients can become agitated when their mental state is scrutinised, as they feel there is nothing wrong with them. A lack of insight is also associated with a poor compliance with medication (McGlynn and Schacter, 1989) and increased stress and caregiver burden (O'Keeffe *et al.*, 2007). BvFTD is difficult to diagnose for numerous reasons. Changes in behaviour can be subtle, and thus considered "normal", whilst other symptoms overlap with psychiatric disorders or those seen in Alzheimer's disease rather than FTD (Mendez *et al.*, 2007) and thus result in a misdiagnosis. Despite advances in the characterisation of FTD, frequent misdiagnoses demanded sensitive diagnostic criteria that could distinguish bvFTD from other disorders early in the disease. This led to the development of the International FTD Consortium diagnostic criteria for bvFTD (Rascovsky *et al.*, 2011; Table 1): patients must possess at least three of the six clinical features: five of which are behavioural (early behavioural disinhibition, apathy or inertia, loss of sympathy or empathy, stereotyped compulsive or ritualistic behaviour, and hyperorality and dietary changes) and one cognitive (executive deficits on tasks with relative sparing of episodic memory). People with bvFTD can also present with other features that are not included in the Rascovsky *et al.*, (2011) criteria. In addition to altered behaviour, psychiatric symptoms can present in a minority of people with bvFTD. These frequently include psychotic delusions, and multimodal hallucinations (Takada and Sharon, 2012; Kertesz *et al.*, 2013; Ducharme *et al.*, 2017). Such symptoms have even been observed as the earliest manifestations of disease in some individuals with *C9orf72* mutations (Snowden *et al.*, 2012). Other psychiatric symptoms include late-onset mania, depression, and cognitive impairment with catatonia (Ducharme *et al.*, 2017). Deficits in social cognition are observed in virtually all patients with bvFTD, and present as impaired emotion recognition (Rosen *et al.*, 2004; Lough *et al.*, 2001, 2006), emotional morality (Mendez and Shapira, 2009) and theory of mind (Kumfor and Piguet, 2012). A lack of social emotions can be extremely difficult for close family members to manage, as embarrassing social situations can ensue. As a result, it is not uncommon for relationships to break down in bvFTD families, and thus social deficits in bvFTD are now recognised as important features of the disorder (LaMarre *et al.*, 2013; Harris *et al.*, 2013). Several studies have shown that patients with bvFTD also experience autonomic problems, particularly with regards to altered responsiveness to pain and impaired thermoregulation (Fletcher *et al.*, 2015). Lastly, sleep disturbance can be a feature of FTD including excessive daytime sleepiness (McCarter *et al.*, 2016). Therefore, the clinical picture of bvFTD is one of diverse behavioural and cognitive deficits, with the combination of psychiatric, motor, and autonomic disturbances often co-occurring. It is important to note that there are some patients (commonly men in their 60's or 70's) who present with behavioural symptoms consistent with bvFTD but without any cognitive deficits and lacking any changes on brain imaging. Whilst partners often complain of progressive symptoms over time, there are commonly few objective findings when assessed. These patients are often described as having a bvFTD 'phenocopy' syndrome
(Kipps *et al.*, 2010) and whilst there are some very slowly progressive neurodegenerative variants of FTD, the majority of people fitting into this group do not have a degenerative illness. Exactly what they do have remains unclear as they are commonly alive many years after initial diagnosis and none have come to postmortem. However it may represent a decompensation of a previous longstanding neuropsychiatric illness such as an autistic spectrum or personality disorder. # Primary progressive aphasia (Table 2) The term PPA describes a group of disorders in which language impairment is the main symptom at onset (Mesulam, 1982). There are three diagnostic criteria that should be fulfilled for all PPA disorders: (i) the insidious onset and gradual progression of aphasia affecting at least one of: speech production, object naming, syntax, or word comprehension, (ii) language difficulties must be the only determinant that impacts upon activities of daily living, and (iii) the disorder can only be explained by a neurodegenerative process and not by any other medical condition (Gorno-Tempini *et al.*, 2011). It is essential to meet all of these criteria for PPA as speech and language disorders can also arise due to cerebrovascular conditions or other neurodegenerative disorders. Individuals with PPA can also present with behavioural deficits that are similar to bvFTD, however, these tend to develop later on in the disease and must not be the initial impairment. Once these criteria have been satisfied, patients can then be sub-diagnosed into the three PPA variants: semantic variant (svPPA), nonfluent variant (nfvPPA), and logopenic variant (lvPPA). However, a subset of patients with PPA do not fulfil the criteria for any of these three variants, and have been classified as PPA – not otherwise specified, or PPA-NOS. For these patients, the clinical syndrome may become clearer throughout the disease course, where they can then be sub-diagnosed, or it may not. Each PPA subtype presents with specific linguistic features and is associated with distinct neuroanatomical involvement (Gorno-Tempini *et al.*, 2004). The most recent classification system for the PPA syndromes were developed by Gorno-Tempini *et al.* (2011) and are shown in Table 2. ### svPPA SvPPA accounts for approximately 20% of all FTD cases (Johnson *et al.*, 2005). The hallmark feature of this disorder is a profound loss of conceptual knowledge due to dysfunction in the network crucial for semantic processing (Seeley *et al.*, 2009). It is typically associated with bilateral, but usually asymmetrically worse on the left, atrophy of the anterior temporal lobes (Snowden *et al.*, 1989; Hodges *et al.*, 1992; Whitwell *et al.*, 2005; Rohrer *et al.*, 2009b), with particular involvement of the inferior temporal gyri (Mummery *et al.*, 2000; Chan *et al.*, 2001; Rohrer *et al.*, 2008a). Patients with svPPA display a lack of semantic knowledge for objects, words, and concepts which presents as impaired naming (or "anomia") and word comprehension deficits (Warrington, 1975). SvPPA is also characterised by fluent spontaneous speech, which is garrulous, and difficult to interrupt. Frequent circumlocutory phrases (i.e. generally vague descriptions of a word), the use of empty words (e.g. thing) and semantic paraphasias (e.g. saying "fork" instead of "spoon") are common features used to mask their lack of vocabulary (Hodges and Patterson, 2007; Fletcher and Warren, 2011). Impaired object naming may start with low-frequency or less familiar words such as "labrador". As the disease progresses, patients display more severe semantic difficulties and lose the grasp of broader concepts such as "dog", and thus responses become increasingly general over time (Hoffman *et al.*, 2014). On neuropsychological testing, svPPA patients display anomia on confrontation naming tasks, impaired single word comprehension and difficulties with reading and writing that manifest as surface dyslexia and dysgraphia. For example, when reading aloud, patients pronounce irregularly spelt words phonetically (saying "sew" as "soo") due to a lack of meaning behind the word. Progressive atrophy of the temporal and frontal lobes and the insular cortex also leads to the inability to associate meaning to other non-verbal stimuli including auditory (Bozeat *et al.*, 2000; Goll *et al.*, 2010), tactile (Coccia *et al.*, 2004), and olfactory (Rami *et al.*, 2007) stimuli. Behavioural change can also be a prominent feature of svPPA, as patients become obsessive over daily routines, develop eating problems and a range of behaviours similar to those seen in bvFTD (Rosen *et al.*, 2006; Snowden *et al.*, 2012; Harris *et al.*, 2016). SvPPA was previously known as semantic dementia (SD), highlighting the loss of semantic knowledge as the key cognitive impairment in the disorder. This term was useful in that it allowed for patients to be included within this diagnostic label who presented with semantic loss in non-language domains, or who had predominant semantic impairment but also had other features such as change in behaviour early on in the illness. For example, SD can also present with right (more than left) asymmetrical temporal lobe atrophy, a disorder often called either "right-sided SD" or just "right temporal lobe atrophy (RTLA)" (Evans *et al.*, 1995; Thompson *et al.*, 2003; Chan *et al.*, 2001, 2009). The RTLA variant is characterised by early behavioural changes rather than language impairment (Chan *et al.*, 2009), and presents with other key distinguishing features such as an inability to recognise faces (prosopagnosia) (Gainotti *et al.*, 2003; Joubert *et al.*, 2006; Hutchings *et al.*, 2017). RTLA patients also have more difficulties with topographical memory (Chan *et al.*, 2009; Gonzalez-Caballero *et al.*, 2015) and can develop other unusual features such as hyperreligiosity (Edwards-Lee *et al.*, 1997). # nfvPPA NfvPPA accounts for around 25% of FTD cases (Johnosn *et al.*, 2005) and is characterised by impairment in speech production (Gorno-Tempini *et al.*, 2011). Symptoms arise due to atrophy of the left posterior and inferior frontal lobe, and insular cortex (Rohrer *et al.*, 2009b; Wilson *et al.*, 2010). In contrast to the fluent speech observed in svPPA, individuals with nfvPPA display non-fluent "effortful" speech, with intact single word comprehension and object naming (Hodges and Patterson, 1996). NfvPPA is characterised by agrammatism and/or impaired motor speech production, known as apraxia of speech. Speech agrammatism denotes the inappropriate ordering of words and the misuse of word endings, prepositions, pronouns, conjunctions, and verb tenses. Patients with nfvPPA have difficulty constructing grammatically meaningful sentences, and use short, simple phrases that lack connecting words, resulting in "telegraphic" speech (Mesulam, 2003; Rohrer et al., 2008b). Comprehension deficits may start with sentences that are grammatically complex (Grossman and Moore, 2005), before gradually progressing to complete incomprehension of conversational speech (Mesulam, 2003). Some individuals with nfvPPA can develop binary word reversals, where they say the opposite word from what they intend to (e.g. "yes" instead of "no") or respond to questions with "stock" phrases such as "I don't know" in order to avoid spontaneous speech (Warren et al., 2016). Over time speech can deteriorate to the point of mutism (Gorno-Tempini et al., 2004). In some cases of nfvPPA individuals display apraxia of speech, meaning they lack the ability to coordinate the motor aspects of speech production. Hesitancy and articulatory groping to find the correct speech sounds are common apraxic features (Josephs *et al.*, 2006). Patients also display a slow rate of speech, off-target articulation, lengthened intersegment durations (between sounds, syllables, words, or phrases), and sound distortions and substitutions that increase with increased utterance length and complexity (Strand *et al.*, 2014). Orofacial apraxia is often seen in association as well, and some patients will have accompanying limb apraxia (Rohrer *et al.*, 2010b). NfvPPA can be considered a more heterogeneous disorder in comparison to other PPA subtypes: in some patients agrammatism can be the most dominant feature, whilst others can display a presentation of isolated apraxia of speech. This has led some groups to distinguish further subtypes including agrammatic PPA and progressive apraxia of speech (Josephs *et al.*, 2013). However, although distinct symptoms may be seen early on in the disease, as the disease progresses most patients tend to develop both apraxic and agrammatic features (Rohrer *et al.*, 2010b). #### lvPPA LvPPA is characterised by long word-finding pauses which may result in nonfluent speech, false starts, and constant re-wording of phrases (Gorno-Tempini *et al.*, 2004, 2008). This disorder can be distinguished from nfvPPA by the preservation of motor speech, i.e. the lack of articulation deficits, and the lack of frank agrammatism (Gorno-Tempini *et al.*, 2011; Rohrer *et al.*, 2012). Impaired sentence (rather than single-word) repetition adds to the clinical picture, and further dissociates this disorder from svPPA, although impaired object naming is seen in both conditions (Gorno-Tempini *et al.*, 2004, 2008). The hallmark neuroimaging feature of this disorder is asymmetrical (left greater than right) atrophy of the posterior superior temporal and inferior parietal lobes as well as posterior cingulate and medial temporal lobes (Rohrer *et al.*, 2010a). Over time anomia and deficits in sentence repetition and sentence comprehension worsen, and ultimately single word comprehension and repetition become compromised (Gorno-Tempini *et al.*, 2011). The progression of symptoms reflects the increasing degeneration of the left hemisphere language network (Rohrer *et al.*, 2013). Although this disorder is part of the PPA spectrum,
it is usually described as an atypical presentation of AD, rather than a subtype of FTD. Evidence from post-mortem (Mesulam *et al.*, 2008, Rohrer *et al.*, 2012; Spinelli *et al.*, 2017), PIB-PET imaging (Leyton *et al.*, 2011) and CSF tau and amyloid studies (Rohrer *et al.*, 2012) has shown that lvPPA is commonly associated with AD, rather than FTD, pathology. As the disease develops impaired episodic memory, and posterior cortical cognitive deficits more typical of AD develop (Ahmed *et al.*, 2012), further dissociating this condition from FTD. # Overlap syndromes A number of associated motor disorders can overlap with FTD, including MND, PSP, and CBS. In patients with overlap syndromes, motor symptoms can develop before, after, or alongside the classic deficits of behaviour or language (Kertesz and McMonagle, 2011; Park and Chung, 2013; Devenney *et al.*, 2015). ### FTD-MND Overlap of FTD-MND occurs at genetic, pathological, and clinical levels. The discovery of the *C9orf72* gene (DeJesus *et al.*, 2011; Renton *et al.*, 2011) and the identification of TDP-43 as the major protein inclusion in both FTD and MND (Neumann *et al.*, 2006) strengthened the association between these two conditions. Around 10-15% of patients with FTD develop MND, and symptoms can arise early or late in the disease course (Lomen-Hoerth *et al.*, 2002; Seelaar *et al.*, 2007; Burrell *et al.*, 2011). All FTD subtypes can occur with FTD-MND, however, it is most commonly seen in bvFTD, occasionally in nfvPPA, and rarely with svPPA. Similarly, around 15% of people with MND develop a clinical syndrome meeting the criteria for FTD; however milder cognitive and behavioural abnormalities not meeting the criteria are also reported in 50-70% of patients (Lillo *et al.*, 2012; Byrne *et al.*, 2012). Patients with FTD-MND have the shortest disease course of all forms of FTD, with an average of 2-3 years from symptom onset (Elamin *et al.*, 2011). #### Parkinsonian disorders PSP is a neurodegenerative disorder characterised by early postural instability resulting in backwards falls and impairment of vertical gaze (Litvan *et al.*, 1996). This is the classical and most common phenotype of PSP, known as Richardson's syndrome, or PSP-RS (Steele *et al.*, 1964; Williams *et al.*, 2005). However, recent diagnostic criteria have established a number of variant phenotypes of PSP including those with predominant parkinsonian (PSP-P: rigidity, bradykinesia), gait freezing (PSP-PGF), and ocular motor dysfunction (PSP-OM). The criteria also recognise the overlap with FTD, both bvFTD (called PSP-F in the criteria) and PPA, usually nfvPPA (called PSP-SL in the criteria) (Hoglinger *et al.*, 2017). The clinical diagnostic criteria for CBS [the preferred clinical syndromic term for the disorder previously called corticobasal degeneration (CBD)] describe an asymmetric movement disorder combined with cortical deficits. The core features include: stiffness, clumsiness, asymmetric apraxia, rigidity, myoclonus, cortical sensory loss, visual/sensory hemineglect and alien limb phenomena (Riley *et al.*, 1990; Litvan *et al.*, 1998; Bak and Hodges, 2008). As with PSP, overlap is commonly seen with both bvFTD (Bak and Hodges, 2008) and nfvPPA (Graham *et al.*, 2003). # Genetics FTD is a highly heritable disorder, with around a third of people having a family history of dementia or a movement disorder (Goldman *et al.*, 2005; Rohrer *et al.*, 2009a). On closer inspection, this heritability is variable between the subtypes, with bvFTD the most commonly inherited (~40-45%) followed by FTD-MND, nfvPPA (~5%), CBS, PSP-RS and svPPA (<1%). The majority of genetic FTD is accounted for by mutations in three genes: *C9orf72*, *GRN* and *MAPT*. The frequency of mutations is geographically variable, e.g. in the UK, there are approximately equal number of mutations seen in the three genes (~8-10% of all FTD), whilst in Italy, mutations in *GRN* are the most common. However, globally, *C9orf72* appears to be the most common genetic cause of FTD (Rohrer *et al.*, 2015). Mutations in all three genes are associated with a bvFTD phenotype. However, *GRN* can also be seen in people with PPA (often a syndrome not neatly fitting into one of the three clinical syndromes, PPA-NOS) and CBS. *C9orf72* can cause FTD-MND, or pure MND, and much less commonly a PPA syndrome or parkinsonian disorder. Patients with *C9orf72* mutations may have early neuropsychiatric symptoms including delusions and hallucinations. *MAPT* can cause a parkinsonian disorder (often CBS, and only very rarely PSP) and associated semantic impairment (although only extremely rarely a primary language disorder) (Rohrer *et al.*, 2015). Mutations in other genes are less common – the fourth most common cause of genetic FTD is mutations in the *TBK1* gene (~1% of all FTD) which can cause one (or a combination of) bvFTD, MND, PPA and CBS (van der Zee *et al.*, 2017). Mutations in *VCP* cause a very specific clinical syndrome of Inclusion Body Myopathy, Paget's disease and Frontotemporal Dementia (IBMPFD) with only a small number of families described across the world (Nalbandian *et al.*, 2011). Mutations in *TARDBP*, *FUS* and *SQSTM1* have been described as causing an FTD syndrome but only in rare reports, and are more common causes of MND, whilst mutations in *CHMP2B* are the cause of a form of FTD seen in a large family in Denmark. Next generation sequencing allows testing for mutations in multiple genes at the same time (although *C9orf72* expansions require testing for separately). Whilst this is a great advantage over previous individual testing, in that the referring physician no longer needs to have confidence in the clinical syndrome to make an accurate choice of gene, new approaches will lead to the more frequent identification of Variants of Uncertain Significance, variants with reduced penetrance and concurrent pathogenic mutations (Koriath *et al.*, 2018). Closer collaboration between geneticists and clinicians is useful, but segregation and functional data may ultimately be necessary for an accurate classification of a variant. In *GRN* mutations, a very low serum, plasma or CSF progranulin (easily tested via ELISA) can be useful in determining pathogenicity (Ghidoni *et al.*, 2008). Genome wide association studies compare hundreds of thousands or millions of genetic polymorphisms between cases and controls. The approach has identified risk factors for sporadic forms of FTD and modifiers of the familial forms. The first such study analysed pathologically proven cases with TDP-43 pathology and identified multiple SNPs mapping to the TMEM106B gene (Van Deerlin et al., 2010). Whilst replication of the finding in clinically diagnosed FTD was mixed, it is now clear that the minor allele of SNP rs1990622 is a strong protective factor (OR=0.61) and also modifies the phenotype and penetrance of individuals with GRN mutations (Van Deerlin et al., 2010) or C9orf72 (Gallagher et al., 2014; van Blitterswijk et al., 2014; Nicholson and Rademakers, 2016). Cell experiments that perturb TMEM106B suggest a link with lysosome function, but a direct connection with TDP-43 has not yet been established (Nicholson and Rademakers, 2016). The largest genome wide association study to date recruited clinical FTD cases, and identified the HLA locus as significant in the entire (mixed pathology) cohort and variants near to RAB38/CTSC in behavioural variant FTD (Ferrari et al., 2014), again implicating lysosomal function. Gene-based rather than SNP-based analysis of these data further identified an association of APOE/TOMM40 with behavioural variant frontotemporal dementia, and ARHGAP35 and SERPINA1 with nfvPPA, suggesting a role for APOE in pathologies other than Alzheimer's disease (Mishra et al., 2017). # **Neuroimaging (Figure 1)** The majority of neuroimaging studies of FTD have used magnetic resonance imaging (MRI), although a smaller number of studies have investigated positron emission tomography (PET) or single-photon emission computed tomography (SPECT) (Gordon *et al.*, 2016). Diagnostically, the presence of frontotemporal atrophy, hypometabolism or hypoperfusion can be helpful, but behind this simplistic interpretation lies a more complex picture. Firstly, early involvement of the insula and anterior cingulate makes FTD not just a frontal and temporal lobe disease (Seeley *et al.*, 2008). This circuit is thought to be part of what has been termed a 'salience network', a set of functionally and structurally connected areas seen on neuroimaging but also linked at the cellular level by the presence of a specific set of cells called von Economo neurones (Seeley *et al.*, 2009). Studies of pre-symptomatic FTD have suggested that the insula is the earliest area affected, around ten to fifteen years prior to symptom onset (Rohrer *et al.*, 2015). More posterior cortical involvement has been described even early in the disease in some forms of FTD, notably parietal lobe atrophy or hypometabolism in those with *GRN* mutations (Gordon *et al.*, 2016). Secondly, there is early involvement of subcortical structures as well. Multiple studies have now shown atrophy of the hippocampus, amygdala, basal ganglia, thalamus, hypothalamus and habenula in FTD (Seeley *et al.*, 2008; Whitwell *et al.*, 2005; Rohrer *et al.*, 2011; Bocchetta *et al.*, 2015; Bocchetta *et al.*, 2016a). Involvement of the cerebellum is less common but is seen particularly in those with *C9orf72* mutations (Bocchetta *et al.*, 2016b). Thirdly, there is variable asymmetry in the pattern of neuroanatomical involvement (Rohrer *et al.*, 2011). Whilst some people with FTD have relatively symmetrical volume loss (particularly those with *C9orf72* and *MAPT* mutations), the majority of people (particularly those with PPA) have asymmetrical atrophy. In bvFTD, this is commonly right hemisphere predominant, but can also be left-sided predominant as well. Lastly, rate of atrophy
is variable between the different forms of FTD e.g. in genetic FTD rates of brain atrophy are fastest (as a group) in those with *GRN* mutations (~3.5% whole brain atrophy per year) and slowest in *MAPT* mutations (~1.5%) (Gordon *et al.*, 2016). Those with *C9orf72* mutations have more variable rates of atrophy with some progressing quickly and some very slowly (Llamas-Velasco *et al.*, 2018). This is important for future clinical trials, where such rates of atrophy may allow shorter trials in *GRN*-associated FTD (Sha *et al.*, 2017). ### Discussion The diversity of clinical presentation within FTD, and the potential overlap of other conditions leads to considerable nosological and diagnostic difficulties. Modern day sequencing has allowed wider access to genetic testing and whilst there are added complexities of interpreting novel variants, more people are being diagnosed with a form of genetic FTD than previously. Focusing on genetic FTD allows a molecular diagnosis in life, and large studies like the Genetic FTD Initiative, GENFI (Rohrer *et al.*, 2015) are currently creating large cohorts of both symptomatic and pre-symptomatic mutation carriers ready for clinical trials. A more difficult problem is sporadic FTD where molecular diagnosis in life will require the development of novel biomarkers which may include PET or fluid markers (discussed elsewhere in this edition). There is still further research to be done in understanding the complex heterogeneous disease of frontotemporal dementia, but we are quickly approaching the era of therapeutic drug trials, and hopefully the first step towards a cure for this illness. #### References - 1. Ahmed, S., de Jager, C.A., Haigh, A.M.F. and Garrard, P., 2012. Logopenic aphasia in Alzheimer's disease: clinical variant or clinical feature?. *J Neurol Neurosurg Psychiatry*, 83(11), pp.1056-1062. - 2. Bak, T.H. and Hodges, J.R., 2008. Corticobasal degeneration: clinical aspects. *Handbook of clinical neurology*, 89, pp.509-521. - 3. Bocchetta M, Gordon E, Manning E, Barnes J, Cash DM, Espak M, Thomas DL, Modat M, Rossor MN, Warren JD, Ourselin S, Frisoni GB, Rohrer JD, 2015. Detailed volumetric analysis of the hypothalamus in behavioral variant frontotemporal dementia. *J Neurol*, 262(12) pp. 2635-42. - 4. Bocchetta M, Gordon E, Marshall CR, Slattery CF, Cardoso MJ, Cash DM, Espak M, Modat M, Ourselin S, Frisoni GB, Schott JM, Warren JD, Rohrer JD, 2016a. The habenula: an under-recognised area of importance in frontotemporal dementia? *J Neurol Neurosurg Psychiatry*, 87(8) pp. 910-2. - 5. Bocchetta M, Cardoso MJ, Cash DM, Ourselin S, Warren JD, Rohrer JD, 2016b. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. *Neuroimage Clin*, 11 pp. 287-90. - 6. Bozeat, S., Gregory, C.A., Ralph, M.A.L. and Hodges, J.R., 2000. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease?. *Journal of Neurology, Neurosurgery & Psychiatry*, 69(2), pp.178-186. - 7. Burrell, J.R., Kiernan, M.C., Vucic, S. and Hodges, J.R., 2011. Motor neuron dysfunction in frontotemporal dementia. *Brain*, 134(9), pp.2582-2594. - 8. Byrne, S., Elamin, M., Bede, P., Shatunov, A., Walsh, C., Corr, B., Heverin, M., Jordan, N., Kenna, K., Lynch, C. and McLaughlin, R.L., 2012. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. *The Lancet Neurology*, 11(3), pp.232-240. - 9. Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., Rossor, A.M., Stevens, J.M., Cipolotti, L. and Rossor, M.N., 2001. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. *Annals of neurology*, 49(4), pp.433-442. - Chan, D., Anderson, V., Pijnenburg, Y., Whitwell, J., Barnes, J., Scahill, R., Stevens, J.M., Barkhof, F., Scheltens, P., Rossor, M.N. and Fox, N.C., 2009. The clinical profile of right temporal lobe atrophy. *Brain*, 132(5), pp.1287-1298. - 11. Devenney, E., Vucic, S., Hodges, J.R. and Kiernan, M.C., 2015. Motor neuron disease-frontotemporal dementia: a clinical continuum. *Expert review of neurotherapeutics*, 15(5), pp.509-522. - 12. DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J. and Kouri, N., 2011. Expanded GGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. *Neuron*, 72(2), pp.245-256. - 13. Ducharme, S., Bajestan, S., Dickerson, B.C. and Voon, V., 2017. Psychiatric presentations of C9orf72 mutation: What are the diagnostic implications for clinicians?. *The Journal of neuropsychiatry and clinical neurosciences*, 29(3), pp.195-205. - 14. Edwards-Lee, T., Miller, B.L., Benson, D.F., Cummings, J.L., Russell, G.L., Boone, K. and Mena, I., 1997. The temporal variant of frontotemporal dementia. *Brain: a journal of neurology*, 120(6), pp.1027-1040. - 15. Elamin, M., Phukan, J., Bede, P., Jordan, N., Byrne, S., Pender, N. and Hardiman, O., 2011. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. *Neurology*, 76(14), pp.1263-1269. - 16. Evans, J.J., Heggs, A.J., Antoun, N. and Hodges, J.R., 1995. Progressive prosopagnosia associated with selective right temporal lobe atrophy: A new syndrome?. *Brain*, 118(1), pp.1-13. - 17. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB, *et al.* Frontotemporal dementia and its subtypes: a genome-wide association study. *Lancet Neurol* 2014; 13(7): 686-99. - 18. Fletcher, P.D., Downey, L.E., Golden, H.L., Clark, C.N., Slattery, C.F., Paterson, R.W., Rohrer, J.D., Schott, J.M., Rossor, M.N. and Warren, J.D., 2015. Pain and temperature processing in dementia: a clinical and neuroanatomical analysis. *Brain*, 138(11), pp.3360-3372. - 19. Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., Rossor, A.M., Stevens, J.M., Cipolotti, L. and Rossor, M.N., 2001. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. *Annals of neurology*, 49(4), pp.433-442. - 20. Coccia, M., Bartolini, M., Luzzi, S., Provinciali, L. and Lambon Ralph, M.A., 2004. Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia. *Cognitive Neuropsychology*, 21(5), pp.513-527. - 21. Fletcher, P.D. and Warren, J.D., 2011. Semantic dementia: a specific network-opathy. *Journal of Molecular Neuroscience*, 45(3), p.629. - 22. Gainotti, G., Barbier, A. and Marra, C., 2003. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. *Brain*, 126(4), pp.792-803. - 23. Gallagher MD, Suh E, Grossman M, Elman L, McCluskey L, Van Swieten JC, et al. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 2014; 127(3): 407-18. - 24. Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G, 2008. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. *Neurology*, 71(16) pp. 1235-9. - 25. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J, Lomen-Hoerth C, Wilhelmsen KC, Lee VM, Grossman M, Miller BL, 2005. Comparison of family histories in FTLD subtypes and related tauopathies. *Neurology*, 65(11) pp. 1817-9. - 26. Goll, J.C., Crutch, S.J. and Warren, J.D., 2010. Central auditory disorders: toward a neuropsychology of auditory objects. *Current opinion in neurology*, 23(6), p.617. - 27. González-Caballero, G., Abellán-Miralles, I. and Sáenz-Sanjuan, M.J., 2015. Right temporal lobe variant of frontotemporal dementia. *Journal of Clinical Neuroscience*, 22(7), pp.1139-1143. - 28. Gordon E, Rohrer JD, Fox NC, 2016. Advances in neuroimaging in frontotemporal dementia. *J Neurochem,* 138 Suppl 1, pp. 193-210. - 29. Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., Johnson, J.K., Weiner, M.W. and Miller, B.L., 2004. Cognition and anatomy in three variants of - primary progressive aphasia. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society*, 55(3), pp.335-346. - 30. Gorno-Tempini, M.L., Brambati, S.M., Ginex, V., Ogar, J., Dronkers, N.F., Marcone, A., Perani, D., Garibotto, V., Cappa, S.F. and Miller, B.L., 2008. The logopenic/phonological variant of primary progressive aphasia. *Neurology*, 71(16), pp.1227-1234. - 31. Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.E.E.A., Ogar, J.M., Rohrer, J.D., Black, S., Boeve, B.F. and Manes, F., 2011. Classification of primary progressive aphasia and its variants. *Neurology*, pp.WNL-0b013e31821103e6. - 32. Graham, N.L., Bak, T.H. and Hodges, J.R., 2003. Corticobasal degeneration as a cognitive disorder. *Movement disorders: official journal of the Movement Disorder Society*, 18(11), pp.1224-1232. - 33. Graff-Radford, N.R. and Woodruff, B.K., 2007, February. Frontotemporal dementia. In *Seminars in neurology* (Vol. 27, No. 01, pp. 048-057). Copyright© 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. - 34. Grossman, M., 2002. Frontotemporal dementia: a review. *Journal of the International Neuropsychological Society*, 8(4), pp.566-583. - 35. Grossman, M. and Moore, P., 2005. A longitudinal study of sentence comprehension difficulty in primary progressive aphasia. *Journal of Neurology, Neurosurgery & Psychiatry*, 76(5), pp.644-649. - 36. Harris, J.M., Gall, C., Thompson, J.C., Richardson, A.M., Neary, D., du Plessis, D., Pal, P., Mann, D.M., Snowden, J.S. and Jones, M., 2013. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. *Neurology*, 80(20), pp.1881-1887. - 37. Harris, J.M., Jones, M., Gall, C., Richardson, A.M., Neary, D., du
Plessis, D., Pal, P., Mann, D.M., Snowden, J.S. and Thompson, J.C., 2016. Co-occurrence of language and behavioural change in frontotemporal lobar degeneration. *Dementia and geriatric cognitive disorders extra*, 6(2), pp.205-213. - 38. Hodges, J.R., Patterson, K., Oxbury, S. and Funnell, E., 1992. Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. *Brain*, 115(6), pp.1783-1806. - 39. Hodges, J.R. and Patterson, K., 1996. Nonfluent progressive aphasia and semantic dementia: a comparative neuropsychological study. *Journal of the International Neuropsychological Society*, 2(6), pp.511-524. - 40. Hodges, J.R. and Patterson, K., 2007. Semantic dementia: a unique clinicopathological syndrome. *The Lancet Neurology*, 6(11), pp.1004-1014. - 41. Hodges, J.R., 2001. Frontotemporal dementia (Pick's disease): clinical features and assessment. *Neurology*, *56*(suppl 4), pp. S6-S10. - 42. Hodges, J.R., Davies, R.R., Xuereb, J.H., Casey, B., Broe, M., Bak, T.H., Kril, J.J. and Halliday, G.M., 2004. Clinicopathological correlates in frontotemporal dementia. *Annals of neurology*, 56(3), pp.399-406. - 43. Hoffman, P., Meteyard, L. and Patterson, K., 2014. Broadly speaking: vocabulary in semantic dementia shifts towards general, semantically diverse words. *Cortex*, 55, pp.30-42. - 44. Höglinger, G.U., Respondek, G., Stamelou, M., Kurz, C., Josephs, K.A., Lang, A.E., Mollenhauer, B., Müller, U., Nilsson, C., Whitwell, J.L. and Arzberger, T., 2017. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. *Movement Disorders*, 32(6), pp.853-864. - 45. Hutchings, R., Palermo, R., Piguet, O. and Kumfor, F., 2017. Disrupted face processing in frontotemporal dementia: a review of the clinical and neuroanatomical evidence. *Neuropsychology review*, 27(1), pp.18-30. - Johnson, J.K., Diehl, J., Mendez, M.F., Neuhaus, J., Shapira, J.S., Forman, M., Chute, D.J., Roberson, E.D., Pace-Savitsky, C., Neumann, M. and Chow, T.W., 2005. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. *Archives of neurology*, 62(6), pp.925-930. - 47. Josephs, K.A., Duffy, J.R., Strand, E.A., Whitwell, J.L., Layton, K.F., Parisi, J.E., Hauser, M.F., Witte, R.J., Boeve, B.F., Knopman, D.S. and Dickson, D.W., 2006. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. *Brain*, 129(6), pp.1385-1398. - 48. Josephs, K.A., Duffy, J.R., Strand, E.A., Machulda, M.M., Senjem, M.L., Lowe, V.J., Jack, C.R. and Whitwell, J.L., 2013. Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. *Neurology*, 81(4), pp.337-345. - 49. Joubert, S., Felician, O., Barbeau, E., Ranjeva, J.P., Christophe, M., Didic, M., Poncet, M. and Ceccaldi, M., 2006. The right temporal lobe variant of frontotemporal dementia. *Journal of Neurology*, 253(11), pp.1447-1458. - 50. Kertesz, A., Davidson, W., McCabe, P., Takagi, K. and MUNOZ, D., 2003. Primary progressive aphasia: diagnosis, varieties, evolution. *Journal of the International Neuropsychological Society*, 9(5), pp.710-719. - 51. Kertesz, A. and McMonagle, P., 2011. The overlapping syndromes of the pick complex. *Current Alzheimer Research*, 8(3), pp.224-228. - 52. Kertesz, A., Ang, L.C., Jesso, S., MacKinley, J., Baker, M., Brown, P., Shoesmith, C., Rademakers, R. and Finger, E.C., 2013. Psychosis and Hallucinations in FTD with C9ORF72 mutation: A detailed clinical cohort. *Cognitive and behavioral neurology: official journal of the Society for Behavioral and Cognitive Neurology*, 26(3), p.146. - 53. Kiernan, M.C., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardiman, O., Burrell, J.R. and Zoing, M.C., 2011. Amyotrophic lateral sclerosis. *The Lancet*, 377(9769), pp.942-955. - 54. Kipps CM, Hodges JR, Hornberger M, 2010. <u>Nonprogressive behavioural frontotemporal dementia: recent developments and clinical implications of the 'bvFTD phenocopy syndrome'.</u> *Curr Opin Neurol.* 2010 Dec;23(6):628-32. - 55. Koriath, C., Kenny, J., Adamson, G., Druyeh, R., Taylor, W., Beck, J., Quinn, L., Mok, T.H., . Dimitriadis, A., Norsworthy, P., Bass, N., Carter, J., Walker, Z., Kipps, C., Coulthard, E., Polke, J.M., Bernal-Quiros, M., Denning, N., Thomas., R, Raybould, R., Williams, J., Mummery, C.J., Wild, E.J., Houlden, H., Tabrizi, S.J., Rossor, M.N., Hummerich, H., Warren, J.D., Rowe, J.B., Rohrer, J.D., Schott, J.M., Fox, N.C., Collinge, J.C., Mead, S. *Molecular Psychiatry* (2018, in press). - 56. Kumfor, F. and Piguet, O., 2012. Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings. *Neuropsychology review*, 22(3), pp.280-297. - 57. LaMarre, A.K., Rascovsky, K., Bostrom, A., Toofanian, P., Wilkins, S., Sharon, J.S., Perry, D.C., Miller, Z.A., Naasan, G., Hagen, J. and Takada, L.T., 2013. Interrater reliability of the new criteria for behavioral variant frontotemporal dementia. *Neurology*, 80(21), pp.1973-1977. - 58. Leyton, C.E., Villemagne, V.L., Savage, S., Pike, K.E., Ballard, K.J., Piguet, O., Burrell, J.R., Rowe, C.C. and Hodges, J.R., 2011. Subtypes of progressive aphasia: application of the international consensus criteria and validation using β-amyloid imaging. *Brain*, 134(10), pp.3030-3043. - 59. Lillo, P., Savage, S., Mioshi, E., Kiernan, M.C. and Hodges, J.R., 2012. Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. *Amyotrophic Lateral Sclerosis*, 13(1), pp.102-109. - 60. Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., Goetz, C.G., Golbe, L.I., Grafman, J., Growdon, J.H. and Hallett, M., 1996. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) report of the NINDS-SPSP international workshop. *Neurology*, 47(1), pp.1-9. - 61. Litvan, I., Cummings, J.L. and Mega, M., 1998. Neuropsychiatric features of corticobasal degeneration. *Journal of Neurology, Neurosurgery & Psychiatry*, 65(5), pp.717-721. - 62. Llamas-Velasco S, García-Redondo A, Herrero-San Martín A, Puertas Martín V, González-Sánchez M, Pérez-Martínez DA, Villarejo-Galende A, 2018. Slowly progressive behavioral frontotemporal dementia with C9orf72 mutation. Case report and review of the literature. Neurocase, 24(1) pp. 68-71. - 63. Lomen-Hoerth, C., Anderson, T. and Miller, B., 2002. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. *Neurology*, *59*(7), pp.1077-1079. - 64. Lough, S., Gregory, C. and Hodges, J.R., 2001. Dissociation of social cognition and executive function in frontal variant frontotemporal dementia. *Neurocase*, 7(2), pp.123-130. - 65. Lough, S., Kipps, C.M., Treise, C., Watson, P., Blair, J.R. and Hodges, J.R., 2006. Social reasoning, emotion and empathy in frontotemporal dementia. *Neuropsychologia*, 44(6), pp.950-958. - 66. Mackenzie, I.R., Neumann, M., Bigio, E.H., Cairns, N.J., Alafuzoff, I., Kril, J., Kovacs, G.G., Ghetti, B., Halliday, G., Holm, I.E. and Ince, P.G., 2010. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. *Acta neuropathologica*, 119(1), p.1. - 67. Manes, F.F., Torralva, T., Roca, M., Gleichgerrcht, E., Bekinschtein, T.A. and Hodges, J.R., 2010. Frontotemporal dementia presenting as pathological gambling. *Nature Reviews Neurology*, 6(6), p.347. - 68. McCarter SJ, St Louis EK, Boeve BF, 2016. <u>Sleep Disturbances in Frontotemporal Dementia.</u> *Curr Neurol Neurosci Rep.* Sep;16(9):85. - 69. McGlynn, S.M. and Schacter, D.L., 1989. Unawareness of deficits in neuropsychological syndromes. *Journal of clinical and experimental neuropsychology*, 11(2), pp.143-205. - 70. Mesulam, M.M., 1982. Slowly progressive aphasia without generalized dementia. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society*, 11(6), pp.592-598. - 71. Mesulam, M.M., 2003. Primary progressive aphasia—a language-based dementia. *New England Journal of Medicine*, 349(16), pp.1535-1542. - 72. Mesulam, M., Wicklund, A., Johnson, N., Rogalski, E., Léger, G.C., Rademaker, A., Weintraub, S. and Bigio, E.H., 2008. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society*, 63(6), pp.709-719. - 73. Mesulam, M., Wicklund, A., Johnson, N., Rogalski, E., Léger, G.C., Rademaker, A., Weintraub, S. and Bigio, E.H., 2008. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society*, 63(6), pp.709-719. - 74. Mendez, M.F., Shapira, J.S., McMurtray, A., Licht, E. and Miller, B.L., 2007. Accuracy of the clinical evaluation for frontotemporal dementia. *Archives of Neurology*, 64(6), pp.830-835. - 75. Mendez, M.F. and Shapira, J.S., 2009. Altered emotional morality in frontotemporal dementia. *Cognitive neuropsychiatry*, 14(3), pp.165-179. - 76. Mishra A, Ferrari R, Heutink P, Hardy J, Pijnenburg Y, Posthuma D, *et al.* Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain 2017; 140(5): 1437-46. - 77. Mummery, C.J., Patterson, K., Price, C.J., Ashburner, J., Frackowiak, R.S. and Hodges, J.R., 2000. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. *Annals of neurology*, 47(1), pp.36-45. - 78. Nalbandian A, Donkervoort S, Dec E, Badadani M, Katheria V, Rana P, Nguyen C, Mukherjee J, Caiozzo V, Martin B, Watts GD, Vesa J, Smith C, Kimonis VE, 2011. The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. J Mol Neurosci, 45(3), pp. 522-31. - 79. Neumann, M., Sampathu, D.M., Kwong,
L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M. and McCluskey, L.F., 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Science*, 314(5796), pp.130-133. - 80. Nicholson AM, Rademakers R. What we know about TMEM106B in neurodegeneration. Acta Neuropathol 2016; 132(5): 639-51 - 81. O'keeffe, F.M., Murray, B., Coen, R.F., Dockree, P.M., Bellgrove, M.A., Garavan, H., Lynch, T. and Robertson, I.H., 2007. Loss of insight in frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy. *Brain*, 130(3), pp.753-764. - 82. Park, H.K. and Chung, S.J., 2013. New perspective on parkinsonism in frontotemporal lobar degeneration. *Journal of movement disorders*, 6(1), p.1. - 83. Piguet, O., Petersén, Å., Yin Ka Lam, B., Gabery, S., Murphy, K., Hodges, J.R. and Halliday, G.M., 2011. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. *Annals of neurology*, 69(2), pp.312-319. - 84. Possin, K.L., Feigenbaum, D., Rankin, K.P., Smith, G.E., Boxer, A.L., Wood, K., Hanna, S.M., Miller, B.L. and Kramer, J.H., 2013. Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. *Neurology*, 80(24), pp.2180-2185. - 85. Rami, L., Loy, C.T., Hailstone, J. and Warren, J.D., 2007. Odour identification in frontotemporal lobar degeneration. *Journal of neurology*, 254(4), pp.431-435. - 86. Rankin, K.P., Baldwin, E., Pace-Savitsky, C., Kramer, J.H. and Miller, B.L., 2005. Self awareness and personality change in dementia. *Journal of Neurology, Neurosurgery & Psychiatry*, 76(5), pp.632-639. - 87. Rankin, K.P., Gorno-Tempini, M.L., Allison, S.C., Stanley, C.M., Glenn, S., Weiner, M.W. and Miller, B.L., 2006. Structural anatomy of empathy in neurodegenerative disease. *Brain*, 129(11), pp.2945-2956. - 88. Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Van Swieten, J.C., Seelaar, H., Dopper, E.G., Onyike, C.U. and Hillis, A.E., 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain*, 134(9), pp.2456-2477. - 89. Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., Van Swieten, J.C., Myllykangas, L. and Kalimo, H., 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. *Neuron*, 72(2), pp.257-268. - 90. Riley, D.E., Lang, A.E., Lewis, A.E., Resch, L., Ashby, P., Hornykiewicz, O. and Black, S., 1990. Cortical-basal ganglionic degeneration. *Neurology*, 40(8), pp.1203-1203. - 91. Rohrer, J.D., McNaught, E., Foster, J., Clegg, S.L., Barnes, J., Omar, R., Warrington, E.K., Rossor, M.N., Warren, J.D. and Fox, N.C., 2008a. Tracking progression in frontotemporal lobar degeneration serial MRI in semantic dementia. *Neurology*, 71(18), pp.1445-1451. - 92. Rohrer, J.D., Knight, W.D., Warren, J.E., Fox, N.C., Rossor, M.N. and Warren, J.D., 2008b. Wordfinding difficulty: a clinical analysis of the progressive aphasias. *Brain*, 131(1), pp.8-38. - 93. Rohrer, J.D., Warren, J.D., Modat, M., Ridgway, G.R., Douiri, A., Rossor, M.N., Ourselin, S. and Fox, N.C., 2009b. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. *Neurology*, 72(18), pp.1562-1569. - 94. Rohrer, J. D., R. Guerreiro, J. Vandrovcova, J. Uphill, D. Reiman, J. Beck, A. M. Isaacs, A. Authier, R. Ferrari, N. C. Fox, I. R. Mackenzie, J. D. Warren, R. de Silva, J. Holton, T. Revesz, J. Hardy, S. Mead and M. N. Rossor 2009a. "The heritability and genetics of frontotemporal lobar degeneration." Neurology 73(18): 1451-1456. - 95. Rohrer, J.D., Ridgway, G.R., Crutch, S.J., Hailstone, J., Goll, J.C., Clarkson, M.J., Mead, S., Beck, J., Mummery, C., Ourselin, S. and Warrington, E.K., 2010a. Progressive logopenic/phonological aphasia: erosion of the language network. *Neuroimage*, 49(1), pp.984-993. - 96. Rohrer, J.D., Rossor, M.N. and Warren, J.D., 2010b. Apraxia in progressive nonfluent aphasia. *Journal of neurology*, 257(4), pp.569-574. - 97. Rohrer, J.D., Lashley, T., Schott, J.M., Warren, J.E., Mead, S., Isaacs, A.M., Beck, J., Hardy, J., de Silva, R., Warrington, E. and Troakes, C., 2011. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. *Brain*, 134(9), pp.2565-2581. - 98. Rohrer JD, Nicholas JM, Cash DM, van Swieten J, Dopper E, Jiskoot L, van Minkelen R, Rombouts SA, Cardoso MJ, Clegg S, Espak M, Mead S, Thomas DL, De Vita E, Masellis M, Black SE, Freedman M, Keren R, MacIntosh BJ, Rogaeva E, Tang-Wai D, Tartaglia MC, Laforce R Jr, Tagliavini F, Tiraboschi P, Redaelli V, Prioni S, Grisoli M, Borroni B, Padovani A, Galimberti D, Scarpini E, Arighi A, Fumagalli G, Rowe JB, Coyle-Gilchrist I, Graff C, Fallström M, Jelic V, Ståhlbom AK, Andersson C, Thonberg H, Lilius L, Frisoni GB, Pievani M, Bocchetta M, Benussi L, Ghidoni R, Finger E, Sorbi S, Nacmias B, Lombardi G, Polito C, Warren JD, Ourselin S, Fox NC, Rossor MN, Binetti G, 2015. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal - dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. *Lancet Neurol*, 14(3) pp. 253-62. - 99. Rohrer, J.D., Rossor, M.N. and Warren, J.D., 2012. Alzheimer's pathology in primary progressive aphasia. *Neurobiology of aging*, 33(4), pp.744-752. - 100.Rohrer, J.D., Caso, F., Mahoney, C., Henry, M., Rosen, H.J., Rabinovici, G., Rossor, M.N., Miller, B., Warren, J.D., Fox, N.C. and Ridgway, G.R., 2013. Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. *Brain and language*, 127(2), pp.121-126. - 101.Rosen, H.J., Pace-Savitsky, K., Perry, R.J., Kramer, J.H., Miller, B.L. and Levenson, R.W., 2004. Recognition of emotion in the frontal and temporal variants of frontotemporal dementia. *Dementia*and geriatric cognitive disorders, 17(4), pp.277-281. - 102.Rosen, H.J., Allison, S.C., Ogar, J.M., Amici, S., Rose, K., Dronkers, N., Miller, B.L. and Gorno-Tempini, M.L., 2006. Behavioral features in semantic dementia vs other forms of progressive aphasias. *Neurology*, 67(10), pp.1752-1756. - 103. Seelaar, H., Jurgen Schelhaas, H., Azmani, A., Küsters, B., Rosso, S., Majoor-Krakauer, D., de Rijik, M.C., Rizzu, P., ten Brummelhuis, M., van Doorn, P.A. and Kamphorst, W., 2007. TDP-43 pathology in familial frontotemporal dementia and motor neuron disease without Progranulin mutations. *Brain*, 130(5), pp.1375-1385. - 104. Seeley, W.W., Crawford, R., Rascovsky, K., Kramer, J.H., Weiner, M., Miller, B.L. and Gorno-Tempini, M.L., 2008. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. *Archives of neurology*, 65(2), pp.249-255. - 105. Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L. and Greicius, M.D., 2009. Neurodegenerative diseases target large-scale human brain networks. *Neuron*, 62(1), pp.42-52. - 106.Sha SJ, Miller ZA, Min SW, Zhou Y, Brown J, Mitic LL, Karydas A, Koestler M, Tsai R, Corbetta-Rastelli C, Lin S, Hare E, Fields S, Fleischmann KE, Powers R, Fitch R, Martens LH, Shamloo M, Fagan AM, Farese RV Jr, Pearlman R, Seeley W, Miller BL, Gan L, Boxer AL, 2017. An 8-week, - open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from *GRN* gene mutations. Alzheimers Dement (N Y), 3(4) pp. 507-512. - 107. Snowden, J.S., Goulding, P.J. and Neary, D., 1989. Semantic dementia: A form of circumscribed cerebral atrophy. *Behavioural Neurology*. - 108. Snowden, J.S., Bathgate, D., Varma, A., Blackshaw, A., Gibbons, Z.C. and Neary, D., 2001. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. *Journal of Neurology, Neurosurgery & Psychiatry*, 70(3), pp.323-332. - 109. Snowden, J.S., Rollinson, S., Thompson, J.C., Harris, J.M., Stopford, C.L., Richardson, A.M., Jones, M., Gerhard, A., Davidson, Y.S., Robinson, A. and Gibbons, L., 2012. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C 9ORF72 mutations. *Brain*, 135(3), pp.693-708. - 110. Spinelli, E.G., Mandelli, M.L., Miller, Z.A., Santos-Santos, M.A., Wilson, S.M., Agosta, F., Grinberg, L.T., Huang, E.J., Trojanowski, J.Q., Meyer, M. and Henry, M.L., 2017. Typical and atypical pathology in primary progressive aphasia variants. *Annals of neurology*, 81(3), pp.430-443. - 111. Starkstein, S.E., Garau, M.L. and Cao, A., 2004. Prevalence and clinical correlates of disinhibition in dementia. *Cognitive and Behavioral Neurology*, 17(3), pp.139-147. - 112.Steele, J.C., Richardson, J.C. and Olszewski, J., 1964. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. *Archives of neurology*, 10(4), pp.333-359. - 113.Strand, E.A., Duffy, J.R., Clark, H.M. and Josephs, K., 2014. The apraxia of speech rating scale: A tool for diagnosis and description of apraxia of speech. *Journal of communication disorders*, *51*, pp.43-50. - 114.Takada, L.T. and Sharon, J.S., 2012. Neuropsychiatric features of C9orf72-associated behavioral variant frontotemporal dementia and frontotemporal dementia with motor neuron disease. *Alzheimer's research & therapy*, 4(5), p.38. - 115. Thompson, S.A., Patterson, K. and Hodges, J.R., 2003. Left/right asymmetry of atrophy in semantic dementia Behavioral–cognitive implications. *Neurology*, *61*(9), pp.1196-1203. - 116.van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC, et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. *Acta*Neuropathol 2014; 127(3): 397-406. - 117. Van Deerlin VM, Sleiman PMA, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with
TDP43 inclusions. *Nature Genetics* 2010; 42(3): 234-U34. - 118.van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B, Bäumer V, Engelborghs S, De Bleecker J, Baets J, Gelpi E, Rojas-García R, Clarimón J, Lleó A, Diehl-Schmid J, Alexopoulos P, Perneczky R, Synofzik M, Just J, Schöls L, Graff C, Thonberg H, Borroni B, Padovani A, Jordanova A, Sarafov S, Tournev I, de Mendonça A, Miltenberger-Miltényi G, Simões do Couto F, Ramirez A, Jessen F, Heneka MT, Gómez-Tortosa E, Danek A, Cras P, Vandenberghe R, De Jonghe P, De Deyn PP, Sleegers K, Cruts M, Van Broeckhoven C, Goeman J, Nuytten D, Smets K, Robberecht W, Damme PV, Bleecker J, Santens P, Dermaut B, Versijpt J, Michotte A, Ivanoiu A, Deryck O, Bergmans B, Delbeck J, Bruyland M, Willems C, Salmon E, Pastor P, Ortega-Cubero S, Benussi L, Ghidoni R, Binetti G, Hernández I, Boada M, Ruiz A, Sorbi S, Nacmias B, Bagnoli S, Sorbi S, Sanchez-Valle R, Llado A, Santana I, Rosário Almeida M, Frisoni GB, Maetzler W, Matej R, Fraidakis MJ, Kovacs GG, Fabrizi GM, Testi S, 2017. TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Hum Mutat, 38(3), pp.297-309. - 119. Warren, J.D., Hardy, C.J., Fletcher, P.D., Marshall, C.R., Clark, C.N., Rohrer, J.D. and Rossor, M.N., 2016. Binary reversals in primary progressive aphasia. *Cortex*, 82, pp.287-289. - 120. Warrington, E.K., 1975. The selective impairment of semantic memory. *The Quarterly journal of experimental psychology*, 27(4), pp.635-657. - 121.Whitwell, J.L., Josephs, K.A., Rossor, M.N., Stevens, J.M., Revesz, T., Holton, J.L., Al-Sarraj, S., Godbolt, A.K., Fox, N.C. and Warren, J.D., 2005. Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. *Archives of neurology*, 62(9), pp.1402-1408. - 122. Williams, D.R., Holton, J.L., Strand, C., Pittman, A., de Silva, R., Lees, A.J. and Revesz, T., 2007. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. *Brain*, 130(6), pp.1566-1576. - 123. Williams, D. R., R. de Silva, D. C. Paviour, A. Pittman, H. C. Watt, L. Kilford, J. L. Holton, T. Revesz and A. J. Lees (2005). "Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism." *Brain* 128(Pt 6): 1247-1258 - 124.Wilson, S.M., Dronkers, N.F., Ogar, J.M., Jang, J., Growdon, M.E., Agosta, F., Henry, M.L., Miller, B.L. and Gorno-Tempini, M.L., 2010. Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. *Journal of Neuroscience*, 30(50), pp.16845-16854. **Figure 1** MR imaging features of different forms of frontotemporal dementia with both baseline coronal T1 scan and longitudinal scan at approximately one year interval. Top row shows different pathologically confirmed cases of bvFTD with features of a) variable frontal, temporal, insula and anterior cingulate involvement, b) variable asymmetry, and c) variable rate of progression. Bottom row shows characteristic features of different PPA variants in pathologically-confirmed cases: left frontal and insula involvement in nfvPPA, focal left more than right anteroinferior temporal involvement in svPPA, left temporo-parietal atrophy in lvPPA and very asymmetrical frontotemporal atrophy in PPA-NOS due to a progranulin mutation. | Table 1. Summary of symptoms within the current diagnostic criteria for bvFTD | | | | | |---|---|--|--|--| | Behavioural/cognitive symptoms – diagnosis of possible bvFTD requires at least three of the following symptoms to be fulfilled: | Evamples of specific symptoms | | | | | be fulfilled. | Examples of specific symptoms | | | | | Early behavioural disinhibition ≥ 1 of | | | | | | Socially inappropriate behaviour | Staring, inappropriate physical contact with strangers, inappropriate sexual behaviour, verbal or physical aggression | | | | | Loss of manners or decorum | Lack of social etiquette, insensitive or due comments, preference for crass jokes and slapstick humour, inappropriate choice of clothing or gifts | | | | | Impulsive, rash or careless actions | New gambling behaviour, driving or investing recklessly, overspending, gullibility to phishing/Internet scams | | | | | Early apathy or inertia ≥ 1 of | | | | | | Apathy | Reduced drive, stops previous hobbies, stops going out, reduced bathing or personal care | | | | | Inertia | Lack of persistence or completion of an activity, does not initiative activities or conversations | | | | | Early loss of sympathy or empathy ≥ 1 of | | | | | | Diminished response to other people's needs and feelings | Selfish or hurtful comments or actions, inability to perceive when someone is upset, embarrassed, or in pain, reduced appreciation of sarcasm or sophisticated humour | | | | | Diminished social interest, interrelatedness, or personal warmth | Emotionally cold or detached, lack of rapport in conversation, loss of interest or affection in relationships with friends or family members, reduced interest in sex | | | | | Early perseverative, stereotyped or | | | | | | compulsive/ritualistic behaviour ≥ 1 of | | | | | | Simple repetitive movements | Repetitive rocking, tapping, clapping, or rubbing | | | | | Complex, compulsive or ritualistic behaviours | Hoarding, strict grooming or walking routines, timekeeping and counting, checking or sorting items, cleaning or tidying, new obsessions or interests (usually spiritual, religious, artistic, or musical) | | | | | Stereotypy of speech | Habitual repetition of particular words, sentences, or topics | | | | | Hyperorality and dietary changes ≥ 1 of
Altered food preferences | Sweet tooth (sweets, biscuits, ice cream), carbohydrates, or obsessive food fads | | | | | Binge eating, increased consumption of alcohol or cigarettes | Cramming food into mouth, overeating or messy eating, new addictions to alcohol or smoking | | | | | Oral exploration or consumption of inedible objects | Pica | | | | Table content adapted from Woollacott and Rohrer (2016). Criteria of possible bvFTD requires that symptoms be persistent or recurrent, rather than single events. As a guideline, 'early' refers to within 3 years of initial symptom onset as per Rascovsky et al. (2011). bvFTD, behavioural variant frontotemporal dementia. Vary as per neuropsychological assessment used Neuropsychological profile - all three of Deficits in executive tasks > Relative sparing of episodic memory Relative sparing of visuospatial skills Table 2. Summary of clinical features of each PPA syndrome. | Clinical Features | svPPA | nfvPPA | lvPPA | |--|---|---|---| | Spontaneous speech
(fluency, errors,
grammar, prosody) | Fluent, garrulous and circumlocutory, grammatically correct and intact prosody | Decreased fluency,
effortful (and/or)
apraxic, phonetic
errors, may be
agrammatic | Hesitant, with slow
output, long word
finding pauses,
phonemic
paraphasias, intact
grammar and prosody | | Single word comprehension | Impaired | Initially spared, but affected later on in disease | Initially spared, but affected later on in disease | | Sentence
comprehension | Initially preserved,
becomes impaired
later as word
comprehension is
impaired | Impaired for complex sentences | Impaired, especially if long | | Single word repetition | Relatively intact | Mild to moderately
Impaired if
polysyllabic, otherwise
intact | Relatively intact (compared to sentence repetition) | | Sentence repetition | Spared | Impaired if grammatically complex | Impaired with length effect | | Naming | Severe anomia
(nouns>verbs) with
semantic paraphasias | Spared initially but anomic as disease progresses | Moderate anomia with occasional phonemic paraphasias | | Reading | Surface dyslexia | Phonological dyslexia
and possible phonetic
errors when reading
aloud | Phonological dyslexia | | Writing | Surface dysgraphia | Phonological
dysgraphia | Phonological | Clinical features adapted from table in Woollacott and Rohrer (2016). svPPA, semantic variant primary progressive aphasia; nfvPPA, non-fluent variant primary progressive aphasia; lvPPA, logopenic variant primary progressive aphasia.