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Abstract—A spectral analysis of a Boolean function is proposed for ap-

proximating the decision boundary of an ensemble of classifiers, and an in-
tuitive explanation of computing Walsh coefficients for the functional ap-
proximation is provided. It is shown that the difference between first and 
third order coefficient approximation is a good indicator of optimal base 
classifier complexity. When combining Neural Networks, experimental re-
sults on a variety of artificial and real two-class problems demonstrate un-
der what circumstances ensemble performance can be improved. For tuned 
base classifiers, first order coefficients provide performance similar to ma-
jority vote. However, for weak/fast base classifiers, higher order coefficient 
approximation may give better performance. It is also shown that higher 
order coefficient approximation is superior to the Adaboost logarithmic 
weighting rule when boosting weak Decision Tree base classifiers.   

     Index Terms—Boolean functions, boosting, decision 
trees, ensemble classifier, multilayer perceptrons, pattern 
analysis, spectral analysis, supervised learning 

I.  INTRODUCTION 

 Ensembles or multiple classifier systems have become an important 
and well-recognised method of solving pattern recognition problems in 
many application areas [1]  [2] [3], and there are useful surveys that 
describe the research approaches to the three phases of classifier gen-
eration, selection and aggregation [4]. Classifier generation has the aim 
of producing accurate yet diverse classifiers and has well established 
methods [5] although diversity is still an elusive concept [6]. Classifier 
selection is being actively researched [7] and either a single classifier 
or ensemble subset can be selected; selection may be static which is 
based on the training/validation dataset or dynamic, in which selection 
differs for each test pattern. While dynamic selection may improve gen-
eralisation, it has the disadvantage of introducing extra parameters to 
define the region of competence, competence criterion and selection 
strategy [5].  

In this paper we concentrate on the aggregation phase, which may 
include both non-trainable and trainable combination rules for classifi-
ers. Trainable rules have the advantage that they can be adapted to the 
problem at hand, but the disadvantage that over-training may occur un-
less the training strategy and parameters are carefully chosen [8] [9]. 
The simplest combination rule is the majority vote, which is a non-
trainable rule like sum, product, max, min, but differs in that only class 
labels rather than continuous outputs are required.   Weighted combi-
nation rules have been extensively investigated [10] but there is no es-
tablished strategy for computing the weights, and the advantage of 
weighting the ensemble may depend on having different classifier ac-
curacies [11]. The behaviour knowledge space and associated methods, 
according to [12] are easy to over-train unless there are vast amounts 
of training data. Ensemble pruning is an active research issue [13] and 
uses many different strategies to reduce the number of base classifiers 
without sacrificing the performance of the combination; its simplest 
implementation is to remove classifiers with low estimated weights 
[14].  

Since interesting learning problems are ill-posed [15] we know that 
some form of parameter tuning will be required. But if we introduce 
too many parameters, such as with dynamic selection or trainable com-
bination rule, the search space can become too large to be practical and 
parameters are difficult to tune. In this paper, we propose a novel com- 
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bination rule that has the simplicity of a non-trainable voting rule, but 
introduces parameters, the spectral coefficients, that determine how 
well the ensemble boundary is approximated. While there has not been 
any previous attempt to explicitly model the ensemble boundary, the 
closest related approach is the weighted vote.  

Consider an ensemble framework of parallel base classifiers. If each 
base classifier is given a binary decision, and if the problem is two-
class, a Boolean mapping is defined. This mapping may be analysed 
using Walsh spectral coefficients, which was first proposed for pattern 
recognition over four decades ago [16], although not in the context of 
ensemble classification. The relationship between added classification 
error and second order Walsh coefficients was established in [17]. In 
[13] first and second order Walsh coefficients were used for ensemble 
pruning. The motivation for using Walsh coefficients in ensemble de-
sign is fully explored in [6] and [18]. For further understanding of the 
meaning and applications of Walsh coefficients see [19]. The Boolean 
function may be partially specified, noisy and possibly contradictory, 
and therefore the computation will need to handle this kind of function. 

Section II explains the computation of the Walsh coefficients, and 
Section III uses the Tumer-Ghosh model [20] to explain why the first 
and third order coefficients can predict over-fitting. In Section IV the 
datasets are defined and experimental results, when combining Neural 
Networks (NN) and boosting Decision Trees (DT), are described and 
discussed. For the experimental investigation in Section IV, classifier 
generation uses NN base classifiers with random starting weights, and 
an experimental comparison is made with the majority and weighted 
vote. There is no reason why the proposed method could not be com-
bined with dynamic classifier selection and ensemble pruning, but that 
is not the purpose of this paper, so there is no selection or pruning. 

II.    DISTRIBUTION OF BINARY PATTERNS 

Assume that there are N parallel base classifiers, and let Xm be the 
N-dimensional decision vector for the mth training pattern, formed from 
the decisions of the N classifiers. For a two-class supervised learning 
problem of  decision vectors, the target label given to each pattern Xm 
is denoted by Ω௠ = Φ(𝑋௠) where m = 1 …  , Ω௠𝜖{0,1}  and  Φ is 
the unknown Boolean function that maps Xm to Ω௠. The binary vector 
Xm representing the mth original training pattern is given by 

 𝑋௠ = (𝑥௠ଵ, 𝑥௠ଶ, … , 𝑥௠ே) (1) 
where 𝑥௠௜ ∈ {0,1} is a vertex in the N-dimensional binary hypercube. 
    Instead of a continuous probability density function (p.d.f.) we ap-
proximate the discrete p.d.f. 𝑝(𝑋 = 𝑋௝) where 𝑗 can take any of 𝜇  pos-
sible values. In other words, we would like to calculate the probability 
of occurrence of the binary patterns. The following approach is similar 
to [16], but differs in that we are considering binary patterns in classi-
fier space, rather than the original feature space. A good choice of basis 
functions for this problem is the Rademacher-Walsh (RW) polynomi-
als, which contain 2ே  terms and are formed by taking products of dis-
tinct terms of the form (2𝑥௠௞ − 1). The product is taken singly, pairs, 
triples,..., up to N times. Table I shows the RW discrete polynomial 
functions which are orthogonal, satisfying the property that 

 ෍ 𝜑௝(𝑋௠)𝜑௞(𝑋௠) = ൜
2ே  𝑖𝑓 𝑗 = 𝑘
0     𝑖𝑓 𝑗 ≠ 𝑘

ଶಿ

௠ୀଵ

 (2) 

An approximation using 𝑞 basis functions and 𝜇 vectors is given by 



 𝑝̂(𝑋) = ෍ 𝑐௝𝜑௝(𝑋)

௤

௝ୀଵ

 (3) 

where coefficients are given by  

 𝑐௞ =
1

2ே𝜇
෍ 𝜑௞(𝑋௜)

ఓ

௜ୀଵ

 (4) 

 
TABLE I 

RADEMACHER-WALSH POLYNOMIAL FUNCTIONS 

 
A. Examples 
 
   As an example of basis functions, first consider the family of com-
pletely specified 2-dimensional Boolean functions, so that there are 4 
patterns and 2ସ = 16 possible functions. The patterns are (0,0), (0,1), 
(1,0), (1,1). From the first four rows of Table I, where 𝑗 ≤ 4, N = 2, it 
is easy to verify that (2) is satisfied.  
   Now consider a 3-dimensional example of a threshold logic function  
Ω = 𝑥ଵ𝑥ଶ + 𝑥ଵ𝑥ଷ + 𝑥ଶ𝑥ଷ, for which we would like to use a linear ap-
proximation.  A single decision function will be formed by subtracting 
individual decision functions for the two classes using (3) and (4). The 
class 𝜔଴ patterns are given by (0,0,0), (0,0,1), (0,1,0), (1,0,0) and class 
𝜔ଵ patterns by (0,1,1), (1,0,1), (1,1,0), (1,1,1). There are 4 patterns in 
each class.  From Table I, the linear approximation, which represents a 
weighted vote, uses four basis functions denoted by 

𝜑ଵ(𝑋) = 1,     𝜑ଶ(𝑋) =  (2𝑥ଵ − 1), 𝜑ଷ(𝑋) = (2𝑥ଶ − 1),
𝜑ସ(𝑋) = (2𝑥ଷ − 1) 

Since the factor 
ଵ

ଶಿ
 is common to all terms in (4), we can neglect it in 

the computation. For class 𝜔ଵ the coefficients are given by 

𝑐ଵ =
1

4
෍ 𝜑ଵ(𝑋௜)

ସ

௜ୀଵ

=
1

4
(+1 + 1 + 1 + 1) = 1 

Similarly, 𝑐ଶ = 𝑐ଷ = 𝑐ସ = 1
2ൗ  

    The density function linear approximation for class 𝜔ଵ 

𝑝̂(𝑋|𝜔ଵ) = 1 +
1

2
(2𝑥ଵ − 1) +

1

2
(2𝑥ଶ − 1) +

1

2
(2𝑥ଷ − 1) 

Similar analysis for class 𝜔଴ gives 

𝑝̂(𝑋|𝜔଴) = 1 −
1

2
(2𝑥ଵ − 1) −

1

2
(2𝑥ଶ − 1) −

1

2
(2𝑥ଷ − 1) 

Assuming prior probabilities can be determined from the number of 

patterns, so 𝑝(𝜔ଵ) = 𝑝(𝜔଴) =
ଵ

ଶ
 , the decision functions are 

𝑝̂(𝑋|𝜔ଵ)𝑝(𝜔ଵ) =
1

2
+

1

4
(2𝑥ଵ − 1) +

1

4
(2𝑥ଶ − 1) +

1

4
(2𝑥ଷ − 1) 

𝑝̂(𝑋|𝜔଴)𝑝(𝜔଴) =
1

2
−

1

4
(2𝑥ଵ − 1) −

1

4
(2𝑥ଶ − 1) −

1

4
(2𝑥ଷ − 1) 

Subtracting and multiplying by 2 gives combined decision function  
𝑑(𝑋) = (2𝑥ଵ − 1) + (2𝑥ଶ − 1) + (2𝑥ଷ − 1) 

It is easy to verify that 𝑑(𝑋) separates the patterns perfectly, with class 
𝜔ଵ patterns giving 𝑑(𝑋) > 0 and class 𝜔଴ patterms giving 𝑑(𝑋) < 0. 
If we now assume that there are only 3 class 𝜔ଵ patterns with (0,1,1) 
missing, 𝑝̂(𝑋|𝜔ଵ), 𝑝(𝜔ଵ), 𝑝(𝜔଴) need to be modified and the combined 
decision function becomes  

𝑑(𝑋) = −
1

7
+

5

7
(2𝑥ଵ − 1) +

3

7
(2𝑥ଶ − 1) +

3

7
(2𝑥ଷ − 1) 

which still perfectly separates the training patterns, but the unspecified 
(0,1,1) pattern has 𝑑(𝑋) = 0. 
   An alternative interpretation of the spectral coefficients is given in 
[19]. The first order coefficients, j = 2 … N+1 in Table I, represent the 
correlation with the class label. In the above example, note that if class 
label agrees with 𝑥௜ then add +1, otherwise add -1. For example, if j = 
2 in Table I and we denote first order coefficient by 𝑠௜    𝑖 = 1 … 𝑁 

𝑠ଵ = 𝑐ଶ =
1

2ே𝜇
෍ 𝒞(𝑥௠ଵ, Ω௠)

ఓ

௠ୀଵ

 

where 𝒞(𝑎, 𝑏) = ൜
+1 𝑖𝑓 𝑎 = 𝑏
−1 𝑖𝑓 𝑎 ≠ 𝑏

  

   Second order coefficients represent correlation with the logic exclu-
sive-OR (xor denoted ⊕) of the respective pair of coefficients. For ex-
ample, if j = N+2 in Table I, the second order spectral coefficient 𝑠ଵଶ 
is given by 

𝑠ଵଶ = 𝑐ହ =
1

2ே𝜇
෍ 𝒞(𝑥௠ଵ⨁𝑥௠ଶ, Ω௠

ఓ

௠ୀଵ

) 

 
For third order coefficients 

𝑠௜௝௞ =
1

2ே𝜇
෍ 𝒞(𝑥௠௜⨁𝑥௠௝⨁𝑥௠௞ , Ω௠)

ఓ

௠ୀଵ

 

 
and similar analysis holds for higher order coefficients. 

III. MODELLING SPECTRAL CONTRIBUTION 

   Fig. 1 shows the two class (𝜔ଵ , 𝜔଴) one-dimensional Tumer-Ghosh 
model [20], with added classification error for kth classifier boundary 
(𝐸௞) shown as darkly shaded region. The assumption is made that both 
classes are Gaussian, but only the tails of the distribution are shown. 
The optimum (Bayes) boundary (𝑥෤) in Fig. 1 is the loci of all points 
𝑥෤: 𝑝(𝜔ଵ|𝑥෤) = 𝑝(𝜔଴|𝑥ු). The estimates 𝑝̂(𝜔ଵ|𝑥), 𝑝̂(𝜔଴|𝑥) for the kth 
classifier are shown as dashed lines, and cross at  𝑥 = 𝑥௕. In Fig. 1 b is 
the amount that the kth classifier boundary (𝑥௕) differs from the ideal 
Bayes boundary. Assuming that b is a Gaussian random variable, 
closed-form expressions may be obtained for 𝐸௞ [17] [20].  Further de-
tails about the model and assumptions may be found in [20]. 

 

Fig. 1. Tumer-Ghosh model showing real and estimated probabilities and Added 
Error Ek for kth classifier shown as darkly shaded region 

Fig. 2 shows decision boundaries of three (i,j,k)th classifiers for 
which it is assumed that the complexity is not sufficient to approximate 
the Bayes boundary, so that all classifiers under-fit. Note in Fig. 2 that 
estimated probabilities corresponding to the three classifiers are omit-

Ek 



 

ted for clarity. Mutually exclusive areas under the probability distribu-
tion are labelled 1 – 8 in Fig. 2 and area y is given by ay. 𝐸௜ corresponds 
to a4, 𝐸௝  to a4+a3,  𝐸௞ to a4+a3+a2. 

 

Fig.  2. Tumer Ghosh model showing i,j,kth classifier  boundaries and areas 1-8  

 
 To compute the spectral coefficient contribution, we define 𝑛௣௤ to 

be the number of class 𝜔௣ patterns for which 𝜑 has value q where 𝑝, 𝑞 ∈

{0,1}. Table II shows the first order contribution for each area for the 
kth classifier. Assuming that there are approximately equal number of 
class 𝜔ଵ and class 𝜔଴ patterns under the tail of the distribution in areas 
a5 to a8, the contributions cancel, so that we need only consider a1 to a4. 
Table III shows the first order contributions for the three classifiers in-
dividually, and the last row ijk corresponds to third order contribution. 
For example, for a1 the individual 𝜑(𝑥௜) for each classifier is 1 so third 
order 𝜑൫𝑥௜⨁𝑥௝⨁𝑥௞൯ = 1 ⨁ 1 ⨁1 = 1. For the first order, we see that 
patterns in areas a1 and a2 are overall positively correlated with 𝜔ଵ (2 
out of 3 classifiers for a2), and areas a3 and a4 negatively correlated, 
giving an ensemble decision boundary close to classifier j. The third 
order contribution is positively correlated for a1, a3 and negatively cor-
related for a2, a4. By inspection of Fig. 2, we can see that the sum of 
a2+a4 is likely to be less than a1+a3, so we expect an overall positive 
correlation, which when added to the first order contribution would 
move the decision boundary closer to 𝑥෤.  

 
TABLE II 

FIRST ORDER CONTRIBUTIONS FOR KTH CLASSIFIER IN FIG. 2 
 

 a1 a2 a3 a4 a5 a6 a7 a8 

ω1 n11 n10 n10 n10 n11 n10 n10 n10 

ω0     n01 n00 n00 n00 

 
TABLE III 

FIRST AND THIRD ORDER CONTRIBUTIONS   FOR I,J,K TH  CLASSIFIERS IN FIG. 2 

 a1 a2 a3 a4 

k n11 n10 n10 n10 

j n11 n11 n10 n10 

i n11 n11 n11 n10 

ijk n11 n10 n11 n10 

 
Now consider the case that base classifiers are optimal, so that clas-

sifier j is close to 𝑥෤, and classifiers i,k are approximately equally spaced 
on either side of the Bayes boundary. The ensemble boundary for first 
order approximation would then be close to 𝑥෤. We may expect that the 
Boolean function would be quite complex, with approximately equal 
number of patterns in the two classes under the tail. Areas a2+a4 would 

be approximately equal to a1+a3, so that the addition of the third order 
contribution would be small. This suggests that the difference between 
the first and the third order coefficients would be indicative of optimal 
performance. Similarly, if the classifiers severely under-fit so that they 
are close to the mean of class 𝜔ଵ, again areas a2+a4 would be approxi-
mately equal to a1+a3. Therefore, as classifier complexity is increased 
the difference between the first and third order approximations may not 
be monotonic, which can be seen in Section IV. 

 
IV. EXPERIMENTAL EVIDENCE 

 
A. Datasets and classifiers 
 

There are three types of two-class problems labelled Real2, Art2 and 
Multi2 in Table IV which shows the number of patterns, number of 
features and Bayes estimate. Real2 is selected from [21], and Art2 is 
artificial data taken from [22]. To increase the number of difficult (in 
terms of boundary complexity) two-class problems, Multi2 uses multi-
class datasets with the Error Correcting Output Coding (ECOC) 
method [23], and approximate equi-split random code matrix. Accord-
ing to ECOC, each column of the binary code matrix defines a different 
two-class problem, with each original class assigned to one of two su-
per-classes. We choose those dichotomies (up to a max number of ten 
problems) for which the imbalance in data is not greater than 65/35% 
between the two super-classes. The datasets with less than ten problems 
are glass with 6, vehicle with 3 and dermo with 5. For Multi2 the results 
are reported as an average over the number of problems. The random 
train/test split is 80/20% for problems in Real2 and Multi2, and for Art2 
there are 600 training patterns and 2400 testing patterns.  Experiments 
for all datasets are repeated ten times and averaged. The Bayes estimate 
is performed for 90/10% split using a Support Vector Classifier (SVC) 
with polynomial kernel run 100 times. The polynomial degree and reg-
ularisation constant are varied, and lowest test error is given. Test error 
rates will have Bayes estimate subtracted, and the accuracy of the esti-
mate is not crucial as the shape of the plots is not affected. 

TABLE IV 
DATASETS SHOWING NUM. PATTERNS, NUM.  FEATURES, BAYES 

ESTIMATE, AND (SECTION IV.B) OPTIMAL NUM. EPOCHS, 
PREDICTED NUM. EPOCHS. 

 

Data Problem #pat #feat %BE 
#Epo 
(opt) 

#Epo 
(pred) 

Real2 card 690 15 9.9 4 4 
Real2 credita 690 14 11.1 4 8 
Real2 diabetes 768 8 20.1 8 8 
Real2 heart 920 35 11.5 8 8 
Real2 ion 351 34 5.2 16 16 
Real2 vote 435 16 2.2 4 4 
Art2 threnorm 3000 20 10.5 8 8 
Art2 highleym 3000 2 5.1 16 8 
Art2 circular 3000 2 12.8 16 16 
Art2 gaussimp 3000 2 12.0 8 8 
Art2 banana 3000 2 1.2 8 4 
Art2 lithuani 3000 2 1.8 8 8 
Multi2 ecoli 336 7 6.3 8 16 
Multi2 vehicle 846 18 8.6 16 16 
Multi2 glass 214 9 19.2 16 32 
Multi2 segment 2310 19 0.2 32 32 
Multi2 dermo 366 34 0.4 32 32 
Multi2 soybean 683 35 1.9 8 4 

 
   In this section, the nomenclature for error rate is: Majority vote com-
biner (MV), Walsh coefficient combiner of order y (Wy), logarithmic 
Adaboost combiner (AD), base classifier (BA) and Bayes estimate (BE). 
The assumption is made that test error rate is specified, otherwise tr is 

    classifier  i    j    k                        



added to indicate training rate (e.g. MV is test error, MVtr is train error). 
For computing Wy, there are no parameters to set, as with MV. 
   The experiments are designed to test the following hypotheses: 
Firstly, that W3-W1tr is a good indicator of optimal base classifier com-
plexity, secondly that the ensemble approximation using W1 is a good 
alternative to MV, and thirdly that for weak/fast base classifiers, higher 
order Walsh approximation may give best performance.  

Neural Networks (NN) and Decision Trees (DT) are used as base 
classifiers. For NN, the number of hidden nodes and training epochs of 
homogenous (same number of nodes and epochs) single hidden layer 
multilayer perceptron (MLP) base classifiers are systematically varied, 
and use the Levenberg-Marquardt training algorithm with default pa-
rameters.  The ensemble has 25 MLP base classifiers, the diversity in 
each being due to random starting weights. In Section 1V.B, Fig. 3 
shows various plots for Circular dataset, combining NN classifiers that 
are systematically varied from 4-32 nodes and 2-32 epochs. Prelimi-
nary experiments on other datasets showed that by selecting 32 nodes 
it was possible to achieve optimal error rates as epochs was varied, so 
all remaining experiments Figs 6-9 in Section IV.B use 32 nodes.  
Boosting refers to 25 DT classifiers using Adaboost implementation in 
[22] with varying number of decision splits. 
 
 
B. Combining NN classifiers 
 
Fig. 3 (a) – (d) show test error rates and (e) (f) train error rates. Fig. 3 
(a) (b) show mean BA and W1 with BE subtracted. As training epochs 
are increased, the optimal value for W1 is generally lower than for BA, 
for example at 4 nodes, 8 epochs for W1 versus 16 epochs for BA. Fig. 
3 (c) (d) show the difference between W1 and MV, and between W3 and 
W1. W1 is never worse than MV, and at low epochs is superior, quite 
dramatically for 4 nodes.  W1 is preferred to MV below 8 epochs at 4 
nodes, and below 4 epochs at 8 nodes. Similarly, in Fig. 3 (d) W3 is 
preferred to W1 for low epochs. Fig. 3 (e) (f) show train error for (c) 
(d), and note that train and test curves look similar, so that it may be 
possible to infer test error performance from train error. In Fig. 3 (f) the 
difference W3-W1tr reaches maximum at 16 epochs for 4 and 8 nodes, 
and at 8 epochs for 16, 32 nodes which from (a) and (b) is when per-
formance is optimal. 

Example decision boundaries are shown for artificial data to demon-
strate that W3 may be superior to MV and W1. Ensemble decision 
boundaries for Circular dataset with 4 node NN base classifiers are 
shown for 16 epochs in Fig. 4, and for 4 epochs in Fig. 5. It can be seen 
from Fig. 4 that all ensemble decision boundaries achieve optimal per-
formance at 16 epochs. Individual boundaries for five base classifiers 
are also shown in Fig. 5, from which it may be seen that there is great 
variation in individual boundaries, but only W3 approaches optimal at 
4 epochs.   

Fig. 6, Fig. 7 and Fig. 8 show respectively the Art2, Real2 and 
Multi2 datasets with NN having 32 nodes and varying 2-32 epochs. 
Each graph shows four curves W3-W1tr, W1-BE, W1-MV, BA-BE with 
W3-W1tr multiplied by 5 for clarity. All datasets show similar trend as 
epochs increases, so that when W3-W1tr reaches maximum, BA (but 
not always W1) reaches minimum. As explained in Section III, opti-
mality corresponds to a complex Boolean function. In some cases, e.g. 
credita in Fig. 7 at 4 epochs, W3tr is higher than W1tr. Note also in Fig. 
8, that glass and vehicle demonstrate the non-monotonic behaviour in 
W1-W3tr referred to at the end of Section III. For all datasets, the plot 
of W1-MV indicates that W1 is never worse than MV. In Table IV is 
listed the optimal (according to BA) and predicted (according to W1-
W3tr) epochs at 32 nodes for all datasets. 

To test robustness of the method, Fig. 9 shows average over Real2 
datasets as percentage label noise (probability of flipping labels) is in-
creased. At 5% (W3-W1)tr peaks at 4 epochs which is optimal, but for 
10% noise  (W3-W1)tr peaks at 4 epochs compared to optimal at 8 
epochs. This suggests that label noise of 10% or greater may affect the 
ability to predict optimal epochs, but further study is warranted. 

To determine the performance for data with higher dimension and 
more patterns, ‘dog’ vs ‘cat’, the most difficult of the two class prob-
lems in the CIFAR-10 dataset [24] was selected. There are 6000 pat-
terns in each class, the input images have been converted to grey scale 
32x32 and the train/test split is chosen as 20/80%, to encourage over-
fitting.  The architecture consists of the following layers: 2D convolu-
tional layer of 40 filters having width and height of 5; rectified linear 
unit; max pooling with non-overlapping pooling regions that down-
samples by factor of 2; fully connected output size 2; softmax. Training 
uses stochastic gradient descent with momentum and variable number 
of epochs. Fig. 10 shows mean values over ten runs, demonstrating that 
over-fitting of the base classifier is accurately predicted by (W3-W1)tr  
at 40 epochs.   

 

Fig.  3. Circular  data with NN varying nodes/epochs 

 

Fig.  4. Combiner boundaries for 4 nodes and 16 epochs 

 

Fig.  5. Combiner and individual boundaries (right) for 4 nodes and 4 epochs 



 

 
Fig.  6. Art2 datasets with NN varying epochs for 32 nodes 

Fig.  7. Real2 datasets with NN varying epochs for 32 nodes 

 
Fig.  8. Multi2 datasets with NN varying epochs for 32 nodes 

 

  
 
Fig.  9. Mean over Real2 datasets for 32 nodes as label noise is increased  

 
Fig.  10. CIFAR dataset varying epochs for 40 filters 

 
C. Boosting DT and Combining NN with Higher Order Walsh  
 
    Fig. 11, Fig. 12 and Fig. 13 show results for boosting 1-3 DT splits  
with the x-axis showing weighted logarithmic combiner (AD) and in-
creasing order of Walsh combiners, W1 to W9.  AD is sometimes better 
than W1 and sometimes worse so there is no clear trend. Note that the 
best result can sometimes be achieved using higher order Walsh ap-
proximation, for example W7/highleym, W3/gaussimp, W5/diab, 
W5/vote W3/demo and W3/soybean. Particularly for the Decision 
Stump, that is DT with 1 split, higher order Walsh combining gives the 
best result. 
    Mean over all eighteen datasets in Table IV for combining NN with 
1 epoch and 16, 32, 64 nodes is shown in Fig. 14. On average, the W5 
approximation achieves the best performance.  

 
  Fig.  11. Art2 datasets with boosting DT splits 1-3 



 

Fig.  12. Real2 datasets with boosting DT splits 1-3 

 
Fig.  13. Multi2 datasets with boosting DT splits 1-3   

     
Fig.  14. Mean over 18 datasets in Table IV, NN with 1 epoch and 16-64 nodes 

V. DISCUSSION   

  First order Walsh coefficient approximation W1 provides an esti-
mate for a weighted vote, and there are no parameters to set. Experi-
mental results show that when base classifiers are optimised, there is 
no difference between W1 and majority vote MV. Compared with MV, 
there is an advantage to using W1 or higher order coefficients for weak 
MLP base classifiers. Also, for boosting weak Decision Tree classifi-
ers, higher order coefficients give better performance than Adaboost 
logarithmic weighting rule, but the optimal order of the coefficients is 
problem-dependent. 

 It has also been shown that the number of epochs of MLP base clas-
sifiers may be selected from the training set using third and first order 
coefficients, and therefore a validation set is not required. However, the 
results are based on averages and individual runs can be noisy, so that 
it may be necessary to introduce filtering to facilitate a practical design 
method. 
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