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Abstract

Automated model identification platforms were recently employed to identify para-10

metric models online in the course of unmanned experimental campaigns. The algo-
rithms controlling these platforms include two computational elements: i) a tool for
parameter estimation; ii) a tool for model-based experimental design. Both tools re-
quire the solution of complex optimisation problems and their effective outcome relies
on their respective objective functions being well-conditioned. Ill-conditioned objective15

functions may arise when the model is characterised by a weak parametrisation, i.e.
the model parameters are practically non-identifiable and/or extremely correlated. In
this work, a robust reparametrisation technique is proposed and tested both in-silico
and in an automated model identification platform. The benefit of reparametrisation
is demonstrated on a case study for the identification of a kinetic model of catalytic20

esterification of benzoic acid with ethanol in a flow microreactor.
keywords: online, identification, information, parametrization, design, experiment

1 Introduction

The kinetic modelling of chemical phenomena through the identification of an appropriate
set of model equations is an important step in many research domains related to chemi-25

cal engineering. Reliable kinetic models (i.e. models that accurately quantify the kinetic
behaviour of the physical system) are regarded as key tools for supporting the design and
intensification of chemical processes, performing non-empirical process optimisation and un-
derstanding which degrees of freedom in the physical system ultimately determine its ob-
servable behaviour (Berger et al., 2001). The identification of reliable models requires i)30

the determination of an opportune structure for the model equations and ii) the precise
estimation of the model parameters. Both aspects typically require extensive amounts of
time and resources for performing kinetic experiments. In the last decades, much effort
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has been devoted by the scientific community to reducing the experimental burden required
to identify and validate kinetic models (Bonvin et al., 2016). Important steps towards the35

reduction in the cost of kinetic studies are 1) the coupling of automated, small-scale flow
reactor technologies with online analysis equipment for the quick collection of experimental
data (Goodell et al., 2009) and 2) the employment of model-based design of experiments
(MBDoE) techniques for planning optimal experiments, minimise the cost, time and amount
of resources required for the experimentation (Asprey and Macchietto, 2000; Prasad and40

Vlachos, 2008; Chakrabarty et al., 2013; Galvanin et al., 2013; Stamati et al., 2016).
Automated flow reactors have been employed in a wide variety of situations from process

monitoring (Malig et al., 2017) to screening of operating conditions (Walsh et al., 2005).
Automated flow reactors were also successfully coupled to algorithms for online sequential
design of experiments (McMullen and Jensen, 2010; Moore and Jensen, 2012; Fabry et al.,45

2014; Holmes et al., 2016). After every experiment is terminated and new data are collected
by these platforms, algorithms construct black-box representations of the physical system
(e.g. response surfaces) for designing the following experiment with the aim of optimising
the reaction performance (e.g. the conversion or the yield). These self-optimising reactors
demonstrated the possibility for an automated platform of conducting experimental cam-50

paigns with minimum human intervention. However, these platforms do not exploit the
collected data for the online development and identification of physics-based models. A ma-
jor consequence of this is that optimised reaction conditions identified through a black-box
approach in the lab-scale equipment are not necessarily transferable to the design, optimi-
sation and control of equipment at the industrial scale.55

Only few works are available in the literature in which algorithms for online kinetic
model identification were coupled to automated reactor systems (McMullen and Jensen, 2011;
Bournazou et al., 2016; Echtermeyer et al., 2017). In these works, algorithms for parameter
estimation and optimal MBDoE were employed online to drive experimental campaigns
with the aim of selecting the best model among a set of given model structures (i.e. model60

discrimination) (McMullen and Jensen, 2011) and/or improving the statistical quality of the
parameter estimates for a given model structure (McMullen and Jensen, 2011; Bournazou
et al., 2016; Echtermeyer et al., 2017). Automated model identification systems have the
potential of dramatically speeding up the modelling of kinetic phenomena and, consequently,
the discovery and the study of new chemical processes. However, the diffusion of these65

promising systems in research laboratories is hampered by the high chance of numerical
failures whenever model identification algorithms are invoked.

The mathematical structure of kinetic models is frequently affected by problems of prac-
tical identifiability, i.e., the fitting quality of the data may be insensitive to a change in some
parameters and/or model parameters may be affected by extreme correlation. Whenever70

the kinetic model exhibits this type of behaviour it is called sloppy (alternatively called ill-
conditioned model or poorly constrained model) (Chis et al., 2014) and its identification may
pose significant challenges even to state-of-the-art model identification algorithms (Asprey
and Naka, 1999; Transtrum et al., 2010, 2015; White et al., 2016). Parameter estimation
and optimal MBDoE problems are normally recast as optimisation problems and solved75

numerically. In the presence of a sloppy parametrisation, the objective functions of the
aforementioned optimisation problems are ill-posed. The optimisation of ill-posed functions
may lead to significant numerical failures in the course of an unmanned experimental cam-
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paign with the concomitant waste of experimental resources. Improving the robustness of
automated model identification platforms towards model sloppiness is key to further promote80

their employment in the discovery and study of kinetic phenomena.
The main contribution of this manuscript is a computational strategy for online model

reparametrisation (RP), i.e. a tool for transforming automatically the model parameter space
in the course of the online model identification process. The presented tool is introduced to
enhance the robustness of unmanned platforms for model identification towards numerical85

failures derived by model sloppiness. Throughout this work, it is assumed that an opportune
set of kinetic model equations is provided by the user to the model identification algorithm
from the beginning of the unmanned experimental campaign. The benefit of the online RP
is demonstrated experimentally on a case study where the objective is the identification of
a kinetic model of catalytic esterification of benzoic acid in a microreactor system.90

2 Methods

2.1 Problem statement

An automated platform is available for performing experiments on a physical system of
interest. An array y of Ny physical quantities can be sampled by an online measurement
system. The kinetic behaviour of the physical system is described by a system of differential95

and algebraic equations as follows:

f(ẋ,x,u, t,θ) = 0

ŷ = h(x)
(1)

In (1), f is a Nf × 1 array of model functions, x is a Nx × 1 array of state variables,
ẋ is a Nx × 1 array of time derivatives for the state variables1, u ∈ U is a Nu × 1 array
of manipulable system inputs, t is time and θ ∈ Θ is a Nθ × 1 column array of model
parameters θ1, ..., θNθ . In (1), ŷ is a Ny×1 array of model predictions for the Ny measurable100

system states, expressed as a Ny × 1 array of functions h. It is assumed that the model (1)
satisfies the requirements for structural identifiability, i.e., in principle, values of the model
parameters θ can be uniquely determined from the fitting of experimental data (Raue et al.,
2009). The objective of the scientist is estimating the set of model parameters as precisely as
possible through an unmanned experimental campaign conducted on the automated platform105

given that the experimental budget allows for the collection of NMAX samples of y.
Whenever new data become available from the automated reactor system, the model

identification algorithm is required to solve sequentially 1 ) a parameter estimation problem
given the available dataset (Bard, 1974) and 2 ) a model-based design of experiments (MB-
DoE) problem to design the following experiment with the aim of minimising the predicted110

confidence region of parameter estimates (Franceschini and Macchietto, 2008b). The solution
of both problems requires the employment of optimisation algorithms and their effectiveness

1Only the derivatives of the states with respect to time are made explicit in the general model equations
for simplicity of notation. However, in general, the model equations may be defined not only in the time
domain, but also in the space domain and reactor model equations may involve functional relationships
among partial derivatives of states with respect to time and space coordinates.
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requires their respective objective function to be well-conditioned (Wilson et al., 2015; White
et al., 2016). Ill-conditioned objective functions derive from the attempt of identifying mod-
els whose parametrisation is sloppy given the available dataset and the level of noise present115

in the system (Chis et al., 2014; White et al., 2016). Sloppiness arises when measured model
responses are poorly sensitive to the change of some parameters and/or measurements do
not carry sufficient information to bring parameter correlation below a critical threshold
(typically considered as high as 95%). Whenever these circumstances occur, the eigenvalues
of the covariance matrix of the parameter estimates span over a wide range of orders of120

magnitude, i.e. the condition number of the covariance matrix is very high.
Numerical failures may occur in the course of the model identification problem in the

presence of a sloppy parametrisation. These may be classified as follows:

• False convergence. Ill-conditioned objective functions both in the parameter estimation
and in the optimal MBDoE problem may cause numerical optimisation routines to fail125

in converging to the optimal solution (Higham, 1996).

• Inaccuracy in the computation of gradients. The calculation of the sensitivities (i.e.
partial derivatives in the parameter space) using direct differential methods is fre-
quently impractical. As a consequence, numerical differentiation routines are regularly
employed in model building practice (Saltelli et al., 2000). The numerical computation130

of sensitivities requires a perturbation of the model parameter values. The computed
sensitivities are sensitive to the choice of the perturbation. In the presence of a sloppy
parametrisation, the applied perturbation may not be appropriate to accurately quan-
tify the gradient in the parameter space (Higham, 1996). As a consequence, the Hessian
and covariance matrix computed as functions of the parameter sensitivities may be in-135

accurate, affecting the model validation process and the design of following experiments
(Pukelsheim, 2006).

• Inaccuracy in the inversion of matrices. In the presence of a sloppy parametrisa-
tion, the covariance matrix of the parameter estimates is ill-conditioned (White et al.,
2016). The solution of an optimal MBDoE problem requires the inversion of an ill-140

conditioned covariance matrix if the parametrisation is sloppy (Franceschini and Mac-
chietto, 2008b).

Different approaches have been proposed in the literature to address the identifiability
problem of sloppy models (Dovi et al., 1994):

1. Experimental-design-based (ED) methods. These methods are based on the design of145

optimal experiments for reshaping the covariance matrix of the parameter estimates
and improve the condition number. For more information on these approaches, the
reader is referred to the relevant literature on design criteria for relaxing model sloppi-
ness and reducing parameter correlation (Hosten, 1974; Pritchard and Bacon, 1978;
Versyck and Van Impe, 1997; Galvanin et al., 2007; Franceschini and Macchietto,150

2008a,d,c; Maheshwari et al., 2013; Chis et al., 2014; Wilson et al., 2015).
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2. Regularisation-based (RG) methods. Regularisation involves the introduction of a bias
in the parameter estimates with the aim of constraining their variance and, concomi-
tantly, reducing the condition number associated to the parameter estimation problem
(Barz et al., 2016). Popular regularisation techniques are i) Tikhonov regularization155

(Johansen, 1997; Hansen, 2005; Bardow, 2008) ii) truncated singular value decompo-
sition (Hansen, 2005; Lopez C. et al., 2015) and iii) parameter subset selection (Barz
et al., 2013; Lopez C. et al., 2015).

3. Reparametrisation-based (RP) methods. The aim of reparametrisation is transforming
the original parameter space Θ into a robust parameter space Ω where both param-160

eter estimation and MBDoE can be performed more effectively on well-conditioned
objective functions (Agarwal and Brisk, 1985b,a). Although there is no theoretical
advantage in the use of a reparametrised model (Rimensberger and Rippin, 1986; Dovi
et al., 1994), the performance of model identification algorithms is sensitive to the type
of parametrisation used (Espie and Macchietto, 1988). The effectiveness of RP-based165

methods has been recognised in many kinetic studies in the literature (Espie and Mac-
chietto, 1988; Asprey and Naka, 1999; Benabbas et al., 2005; Schwaab and Pinto, 2007;
Schwaab et al., 2008; Buzzi-Ferraris and Manenti, 2009).

These methods present strengths and weaknesses. ED-based methods are systematic.
Optimal ED criteria to relax model sloppiness can be easily implemented into a computer170

program. However, even optimally designed experiments may not be sufficient to bring the
condition number below critical levels. This weakness of ED-based methods is typically
associated to either a too narrow range of explorable experimental conditions and/or an
insufficient experimental budget to perform these optimal experiments. Furthermore, opti-
mally designed experiments to reduce the condition number may not carry optimal amounts175

of information for the estimation of the model parameters. This limitation is typically
overcome by designing experiments that represent a compromise between improving the pa-
rameter statistics and reducing the condition number (Franceschini and Macchietto, 2008c;
Maheshwari et al., 2013).

An advantage of RG-based and RP-based methods is that they do not require the ex-180

ecution of experiments for improving the condition number and one can devote the entire
experimental budget on improving the statistics of the parameter estimates. In RG-based
approaches, the condition number is controlled through the introduction of prior information
on the model parameter values. Systematic approaches, e.g. approaches based on Bayesian
inference (MacKay, 1992), are available in the literature for supporting the selection of ap-185

propriate priors (Hansen, 2005). The introduction of prior information in the parameter
estimation problem generally results in the computation of biased parameter estimates.

In contrast to RG-based approaches, RP-based methods do not involve the introduction
of any bias in the model identification problem. Ad hoc strategies to reparametrise sloppy
models were suggested for very specific kinetic model structures, e.g. Arrhenius-type reaction190

rates (Asprey and Naka, 1999; Schwaab and Pinto, 2007; Schwaab et al., 2008; Buzzi-Ferraris
and Manenti, 2009). However, only few systematic approaches to the reparametrisation of
sloppy models are available in the literature (Espie and Macchietto, 1988). An additional
feature of RP-based methods is that whenever a model is reparametrised, the parametrisation
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is fixed until the end of the experimental campaign. However, sloppiness is a consequence195

of the combination of both the model parametrisation and the dataset available to identify
the model. There is no theoretical guarantee that the reparametrised model will not become
sloppy after the collection of new data (Wilson et al., 2015). The arising of sloppiness may be
averted by adjusting the parametrisation online in the course of the experimental activity,
i.e. by reparametrising the model every time new data are collected and included in the200

parameter estimation problem. Nonetheless, online applications of RP-based methods seem
to be missing in the scientific literature.

In the following section, a RP-based framework for the identification of sloppy models
in automated model identification platforms is proposed. In the framework, a systematic
approach to model reparametrisation is introduced and applied online to maintain a small205

condition number even when new data are collected by the automated system and included
in the parameter estimation problem.

2.2 Proposed methodology

The original set of equations (1) is initially extended including a linear system of equations
to transform the parameter space.210

f(ẋ,x,u, t,θ) = 0

ŷ = h(x)

θ = Gω (2)

In (2),ω ∈ Ω represents the Nθ×1 array of model parameters in the transformed param-
eter space Ω, G is a Nθ×Nθ matrix which transforms the parameter space Ω to the original
model parameter space Θ. An online approach to model reparametrisation in automated
model identification platforms is now introduced with the aim of effectively estimating the215

original parameter set θ ∈ Θ. A block diagram showing the proposed procedure is given in
Figure 1. The procedure starts from the availability of preliminary experimental data and
the model structure (1). The parameter transformation G is initially set equal to Iθ, where
Iθ is the Nθ×Nθ identity matrix, i.e. the parameter spaces Θ and Ω are initially coincident.
The model identification algorithm is then called providing the available dataset as input.220

The fundamental steps in the algorithm are now illustrated:

1. A primary parameter estimation step. At this stage, the set of transformed parameters
ω is estimated fitting the available dataset using a maximum likelihood approach
(Bard, 1974). The Hessian of the likelihood function is then computed to characterise
the geometry of the parameter space and quantify its sloppiness.225

2. A parametrisation update step. The Hessian matrix computed at the primary param-
eter estimation step is employed to compute and update the transformation matrix
G with the aim of minimising the condition number (i.e. eliminating the sloppiness)
given the available dataset.
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3. A secondary parameter estimation step. The model parameters ω ∈ Ω are estimated230

after the parametrisation update step and their statistical quality is quantified comput-
ing their covariance matrix Vω. Parameter estimates and related covariance computed
in the transformed parameter space Ω are then transformed to the original parameter
space Θ and returned as output.

4. An optimal MBDoE for parameter precision step. If parameter statistics in Θ are un-235

satisfactory and the experimental budget allows for additional samples to be collected,
the experimental activity shall proceed. Optimal experimental conditions are identi-
fied at this stage through MBDoE techniques for parameter precision (Franceschini
and Macchietto, 2008b) and transmitted to the automated platform for collecting the
next sample. Notice that in the proposed procedure the optimal MBDoE step occurs240

in the transformed parameter space Ω.

The illustrated steps constitute an iteration in the presented online framework. These are
further detailed in the following subsections. The computational burden associated with the
application of the proposed methodology is comparable with standard parameter estimation
algorithms based on parameter fitting. The procedure shows how it is possible to achieve an245

effective estimation of parameters in a (potentially) sloppy parameter space Θ by invoking
the parameter estimation and the MBDoE algorithms in a conveniently transformed, non-
sloppy, parameter space Ω. The values of the estimates and the related covariance obtained
in the robust space Ω are transformed to the original parameter space Θ by applying linear
transformations, which are computationally more robust operations than optimisations.250

2.2.1 Primary parameter estimation

The available dataset Y is provided to the model identification algorithm (see Figure 1).
The dataset Y consists N samples of y, i.e. Y = {y1, ...,yN}. It is assumed that the
measurements for y are affected by Gaussian noise with zero mean and covariance Σ. The
transformation matrix G is set equal to the primary transformation matrix GP. At the255

beginning of the model identification procedure GP is initialised as the identity matrix Iθ.
A primary estimation of the model parameters ω̂P is performed as in (4) maximising the
log-likelihood function (3).

Φ(ω|Y )|G=GP
=− N

2
[Ny ln (2π) + ln(det(Σ))]

− 1

2

N∑
i=1

[yi − ŷi(ω)]TΣ−1[yi − ŷi(ω)]|G=GP

(3)

ω̂P = arg max
ω∈Ω

Φ(ω|Y )|G=GP
(4)

In (3), the quantity ŷi represents the model prediction for the sample yi. The nega-
tive Hessian H of the log-likelihood function is then computed to evaluate the geometrical260

properties of the log-likelihood profile in proximity of the maximum likelihood estimate as
in (5).
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Figure 1: Proposed framework for the online identification of models in automated model
identification platforms. Fundamental step in the procedure is the update of the parametri-
sation matrix G after the collection and fitting of each sample. The online modification of
the model parametrisation is performed to maintain a high computational performance at
the parameter estimation and optimal MBDoE stages in the procedure.
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H(ω̂P)|G=GP
= −∇∇TΦ(ω̂P|Y )|G=GP

(5)

In (5), the symbol ∇ defines the gradient operator in the parameter space Ω. Matrix
H is also known as the observed Fisher information matrix and its inverse quantifies the
covariance matrix of the parameter estimates (Pukelsheim, 2006).265

Notice that the model may be sloppy at the primary parameter estimation stage and the
condition number may be very high, leading to numerical inaccuracy in the computation
of the primary parameter estimate in (4) and in the computation of the Hessian in (5).
Numerical results in Section 4 show that the performance of the online RP approach is
not affected significantly by this aspect, but further analysis is required. Assessing the270

sensitivity of the proposed approach to numerical inaccuracies at the primary parameter
estimation stage is going to be object of future research activities.

2.2.2 Parametrisation update

An eigendecomposition of the matrix (5) is performed at this stage with the aim of diag-
nosing the structure of the log-likelihood function in proximity of the maximum likelihood275

estimate and compute an opportune update to the transformation matrix G. Let Λ be
the diagonal matrix whose diagonal elements are the eigenvalues λ1, ..., λNθ of the observed
Fisher information matrix (5). The eigenvalues of the observed Fisher information matrix
represent the inverse eigenvalues of the covariance of the parameter estimates and the ratio
between the maximum and the minimum eigenvalue represents the condition number κ.280

κ =
maxi λi
mini λi

(6)

Let matrix U be the matrix whose columns represent the right normalised eigenvectors of
the observed Fisher information matrix (5). Matrix Λ and matrix U quantify the sloppiness
of the model in a more readable format. In fact, the eigenvalues and eigenvectors of the
negative Hessian (5) respectively quantify the extent of the sloppiness and the directions in
the parameter space which are associated to the sloppy behaviour of the model (Lopez C.285

et al., 2015). A family of secondary transformations GS can be constructed from GP, U and
Λ as in (7) with the aim of minimising the condition number of the problem (i.e. making
κ = 1.0).

GS = dGPUΛ−
1
2 R (7)

The family of transformations given in (7) is parametrised by the scalar d > 0 and by the
matrix R, which represent respectively a scaling factor and a rotation matrix in the param-290

eter space. The condition number κ is not influenced by the choice of d and R. However,
the omission of d and R from (7) (the omission is equivalent to setting d = 1.0 and R = Iθ
in (7)) may result in a transformation to a new parameter space in which there is signifi-
cant discrepancy in the orders of magnitude of the model parameters. Model identification
algorithms are influenced by the relative scale of parameters, e.g. in the computation of the295

gradients and, consequently, in the computation of the covariance of parameter estimates
(Saltelli et al., 2000). Working with parameters sharing the same order of magnitude is
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therefore desirable to avoid discrepancies on how the model identification algorithm handles
different directions of the parameter space. In this work, the scaling factor d and the ma-
trix R are computed to map the primary parameter estimate ω̂P into the parameter vector300

whose entries are all equal to 100.0 (this value was chosen arbitrarily) (Zhelezov, 2017). More
specifically, the rotation applied by R and the scaling factor d are computed to satisfy the
equality GPω̂P = 100.0 ·GS1θ where the vector 1θ is the Nθ × 1 array whose entries are all
equal to 1.0.

The secondary transformation matrix GS, computed as in (7), is then used to update305

the primary transformation matrix GP that will be used at the following iteration in the
procedure of Figure 1.

2.2.3 Secondary parameter estimation

The aim at the secondary parameter estimation stage is obtaining a more accurate estimate
for the parameters in the transformed space Ω. This is done by repeating the estimation310

of the parameters ω after the parametrisation update stage, i.e. after the transformation
of the (possibly) sloppy parameter space in a more robust, non sloppy parameter space.
The log-likelihood function of the model is optimised as in (8) with G = GS obtaining the
secondary parameter estimate ω̂S.

ω̂S = arg max
ω∈Ω

Φ(ω|Y )|G=GS
(8)

In principle, the primary and the secondary parameter estimates satisfy the equality315

GPω̂P = GSω̂S. However, numerical algorithms for parameter estimation are sensitive to
the model parametrisation (Rimensberger and Rippin, 1986; Dovi et al., 1994). More specif-
ically, the convergence rate of numerical optimisation routines to the maximum likelihood
estimate is sensitive to the choice of the transformation matrix G and the aforementioned
equality may not be satisfied in practice (Higham, 1996). The covariance Vω is then com-320

puted for the secondary parameter estimates as the inverse of the observed Fisher information
matrix (Bard, 1974).

Vω =
[
H(ω̂S)|G=GS

]−1
(9)

The parameter estimates θ̂ and their associated covariance matrix Vθ in the original
parameter space Θ are then computed by applying the secondary transformation to the
estimates ω̂S and covariance Vω computed in the transformed space Ω.325

θ̂ = GSω̂S (10)

Vθ = GSVωG
T
S (11)

In standard parameter estimation algorithms, the computation of the covariance Vθ re-
quires the inversion of the information matrix in the original parameter space Θ (Bard, 1974).
However, in the presence of a sloppy parametrisation, the information matrix in Θ may be
ill-conditioned. Notice that, in the proposed framework, the inversion of ill-conditioned
matrices is avoided. In fact, matrix inversion is performed in a conveniently transformed330
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parameter space Ω, as in (9), where the information matrix is well-conditioned. The covari-
ance in the original parameter space Vθ is then computed as in (11) by applying algebraic
transformations, which are numerically more robust operations than matrix inversions.

From the covariance Vθ, it is possible to derive the confidence intervals for the esti-
mates θ̂ ∈ Θ and the correlation coefficient cij between any estimated parameter pair θ̂i335

and θ̂j (Bard, 1974). Let vθ,ij be the ij-th element of the covariance matrix Vθ. The con-

fidence interval with significance α for the i-th parameter estimate θ̂i can be computed as
θ̂i ± zα/2

√
vθ,ii where zα/2 represents a two-tailed value computed from a standard normal

distribution with significance α. The correlation coefficient between any parameter pair θ̂i
and θ̂j can be computed according to (12).340

cij =
vθ,ij√
vθ,iivθ,jj

∀ i, j (12)

The statistical quality of the parameter estimates θ̂ in the original parameter space Θ
can be checked through a statistical test (e.g. a t-test) for assessing parameter precision
(Walpole et al., 2011).

2.2.4 Optimal MBDoE for parameter precision

If some parameter statistics are not satisfactory and the experimental budget allows for the345

collection of additional data then the experimental activity will continue with the collection
of an additional sample from the automated experimental setup. The following sample will
be collected with the aim of minimising the size of the confidence region of the parameter
estimates θ̂ ∈ Θ. Popular measures of the size of the confidence region are (Galvanin
et al., 2007; Franceschini and Macchietto, 2008b) i) the determinant of the covariance matrix350

det(Vθ) (i.e. the D-criterion), which quantifies the volume of the confidence ellipsoid of the
parameter estimates and ii) the trace of the covariance matrix Tr(Vθ) (i.e. the A-criterion),
which quantifies the volume of the hyperbox containing the confidence ellipsoid.

Optimal MBDoE problems for parameter precision may be ill-conditioned in the presence
of a sloppy parametrisation (White et al., 2016). In fact, the solution of an optimal MBDoE355

problem requires the inversion of an ill-conditioned matrix if the parametrisation is sloppy.
In this work it is proposed to solve the MBDoE problem in the robust parameter space
Ω with the aim of minimising the size of the confidence region in the original parameter
space Θ. In general, the optimal experimental conditions depend on the type of criterion
adopted for the design and on the model parametrisation. In this study, the D-criterion360

is employed because it is invariant under transformations of the parameter space (Fedorov,
1972; Rimensberger and Rippin, 1986). In fact, the following equality holds:

det(Vθ) = det(GS)2 det(Vω) (13)

It is sufficient to notice that matrix GS is not modified at the optimal MBDoE stage of
the procedure (see Figure 1), i.e. det(GS) represents a constant in the MBDoE problem.
Therefore, minimising the determinant of the covariance det(Vω) in the transformed param-365

eter space Ω is equivalent to minimising the determinant of the covariance det(Vθ) in the
original parameter space Θ.
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The optimal MBDoE problem in the robust space Ω requires the computation of a pre-
diction for the parameter covariance V̂ω (i.e. the posterior covariance matrix) after the
collection of the new sample.370

V̂ω =
[
V−1
ω +∇ŷ(ω̂S)Σ−1∇ŷ(ω̂S)T |G=GS

]−1
(14)

In (14), the second addend in the bracket represents the expected Fisher information
matrix of the sample to be designed, which is a function of the experimental design vector
ϕ. The inverse of the prior covariance matrix Vω is also included in (14) to quantify the
preliminary information that is available from previously fitted samples. The prior covariance
is updated at every iteration of the procedure in Figure 1, i.e. after the collection of each375

sample, according to (9). The D-optimal experimental conditions ϕ∗ for the collection of
the following sample are computed solving the following optimisation problem:

ϕ∗ = arg min
ϕ

det(V̂ω) (15)

The optimised conditions computed as in (15) are then transmitted to the automated
experimental setup for the collection of the following sample (see Figure 1).

3 Case study380

The proposed algorithm presented in Section 2.2 is tested on a case study. The objective is
the identification in an automated platform of a kinetic model of benzoic acid esterification
with ethanol (Pipus et al., 2000). The reaction is homogeneous and it is catalysed by
sulphuric acid. A description of the automated model identification platform is given in
Section 3.1. The modelling assumptions are presented in Section 3.2. The proposed online385

RP methodology is tested both in-silico (Section 4.1) and experimentally on an automated
model identification platform (Section 4.2). For both the simulated and the real cases two
experimental campaigns are performed:

• a campaign where the parametrisation matrix is not modified;

• a campaign where the parametrisation matrix is updated online.390

The two campaigns are performed to assess the influence of the online RP on the model
identification process. The methods adopted for the conduction of the experimental cam-
paigns are detailed in Section 3.3.

3.1 Automated model identification platform

A simplified diagram for the online model identification platform is given in Figure 2. The395

esterification of benzoic acid with ethanol catalysed by sulphuric acid occurs in a flow mi-
croreactor. The microreactor is a 2 m long PEEK tube with a diameter of 250 µm. It is
placed in a stirred oil bath whose temperature is controlled by a rope heater. The reactants
and the catalyst are injected through the flow reactor by three syringe pumps. Syringe 1 and
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syringe 2 are filled with two different mixtures of benzoic acid and ethanol. The feed con-400

centration of benzoic acid in the reactor is manipulated by modifying the relative flowrates
of syringe 1 and syringe 2. Syringe pump 3 is filled with a 160 g L−1 sulphuric acid solu-
tion. The flowrate of syringe 3 is kept at 10% of the overall flowrate to maintain a constant
concentration of sulphuric acid at 16 g L−1 at the inlet of the flow reactor. The mixture
at the outlet of the reactor is analysed online by a Jasco HPLC using a 250 mm long, 4.6405

mm internal diameter ODS hypersil column with a particle size of 5 µm (Thermo Fisher
Scientific). The HPLC method uses 1.25 mL min−1 of a 40% water and 60% acetonitrile
mobile phase (percentages refer to volume fractions). The oven is maintained at 303 K and
a UV detection at 274 nm is used to detect the composition of the outlet mixture. Samples
are diluted using an online auto-sampler device (Syrris Asia) applying a dilution factor of410

250.
The experimental conditions which can be manipulated by the automated system are:

• the inlet concentration of benzoic acid CIN
BA in the range 0.9 - 1.55 mol L−1;

• the flowrate F of the feed mixture to the reactor in the range 7.5 - 30.0 µL min−1;

• the temperature of the oil bath T in the range 343.0 - 413.0 K.415

These constitute independent directions of the explorable space of experimental condi-
tions ϕ = [CIN

BA, F, T ]. The experimental setup is controlled through a LabVIEW interface
(Elliott et al., 2007) implemented in a 32-bit Windows machine with Intel Core i7-3770
3.40 GHz processor and 4.0 GB of RAM. A script written in Python 2.7 implementing the
model identification algorithm presented in Section 2.2 is integrated with LabVIEW for the420

purposes of online parameter estimation and sample design. The main Python packages
employed in the script are NumPy 1.13 (Oliphant, 2015) for the manipulation of algebraic
objects and SciPy 1.1 (Jones et al., 2001) for integrating the kinetic model equations and
solving the optimisation problems associated with parameter estimation and MBDoE. Pa-
rameter estimation problems are solved using the Nelder-Mead method. MBDoE problems425

are solved employing the SLSQP solver.
The parametrisation update stage of the algorithm (see Figure 1) was implemented in

the Python script as an option that can be activated or deactivated from LabVIEW. This
option was implemented to give more flexibility to the user in testing the model identification
algorithm both in the presence and in the absence of the online RP method.430

3.2 Modelling assumptions

The catalytic esterification of benzoic acid and ethanol is modelled as a single reaction system
where benzoic acid (BA) and ethanol (Et) react to produce ethyl benzoate (EB) and water
(W) (Pipus et al., 2000).

Benzoic Acid + Ethanol � Ethyl Benzoate + Water (16)

Available studies in the literature report that the reaction is reversible. However, if a large435

excess of ethanol in the reactor is maintained (as in this work), the reverse reaction can be
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Figure 2: Simplified diagram representing the online model identification platform.

neglected (Pipus et al., 2000). The tubular reactor is modelled as an ideal plug flow reactor
operated at isothermal conditions, i.e. thermal and mass transfer resistances are neglected.
The validity of plug flow behaviour was checked by evaluating the vessel dispersion number
(Levenspiel, 1998; Rossi et al., 2017). A maximum vessel dispersion number of 6.8 ·10−4 was440

computed for the flowrate range considered in the study. The computed value is significantly
smaller than 1.28 · 10−2, i.e. the maximum vessel dispersion number recommended in the
literature for the validity of the plug flow assumption (Levenspiel, 1998).

The reaction rate is assumed as first order with respect to benzoic acid. Following from
the aforementioned assumptions, the steady-state kinetic behaviour of the system is modelled445

through the following set of ordinary differential equations (17):

v
dCi
dz

= νikCBA(z) ∀ i = BA,Et,EB,W (17)

In (17), Ci is the concentration of the i-th component in the mixture expressed in molL−1;
z represents the axial spatial coordinate of the tubular reactor expressed in m; v is the axial
velocity of the liquid bulk expressed in m s−1; νi is the stoichiometric coefficient of the i-th
component in the mixture; k is the rate constant expressed in s−1.450

An Arrhenius-type kinetic constant involving a set of two kinetic parameters θ = [θ1, θ2]
is assumed with the following mathematical structure:

k = eθ1−
104θ2
RT (18)
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In (18), R is the ideal gas constant expressed in J mol−1 K−1. As one can see from (18),
the pre-exponential factor is included as exponent in the rate constant and the activation
energy is multiplied by a scaling factor. The above structure for the kinetic rate constant455

was selected because it is generally recognised as robust within the literature on kinetic
parameter estimation (Asprey and Naka, 1999; Buzzi-Ferraris and Manenti, 2009). In other
words, parametrisation (18) generally leads to an improvement of the condition number with
respect to the original form of the Arrhenius constant, i.e. k = Ae−Ea/RT , parametrised by
pre-exponential factor A and activation energy Ea.460

3.3 Objective and methods

The objective of the study is the estimation of the kinetic parameters θ = [θ1, θ2] with

the smallest volume confidence region of θ̂ by conducting an experimental campaign on the
online model identification platform with an available budget of 9 samples. A sample is
constituted by the single measurement of ethyl benzoate concentration at the outlet of the465

reactor, i.e. y = [COUT
EB ] [mol L−1]. The measurement error is modelled as Gaussian noise

with covariance matrix Σ = [2.5·10−5], i.e. a standard deviation of 0.0165 molL−1 is assumed
to model the Gaussian measurement noise for COUT

EB . The experimental conditions for the
collection of samples 1, 2 and 3 are fixed to the values reported in Table 1. The following
samples, i.e. samples from 4 to 9, are designed by the model identification algorithm by470

employing a D-optimal criterion, i.e. by solving an MBDoE problem in the form (15).
Two cases are proposed to test the model identification algorithm implemented in the

online model identification platform:

1. Simulated case: samples generated in-silico. Samples are generated simulating the
experiments with the kinetic model (17) setting the kinetic parameters equal to the475

value θ∗ = [15.27, 7.60] and adding Gaussian noise with covariance Σ.

2. Real case: samples collected from the experimental platform. In this case, samples are
collected from the experimental platform described in Section 3.1. An interval of 65
min is allowed between the collection of samples to let the system reach steady-state
conditions.480

For both the Simulated and the Real case, two experimental campaigns are performed: 1)
a non-RP campaign in which the online reparametrisation is not activated; 2) a RP campaign
in which the online reparametrisation is activated. This is done to provide a comparison
of the performance of the model identification algorithm both in the presence and in the
absence of the online RP method. In the Simulated case, the effect of the online RP is485

assessed comparing statistically the parameter estimates θ̂ computed in the two campaigns
with the target parameter value θ∗ = [15.27, 7.60]. This is done by means of a χ2-test in the
parameter space Θ. This involves testing the null hypothesis that the following statistic χ2

θ

is distributed as a χ2 distribution with degree of freedom Nθ = 2.

(θ̂− θ∗)TV−1
θ (θ̂− θ∗) = χ2

θ ∼ χ2 (19)
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A small p-value associated to the statistic χ2
θ (e.g. smaller than 1.0%) is interpreted as an490

index of failure of the model identification algorithm in estimating the target parameter val-
ues. In the Real case, the target parameter value θ∗ is unknown. Furthermore, a discrepancy
in the parameter estimates between the RP and the non-RP campaigns is not only caused
by numerical reasons, but also by problems of experimental repeatability caused by external
disturbances (Alberton et al., 2009). The presence of disturbances can lead to changes in the495

parameters of the population from which experimental data are sampled and the concomi-
tant inclusion of outliers in the dataset (Huber, 2004). It is recognised that, in the presence
of such uncertainty sources, a statistical analysis to validate the models identified in the two
campaigns would not be significant and it is therefore omitted.

Confidence intervals and correlation coefficient for the parameter estimates (see Section500

2.2.3) are recorded in the course of the experimental campaigns and they are reported in the
Results section. The condition number κ is also recorded in the course of the experimental
campaigns and it is reported to demonstrate the performance of the online RP in improving
and maintaining the well-posedness of the model identification problem.

Table 1: Experimental conditions ϕ adopted for the collection of samples 1 to 3 in the
experimental campaigns: inlet concentration of benzoic acid CIN

BA; flowrate F ; temperature
of the oil bath T .

Sample CIN
BA F T

number [mol L−1] [µL min−1] [K]

1 1.50 20.0 413.0
2 1.00 10.0 393.0
3 1.25 15.0 403.0

4 Results505

4.1 Simulated case: samples generated in-silico

The estimates for the kinetic parameters θ1 and θ2 for the non-RP campaign are reported
in Table 2 together with information on their statistical quality. More specifically, the 95%
confidence intervals and the correlation coefficient c12 between the kinetic parameters θ1

and θ2 are reported. One can see from Table 2 that the correlation coefficient c12 remains510

above 99.96% in the course of the campaign. The parameter estimation and the MBDoE
problems are solved in the original parameter space Θ where the condition number of the
log-likelihood function remains above 6.1 ·103 throughout the whole experimental campaign.
The χ2-test was conducted to compare statistically the computed parameter distribution
with the target parameter value θ∗ (see Section 3.3 for information on how the test statistic515

is computed). As one can see from Table 2, a p-value of 0.00% in the course of the non-RP
campaign suggests that the parameter estimates computed by the algorithm are statistically
inconsistent with the target parameter values.
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Table 2: Simulated case: non-RP campaign. Parameter estimates are reported together
with their respective 95% confidence intervals and correlation coefficient in the course of
the experimental campaign. Parameter estimation and MBDoE problems are solved in the
original parameter space Θ. The condition number of the log-likelihood function in Θ is
reported in the table.

Simulated case - non-RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation p-value of target Condition
collected with 95% confidence intervals coefficient c12 parameters θ∗ number κ in Θ

1 [ - , - ] - - -
2 [ - , - ] - - -
3 [ 12.15 ± 2.14 , 6.56 ± 1.35 ] 0.9998 0.00% 1.4·104

4 [ 14.83 ± 1.22 , 7.47 ± 0.81 ] 0.9996 0.00% 6.1·103

5 [ 15.99 ± 1.01 , 7.85 ± 0.70 ] 0.9998 0.00% 1.0·104

6 [ 15.06 ± 0.79 , 7.53 ± 0.53 ] 0.9997 0.00% 7.2·103

7 [ 14.90 ± 0.74 , 7.47 ± 0.50 ] 0.9997 0.00% 9.2·103

8 [ 14.84 ± 0.66 , 7.45 ± 0.44 ] 0.9997 0.00% 8.2·103

9 [ 14.94 ± 0.63 , 7.49 ± 0.42 ] 0.9998 0.00% 9.6·103

Table 3: Simulated case: RP campaign. Parameter estimates in the course of the experi-
mental campaign are reported together with their respective 95% confidence intervals and
correlation coefficient. Parameter estimation and MBDoE problems are solved in the trans-
formed parameter space Ω. The condition number of the log-likelihood function in Ω is
reported in the table.

Simulated case - RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation p-value of target Condition
collected with 95% confidence intervals coefficient c12 parameters θ∗ number κ in Ω

1 [ - , - ] - - -
2 [ - , - ] - - -
3 [ 16.44 ± 64.52 , 8.01 ± 25.05 ] 0.9999 0.00% 5.5·108

4 [ 16.61 ± 3.55 , 8.06 ± 1.21 ] 0.9999 68.26% 3.8·102

5 [ 15.60 ± 2.01 , 7.72 ± 0.68 ] 0.9998 86.41% 1.2·100

6 [ 15.72 ± 1.62 , 7.76 ± 0.55 ] 0.9997 70.47% 1.0·100

7 [ 15.72 ± 1.50 , 7.76 ± 0.51 ] 0.9998 69.84% 1.0·100

8 [ 15.59 ± 1.44 , 7.71 ± 0.49 ] 0.9998 56.62% 1.0·100

9 [ 15.39 ± 1.24 , 7.64 ± 0.42 ] 0.9998 64.74% 1.0·100
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(a) (b)

Figure 3: Simulated case: (a) parameter estimates and (b) ±95% confidence intervals
throughout the non-RP campaign (dotted) and the RP campaign (solid). In subfigure (a),
the target parameters are indicated by a dashed line.

Figure 4: Simulated case: parameter estimates and related 95% confidence ellipsoids at the
end of the non-RP campaign (dotted) and at the end of the RP campaign (solid). The target
parameter value is highlighted in the graph by a star-shaped symbol.
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Parameter estimates and related information on their statistical quality are given in
Table 3 for the RP campaign. In the course of the RP campaign, the correlation coefficient520

c12 remains above 99.97%. In the RP campaign, the parameter estimation problem and the
MBDoE problem are solved in the transformed parameter space Ω, where the transformation
matrix G is refined after the collection of each sample. The condition number of the log-
likelihood function in Ω starts from a value of 5.5 · 108 at the first iteration of the model
identification algorithm (i.e. after the collection of 3 samples) and it is reduced to 1.0 at525

the fourth iteration (i.e. after the collection of 6 samples). The benefit derived from the
application of the online RP is validated by the χ2-test. The p-value of the target value θ∗

given the computed covariance at the end of the model identification campaign is 64.74%.
This confirms that the algorithm computed estimates that are statistically consistent with
the target parameter value θ∗.530

The parameter estimates and related 95% confidence intervals obtained in the non-RP
campaign and in the RP campaign are compared graphically in Figure 3a and Figure 3b.
In Figure 3a, one can see that both the methods present a similar convergence to the target
parameter values, highlighted with dashed lines in the plot. In Figure 3b, one can see
that the 95% confidence intervals for the parameters are significantly different between the535

non-RP and the RP campaign. In particular the confidence interval of parameter θ̂1 is
significantly larger in the RP case than in the non-RP case. The discrepancy is interpreted
as a consequence of an inaccurate computation of the log-likelihood gradient in the non-RP
case, which results in an underestimation in the variance of the estimate θ̂1 (see Section 2.1
for more details).540

The final parameter estimates obtained in the non-RP and in the RP campaigns in
the simulated case are compared graphically in Figure 4. In Figure 4 the final parameter
estimates are plotted with their respective 95% confidence ellipsoids for the non-RP campaign
(dotted) and for the RP campaign (solid). The target parameter value is highlighted in Figure
4 by a star-shaped symbol. As one can see from Figure 4 the target value lies within the545

solid ellipsoid of the RP campaign, while it lies outside the dotted ellipsoid of the non-RP
campaign. The graph shows that the non-RP campaign leads to the misleading conclusion
that the target parameter values are not the parameters values of the physical system. The
RP campaign led to a more reliable estimate of the kinetic parameter values.

Additional campaigns were performed in-silico to demonstrate that the performance of550

the model identification algorithm is insensitive to a change in the dataset, i.e. it is insensitive
to a change in the random seed used to generate the data in-silico. The results obtained from
20 simulated campaigns are reported in Appendix A. Both in RP and non-RP campaigns,
each algorithm iteration required only few seconds of CPU time.

4.2 Real case: samples collected from the experimental platform555

Two campaigns of experiments, i.e. a non-RP campaign and a RP campaign, were per-
formed on the automated system. Experimental conditions investigated in the course of the
campaign and the associated sampled concentrations are given in Appendix B. Parameter
estimates θ̂ with associated confidence intervals and correlation coefficient are reported in
Table 4 for the non-RP campaign and in Table 5 for the RP campaign. Numerical estimates560

in terms of pre-exponential factor and activation energy were also computed from θ̂. These
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(a) (b)

Figure 5: Real case: (a) parameter estimates and (b) ±95% confidence intervals throughout
the non-RP campaign (dotted) and the RP campaign (solid).

Figure 6: Real case: parameter estimates and related 95% confidence ellipsoids at the end
of the non-RP campaign (dotted) and at the end of the RP campaign (solid).
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Table 4: Real case: non-RP campaign. Parameter estimates in the course of the experimental
campaign with 95% confidence intervals and correlation coefficient. Parameter estimation
and MBDoE problems are solved in the original parameter space Θ. The condition number
of the log-likelihood function in Θ is reported in the table.

Real case - non-RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation Condition
collected with 95% confidence intervals coefficient c12 number κ in Θ

1 [ - , - ] - -
2 [ - , - ] - -
3 [ 16.16 ± 2.16 , 7.94 ± 1.49 ] 0.9998 1.5·104

4 [ 16.44 ± 1.29 , 8.03 ± 0.89 ] 0.9996 6.1·103

5 [ 17.15 ± 1.09 , 8.26 ± 0.77 ] 0.9998 1.1·104

6 [ 16.80 ± 0.85 , 8.14 ± 0.59 ] 0.9997 7.8·103

7 [ 17.23 ± 0.79 , 8.28 ± 0.56 ] 0.9998 1.1·104

8 [ 17.15 ± 0.68 , 8.26 ± 0.48 ] 0.9997 8.4·103

9 [ 17.42 ± 0.66 , 8.34 ± 0.47 ] 0.9998 1.0·104

Table 5: Real case: RP campaign. Parameter estimates in the course of the experimental
campaign with 95% confidence intervals and correlation coefficient. Parameter estimation
and MBDoE problems are solved in the transformed parameter space Ω. The condition
number of the log-likelihood function in Ω is reported in the table.

Real case - RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation Condition
collected with 95% confidence intervals coefficient c12 number κ in Ω

1 [ - , - ] - -
2 [ - , - ] - -
3 [ 17.54 ± 13.41 , 8.37 ± 5.38 ] 0.9999 2.6·107

4 [ 18.12 ± 3.59 , 8.56 ± 1.23 ] 0.9999 8.0·102

5 [ 16.86 ± 2.01 , 8.13 ± 0.68 ] 0.9998 1.3·100

6 [ 16.90 ± 1.64 , 8.15 ± 0.55 ] 0.9997 1.0·100

7 [ 16.91 ± 1.51 , 8.15 ± 0.51 ] 0.9998 1.0·100

8 [ 16.83 ± 1.32 , 8.12 ± 0.45 ] 0.9997 1.0·100

9 [ 16.98 ± 1.26 , 8.17 ± 0.43 ] 0.9998 1.0·100
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are reported in Appendix B.
In the course of the non-RP campaign (see Table 4), the parameter correlation c12 between

θ̂1 and θ̂2 remains above 99.96%. In the non-RP campaign the parameter estimation and
MBDoE problems are solved in the original parameter space Θ. The condition number of the565

log-likelihood function in Θ remains above 6.1 · 103 in the course of the non-RP campaign.
The correlation between θ̂1 and θ̂2 is above 99.97% throughout the whole RP campaign

(see Table 5). However, in the RP campaign, parameter estimation and MBDoE problems
are solved in the transformed parameter space Ω. The condition number in Ω is reduced by
the algorithm from an initial value of 2.6 · 107 to the minimum value 1.0 in four iterations570

(i.e. after the collection of 6 samples). The transformation matrix G is then adjusted after
the collection of each sample to maintain a condition number κ = 1.0 until the end of the
experimental campaign.

The parameter estimates and related 95% confidence intervals obtained in the non-RP
and in the RP campaigns are plotted in Figure 5a and Figure 5b. The 95% confidence575

ellipsoids associated to the final parameter estimates achieved in the non-RP campaign and
in the RP campaign are plotted in Figure 6.

Notice that in this case it is not possible to quantify and compare the performance of the
two campaigns in retrieving the target parameter value. The target kinetic parameters are in
fact unknown in the real case. One can observe from Figure 5a that the estimates achieved580

in the RP campaign exhibit a convergent behaviour around the values θ = [16.90, 8.15].
Estimates θ̂1 and θ̂2 in the non-RP campaign do not exhibit a convergent behaviour, but
they tend to increase in the course of the non-RP campaign (see Figure 5a). It is not possible
to assess whether the absence of convergence in the non-RP campaign is the consequence of
an unknown systematic disturbance in the system. However, it is possible to appreciate that585

the application of the online RP method led to the minimisation of the condition number (see
Table 5) with the concomitant improvement in the numerical performance of the optimisation
algorithms. Also in the real case, both in the RP and in the non-RP campaign, the CPU
time required to complete each algorithm iteration was on the order of seconds.

A goodness-of-fit test was also conducted to demonstrate that, both in the RP and in590

the non-RP campaign, the postulated first order single-reaction mechanism (see Section 3.2)
provided an accurate representation of the chemical system. Nonetheless, it was recognised
that an analysis on the goodness-of-fit was not significant for demonstrating the online RP
method. It was chosen to report in Appendix B the numerical details regarding the analysis
on the fitting quality.595

4.3 Results discussion

Both in the simulated and in the real case, the 95% confidence intervals of the estimates
after 9 collected samples differ significantly between the non-RP and the RP campaign (see
Figure 3b and Figure 5b). In the simulated case, a χ2-test was conducted to compare the
final statistics on the parameters computed in the RP campaign with the final statistics600

obtained in the non-RP campaign. It was shown that the confidence region of the parameter
estimates computed in the RP campaign contains the target parameter value θ∗ while the
ellipsoid computed in the non-RP campaign does not contain the target value θ∗ (see Figure
4). Hence, it was possible to demonstrate statistically that the campaign with online RP
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(a) (b)

Figure 7: Condition number after each sample collected in the simulated case (dotted line)
and in the real case (solid line): (a) non-RP campaigns; (b) RP campaigns.

led to a more accurate quantification of the uncertainty region associated to the computed605

parameter estimates.
Figure 7a and Figure 7b show the condition numbers in the course of the non-RP and RP

campaigns respectively. In the non-RP campaigns (see Figure 7a), the condition number κ is
around 104 and does not vary significantly in the course of the sample collection process. In
the RP campaigns, both in the simulated and in the real case, the employment of the online610

RP method led to the minimisation of the condition number to κ = 1.0 in an initially ill-
conditioned model identification problem (see Figure 7b). From Figure 7b, one can see that,
both in the simulated and in the real case, the condition number is minimised to κ = 1.0
when sample 6 is collected, i.e. after 4 iterations in the model identification algorithm. This
is explained by the fact that the update for the transformation matrix G is evaluated as615

a function of the Hessian H computed with the primary transformation matrix GP (see
Section 2.2).

The condition number in the transformed space associated to GP may be very high at the
first iteration of the algorithm. A high condition number at the primary parameter estimation
step may lead to an inaccurate computation of the Hessian (i.e. an inaccurate quantification620

of the sloppiness) and, consequently, lead to the computation of an inappropriate update for
G. This does not appear to affect the performance of the online RP approach in the presented
case study, but further analysis is required. It is object of future research activities to make
the proposed algorithm insensitive towards numerical inaccuracies in the initial diagnosis of
model sloppiness.625

5 Conclusion

A model identification algorithm implementing a novel approach of online reparametrisa-
tion, i.e. an approach of online transformation of the model parameter space, is proposed
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in this manuscript. The tool is designed specifically to deal with the problem of param-
eter estimation in the presence of sloppy model structures, i.e. models whose parameters630

are practically non-identifiable and/or highly correlated. The proposed approach to online
reparametrisation is based on two fundamental steps: 1 ) a primary parameter estimation
step, which is required to diagnose and quantify the sloppiness of the model parameter space;
2 ) a parametrisation update step in which the sloppy parameter space is transformed to a
robust parameter space with the aim of reducing the sloppiness. Once the model parametri-635

sation is updated, the parameter estimation is repeated solving an optimisation problem in
the transformed, non-sloppy, parameter space. Additional samples are then designed by the
algorithm employing techniques for optimal design of experiments with the aim of improv-
ing the statistical quality of parameter estimation. It is shown that optimisation algorithms
benefit significantly from the presence of a robust (i.e. non-sloppy) model parametrisation640

both at the parameter estimation and at the experimental design stage. Parameter estimates
computed in the robust space are then transformed to the original, sloppy, parameter space
applying algebraic transformations and returned as output to the user.

The performance of the presented algorithm was tested both in-silico and on a real system
where an automated experimental platform has been employed for online kinetic model645

identification. The objective was the estimation of the kinetic parameters in a two-parameter
model of benzoic acid esterification with ethanol catalysed by sulphuric acid in a flow reactor.
In both cases, the reparametrisation algorithm iteratively reduced and eventually eliminated
model sloppiness minimising the condition number of an originally ill-conditioned model
identification problem. In the case study performed in-silico, a set of values for the kinetic650

parameters was assumed to simulate the experiments. Hence, it was possible to show that
the ill-conditioned nature of the model was preventing a conventional model identification
algorithm from retrieving the target value of the kinetic constants. The presented model
identification algorithm implementing the proposed online reparametrisation method was
instead capable of computing estimates that were statistically compatible with the assumed655

target values of the kinetic parameters.
In the real case, the target values for the kinetic constants were unknown and it was

not possible to quantify directly the convergence of the parameter estimates to the target
kinetic coefficients. However, it was possible to appreciate that, also in the experimental
campaign performed on the real system, the model identification algorithm implementing the660

online reparametrisation routine iteratively reduced and eventually minimised the condition
number. The minimisation of the condition number to unity and the concomitant elimination
of model sloppiness resulted in an improved performance of optimisation algorithms employed
in the course of the model identification process.

The proposed reparametrisation method was integrated as an optional step in an on-665

line model identification algorithm implemented in a Python script. It was shown that
the computational performance of the algorithm was not affected significantly by the addi-
tional step of model reparametrisation. The modest computational cost associated to the
reparametrisation step and the low memory requirement of the method make it suitable for
implementation also on embedded devices. Future research activities will focus primarily on670

three aspects: 1) improving the efficiency of the proposed method by reducing the number
of iterations required to minimise the condition number and eliminate model sloppiness; 2)
validating the proposed approach on more complex model structures, e.g. kinetic models in-
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volving a higher number of parameters and multiple measured model responses; 3) extending
the proposed online reparametrisation algorithm including routines for applying nonlinear675

transformations to the parameter space.
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Symbols used

Latin symbols

A pre-exponential factor
cij correlation coefficient between θi and θj
Ci concentration of species i
CIN
i concentration of species i at the inlet

COUT
i concentration of species i at the outlet

d scaling factor of parameter space (> 0)
Ea activation energy
F volumetric flowrate
k kinetic constant
N number of samples in the available dataset Y
Nf number of functions in a given kinetic model
NMAX maximum number of samples collectable
Nu number of independent inputs in a given kinetic model
Nx number of state variables in a given kinetic model
Ny number of output variables in a given kinetic model
Nθ number of non-measurable parameters in a given model
R ideal gas constant
t time
T temperature
U vector space of model inputs
v flow velocity along the axial coordinate of microchannel
vθ,ij ij-th element of the covariance matrix Vθ

Y dataset available for model identification
z axial coordinate of microchannel
zα/2 two-tailed score of standard normal distribution with significance α

Matrices and vectors

1θ column array whose entries are all equal to 1 [Nθ × 1]
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f column array of functions [Nf × 1]
G linear transformation of parameter space Ω→ Θ [Nθ ×Nθ]
GP primary transformation of parameter space Ω→ Θ [Nθ ×Nθ]
GS secondary transformation of parameter space Ω→ Θ [Nθ ×Nθ]
h column array of functions [Ny × 1]
H observed Fisher information matrix [Nθ ×Nθ]
Iθ identity matrix [Nθ ×Nθ]
R matrix of rotation of parameter space [Nθ ×Nθ]
u column array of independent control variables (model inputs) [Nu × 1]
U right normalised eigenbasis of H [Nθ ×Nθ]
Vθ covariance of parameter estimates in Θ [Nθ ×Nθ]
Vω covariance of parameter estimates in Ω [Nθ ×Nθ]

V̂ω predicted covariance of parameter estimates in Ω [Nθ ×Nθ]
x column array of state variables [Nx × 1]
y sample - column array of measured output variables [Ny × 1]
yi i-th sample in dataset Y [Ny × 1]
ŷ column array of predicted output variables [Ny × 1]
ŷi column array of predicted output variables for sample yi [Ny × 1]
θ column vector of parameters in parameter space Θ [Nθ × 1]
θ∗ column vector of target parameters in parameter space Θ [Nθ × 1]

θ̂ maximum likelihood estimate for θ ∈ Θ [Nθ × 1]
Λ diagonal matrix whose ii-th element is λi [Nθ ×Nθ]
Σ covariance of measurement error for sample y [Ny ×Ny]
ϕ experimental design vector
ϕ∗ D-optimal experimental design vector
ω column vector of parameters in parameter space Ω [Nθ × 1]
ω̂P column vector of parameter estimates computed with G = GP [Nθ × 1]
ω̂S column vector of parameter estimates computed with G = GS [Nθ × 1]

Greek symbols

α statistical significance
θi i-th model parameter

θ̂i estimate for the i-th model parameter
Θ original vector space of model parameters
κ condition number
λi i-th eigenvalue of H
νi stoichiometric coefficient of the i-th species
Φ log-likelihood function
χ2
θ χ2 statistic of target parameters
χ2
ref 95% value computed from a χ2 distribution
χ2
sample sum of normalised squared residuals

Ω transformed vector space of model parameters
∇ gradient operator in parameter space
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Acronyms

ED Experimental Design
HPLC High-Performance Liquid Chromatograph
MBDoE Model-Based Design of Experiments
RG Regularisation
RP Reparametrisation
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Appendix A

Additional simulated cases

A total number of 20 experimental campaigns were simulated to further validate the results
presented in the manuscript. This was done primarily to demonstrate that the performance850

achieved by the algorithm both in the RP and in the non-RP campaigns is insensitive to the
choice of the dataset (i.e. it is insensitive to the choice of the random seed used to generate
the experimental data in-silico).

The results obtained in the simulated campaigns are reported in Table A.1. Campaigns
1-10 were performed applying the online reparametrisation method (RP campaigns), while855

campaigns 11-20 were performed without online reparametrisation (non-RP campaigns). As
one can see from Table A.1, the algorithm with online RP option active retrieved the target
parameter value in all the campaigns, i.e. the final p-value of the target parameters is above
1.00% in campaigns 1-10. The condition number of the log-likelihood functions at the end
of experimental campaigns 1-10 is 1.0, demonstrating that the application of the online RP860

led to the elimination of the model sloppiness. In the campaigns where the online RP is
inactive, i.e. campaigns 11-20, the final p-value is 0.00%, demonstrating the failure of the
algorithm in retrieving the target value of the parameters. The failure is associated to the
high condition number of the log-likelihood function, which is around 103−104 in campaigns
11-20.865
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Table A.1: Results obtained in 20 simulated experimental campaigns: experimental cam-
paigns 1-10 were performed keeping the online reparametrisation option active; campaigns
11-20 were performed keeping the option for online reparametrisation inactive. The p-value
of the target parameters θ∗ = [15.27, 7.6] given the final parameter statistics is reported
together with the condition number of the log-likelihood function at the end of the experi-
mental campaigns.

Campaign Online Final p-value of target Final condition
number reparametrisation parameters θ∗ number κ

1 Active 64.74% 1.0·100

2 Active 98.91% 1.0·100

3 Active 91.98% 1.0·100

4 Active 20.59% 1.0·100

5 Active 30.52% 1.0·100

6 Active 67.93% 1.0·100

7 Active 16.61% 1.0·100

8 Active 92.17% 1.0·100

9 Active 23.19% 1.0·100

10 Active 71.59% 1.0·100

11 Inactive 0.00% 9.6·103

12 Inactive 0.00% 9.4·103

13 Inactive 0.00% 9.5·103

14 Inactive 0.00% 9.3·103

15 Inactive 0.00% 1.1·104

16 Inactive 0.00% 9.5·103

17 Inactive 0.00% 1.0·104

18 Inactive 0.00% 9.2·103

19 Inactive 0.00% 8.7·103

20 Inactive 0.00% 9.3·103
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Appendix B

Real case: additional information

Additional details are presented in this appendix regarding the non-RP campaign and the
RP campaign performed on the experimental automated system. Information related to the
campaign performed keeping the option for online model reparametrisation inactive, i.e. the870

non-RP campaign, is reported in Table B.1. Information on the campaign conducted keeping
the option for online reparametrisation active, i.e. the RP campaign, is given in Table B.2. In
Table B.1 and Table B.2 the following information is presented: 1) experimental conditions
adopted to collect the samples, i.e. inlet concentration of benzoic acid CIN

BA, flowrate F
and temperature T ; 2) sampled concentration of ethyl benzoate at the outlet COUT

EB ; 3)875

parameter estimates θ̂ = [θ̂1, θ̂2] returned by the model identification algorithm; 4) the pre-

exponential factor and activation energy computed from the estimates θ̂1 and θ̂2 as A = eθ̂1

and Ea = 104 · θ̂2; 5) the sum of squared residuals χ2
sample and the reference value χ2

ref

computed from a χ2 distribution with degree of freedom equal to the number of samples
minus the number of parameters and 95% of significance.880

A sum of squared residuals χ2
sample larger than the reference value χ2

ref is interpreted as
an index of inappropriate modelling assumptions (Silvey, 1975). As one can see from Table
B.1, the χ2

sample after the collection of 9 samples in the non-RP campaign is 5.92. From
Table B.2, it can be appreciated that the χ2

sample after the collection of 9 samples in the RP
campaign is 1.83. Both in the non-RP and in the RP campaign the χ2

sample is smaller than885

the χ2
ref = 17.88, thus demonstrating that the modelling assumptions (see Section 3.2) are

not falsified by the experimental evidence.
As one can see from Table B.1, the experimental conditions designed by the algorithm for

samples 5, 7 and 9 in the non-RP case were similar, i.e. inlet concentration of benzoic acid
CIN

BA = 1.55 molL−1, flowrate around F = 7.5 µLmin−1 and temperature T = 413.0 K, i.e. the890

upper limit for the temperature. Samples 4, 6 and 8 were instead designed by the algorithm
at conditions CIN

BA = 1.55 mol L−1, flowrate F = 7.5 µL min−1 and temperature in the range
T = 383.0− 390.0 K. The designed samples in the non-RP case suggest the presence of two
optimally informative sets of experimental conditions at maximum temperature T = 413.0
K and at temperature around T = 385.0 K, given that the inlet concentration of benzoic895

acid CIN
BA is set at the maximum and that flowrate F is set at the minimum.

An analogous situation can be observed in the RP case. As one can see from Table
B.2, samples 4, 7 and 9 in the RP case were designed at conditions CIN

BA = 1.55 mol L−1,
F = 7.5 µL min−1 and T = 413.0 K. Samples 5, 6 and 8 were instead designed at conditions
CIN

BA = 1.55 mol L−1, F = 7.5 µL min−1 and temperature around T = 391.0 K.900
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Table B.1: Real case: experimental campaign with online RP option inactive. Experimental
conditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Real Case - Online RP Inactive

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
sample χ2

ref

1 1.50 20.00 413.0 0.370 - - - - - -
2 1.00 10.00 393.0 0.161 - - - - - -
3 1.25 15.00 403.0 0.240 16.16 7.94 1.04·107 7.94·104 4.35·10−4 3.84
4 1.55 7.50 383.0 0.175 16.44 8.03 1.39·107 8.03·104 2.65·10−2 5.99
5 1.55 7.58 413.0 0.848 17.15 8.26 2.81·107 8.26·104 1.04 7.81
6 1.55 7.50 390.2 0.284 16.80 8.14 1.98·107 8.14·104 1.31 9.49
7 1.55 7.50 413.0 0.876 17.23 8.28 3.03·107 8.28·104 3.56 11.07
8 1.55 7.50 388.5 0.254 17.15 8.26 2.82·107 8.26·104 3.59 12.59
9 1.55 7.50 413.0 0.887 17.42 8.34 3.69·107 8.34·104 5.92 14.07

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = 104 · θ2
2 A χ2

sample larger than χ2
ref is an index of inappropriate modelling assumptions

Table B.2: Real case: experimental campaign with online RP option active. Experimental
conditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Real Case - Online RP Active

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
sample χ2

ref

1 1.50 20.00 413.0 0.409 - - - - - -
2 1.00 10.00 393.0 0.172 - - - - - -
3 1.25 15.00 403.0 0.252 17.54 8.37 4.13·107 8.37·104 0.21 3.84
4 1.55 7.50 413.0 0.900 18.12 8.56 7.39·107 8.56·104 0.52 5.99
5 1.55 7.50 392.3 0.346 16.86 8.13 2.10·107 8.13·104 1.27 7.81
6 1.55 7.50 390.6 0.307 16.90 8.15 2.18·107 8.15·104 1.27 9.49
7 1.55 7.50 413.0 0.895 16.91 8.15 2.20·107 8.15·104 1.27 11.07
8 1.55 7.50 391.2 0.323 16.83 8.12 2.04·107 8.12·104 1.31 12.59
9 1.55 7.50 413.0 0.908 16.98 8.17 2.36·107 8.17·104 1.83 14.07

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = 104 · θ2
2 A χ2

sample larger than χ2
ref is an index of inappropriate modelling assumptions
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Abstract

Automated model identification platforms were recently employed to identify para-10

metric models online in the course of unmanned experimental campaigns. The algo-
rithms controlling these platforms include two computational elements: i) a tool for
parameter estimation; ii) a tool for model-based experimental design. Both tools re-
quire the solution of complex optimisation problems and their effective outcome relies
on their respective objective functions being well-conditioned. Ill-conditioned objective15

functions may arise when the model is characterised by a weak parametrisation, i.e.
the model parameters are practically non-identifiable and/or extremely correlated. In
this work, a robust reparametrisation technique is proposed and tested both in-silico
and in an automated model identification platform. The benefit of reparametrisation
is demonstrated on a case study for the identification of a kinetic model of catalytic20

esterification of benzoic acid with ethanol in a flow microreactor.
keywords: online, identification, information, parametrization, design, experiment

1 Introduction

The kinetic modelling of chemical phenomena through the identification of an appropriate
set of model equations is an important step in many research domains related to chemi-25

cal engineering. Reliable kinetic models (i.e. models that accurately quantify the kinetic
behaviour of the physical system) are regarded as key tools for supporting the design and
intensification of chemical processes, performing non-empirical process optimisation and un-
derstanding which degrees of freedom in the physical system ultimately determine its ob-
servable behaviour (Berger et al., 2001). The identification of reliable models requires i)30

the determination of an opportune structure for the model equations and ii) the precise
estimation of the model parameters. Both aspects typically require extensive amounts of
time and resources for performing kinetic experiments. In the last decades, much effort
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has been devoted by the scientific community to reducing the experimental burden required
to identify and validate kinetic models (Bonvin et al., 2016). Important steps towards the35

reduction in the cost of kinetic studies are 1) the coupling of automated, small-scale flow
reactor technologies with online analysis equipment for the quick collection of experimental
data (Goodell et al., 2009) and 2) the employment of model-based design of experiments
(MBDoE) techniques for planning optimal experiments, minimise the cost, time and amount
of resources required for the experimentation (Asprey and Macchietto, 2000; Prasad and40

Vlachos, 2008; Chakrabarty et al., 2013; Galvanin et al., 2013; Stamati et al., 2016).
Automated flow reactors have been employed in a wide variety of situations from process

monitoring (Malig et al., 2017) to screening of operating conditions (Walsh et al., 2005).
Automated flow reactors were also successfully coupled to algorithms for online sequential
design of experiments (McMullen and Jensen, 2010; Moore and Jensen, 2012; Fabry et al.,45

2014; Holmes et al., 2016). After every experiment is terminated and new data are collected
by these platforms, algorithms construct black-box representations of the physical system
(e.g. response surfaces) for designing the following experiment with the aim of optimising
the reaction performance (e.g. the conversion or the yield). These self-optimising reactors
demonstrated the possibility for an automated platform of conducting experimental cam-50

paigns with minimum human intervention. However, these platforms do not exploit the
collected data for the online development and identification of physics-based models. A ma-
jor consequence of this is that optimised reaction conditions identified through a black-box
approach in the lab-scale equipment are not necessarily transferable to the design, optimi-
sation and control of equipment at the industrial scale.55

Only few works are available in the literature in which algorithms for online kinetic
model identification were coupled to automated reactor systems (McMullen and Jensen, 2011;
Bournazou et al., 2016; Echtermeyer et al., 2017). In these works, algorithms for parameter
estimation and optimal MBDoE were employed online to drive experimental campaigns
with the aim of selecting the best model among a set of given model structures (i.e. model60

discrimination) (McMullen and Jensen, 2011) and/or improving the statistical quality of the
parameter estimates for a given model structure (McMullen and Jensen, 2011; Bournazou
et al., 2016; Echtermeyer et al., 2017). Automated model identification systems have the
potential of dramatically speeding up the modelling of kinetic phenomena and, consequently,
the discovery and the study of new chemical processes. However, the diffusion of these65

promising systems in research laboratories is hampered by the high chance of numerical
failures whenever model identification algorithms are invoked.

The mathematical structure of kinetic models is frequently affected by problems of prac-
tical identifiability, i.e., the fitting quality of the data may be insensitive to a change in some
parameters and/or model parameters may be affected by extreme correlation. Whenever70

the kinetic model exhibits this type of behaviour it is called sloppy (alternatively called ill-
conditioned model or poorly constrained model) (Chis et al., 2014) and its identification may
pose significant challenges even to state-of-the-art model identification algorithms (Asprey
and Naka, 1999; Transtrum et al., 2010, 2015; White et al., 2016). Parameter estimation
and optimal MBDoE problems are normally recast as optimisation problems and solved75

numerically. In the presence of a sloppy parametrisation, the objective functions of the
aforementioned optimisation problems are ill-posed. The optimisation of ill-posed functions
may lead to significant numerical failures in the course of an unmanned experimental cam-
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paign with the concomitant waste of experimental resources. Improving the robustness of
automated model identification platforms towards model sloppiness is key to further promote80

their employment in the discovery and study of kinetic phenomena.
The main contribution of this manuscript is a computational strategy for online model

reparametrisation (RP), i.e. a tool for transforming automatically the model parameter space
in the course of the online model identification process. The presented tool is introduced to
enhance the robustness of unmanned platforms for model identification towards numerical85

failures derived by model sloppiness. Throughout this work, it is assumed that an opportune
set of kinetic model equations is provided by the user to the model identification algorithm
from the beginning of the unmanned experimental campaign. The benefit of the online RP
is demonstrated experimentally on a case study where the objective is the identification of
a kinetic model of catalytic esterification of benzoic acid in a microreactor system.90

2 Methods

2.1 Problem statement

An automated platform is available for performing experiments on a physical system of
interest. An array y of Ny physical quantities can be sampled by an online measurement
system. The kinetic behaviour of the physical system is described by a system of differential95

and algebraic equations as follows:

f(ẋ,x,u, t,θ) = 0

ŷ = h(x)
(1)

In (1), f is a Nf × 1 array of model functions, x is a Nx × 1 array of state variables,
ẋ is a Nx × 1 array of time derivatives for the state variables1, u ∈ U is a Nu × 1 array
of manipulable system inputs, t is time and θ ∈ Θ is a Nθ × 1 column array of model
parameters θ1, ..., θNθ . In (1), ŷ is a Ny×1 array of model predictions for the Ny measurable100

system states, expressed as a Ny × 1 array of functions h. It is assumed that the model (1)
satisfies the requirements for structural identifiability, i.e., in principle, values of the model
parameters θ can be uniquely determined from the fitting of experimental data (Raue et al.,
2009). The objective of the scientist is estimating the set of model parameters as precisely as
possible through an unmanned experimental campaign conducted on the automated platform105

given that the experimental budget allows for the collection of NMAX samples of y.
Whenever new data become available from the automated reactor system, the model

identification algorithm is required to solve sequentially 1 ) a parameter estimation problem
given the available dataset (Bard, 1974) and 2 ) a model-based design of experiments (MB-
DoE) problem to design the following experiment with the aim of minimising the predicted110

confidence region of parameter estimates (Franceschini and Macchietto, 2008b). The solution
of both problems requires the employment of optimisation algorithms and their effectiveness

1Only the derivatives of the states with respect to time are made explicit in the general model equations
for simplicity of notation. However, in general, the model equations may be defined not only in the time
domain, but also in the space domain and reactor model equations may involve functional relationships
among partial derivatives of states with respect to time and space coordinates.
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requires their respective objective function to be well-conditioned (Wilson et al., 2015; White
et al., 2016). Ill-conditioned objective functions derive from the attempt of identifying mod-
els whose parametrisation is sloppy given the available dataset and the level of noise present115

in the system (Chis et al., 2014; White et al., 2016). Sloppiness arises when measured model
responses are poorly sensitive to the change of some parameters and/or measurements do
not carry sufficient information to bring parameter correlation below a critical threshold
(typically considered as high as 95%). Whenever these circumstances occur, the eigenvalues
of the covariance matrix of the parameter estimates span over a wide range of orders of120

magnitude, i.e. the condition number of the covariance matrix is very high.
Numerical failures may occur in the course of the model identification problem in the

presence of a sloppy parametrisation. These may be classified as follows:

• False convergence. Ill-conditioned objective functions both in the parameter estimation
and in the optimal MBDoE problem may cause numerical optimisation routines to fail125

in converging to the optimal solution (Higham, 1996).

• Inaccuracy in the computation of gradients. The calculation of the sensitivities (i.e.
partial derivatives in the parameter space) using direct differential methods is fre-
quently impractical. As a consequence, numerical differentiation routines are regularly
employed in model building practice (Saltelli et al., 2000). The numerical computation130

of sensitivities requires a perturbation of the model parameter values. The computed
sensitivities are sensitive to the choice of the perturbation. In the presence of a sloppy
parametrisation, the applied perturbation may not be appropriate to accurately quan-
tify the gradient in the parameter space (Higham, 1996). As a consequence, the Hessian
and covariance matrix computed as functions of the parameter sensitivities may be in-135

accurate, affecting the model validation process and the design of following experiments
(Pukelsheim, 2006).

• Inaccuracy in the inversion of matrices. In the presence of a sloppy parametrisa-
tion, the covariance matrix of the parameter estimates is ill-conditioned (White et al.,
2016). The solution of an optimal MBDoE problem requires the inversion of an ill-140

conditioned covariance matrix if the parametrisation is sloppy (Franceschini and Mac-
chietto, 2008b).

Different approaches have been proposed in the literature to address the identifiability
problem of sloppy models (Dovi et al., 1994):

1. Experimental-design-based (ED) methods. These methods are based on the design of145

optimal experiments for reshaping the covariance matrix of the parameter estimates
and improve the condition number. For more information on these approaches, the
reader is referred to the relevant literature on design criteria for relaxing model sloppi-
ness and reducing parameter correlation (Hosten, 1974; Pritchard and Bacon, 1978;
Versyck and Van Impe, 1997; Galvanin et al., 2007; Franceschini and Macchietto,150

2008a,d,c; Maheshwari et al., 2013; Chis et al., 2014; Wilson et al., 2015).
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2. Regularisation-based (RG) methods. Regularisation involves the introduction of a bias
in the parameter estimates with the aim of constraining their variance and, concomi-
tantly, reducing the condition number associated to the parameter estimation problem
(Barz et al., 2016). Popular regularisation techniques are i) Tikhonov regularization155

(Johansen, 1997; Hansen, 2005; Bardow, 2008) ii) truncated singular value decompo-
sition (Hansen, 2005; Lopez C. et al., 2015) and iii) parameter subset selection (Barz
et al., 2013; Lopez C. et al., 2015).

3. Reparametrisation-based (RP) methods. The aim of reparametrisation is transforming
the original parameter space Θ into a robust parameter space Ω where both param-160

eter estimation and MBDoE can be performed more effectively on well-conditioned
objective functions (Agarwal and Brisk, 1985b,a). Although there is no theoretical
advantage in the use of a reparametrised model (Rimensberger and Rippin, 1986; Dovi
et al., 1994), the performance of model identification algorithms is sensitive to the type
of parametrisation used (Espie and Macchietto, 1988). The effectiveness of RP-based165

methods has been recognised in many kinetic studies in the literature (Espie and Mac-
chietto, 1988; Asprey and Naka, 1999; Benabbas et al., 2005; Schwaab and Pinto, 2007;
Schwaab et al., 2008; Buzzi-Ferraris and Manenti, 2009).

These methods present strengths and weaknesses. ED-based methods are systematic.
Optimal ED criteria to relax model sloppiness can be easily implemented into a computer170

program. However, even optimally designed experiments may not be sufficient to bring the
condition number below critical levels. This weakness of ED-based methods is typically
associated to either a too narrow range of explorable experimental conditions and/or an
insufficient experimental budget to perform these optimal experiments. Furthermore, opti-
mally designed experiments to reduce the condition number may not carry optimal amounts175

of information for the estimation of the model parameters. This limitation is typically
overcome by designing experiments that represent a compromise between improving the pa-
rameter statistics and reducing the condition number (Franceschini and Macchietto, 2008c;
Maheshwari et al., 2013).

An advantage of RG-based and RP-based methods is that they do not require the ex-180

ecution of experiments for improving the condition number and one can devote the entire
experimental budget on improving the statistics of the parameter estimates. In RG-based
approaches, the condition number is controlled through the introduction of prior information
on the model parameter values. Systematic approaches, e.g. approaches based on Bayesian
inference (MacKay, 1992), are available in the literature for supporting the selection of ap-185

propriate priors (Hansen, 2005). The introduction of prior information in the parameter
estimation problem generally results in the computation of biased parameter estimates.

In contrast to RG-based approaches, RP-based methods do not involve the introduction
of any bias in the model identification problem. Ad hoc strategies to reparametrise sloppy
models were suggested for very specific kinetic model structures, e.g. Arrhenius-type reaction190

rates (Asprey and Naka, 1999; Schwaab and Pinto, 2007; Schwaab et al., 2008; Buzzi-Ferraris
and Manenti, 2009). However, only few systematic approaches to the reparametrisation of
sloppy models are available in the literature (Espie and Macchietto, 1988). An additional
feature of RP-based methods is that whenever a model is reparametrised, the parametrisation
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is fixed until the end of the experimental campaign. However, sloppiness is a consequence195

of the combination of both the model parametrisation and the dataset available to identify
the model. There is no theoretical guarantee that the reparametrised model will not become
sloppy after the collection of new data (Wilson et al., 2015). The arising of sloppiness may be
averted by adjusting the parametrisation online in the course of the experimental activity,
i.e. by reparametrising the model every time new data are collected and included in the200

parameter estimation problem. Nonetheless, online applications of RP-based methods seem
to be missing in the scientific literature.

In the following section, a RP-based framework for the identification of sloppy models
in automated model identification platforms is proposed. In the framework, a systematic
approach to model reparametrisation is introduced and applied online to maintain a small205

condition number even when new data are collected by the automated system and included
in the parameter estimation problem.

2.2 Proposed methodology

The original set of equations (1) is initially extended including a linear system of equations
to transform the parameter space.210

f(ẋ,x,u, t,θ) = 0

ŷ = h(x)

θ = Gω (2)

In (2),ω ∈ Ω represents the Nθ×1 array of model parameters in the transformed param-
eter space Ω, G is a Nθ×Nθ matrix which transforms the parameter space Ω to the original
model parameter space Θ. An online approach to model reparametrisation in automated
model identification platforms is now introduced with the aim of effectively estimating the215

original parameter set θ ∈ Θ. A block diagram showing the proposed procedure is given in
Figure 1. The procedure starts from the availability of preliminary experimental data and
the model structure (1). The parameter transformation G is initially set equal to Iθ, where
Iθ is the Nθ×Nθ identity matrix, i.e. the parameter spaces Θ and Ω are initially coincident.
The model identification algorithm is then called providing the available dataset as input.220

The fundamental steps in the algorithm are now illustrated:

1. A primary parameter estimation step. At this stage, the set of transformed parameters
ω is estimated fitting the available dataset using a maximum likelihood approach
(Bard, 1974). The Hessian of the likelihood function is then computed to characterise
the geometry of the parameter space and quantify its sloppiness.225

2. A parametrisation update step. The Hessian matrix computed at the primary param-
eter estimation step is employed to compute and update the transformation matrix
G with the aim of minimising the condition number (i.e. eliminating the sloppiness)
given the available dataset.
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3. A secondary parameter estimation step. The model parameters ω ∈ Ω are estimated230

after the parametrisation update step and their statistical quality is quantified comput-
ing their covariance matrix Vω. Parameter estimates and related covariance computed
in the transformed parameter space Ω are then transformed to the original parameter
space Θ and returned as output.

4. An optimal MBDoE for parameter precision step. If parameter statistics in Θ are un-235

satisfactory and the experimental budget allows for additional samples to be collected,
the experimental activity shall proceed. Optimal experimental conditions are identi-
fied at this stage through MBDoE techniques for parameter precision (Franceschini
and Macchietto, 2008b) and transmitted to the automated platform for collecting the
next sample. Notice that in the proposed procedure the optimal MBDoE step occurs240

in the transformed parameter space Ω.

The illustrated steps constitute an iteration in the presented online framework. These are
further detailed in the following subsections. The computational burden associated with the
application of the proposed methodology is comparable with standard parameter estimation
algorithms based on parameter fitting. The procedure shows how it is possible to achieve an245

effective estimation of parameters in a (potentially) sloppy parameter space Θ by invoking
the parameter estimation and the MBDoE algorithms in a conveniently transformed, non-
sloppy, parameter space Ω. The values of the estimates and the related covariance obtained
in the robust space Ω are transformed to the original parameter space Θ by applying linear
transformations, which are computationally more robust operations than optimisations.250

2.2.1 Primary parameter estimation

The available dataset Y is provided to the model identification algorithm (see Figure 1).
The dataset Y consists N samples of y, i.e. Y = {y1, ...,yN}. It is assumed that the
measurements for y are affected by Gaussian noise with zero mean and covariance Σ. The
transformation matrix G is set equal to the primary transformation matrix GP. At the255

beginning of the model identification procedure GP is initialised as the identity matrix Iθ.
A primary estimation of the model parameters ω̂P is performed as in (4) maximising the
log-likelihood function (3).

Φ(ω|Y )|G=GP
=− N

2
[Ny ln (2π) + ln(det(Σ))]

− 1

2

N∑
i=1

[yi − ŷi(ω)]TΣ−1[yi − ŷi(ω)]|G=GP

(3)

ω̂P = arg max
ω∈Ω

Φ(ω|Y )|G=GP
(4)

In (3), the quantity ŷi represents the model prediction for the sample yi. The nega-
tive Hessian H of the log-likelihood function is then computed to evaluate the geometrical260

properties of the log-likelihood profile in proximity of the maximum likelihood estimate as
in (5).
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Figure 1: Proposed framework for the online identification of models in automated model
identification platforms. Fundamental step in the procedure is the update of the parametri-
sation matrix G after the collection and fitting of each sample. The online modification of
the model parametrisation is performed to maintain a high computational performance at
the parameter estimation and optimal MBDoE stages in the procedure.
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H(ω̂P)|G=GP
= −∇∇TΦ(ω̂P|Y )|G=GP

(5)

In (5), the symbol ∇ defines the gradient operator in the parameter space Ω. Matrix
H is also known as the observed Fisher information matrix and its inverse quantifies the
covariance matrix of the parameter estimates (Pukelsheim, 2006).265

Notice that the model may be sloppy at the primary parameter estimation stage and the
condition number may be very high, leading to numerical inaccuracy in the computation
of the primary parameter estimate in (4) and in the computation of the Hessian in (5).
Numerical results in Section 4 show that the performance of the online RP approach is
not affected significantly by this aspect, but further analysis is required. Assessing the270

sensitivity of the proposed approach to numerical inaccuracies at the primary parameter
estimation stage is going to be object of future research activities.

2.2.2 Parametrisation update

An eigendecomposition of the matrix (5) is performed at this stage with the aim of diag-
nosing the structure of the log-likelihood function in proximity of the maximum likelihood275

estimate and compute an opportune update to the transformation matrix G. Let Λ be
the diagonal matrix whose diagonal elements are the eigenvalues λ1, ..., λNθ of the observed
Fisher information matrix (5). The eigenvalues of the observed Fisher information matrix
represent the inverse eigenvalues of the covariance of the parameter estimates and the ratio
between the maximum and the minimum eigenvalue represents the condition number κ.280

κ =
maxi λi
mini λi

(6)

Let matrix U be the matrix whose columns represent the right normalised eigenvectors of
the observed Fisher information matrix (5). Matrix Λ and matrix U quantify the sloppiness
of the model in a more readable format. In fact, the eigenvalues and eigenvectors of the
negative Hessian (5) respectively quantify the extent of the sloppiness and the directions in
the parameter space which are associated to the sloppy behaviour of the model (Lopez C.285

et al., 2015). A family of secondary transformations GS can be constructed from GP, U and
Λ as in (7) with the aim of minimising the condition number of the problem (i.e. making
κ = 1.0).

GS = dGPUΛ−
1
2 R (7)

The family of transformations given in (7) is parametrised by the scalar d > 0 and by the
matrix R, which represent respectively a scaling factor and a rotation matrix in the param-290

eter space. The condition number κ is not influenced by the choice of d and R. However,
the omission of d and R from (7) (the omission is equivalent to setting d = 1.0 and R = Iθ
in (7)) may result in a transformation to a new parameter space in which there is signifi-
cant discrepancy in the orders of magnitude of the model parameters. Model identification
algorithms are influenced by the relative scale of parameters, e.g. in the computation of the295

gradients and, consequently, in the computation of the covariance of parameter estimates
(Saltelli et al., 2000). Working with parameters sharing the same order of magnitude is
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therefore desirable to avoid discrepancies on how the model identification algorithm handles
different directions of the parameter space. In this work, the scaling factor d and the ma-
trix R are computed to map the primary parameter estimate ω̂P into the parameter vector300

whose entries are all equal to 100.0 (this value was chosen arbitrarily) (Zhelezov, 2017). More
specifically, the rotation applied by R and the scaling factor d are computed to satisfy the
equality GPω̂P = 100.0 ·GS1θ where the vector 1θ is the Nθ × 1 array whose entries are all
equal to 1.0.

The secondary transformation matrix GS, computed as in (7), is then used to update305

the primary transformation matrix GP that will be used at the following iteration in the
procedure of Figure 1.

2.2.3 Secondary parameter estimation

The aim at the secondary parameter estimation stage is obtaining a more accurate estimate
for the parameters in the transformed space Ω. This is done by repeating the estimation310

of the parameters ω after the parametrisation update stage, i.e. after the transformation
of the (possibly) sloppy parameter space in a more robust, non sloppy parameter space.
The log-likelihood function of the model is optimised as in (8) with G = GS obtaining the
secondary parameter estimate ω̂S.

ω̂S = arg max
ω∈Ω

Φ(ω|Y )|G=GS
(8)

In principle, the primary and the secondary parameter estimates satisfy the equality315

GPω̂P = GSω̂S. However, numerical algorithms for parameter estimation are sensitive to
the model parametrisation (Rimensberger and Rippin, 1986; Dovi et al., 1994). More specif-
ically, the convergence rate of numerical optimisation routines to the maximum likelihood
estimate is sensitive to the choice of the transformation matrix G and the aforementioned
equality may not be satisfied in practice (Higham, 1996). The covariance Vω is then com-320

puted for the secondary parameter estimates as the inverse of the observed Fisher information
matrix (Bard, 1974).

Vω =
[
H(ω̂S)|G=GS

]−1
(9)

The parameter estimates θ̂ and their associated covariance matrix Vθ in the original
parameter space Θ are then computed by applying the secondary transformation to the
estimates ω̂S and covariance Vω computed in the transformed space Ω.325

θ̂ = GSω̂S (10)

Vθ = GSVωG
T
S (11)

In standard parameter estimation algorithms, the computation of the covariance Vθ re-
quires the inversion of the information matrix in the original parameter space Θ (Bard, 1974).
However, in the presence of a sloppy parametrisation, the information matrix in Θ may be
ill-conditioned. Notice that, in the proposed framework, the inversion of ill-conditioned
matrices is avoided. In fact, matrix inversion is performed in a conveniently transformed330
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parameter space Ω, as in (9), where the information matrix is well-conditioned. The covari-
ance in the original parameter space Vθ is then computed as in (11) by applying algebraic
transformations, which are numerically more robust operations than matrix inversions.

From the covariance Vθ, it is possible to derive the confidence intervals for the esti-
mates θ̂ ∈ Θ and the correlation coefficient cij between any estimated parameter pair θ̂i335

and θ̂j (Bard, 1974). Let vθ,ij be the ij-th element of the covariance matrix Vθ. The con-

fidence interval with significance α for the i-th parameter estimate θ̂i can be computed as
θ̂i ± zα/2

√
vθ,ii where zα/2 represents a two-tailed value computed from a standard normal

distribution with significance α. The correlation coefficient between any parameter pair θ̂i
and θ̂j can be computed according to (12).340

cij =
vθ,ij√
vθ,iivθ,jj

∀ i, j (12)

The statistical quality of the parameter estimates θ̂ in the original parameter space Θ
can be checked through a statistical test (e.g. a t-test) for assessing parameter precision
(Walpole et al., 2011).

2.2.4 Optimal MBDoE for parameter precision

If some parameter statistics are not satisfactory and the experimental budget allows for the345

collection of additional data then the experimental activity will continue with the collection
of an additional sample from the automated experimental setup. The following sample will
be collected with the aim of minimising the size of the confidence region of the parameter
estimates θ̂ ∈ Θ. Popular measures of the size of the confidence region are (Galvanin
et al., 2007; Franceschini and Macchietto, 2008b) i) the determinant of the covariance matrix350

det(Vθ) (i.e. the D-criterion), which quantifies the volume of the confidence ellipsoid of the
parameter estimates and ii) the trace of the covariance matrix Tr(Vθ) (i.e. the A-criterion),
which quantifies the volume of the hyperbox containing the confidence ellipsoid.

Optimal MBDoE problems for parameter precision may be ill-conditioned in the presence
of a sloppy parametrisation (White et al., 2016). In fact, the solution of an optimal MBDoE355

problem requires the inversion of an ill-conditioned matrix if the parametrisation is sloppy.
In this work it is proposed to solve the MBDoE problem in the robust parameter space
Ω with the aim of minimising the size of the confidence region in the original parameter
space Θ. In general, the optimal experimental conditions depend on the type of criterion
adopted for the design and on the model parametrisation. In this study, the D-criterion360

is employed because it is invariant under transformations of the parameter space (Fedorov,
1972; Rimensberger and Rippin, 1986). In fact, the following equality holds:

det(Vθ) = det(GS)2 det(Vω) (13)

It is sufficient to notice that matrix GS is not modified at the optimal MBDoE stage of
the procedure (see Figure 1), i.e. det(GS) represents a constant in the MBDoE problem.
Therefore, minimising the determinant of the covariance det(Vω) in the transformed param-365

eter space Ω is equivalent to minimising the determinant of the covariance det(Vθ) in the
original parameter space Θ.
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The optimal MBDoE problem in the robust space Ω requires the computation of a pre-
diction for the parameter covariance V̂ω (i.e. the posterior covariance matrix) after the
collection of the new sample.370

V̂ω =
[
V−1
ω +∇ŷ(ω̂S)Σ−1∇ŷ(ω̂S)T |G=GS

]−1
(14)

In (14), the second addend in the bracket represents the expected Fisher information
matrix of the sample to be designed, which is a function of the experimental design vector
ϕ. The inverse of the prior covariance matrix Vω is also included in (14) to quantify the
preliminary information that is available from previously fitted samples. The prior covariance
is updated at every iteration of the procedure in Figure 1, i.e. after the collection of each375

sample, according to (9). The D-optimal experimental conditions ϕ∗ for the collection of
the following sample are computed solving the following optimisation problem:

ϕ∗ = arg min
ϕ

det(V̂ω) (15)

The optimised conditions computed as in (15) are then transmitted to the automated
experimental setup for the collection of the following sample (see Figure 1).

3 Case study380

The proposed algorithm presented in Section 2.2 is tested on a case study. The objective is
the identification in an automated platform of a kinetic model of benzoic acid esterification
with ethanol (Pipus et al., 2000). The reaction is homogeneous and it is catalysed by
sulphuric acid. A description of the automated model identification platform is given in
Section 3.1. The modelling assumptions are presented in Section 3.2. The proposed online385

RP methodology is tested both in-silico (Section 4.1) and experimentally on an automated
model identification platform (Section 4.2). For both the simulated and the real cases two
experimental campaigns are performed:

• a campaign where the parametrisation matrix is not modified;

• a campaign where the parametrisation matrix is updated online.390

The two campaigns are performed to assess the influence of the online RP on the model
identification process. The methods adopted for the conduction of the experimental cam-
paigns are detailed in Section 3.3.

3.1 Automated model identification platform

A simplified diagram for the online model identification platform is given in Figure 2. The395

esterification of benzoic acid with ethanol catalysed by sulphuric acid occurs in a flow mi-
croreactor. The microreactor is a 2 m long PEEK tube with a diameter of 250 µm. It is
placed in a stirred oil bath whose temperature is controlled by a rope heater. The reactants
and the catalyst are injected through the flow reactor by three syringe pumps. Syringe 1 and

12



syringe 2 are filled with two different mixtures of benzoic acid and ethanol. The feed con-400

centration of benzoic acid in the reactor is manipulated by modifying the relative flowrates
of syringe 1 and syringe 2. Syringe pump 3 is filled with a 160 g L−1 sulphuric acid solu-
tion. The flowrate of syringe 3 is kept at 10% of the overall flowrate to maintain a constant
concentration of sulphuric acid at 16 g L−1 at the inlet of the flow reactor. The mixture
at the outlet of the reactor is analysed online by a Jasco HPLC using a 250 mm long, 4.6405

mm internal diameter ODS hypersil column with a particle size of 5 µm (Thermo Fisher
Scientific). The HPLC method uses 1.25 mL min−1 of a 40% water and 60% acetonitrile
mobile phase (percentages refer to volume fractions). The oven is maintained at 303 K and
a UV detection at 274 nm is used to detect the composition of the outlet mixture. Samples
are diluted using an online auto-sampler device (Syrris Asia) applying a dilution factor of410

250.
The experimental conditions which can be manipulated by the automated system are:

• the inlet concentration of benzoic acid CIN
BA in the range 0.9 - 1.55 mol L−1;

• the flowrate F of the feed mixture to the reactor in the range 7.5 - 30.0 µL min−1;

• the temperature of the oil bath T in the range 343.0 - 413.0 K.415

These constitute independent directions of the explorable space of experimental condi-
tions ϕ = [CIN

BA, F, T ]. The experimental setup is controlled through a LabVIEW interface
(Elliott et al., 2007) implemented in a 32-bit Windows machine with Intel Core i7-3770
3.40 GHz processor and 4.0 GB of RAM. A script written in Python 2.7 implementing the
model identification algorithm presented in Section 2.2 is integrated with LabVIEW for the420

purposes of online parameter estimation and sample design. The main Python packages
employed in the script are NumPy 1.13 (Oliphant, 2015) for the manipulation of algebraic
objects and SciPy 1.1 (Jones et al., 2001) for integrating the kinetic model equations and
solving the optimisation problems associated with parameter estimation and MBDoE. Pa-
rameter estimation problems are solved using the Nelder-Mead method. MBDoE problems425

are solved employing the SLSQP solver.
The parametrisation update stage of the algorithm (see Figure 1) was implemented in

the Python script as an option that can be activated or deactivated from LabVIEW. This
option was implemented to give more flexibility to the user in testing the model identification
algorithm both in the presence and in the absence of the online RP method.430

3.2 Modelling assumptions

The catalytic esterification of benzoic acid and ethanol is modelled as a single reaction system
where benzoic acid (BA) and ethanol (Et) react to produce ethyl benzoate (EB) and water
(W) (Pipus et al., 2000).

Benzoic Acid + Ethanol � Ethyl Benzoate + Water (16)

Available studies in the literature report that the reaction is reversible. However, if a large435

excess of ethanol in the reactor is maintained (as in this work), the reverse reaction can be
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Figure 2: Simplified diagram representing the online model identification platform.

neglected (Pipus et al., 2000). The tubular reactor is modelled as an ideal plug flow reactor
operated at isothermal conditions, i.e. thermal and mass transfer resistances are neglected.
The validity of plug flow behaviour was checked by evaluating the vessel dispersion number
(Levenspiel, 1998; Rossi et al., 2017). A maximum vessel dispersion number of 6.8 ·10−4 was440

computed for the flowrate range considered in the study. The computed value is significantly
smaller than 1.28 · 10−2, i.e. the maximum vessel dispersion number recommended in the
literature for the validity of the plug flow assumption (Levenspiel, 1998).

The reaction rate is assumed as first order with respect to benzoic acid. Following from
the aforementioned assumptions, the steady-state kinetic behaviour of the system is modelled445

through the following set of ordinary differential equations (17):

v
dCi
dz

= νikCBA(z) ∀ i = BA,Et,EB,W (17)

In (17), Ci is the concentration of the i-th component in the mixture expressed in molL−1;
z represents the axial spatial coordinate of the tubular reactor expressed in m; v is the axial
velocity of the liquid bulk expressed in m s−1; νi is the stoichiometric coefficient of the i-th
component in the mixture; k is the rate constant expressed in s−1.450

An Arrhenius-type kinetic constant involving a set of two kinetic parameters θ = [θ1, θ2]
is assumed with the following mathematical structure:

k = eθ1−
104θ2
RT (18)
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In (18), R is the ideal gas constant expressed in J mol−1 K−1. As one can see from (18),
the pre-exponential factor is included as exponent in the rate constant and the activation
energy is multiplied by a scaling factor. The above structure for the kinetic rate constant455

was selected because it is generally recognised as robust within the literature on kinetic
parameter estimation (Asprey and Naka, 1999; Buzzi-Ferraris and Manenti, 2009). In other
words, parametrisation (18) generally leads to an improvement of the condition number with
respect to the original form of the Arrhenius constant, i.e. k = Ae−Ea/RT , parametrised by
pre-exponential factor A and activation energy Ea.460

3.3 Objective and methods

The objective of the study is the estimation of the kinetic parameters θ = [θ1, θ2] with

the smallest volume confidence region of θ̂ by conducting an experimental campaign on the
online model identification platform with an available budget of 9 samples. A sample is
constituted by the single measurement of ethyl benzoate concentration at the outlet of the465

reactor, i.e. y = [COUT
EB ] [mol L−1]. The measurement error is modelled as Gaussian noise

with covariance matrix Σ = [2.5·10−5], i.e. a standard deviation of 0.0165 molL−1 is assumed
to model the Gaussian measurement noise for COUT

EB . The experimental conditions for the
collection of samples 1, 2 and 3 are fixed to the values reported in Table 1. The following
samples, i.e. samples from 4 to 9, are designed by the model identification algorithm by470

employing a D-optimal criterion, i.e. by solving an MBDoE problem in the form (15).
Two cases are proposed to test the model identification algorithm implemented in the

online model identification platform:

1. Simulated case: samples generated in-silico. Samples are generated simulating the
experiments with the kinetic model (17) setting the kinetic parameters equal to the475

value θ∗ = [15.27, 7.60] and adding Gaussian noise with covariance Σ.

2. Real case: samples collected from the experimental platform. In this case, samples are
collected from the experimental platform described in Section 3.1. An interval of 65
min is allowed between the collection of samples to let the system reach steady-state
conditions.480

For both the Simulated and the Real case, two experimental campaigns are performed: 1)
a non-RP campaign in which the online reparametrisation is not activated; 2) a RP campaign
in which the online reparametrisation is activated. This is done to provide a comparison
of the performance of the model identification algorithm both in the presence and in the
absence of the online RP method. In the Simulated case, the effect of the online RP is485

assessed comparing statistically the parameter estimates θ̂ computed in the two campaigns
with the target parameter value θ∗ = [15.27, 7.60]. This is done by means of a χ2-test in the
parameter space Θ. This involves testing the null hypothesis that the following statistic χ2

θ

is distributed as a χ2 distribution with degree of freedom Nθ = 2.

(θ̂− θ∗)TV−1
θ (θ̂− θ∗) = χ2

θ ∼ χ2 (19)

15



A small p-value associated to the statistic χ2
θ (e.g. smaller than 1.0%) is interpreted as an490

index of failure of the model identification algorithm in estimating the target parameter val-
ues. In the Real case, the target parameter value θ∗ is unknown. Furthermore, a discrepancy
in the parameter estimates between the RP and the non-RP campaigns is not only caused
by numerical reasons, but also by problems of experimental repeatability caused by external
disturbances (Alberton et al., 2009). The presence of disturbances can lead to changes in the495

parameters of the population from which experimental data are sampled and the concomi-
tant inclusion of outliers in the dataset (Huber, 2004). It is recognised that, in the presence
of such uncertainty sources, a statistical analysis to validate the models identified in the two
campaigns would not be significant and it is therefore omitted.

Confidence intervals and correlation coefficient for the parameter estimates (see Section500

2.2.3) are recorded in the course of the experimental campaigns and they are reported in the
Results section. The condition number κ is also recorded in the course of the experimental
campaigns and it is reported to demonstrate the performance of the online RP in improving
and maintaining the well-posedness of the model identification problem.

Table 1: Experimental conditions ϕ adopted for the collection of samples 1 to 3 in the
experimental campaigns: inlet concentration of benzoic acid CIN

BA; flowrate F ; temperature
of the oil bath T .

Sample CIN
BA F T

number [mol L−1] [µL min−1] [K]

1 1.50 20.0 413.0
2 1.00 10.0 393.0
3 1.25 15.0 403.0

4 Results505

4.1 Simulated case: samples generated in-silico

The estimates for the kinetic parameters θ1 and θ2 for the non-RP campaign are reported
in Table 2 together with information on their statistical quality. More specifically, the 95%
confidence intervals and the correlation coefficient c12 between the kinetic parameters θ1

and θ2 are reported. One can see from Table 2 that the correlation coefficient c12 remains510

above 99.96% in the course of the campaign. The parameter estimation and the MBDoE
problems are solved in the original parameter space Θ where the condition number of the
log-likelihood function remains above 6.1 ·103 throughout the whole experimental campaign.
The χ2-test was conducted to compare statistically the computed parameter distribution
with the target parameter value θ∗ (see Section 3.3 for information on how the test statistic515

is computed). As one can see from Table 2, a p-value of 0.00% in the course of the non-RP
campaign suggests that the parameter estimates computed by the algorithm are statistically
inconsistent with the target parameter values.
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Table 2: Simulated case: non-RP campaign. Parameter estimates are reported together
with their respective 95% confidence intervals and correlation coefficient in the course of
the experimental campaign. Parameter estimation and MBDoE problems are solved in the
original parameter space Θ. The condition number of the log-likelihood function in Θ is
reported in the table.

Simulated case - non-RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation p-value of target Condition
collected with 95% confidence intervals coefficient c12 parameters θ∗ number κ in Θ

1 [ - , - ] - - -
2 [ - , - ] - - -
3 [ 12.15 ± 2.14 , 6.56 ± 1.35 ] 0.9998 0.00% 1.4·104

4 [ 14.83 ± 1.22 , 7.47 ± 0.81 ] 0.9996 0.00% 6.1·103

5 [ 15.99 ± 1.01 , 7.85 ± 0.70 ] 0.9998 0.00% 1.0·104

6 [ 15.06 ± 0.79 , 7.53 ± 0.53 ] 0.9997 0.00% 7.2·103

7 [ 14.90 ± 0.74 , 7.47 ± 0.50 ] 0.9997 0.00% 9.2·103

8 [ 14.84 ± 0.66 , 7.45 ± 0.44 ] 0.9997 0.00% 8.2·103

9 [ 14.94 ± 0.63 , 7.49 ± 0.42 ] 0.9998 0.00% 9.6·103

Table 3: Simulated case: RP campaign. Parameter estimates in the course of the experi-
mental campaign are reported together with their respective 95% confidence intervals and
correlation coefficient. Parameter estimation and MBDoE problems are solved in the trans-
formed parameter space Ω. The condition number of the log-likelihood function in Ω is
reported in the table.

Simulated case - RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation p-value of target Condition
collected with 95% confidence intervals coefficient c12 parameters θ∗ number κ in Ω

1 [ - , - ] - - -
2 [ - , - ] - - -
3 [ 16.44 ± 64.52 , 8.01 ± 25.05 ] 0.9999 0.00% 5.5·108

4 [ 16.61 ± 3.55 , 8.06 ± 1.21 ] 0.9999 68.26% 3.8·102

5 [ 15.60 ± 2.01 , 7.72 ± 0.68 ] 0.9998 86.41% 1.2·100

6 [ 15.72 ± 1.62 , 7.76 ± 0.55 ] 0.9997 70.47% 1.0·100

7 [ 15.72 ± 1.50 , 7.76 ± 0.51 ] 0.9998 69.84% 1.0·100

8 [ 15.59 ± 1.44 , 7.71 ± 0.49 ] 0.9998 56.62% 1.0·100

9 [ 15.39 ± 1.24 , 7.64 ± 0.42 ] 0.9998 64.74% 1.0·100
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(a) (b)

Figure 3: Simulated case: (a) parameter estimates and (b) ±95% confidence intervals
throughout the non-RP campaign (dotted) and the RP campaign (solid). In subfigure (a),
the target parameters are indicated by a dashed line.

Figure 4: Simulated case: parameter estimates and related 95% confidence ellipsoids at the
end of the non-RP campaign (dotted) and at the end of the RP campaign (solid). The target
parameter value is highlighted in the graph by a star-shaped symbol.
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Parameter estimates and related information on their statistical quality are given in
Table 3 for the RP campaign. In the course of the RP campaign, the correlation coefficient520

c12 remains above 99.97%. In the RP campaign, the parameter estimation problem and the
MBDoE problem are solved in the transformed parameter space Ω, where the transformation
matrix G is refined after the collection of each sample. The condition number of the log-
likelihood function in Ω starts from a value of 5.5 · 108 at the first iteration of the model
identification algorithm (i.e. after the collection of 3 samples) and it is reduced to 1.0 at525

the fourth iteration (i.e. after the collection of 6 samples). The benefit derived from the
application of the online RP is validated by the χ2-test. The p-value of the target value θ∗

given the computed covariance at the end of the model identification campaign is 64.74%.
This confirms that the algorithm computed estimates that are statistically consistent with
the target parameter value θ∗.530

The parameter estimates and related 95% confidence intervals obtained in the non-RP
campaign and in the RP campaign are compared graphically in Figure 3a and Figure 3b.
In Figure 3a, one can see that both the methods present a similar convergence to the target
parameter values, highlighted with dashed lines in the plot. In Figure 3b, one can see
that the 95% confidence intervals for the parameters are significantly different between the535

non-RP and the RP campaign. In particular the confidence interval of parameter θ̂1 is
significantly larger in the RP case than in the non-RP case. The discrepancy is interpreted
as a consequence of an inaccurate computation of the log-likelihood gradient in the non-RP
case, which results in an underestimation in the variance of the estimate θ̂1 (see Section 2.1
for more details).540

The final parameter estimates obtained in the non-RP and in the RP campaigns in
the simulated case are compared graphically in Figure 4. In Figure 4 the final parameter
estimates are plotted with their respective 95% confidence ellipsoids for the non-RP campaign
(dotted) and for the RP campaign (solid). The target parameter value is highlighted in Figure
4 by a star-shaped symbol. As one can see from Figure 4 the target value lies within the545

solid ellipsoid of the RP campaign, while it lies outside the dotted ellipsoid of the non-RP
campaign. The graph shows that the non-RP campaign leads to the misleading conclusion
that the target parameter values are not the parameters values of the physical system. The
RP campaign led to a more reliable estimate of the kinetic parameter values.

Additional campaigns were performed in-silico to demonstrate that the performance of550

the model identification algorithm is insensitive to a change in the dataset, i.e. it is insensitive
to a change in the random seed used to generate the data in-silico. The results obtained from
20 simulated campaigns are reported in Appendix A. Both in RP and non-RP campaigns,
each algorithm iteration required only few seconds of CPU time.

4.2 Real case: samples collected from the experimental platform555

Two campaigns of experiments, i.e. a non-RP campaign and a RP campaign, were per-
formed on the automated system. Experimental conditions investigated in the course of the
campaign and the associated sampled concentrations are given in Appendix B. Parameter
estimates θ̂ with associated confidence intervals and correlation coefficient are reported in
Table 4 for the non-RP campaign and in Table 5 for the RP campaign. Numerical estimates560

in terms of pre-exponential factor and activation energy were also computed from θ̂. These
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(a) (b)

Figure 5: Real case: (a) parameter estimates and (b) ±95% confidence intervals throughout
the non-RP campaign (dotted) and the RP campaign (solid).

Figure 6: Real case: parameter estimates and related 95% confidence ellipsoids at the end
of the non-RP campaign (dotted) and at the end of the RP campaign (solid).
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Table 4: Real case: non-RP campaign. Parameter estimates in the course of the experimental
campaign with 95% confidence intervals and correlation coefficient. Parameter estimation
and MBDoE problems are solved in the original parameter space Θ. The condition number
of the log-likelihood function in Θ is reported in the table.

Real case - non-RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation Condition
collected with 95% confidence intervals coefficient c12 number κ in Θ

1 [ - , - ] - -
2 [ - , - ] - -
3 [ 16.16 ± 2.16 , 7.94 ± 1.49 ] 0.9998 1.5·104

4 [ 16.44 ± 1.29 , 8.03 ± 0.89 ] 0.9996 6.1·103

5 [ 17.15 ± 1.09 , 8.26 ± 0.77 ] 0.9998 1.1·104

6 [ 16.80 ± 0.85 , 8.14 ± 0.59 ] 0.9997 7.8·103

7 [ 17.23 ± 0.79 , 8.28 ± 0.56 ] 0.9998 1.1·104

8 [ 17.15 ± 0.68 , 8.26 ± 0.48 ] 0.9997 8.4·103

9 [ 17.42 ± 0.66 , 8.34 ± 0.47 ] 0.9998 1.0·104

Table 5: Real case: RP campaign. Parameter estimates in the course of the experimental
campaign with 95% confidence intervals and correlation coefficient. Parameter estimation
and MBDoE problems are solved in the transformed parameter space Ω. The condition
number of the log-likelihood function in Ω is reported in the table.

Real case - RP campaign

Samples Estimates θ̂ = [θ̂1, θ̂2] Correlation Condition
collected with 95% confidence intervals coefficient c12 number κ in Ω

1 [ - , - ] - -
2 [ - , - ] - -
3 [ 17.54 ± 13.41 , 8.37 ± 5.38 ] 0.9999 2.6·107

4 [ 18.12 ± 3.59 , 8.56 ± 1.23 ] 0.9999 8.0·102

5 [ 16.86 ± 2.01 , 8.13 ± 0.68 ] 0.9998 1.3·100

6 [ 16.90 ± 1.64 , 8.15 ± 0.55 ] 0.9997 1.0·100

7 [ 16.91 ± 1.51 , 8.15 ± 0.51 ] 0.9998 1.0·100

8 [ 16.83 ± 1.32 , 8.12 ± 0.45 ] 0.9997 1.0·100

9 [ 16.98 ± 1.26 , 8.17 ± 0.43 ] 0.9998 1.0·100
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are reported in Appendix B.
In the course of the non-RP campaign (see Table 4), the parameter correlation c12 between

θ̂1 and θ̂2 remains above 99.96%. In the non-RP campaign the parameter estimation and
MBDoE problems are solved in the original parameter space Θ. The condition number of the565

log-likelihood function in Θ remains above 6.1 · 103 in the course of the non-RP campaign.
The correlation between θ̂1 and θ̂2 is above 99.97% throughout the whole RP campaign

(see Table 5). However, in the RP campaign, parameter estimation and MBDoE problems
are solved in the transformed parameter space Ω. The condition number in Ω is reduced by
the algorithm from an initial value of 2.6 · 107 to the minimum value 1.0 in four iterations570

(i.e. after the collection of 6 samples). The transformation matrix G is then adjusted after
the collection of each sample to maintain a condition number κ = 1.0 until the end of the
experimental campaign.

The parameter estimates and related 95% confidence intervals obtained in the non-RP
and in the RP campaigns are plotted in Figure 5a and Figure 5b. The 95% confidence575

ellipsoids associated to the final parameter estimates achieved in the non-RP campaign and
in the RP campaign are plotted in Figure 6.

Notice that in this case it is not possible to quantify and compare the performance of the
two campaigns in retrieving the target parameter value. The target kinetic parameters are in
fact unknown in the real case. One can observe from Figure 5a that the estimates achieved580

in the RP campaign exhibit a convergent behaviour around the values θ = [16.90, 8.15].
Estimates θ̂1 and θ̂2 in the non-RP campaign do not exhibit a convergent behaviour, but
they tend to increase in the course of the non-RP campaign (see Figure 5a). It is not possible
to assess whether the absence of convergence in the non-RP campaign is the consequence of
an unknown systematic disturbance in the system. However, it is possible to appreciate that585

the application of the online RP method led to the minimisation of the condition number (see
Table 5) with the concomitant improvement in the numerical performance of the optimisation
algorithms. Also in the real case, both in the RP and in the non-RP campaign, the CPU
time required to complete each algorithm iteration was on the order of seconds.

A goodness-of-fit test was also conducted to demonstrate that, both in the RP and in590

the non-RP campaign, the postulated first order single-reaction mechanism (see Section 3.2)
provided an accurate representation of the chemical system. Nonetheless, it was recognised
that an analysis on the goodness-of-fit was not significant for demonstrating the online RP
method. It was chosen to report in Appendix B the numerical details regarding the analysis
on the fitting quality.595

4.3 Results discussion

Both in the simulated and in the real case, the 95% confidence intervals of the estimates
after 9 collected samples differ significantly between the non-RP and the RP campaign (see
Figure 3b and Figure 5b). In the simulated case, a χ2-test was conducted to compare the
final statistics on the parameters computed in the RP campaign with the final statistics600

obtained in the non-RP campaign. It was shown that the confidence region of the parameter
estimates computed in the RP campaign contains the target parameter value θ∗ while the
ellipsoid computed in the non-RP campaign does not contain the target value θ∗ (see Figure
4). Hence, it was possible to demonstrate statistically that the campaign with online RP
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(a) (b)

Figure 7: Condition number after each sample collected in the simulated case (dotted line)
and in the real case (solid line): (a) non-RP campaigns; (b) RP campaigns.

led to a more accurate quantification of the uncertainty region associated to the computed605

parameter estimates.
Figure 7a and Figure 7b show the condition numbers in the course of the non-RP and RP

campaigns respectively. In the non-RP campaigns (see Figure 7a), the condition number κ is
around 104 and does not vary significantly in the course of the sample collection process. In
the RP campaigns, both in the simulated and in the real case, the employment of the online610

RP method led to the minimisation of the condition number to κ = 1.0 in an initially ill-
conditioned model identification problem (see Figure 7b). From Figure 7b, one can see that,
both in the simulated and in the real case, the condition number is minimised to κ = 1.0
when sample 6 is collected, i.e. after 4 iterations in the model identification algorithm. This
is explained by the fact that the update for the transformation matrix G is evaluated as615

a function of the Hessian H computed with the primary transformation matrix GP (see
Section 2.2).

The condition number in the transformed space associated to GP may be very high at the
first iteration of the algorithm. A high condition number at the primary parameter estimation
step may lead to an inaccurate computation of the Hessian (i.e. an inaccurate quantification620

of the sloppiness) and, consequently, lead to the computation of an inappropriate update for
G. This does not appear to affect the performance of the online RP approach in the presented
case study, but further analysis is required. It is object of future research activities to make
the proposed algorithm insensitive towards numerical inaccuracies in the initial diagnosis of
model sloppiness.625

5 Conclusion

A model identification algorithm implementing a novel approach of online reparametrisa-
tion, i.e. an approach of online transformation of the model parameter space, is proposed

23



in this manuscript. The tool is designed specifically to deal with the problem of param-
eter estimation in the presence of sloppy model structures, i.e. models whose parameters630

are practically non-identifiable and/or highly correlated. The proposed approach to online
reparametrisation is based on two fundamental steps: 1 ) a primary parameter estimation
step, which is required to diagnose and quantify the sloppiness of the model parameter space;
2 ) a parametrisation update step in which the sloppy parameter space is transformed to a
robust parameter space with the aim of reducing the sloppiness. Once the model parametri-635

sation is updated, the parameter estimation is repeated solving an optimisation problem in
the transformed, non-sloppy, parameter space. Additional samples are then designed by the
algorithm employing techniques for optimal design of experiments with the aim of improv-
ing the statistical quality of parameter estimation. It is shown that optimisation algorithms
benefit significantly from the presence of a robust (i.e. non-sloppy) model parametrisation640

both at the parameter estimation and at the experimental design stage. Parameter estimates
computed in the robust space are then transformed to the original, sloppy, parameter space
applying algebraic transformations and returned as output to the user.

The performance of the presented algorithm was tested both in-silico and on a real system
where an automated experimental platform has been employed for online kinetic model645

identification. The objective was the estimation of the kinetic parameters in a two-parameter
model of benzoic acid esterification with ethanol catalysed by sulphuric acid in a flow reactor.
In both cases, the reparametrisation algorithm iteratively reduced and eventually eliminated
model sloppiness minimising the condition number of an originally ill-conditioned model
identification problem. In the case study performed in-silico, a set of values for the kinetic650

parameters was assumed to simulate the experiments. Hence, it was possible to show that
the ill-conditioned nature of the model was preventing a conventional model identification
algorithm from retrieving the target value of the kinetic constants. The presented model
identification algorithm implementing the proposed online reparametrisation method was
instead capable of computing estimates that were statistically compatible with the assumed655

target values of the kinetic parameters.
In the real case, the target values for the kinetic constants were unknown and it was

not possible to quantify directly the convergence of the parameter estimates to the target
kinetic coefficients. However, it was possible to appreciate that, also in the experimental
campaign performed on the real system, the model identification algorithm implementing the660

online reparametrisation routine iteratively reduced and eventually minimised the condition
number. The minimisation of the condition number to unity and the concomitant elimination
of model sloppiness resulted in an improved performance of optimisation algorithms employed
in the course of the model identification process.

The proposed reparametrisation method was integrated as an optional step in an on-665

line model identification algorithm implemented in a Python script. It was shown that
the computational performance of the algorithm was not affected significantly by the addi-
tional step of model reparametrisation. The modest computational cost associated to the
reparametrisation step and the low memory requirement of the method make it suitable for
implementation also on embedded devices. Future research activities will focus primarily on670

three aspects: 1) improving the efficiency of the proposed method by reducing the number
of iterations required to minimise the condition number and eliminate model sloppiness; 2)
validating the proposed approach on more complex model structures, e.g. kinetic models in-
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volving a higher number of parameters and multiple measured model responses; 3) extending
the proposed online reparametrisation algorithm including routines for applying nonlinear675

transformations to the parameter space.
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Symbols used

Latin symbols

A pre-exponential factor
cij correlation coefficient between θi and θj
Ci concentration of species i
CIN
i concentration of species i at the inlet

COUT
i concentration of species i at the outlet

d scaling factor of parameter space (> 0)
Ea activation energy
F volumetric flowrate
k kinetic constant
N number of samples in the available dataset Y
Nf number of functions in a given kinetic model
NMAX maximum number of samples collectable
Nu number of independent inputs in a given kinetic model
Nx number of state variables in a given kinetic model
Ny number of output variables in a given kinetic model
Nθ number of non-measurable parameters in a given model
R ideal gas constant
t time
T temperature
U vector space of model inputs
v flow velocity along the axial coordinate of microchannel
vθ,ij ij-th element of the covariance matrix Vθ

Y dataset available for model identification
z axial coordinate of microchannel
zα/2 two-tailed score of standard normal distribution with significance α

Matrices and vectors

1θ column array whose entries are all equal to 1 [Nθ × 1]
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f column array of functions [Nf × 1]
G linear transformation of parameter space Ω→ Θ [Nθ ×Nθ]
GP primary transformation of parameter space Ω→ Θ [Nθ ×Nθ]
GS secondary transformation of parameter space Ω→ Θ [Nθ ×Nθ]
h column array of functions [Ny × 1]
H observed Fisher information matrix [Nθ ×Nθ]
Iθ identity matrix [Nθ ×Nθ]
R matrix of rotation of parameter space [Nθ ×Nθ]
u column array of independent control variables (model inputs) [Nu × 1]
U right normalised eigenbasis of H [Nθ ×Nθ]
Vθ covariance of parameter estimates in Θ [Nθ ×Nθ]
Vω covariance of parameter estimates in Ω [Nθ ×Nθ]

V̂ω predicted covariance of parameter estimates in Ω [Nθ ×Nθ]
x column array of state variables [Nx × 1]
y sample - column array of measured output variables [Ny × 1]
yi i-th sample in dataset Y [Ny × 1]
ŷ column array of predicted output variables [Ny × 1]
ŷi column array of predicted output variables for sample yi [Ny × 1]
θ column vector of parameters in parameter space Θ [Nθ × 1]
θ∗ column vector of target parameters in parameter space Θ [Nθ × 1]

θ̂ maximum likelihood estimate for θ ∈ Θ [Nθ × 1]
Λ diagonal matrix whose ii-th element is λi [Nθ ×Nθ]
Σ covariance of measurement error for sample y [Ny ×Ny]
ϕ experimental design vector
ϕ∗ D-optimal experimental design vector
ω column vector of parameters in parameter space Ω [Nθ × 1]
ω̂P column vector of parameter estimates computed with G = GP [Nθ × 1]
ω̂S column vector of parameter estimates computed with G = GS [Nθ × 1]

Greek symbols

α statistical significance
θi i-th model parameter

θ̂i estimate for the i-th model parameter
Θ original vector space of model parameters
κ condition number
λi i-th eigenvalue of H
νi stoichiometric coefficient of the i-th species
Φ log-likelihood function
χ2
θ χ2 statistic of target parameters
χ2
ref 95% value computed from a χ2 distribution
χ2
sample sum of normalised squared residuals

Ω transformed vector space of model parameters
∇ gradient operator in parameter space
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Acronyms

ED Experimental Design
HPLC High-Performance Liquid Chromatograph
MBDoE Model-Based Design of Experiments
RG Regularisation
RP Reparametrisation
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Appendix A

Additional simulated cases

A total number of 20 experimental campaigns were simulated to further validate the results
presented in the manuscript. This was done primarily to demonstrate that the performance850

achieved by the algorithm both in the RP and in the non-RP campaigns is insensitive to the
choice of the dataset (i.e. it is insensitive to the choice of the random seed used to generate
the experimental data in-silico).

The results obtained in the simulated campaigns are reported in Table A.1. Campaigns
1-10 were performed applying the online reparametrisation method (RP campaigns), while855

campaigns 11-20 were performed without online reparametrisation (non-RP campaigns). As
one can see from Table A.1, the algorithm with online RP option active retrieved the target
parameter value in all the campaigns, i.e. the final p-value of the target parameters is above
1.00% in campaigns 1-10. The condition number of the log-likelihood functions at the end
of experimental campaigns 1-10 is 1.0, demonstrating that the application of the online RP860

led to the elimination of the model sloppiness. In the campaigns where the online RP is
inactive, i.e. campaigns 11-20, the final p-value is 0.00%, demonstrating the failure of the
algorithm in retrieving the target value of the parameters. The failure is associated to the
high condition number of the log-likelihood function, which is around 103−104 in campaigns
11-20.865
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Table A.1: Results obtained in 20 simulated experimental campaigns: experimental cam-
paigns 1-10 were performed keeping the online reparametrisation option active; campaigns
11-20 were performed keeping the option for online reparametrisation inactive. The p-value
of the target parameters θ∗ = [15.27, 7.6] given the final parameter statistics is reported
together with the condition number of the log-likelihood function at the end of the experi-
mental campaigns.

Campaign Online Final p-value of target Final condition
number reparametrisation parameters θ∗ number κ

1 Active 64.74% 1.0·100

2 Active 98.91% 1.0·100

3 Active 91.98% 1.0·100

4 Active 20.59% 1.0·100

5 Active 30.52% 1.0·100

6 Active 67.93% 1.0·100

7 Active 16.61% 1.0·100

8 Active 92.17% 1.0·100

9 Active 23.19% 1.0·100

10 Active 71.59% 1.0·100

11 Inactive 0.00% 9.6·103

12 Inactive 0.00% 9.4·103

13 Inactive 0.00% 9.5·103

14 Inactive 0.00% 9.3·103

15 Inactive 0.00% 1.1·104

16 Inactive 0.00% 9.5·103

17 Inactive 0.00% 1.0·104

18 Inactive 0.00% 9.2·103

19 Inactive 0.00% 8.7·103

20 Inactive 0.00% 9.3·103
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Appendix B

Real case: additional information

Additional details are presented in this appendix regarding the non-RP campaign and the
RP campaign performed on the experimental automated system. Information related to the
campaign performed keeping the option for online model reparametrisation inactive, i.e. the870

non-RP campaign, is reported in Table B.1. Information on the campaign conducted keeping
the option for online reparametrisation active, i.e. the RP campaign, is given in Table B.2. In
Table B.1 and Table B.2 the following information is presented: 1) experimental conditions
adopted to collect the samples, i.e. inlet concentration of benzoic acid CIN

BA, flowrate F
and temperature T ; 2) sampled concentration of ethyl benzoate at the outlet COUT

EB ; 3)875

parameter estimates θ̂ = [θ̂1, θ̂2] returned by the model identification algorithm; 4) the pre-

exponential factor and activation energy computed from the estimates θ̂1 and θ̂2 as A = eθ̂1

and Ea = 104 · θ̂2; 5) the sum of squared residuals χ2
sample and the reference value χ2

ref

computed from a χ2 distribution with degree of freedom equal to the number of samples
minus the number of parameters and 95% of significance.880

A sum of squared residuals χ2
sample larger than the reference value χ2

ref is interpreted as
an index of inappropriate modelling assumptions (Silvey, 1975). As one can see from Table
B.1, the χ2

sample after the collection of 9 samples in the non-RP campaign is 5.92. From
Table B.2, it can be appreciated that the χ2

sample after the collection of 9 samples in the RP
campaign is 1.83. Both in the non-RP and in the RP campaign the χ2

sample is smaller than885

the χ2
ref = 17.88, thus demonstrating that the modelling assumptions (see Section 3.2) are

not falsified by the experimental evidence.
As one can see from Table B.1, the experimental conditions designed by the algorithm for

samples 5, 7 and 9 in the non-RP case were similar, i.e. inlet concentration of benzoic acid
CIN

BA = 1.55 molL−1, flowrate around F = 7.5 µLmin−1 and temperature T = 413.0 K, i.e. the890

upper limit for the temperature. Samples 4, 6 and 8 were instead designed by the algorithm
at conditions CIN

BA = 1.55 mol L−1, flowrate F = 7.5 µL min−1 and temperature in the range
T = 383.0− 390.0 K. The designed samples in the non-RP case suggest the presence of two
optimally informative sets of experimental conditions at maximum temperature T = 413.0
K and at temperature around T = 385.0 K, given that the inlet concentration of benzoic895

acid CIN
BA is set at the maximum and that flowrate F is set at the minimum.

An analogous situation can be observed in the RP case. As one can see from Table
B.2, samples 4, 7 and 9 in the RP case were designed at conditions CIN

BA = 1.55 mol L−1,
F = 7.5 µL min−1 and T = 413.0 K. Samples 5, 6 and 8 were instead designed at conditions
CIN

BA = 1.55 mol L−1, F = 7.5 µL min−1 and temperature around T = 391.0 K.900
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Table B.1: Real case: experimental campaign with online RP option inactive. Experimental
conditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Real Case - Online RP Inactive

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
sample χ2

ref

1 1.50 20.00 413.0 0.370 - - - - - -
2 1.00 10.00 393.0 0.161 - - - - - -
3 1.25 15.00 403.0 0.240 16.16 7.94 1.04·107 7.94·104 4.35·10−4 3.84
4 1.55 7.50 383.0 0.175 16.44 8.03 1.39·107 8.03·104 2.65·10−2 5.99
5 1.55 7.58 413.0 0.848 17.15 8.26 2.81·107 8.26·104 1.04 7.81
6 1.55 7.50 390.2 0.284 16.80 8.14 1.98·107 8.14·104 1.31 9.49
7 1.55 7.50 413.0 0.876 17.23 8.28 3.03·107 8.28·104 3.56 11.07
8 1.55 7.50 388.5 0.254 17.15 8.26 2.82·107 8.26·104 3.59 12.59
9 1.55 7.50 413.0 0.887 17.42 8.34 3.69·107 8.34·104 5.92 14.07

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = 104 · θ2
2 A χ2

sample larger than χ2
ref is an index of inappropriate modelling assumptions

Table B.2: Real case: experimental campaign with online RP option active. Experimental
conditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Real Case - Online RP Active

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
sample χ2

ref

1 1.50 20.00 413.0 0.409 - - - - - -
2 1.00 10.00 393.0 0.172 - - - - - -
3 1.25 15.00 403.0 0.252 17.54 8.37 4.13·107 8.37·104 0.21 3.84
4 1.55 7.50 413.0 0.900 18.12 8.56 7.39·107 8.56·104 0.52 5.99
5 1.55 7.50 392.3 0.346 16.86 8.13 2.10·107 8.13·104 1.27 7.81
6 1.55 7.50 390.6 0.307 16.90 8.15 2.18·107 8.15·104 1.27 9.49
7 1.55 7.50 413.0 0.895 16.91 8.15 2.20·107 8.15·104 1.27 11.07
8 1.55 7.50 391.2 0.323 16.83 8.12 2.04·107 8.12·104 1.31 12.59
9 1.55 7.50 413.0 0.908 16.98 8.17 2.36·107 8.17·104 1.83 14.07

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = 104 · θ2
2 A χ2

sample larger than χ2
ref is an index of inappropriate modelling assumptions
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