The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity

Seidel, M.G.¹⁵*, MD, Kindle, G.^{2, 3\$}, MD, Dipl.Inf., Gathmann, B.², MSc, Quinti, I.⁴, MD, Buckland, M.⁵, MD, van Montfrans, J.⁶, MD, PhD, Scheible, R.², Dipl.Inf., Rusch, S.^{2, 3}, Dipl.Inf., Gasteiger, L.M.¹, C.m., Grimbacher, B.², MD, Mahlaoui, N.^{7#}, MD, PhD, and Ehl, S.^{2, 8#*} MD, on behalf of the ESID Registry Working Party (see complete contributors list at the end)

^{\$} contributed equally

jointly coordinated and supervised this work

- ¹, Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
- ², Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- ³, Central Facility Biobanking, Medical Center, Faculty of Medicine, University of Freiburg, Germany
- ⁴, Dept. of Molecular Medicine, Sapienza University of Rome, Italy
- ⁵, Great Ormond St Hospital for Children NHS Foundation Trust and UCL Institute of Molecular and Cellular Immunology, Institute of Child Health, London, UK.
- ⁶, Pediatric Immunology and Infectious Diseases, UMC Utrecht, Utrecht, Netherlands
- ⁷, CEREDIH, French National Reference Centre for Primary ImmunoDeficiencies and Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- ⁸, Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany

All authors declare that they have no conflict of interest to disclose.

*Correspondence: Markus G. Seidel, M.D., Auenbruggerplatz 38, 8036 Graz, Austria, Tel.

+4331638513485; Fax. +4331638513717; email: markus.seidel@medunigraz.at; Stephan Ehl, M.D., Institute for Immunodeficiency and Children's Hospital, University Hospital Freiburg, Breisacher Straße

115, 79106 Freiburg, Tel: +4976127077300; Fax: +4976127077744, stephan.ehl@uniklinik-freiburg.de . Key Words: Primary immunodeficiency (PID); immune dysregulation (PIDD); guideline; diagnostic

algorithm; classification; consensus; registry; epidemiology.

Word Count: Abstract 229; Main text: 2613; Tables: 1; Figures: 3; References: 19.

Supplementary Material: 2 Tables.

1 Abstract

2 Patient registries are instrumental for clinical research in rare diseases. They help to achieve 3 a sufficient sample size for epidemiological and clinical research and to assess the feasibility 4 of clinical trials. The European Society for Immunodeficiencies (ESID) registry currently comprises information on >25,000 patients with inborn errors of immunity (IEI). The 5 6 prerequisite of a patient to be included into the ESID registry is an IEI either defined by a defect in a gene included in the disease classification of the international union of 7 8 immunological societies (IUIS), or verified by applying clinical criteria. Because a relevant 9 number of patients, including those with common variable immunodeficiency (CVID), 10 representing the largest group of patients in the registry, remains without a genetic diagnosis, consensus on classification of these patients is mandatory. Here, we present 11 12 clinical criteria for a large number of IEI that were designed in expert panels with external review. They were implemented for novel entries and verification of existing datasets from 13 14 2014, yielding a substantial refinement. For instance, 8% of adults and 27% of children with 15 CVID (176 out of 1704 patients) were reclassified to 22 different immunodeficiencies, 16 illustrating progress in genetics, but also the previous lack of standardized disease 17 definitions. Importantly, apart from registry purposes, the clinical criteria are also helpful to 18 support treatment decisions in the absence of a genetic diagnosis or in patients with variants of unknown significance. 19

21 Introduction

22 The diagnostic evaluation for primary immunodeficiency and immune dysregulation 23 disorders (PID or PIDD, used synonymously), currently referred to as inborn errors of 24 immunity (IEI), is typically initiated upon the manifestation of i, an increased severity or 25 frequency of infections or an infection with an opportunistic microorganism, *ii*, symptoms of 26 immune dysregulation like (multi-organ or early-onset) autoimmunity or autoinflammation, 27 and/or, *iii*, clinical signs of immunodeficiency in a patient with syndromic features or 28 malignancy. Other signs like a positive family history, failure to thrive, lymphopenia, 29 hypogammaglobulinemia, or prolonged need of intravenous antibiotic treatment are among 30 the well-recognized alarm bells prompting physicians to initiate further testing for IEI. 31 International consensus papers on clinical diagnostic algorithms guide the diagnostic 32 procedure, and an increasing number of these sets of warning signs has been analyzed for sensitivity and specificity¹⁻⁵. 33

34

35 Current technologies and the delineation of the human genome have enabled next 36 generation sequencing diagnostics for IEI by targeted gene panels, whole exome, or genome 37 analysis, that are becoming available in more and more countries and centers globally. Due 38 to reduced costs as compared to historical genetic analyses and proven cost-efficiency, these novel genetic analysis tools are applied at earlier time points during hypothesis-driven 39 diagnostic work-up^{6, 7}. Further, the inclusion of severe combined or even other profound 40 immunodeficiencies to newborn screening programs is becoming standard in many 41 42 countries around the world because these diseases fulfil the medical genetics criteria for 43 newborn screening, and screening is cost-efficient, thereby tremendously supporting early 44 diagnosis, improving management, and increasing survival of patients with IEI⁸⁻¹¹. Today, 45 more than 340 monogenic IEI are known, and the number is increasing rapidly. The International Union of Immunological Societies (IUIS) has biennially published a classification 46 47 of PIDs that classifies PIDs into 9 categories according to the underlying molecular defect¹². 48 In addition to this genetic tabular list of PID disorders with brief descriptions of main 49 laboratory and clinical findings, recently, a phenotype-driven diagnostic consensus paper has been added to extend and improve the practical use of this classification¹³. The latter has 50 also been made available as free application for mobile devices, further increasing its 51 52 practical usefulness^{14, 15}.

53 54 Patient registries are instrumental for clinical research in rare diseases. A registry for a large, 55 heterogenous and phenotypically overlapping group of disorders such as IEI needs stringent criteria for disease classification to allow appropriate data entry. Ideally, the registration title 56 57 (*i.e.*, categorization) of every entry would be specific, undisputable, and verified. In the ESID 58 registry, the registration title entry is the IEI diagnosis. The IEI diagnosis is considered 59 definitive in cases in which a known monogenic pathological variant was identified that 60 explains the phenotype, although functional testing of variants is not required for validation 61 to date. However, despite the advances of genetic diagnostic technologies, there are still a 62 majority of patients who lack a definitive genetic diagnosis. Therefore, clinical criteria were 63 established by a panel of expert groups to correctly classify the majority of IEI disorders for 64 patient inclusion into the ESID registry by disease category even if a genetic cause is 65 unknown.

66

The ESID online registry was founded in 2004 and fulfils the role of a central IEI patient 67 68 registry in Europe and some countries from other continents. It is a platform for clinical trials 69 and other research projects. It also represents a growing network of centers, connecting 70 experts, immunological societies, and other stakeholders. This important role of the registry 71 underpins the relevance of a stringent and reliable data set quality, setting the ground for 72 quality studies in our field. Examples of published and ongoing studies using the ESID registry 73 data are the Activated PI3-Kinase Delta Syndrome (APDS) study, the study on unclassified 74 predominantly antibody deficiencies (UnPAD) study, the Common variable 75 immunodeficiency (CVID) burden study, or a study on patients with Ataxia teleangiectasia^{16,} 76 ¹⁷. Numerous further papers using or highlighting the ESID registry have been published; 77 please refer to the ESID registry publications website for an overview¹⁸. 78 79 A substantial amount of ESID registry data can be accessed by the public at the ESID registry

web page¹⁹, whereas more specific and detailed data can be retrieved and analyzed only by
ESID registry members of a documenting center upon login. Thirdly, data usage by third
parties may be requested by submitting a research project proposal to the ESID registry
working party or may be negotiated and is subject to a contract between the ESID and the
institution/party requiring access. Data from the United Kingdom Primary Immunodeficiency

85 Network (UKPID) are imported on a weekly interval, so that the total amount of data computed by the reporting/analysis tool are updated weekly. Publicly available ESID registry 86 87 reports include: number of patients in the registry, distribution between children and adults for every country, ESID registry patient numbers and proportions per IEI main diagnosis 88 89 category and per country, yielding a map of the minimal prevalence of IEI, ESID registry data on hematopoietic stem cell transplantation and gene therapy¹⁹. The "members only" section 90 allows more specific analyses for the patients entered by the member's documenting center 91 92 and the total of patients in the registry: e.g., to show and export a list of IEI categories, sub-93 categories, specific IEI diagnoses, and gene defects, to retrieve information on the country 94 and sex distribution as well as the rate of coverage (difference from the expected geographical prevalence). 95

96

97 When the ESID registry was created, no central disease classification manual was available. 98 The registry was then entirely restructured for quality assurance and data utility purposes in 99 2014. During the data transfer process from the previous to the current version, an 100 obligatory verification step of the main title of an existing or of a novel entry, *i.e.*, the IEI 101 diagnosis, was implemented. Thus, upon choosing a diagnosis, the online entry system 102 automatically generates a query asking whether the defined clinical criteria for the chosen 103 diagnosis are fulfilled. The data manual also proposes to consider a number of alternative 104 classifications if the criteria are not completely fulfilled. The present catalogue of phenotypical criteria was designed to enable correct disease classification for patients with 105 106 IEI who lack a definite genetic diagnosis at the time of registry inclusion, and, similar to the 107 IUIS documents described above, represents continually updated work in progress.

109 Materials and Methods

- 110 For each of 92 clinical IEI entities to be verified or excluded in patients who lack a genetic
- diagnosis, a number of mandatory and suggestive clinical features was defined by
- international experts and collected between 2013 and 2018. Drafts of proposed criteria
- 113 were elaborated by experts in the field and were subsequently peer reviewed by one or
- 114 more external experts in the respective category of IEI before implementation. Contributors
- and reviewers of each entity are stated. A regular quality check and update of these criteria
- at a biennial basis is being coordinated through the ESID registry working party chair. For the
- 117 illustration of diagnosis transition after implementation of the diagnosis verification process,
- 118 we analyzed the reclassification of entries of common variable immunodeficiency (CVID;
- 119 *n*=1704) upon, *i*, clinical criteria, or, *ii*, results of genetic testing in children and adults by
- 120 drawing a Sankey diagram (The Sankey Diagram Generator, Acquire Procurement Services,
- 121 Brisbane, Queensland, Australia; http://sankey-diagram-generator.acquireprocure.com/).

122

124 Results: Clinical Diagnosis Criteria for IEI and their Application

The document titled ESID Registry – Working Definitions for Clinical Diagnosis of IEI is 125 126 available in the Online Repository of this article (see Supplementary Table 1 in the Online *Repository*) and, in a regularly updated version, on the ESID website²⁰. Recently, each 127 diagnosis of the compilation was supplemented with OMIM (Online Mendelian inheritance in 128 129 Man) numbers of corresponding, genetically defined, diagnosis entities if available, and the 130 respective category (1-9) of IEI according to the IUIS classification. This catalog may be 131 downloaded and used for individual verification of a suspected IEI diagnosis before inclusion 132 into the ESID registry. Further, upon initiation of a novel entry with a certain registration title 133 (i.e., IEI diagnosis), a pop-up window showing the respective criteria opens and requires 134 their confirmation. *Figure 1* illustrates the simple steps of including a patient into the ESID 135 registry and verifying her/his diagnosis.

136

137 To analyze the benefit and demonstrate the effect of the implementation of a mandatory 138 verification process, we evaluated the records of CVID in children (<18 years of age) and in 139 adults before and after application of the diagnostic criteria in 2014. The clinical diagnostic 140 criteria of CVID and, for comparison, of Unclassified antibody deficiency, and of Combined 141 *immunodeficiency (CID)* are shown in *Table 1*. Of 1704 patients with the original diagnosis of CVID who were present in the registry when the verification process was implemented, 176 142 143 (10.3%) were reclassified into different diagnoses. Twenty-four were reclassified on the basis 144 of a detected monogenic defect not listed under CVID (13.6%), and 152 (86.4%) because 145 they did not fulfill the consensus clinical CVID criteria (Figure 2, and Supplementary Table 2 146 in the Online Repository). Vice versa, 62 patients with other humoral immunodeficiencies 147 (i.e., Other hypogammaglobulinemia, Isolated IgG subclass deficiency, 148 Agammaglobulinemia, or Other humoral or unclassified immunodeficiency) were reclassified 149 to CVID during the verification process (Figure 2). Those who changed from CVID to other 150 diagnoses based on mere clinical criteria were redefined as Unclassified antibody deficiency 151 (n=90; 51.1%), Isolated IgG subclass deficiency (n=15; 8.5%), Unclassified immunodeficiency 152 (n=10; 5.7%), Combined immunodeficiency (n=10; 5.7%), Agammaglobulinemia (n=3; 1.7%), 153 or other, rare, immunodeficiencies (n=24; 13.6%; Figure 2; see also Supplementary Table 2 154 in the Online Repository for more details). Patients originally classified as CVID who were 155 reclassified to another diagnosis upon detection of a known genetic mutation were, in total,

- 156 24 (13.6%), and comprised various combined immunodeficiencies (n=13; 7.4%),
- 157 Agammaglobulinemia (n=5; 2.8%), or various other genetic diagnoses (n=6; 3.4%) (Figures 2
- 158 *and 3*; and *Supplementary Table 2* in the *Online Repository*). For a comparison of the
- 159 changes in diagnosis between children and adults we performed this analysis separately,
- 160 showing that a substantially larger proportion of children than of adults previously entered
- under CVID changed their diagnosis (27.3% vs. 7.7%). Interestingly, the proportion of genetic
- 162 *versus* clinical redefinition during the routine diagnosis verification process was double in
- adults (19 of 114 adult patients, 16.6% genetic redefinition) as compared to children (5 out
- of 62 children, 8.1% genetic redefinition). However, the final distribution of diagnostic
- 165 entities after reclassification was similar between children and adults (*Figure 3*; and
- 166 **Supplementary Table 2** in the Online Repository).
- 167

168 Discussion

169 The present document describes the development and current version of the ESID Registry 170 Working definitions for clinical diagnosis of PID/IEI as of December 2018, and comprises the 171 entire spectrum of primary immunodeficiencies covered by the ESID registry to date. As it 172 uses clinical disease definitions rather than separate genetic defects, this list may appear 173 shorter than those provided in the IUIS documents. The document was designed to enable 174 correct classification of patients without known genetic cause of their disease within the 175 ESID registry both for novel patient inclusions and for a mandatory verification process of 176 existing entries starting from 2014. Furthermore, these "ESID registry Clinical diagnosis 177 criteria" are useful in clinical practice when making a working diagnosis of IEI in a patient 178 who either lacks a genetic diagnosis or has a variant of unknown significance.

179

180 To demonstrate the effect of the introduction of a mandatory verification process of a 181 clinical diagnosis entered into the ESID database, we chose CVID as an example, because of 182 its high frequency among entries in the ESID registry (to date, 4,773 of 25,023 patients 183 [19%]) and its large proportion of patients lacking a defined genetic defect (4,593 of 4,773 184 [96%] were merely clinically defined). The reclassification of a substantial proportion of 185 patients with CVID, namely 27.3% of children and adolescents, and 7.7% of adults formerly 186 entered under CVID into 22 other diagnoses reflects that a much higher resolution of the 187 main item, *i.e.*, the IEI diagnosis, was achieved by implementing this obligatory step (*Figure* 188 1, step 2). Previously, patient classification solely depended on the assessment and choice of 189 the physician or documentarist who entered the patient. The biggest target group of 190 patients who changed their diagnosis from CVID to another were those later listed under 191 Unclassified antibody deficiencies, probably due to the fact that the criteria of the latter 192 entity practically represent a subset but not all of those needed for CVID (Table 1). That 193 more than 1 out of 4 children originally entered under CVID were reclassified indicates that 194 the diagnosis of CVID is still being used too often in children, and, is important insofar as the 195 identification of other diagnoses such as CID might imply a completely different therapeutic 196 concept, e.g., stem cell transplantation or targeted treatment. These observations suggest 197 the requirement of a consensus definition of CVID in childhood, for which the present 198 criteria might be a valid backbone.

199

200 That a large proportion of patients who were later classified as *Combined immunodeficiency* 201 or as Agammaglobulinemia instead of CVID is due to the identification of a genetic cause is 202 no surprise. However, it is interesting that a much larger proportion of adults than of 203 children with CVID underwent successful genetic diagnostics and were reclassified. However, 204 because the ESID registry did not record negative genetic testing for patients classified and 205 registered before verification, it is not possible to distinguish whether this difference is due 206 to a higher proportion of adult patients as compared to children with a clinical phenotype of 207 CVID who underwent successful genetic testing, or whether a larger proportion of children 208 had already undergone genetic testing prior to classification and had been classified as 209 monogenic IEI other than CVID. Likely, this difference will disappear with increased 210 application of next generation sequencing panel, exome, or genome diagnostics in all age 211 groups driven by the availability of targeted treatment approaches.

212

213 An increasing number of patients with clinical features of IEI undergoes next generation 214 sequencing diagnostics, but detected variants do not always represent variants known to 215 explain the respective disease phenotype. The latest catalog of genes known to be 216 potentially mutated in IEI and available for selection in the ESID registry for a patient entry, 217 termed "ESID Online Registry – List of Diseases and Genes" can be downloaded from the ESID website²¹. If a known genotype can be associated with multiple phenotypes and is thus 218 219 listed under various disease entities, as, for instance, the case in a RAG1 mutation, then the 220 clinical diagnosis as defined by the documenting physician is required for the selection of the 221 patient's registration title, *i.e.* the IEI diagnosis (*e.g.*, SCID, Omenn syndrome, atypical SCID, 222 etc.), but the application of clinical criteria is not needed. Until now, the ESID registry data 223 section on genetic information does not collect information on variants of unknown 224 significance (VUS), heterozygous variants that may be disease-causing, copy number 225 variations, and it does not capture digenic or polygenic effects except for a free text entry 226 possibility for "additional genes". Further, with the only exception of STAT3, the differences 227 between gain- or loss-of-function mutations, dominant negative effects, or 228 haploinsufficiency are not distinguished. In the light of the challenges and needs arising from 229 next generation sequencing, a future version of the registry tab on genetic data should 230 ideally collect information on the exact position of a mutation, the possibility of multiple 231 gene defects, likely pathogenic variants, the functional effect of a detected mutation (if

known or tested, and how), VUS, and combine them with more refined phenotypic details.
Undoubtedly, these additions will require a substantial amount of programming work and
resources, increasing the cost of information technology and maintenance on one hand, and
more time per patient and dedication to accuracy of the documentarist, bearing the risk of a
decrease in data completeness, quality, and stringency on the other hand.

237

238 Additionally, in a subgroup of patients in whom a known genetic underpinning of IEI is 239 identified, the phenotype differs from the expected, genotype-associated, clinical picture. 240 Some of these patients might have dual or multiple genotypes, leading to a mixed 241 phenotype. In another subgroup of patients the disease course might be progressive, leading 242 to a shift from one, *e.g.*, CVID to CID or another IEI category. Today, unfortunately, such 243 genotypical or phenotypical variations that represent potentially valuable additions to 244 previous knowledge are not recorded within the ESID registry. If a patients' phenotype 245 changes from one IEI diagnosis to another, and the gene defect is also listed under the new 246 category, he can be reclassified to the new diagnosis. This new PID-diagnosis and the 247 complete history of previous documented diagnoses is recorded and shown in the user 248 interface. Further shortcomings are, *e.g.*, that the system does not supervise the registration 249 of patients with mutations that are not disease-causing, which is left to the interpretation of 250 the documenting person; and, the current system fails to account for patients who present 251 with atypical phenotypes, if no disease-causing mutation has been identified. For now, the 252 prime requisite for inclusion of a new patient into the ESID registry is the correct definition 253 of an IEI diagnosis and its confirmation by the documentarist or physician. Currently, this 254 step is not monitored or curated on a general basis. However, in specific sub-projects (see 255 level 2 and level 3, below), data monitoring is the responsibility of the respective study 256 project committee and might be carried out for quality assurance on a study-specific basis. 257 In its current form, the first level of an entry in the ESID registry with a defined IEI 258 registration title (e.g., "CVID") does not collect a vast number of additional patient- and 259 disease-specific items other than type of presenting symptom (e.g., infection, immune 260 dysregulation, syndromic features, malignancy), diagnostic delay, way to and method of 261 diagnosis, and main treatment modality (*e.g.*, immunoglobulin replacement, stem cell 262 transplantation, gene therapy), because experience has shown a tendency that the quality of 263 data sets decreases with increasing size. However, optional additional levels of entries (level

2 and level 3 studies for subsets of patients) were created within the ESID registry for the 264 265 purpose of answering hypothesis-driven study questions. The present *Working definitions* for clinical diagnosis of PID/IEI provide the function of a standardized phenotypic diagnostic 266 classification process and thereby enhance the discriminative depth and quality of individual 267 268 datasets within the ESID registry without burdening participants with additional need to 269 describe features that underlie the diagnosis after patient inclusion. In future, it may be 270 conceivable to record the confirmatory steps of clinical criteria when they are applied during 271 patient inclusion, for instance by recording "clicks" and translating this information into a 272 standardized clinical code terminology, to accumulate even more individual disease-specific 273 information. In line, the implementation of a yearly phenotype follow-up questionnaire, 274 based on the same disease-specific clinical diagnostic criteria as at inclusion, might allow the 275 collection of new important data on the natural disease courses, e.g., in entities with 276 progressive disease phenotypes, and to relate that to genetic data in future.

277

278 The usefulness and quality of data extracted from patient registries for rare diseases largely 279 depends on correct data entry. It is thus of utmost importance for the ESID registry's quality 280 assurance to review and check the disease classification of any newly added patient. With 281 implementation of clinical criteria for 92 entities of IEI for patients who lack a monogenic 282 underpinning of their disease, a substantial gain in refinement of the ESID registry disease 283 cohorts was achieved as demonstrated for CVID. Moreover, apart from their use for correct 284 classification in the ESID database, we deem these criteria highly useful for making the 285 correct diagnosis of IEI in the clinical setting. They may also be used to guide clinical and 286 laboratory investigations, and support or dispute IEI working diagnoses that are not 287 genetically confirmed. An extension of the use of these comprehensive, stringent, and 288 consensus definitions of IEI for additional purposes such as clinical studies (e.g., as inclusion 289 or exclusion criteria), for establishing an IEI diagnosis, and for teaching purposes in clinical 290 immunology is warranted. Together, the ESID registry clinical diagnostic criteria set a 291 standard for making a diagnosis in IEI, either in patients without genetic diagnosis, as a 292 starting point to make a genetic diagnosis, or in support of a definitive genetic diagnosis. 293

294 Acknowledgements 295 The authors would like to thank PPTA (https://www.pptaglobal.org) and its member 296 companies for financial support of the ESID registry. MGS is in part funded by the Styrian 297 Children's Cancer Aid (Steirische Kinderkrebshilfe) Foundation. SE acknowledges support by the BMBF (01EO1303) and the DFG (Eh145/9-1 EURO-CID). GK, RS, and SR acknowledge 298 299 support by the BMBF (BMBF 01GM0896, 01GM1111B, 01GM1517C and 01EO1303). 300 301 **Conflict of interest statement** 302 The authors declare no conflict of interests. 303 304 **Author contributions** 305 SE, NM, BGrimbacher, MB, IQ, JvM, and MGS contributed data sets, added and edited parts 306 of the manuscript text; SE and NM jointly coordinated the work; GK, BGathmann, SR, and RS 307 collected and analyzed ESID registry data and clinical criteria; LMG helped with the content 308 and structure of the tables; MGS wrote the first draft of the paper and designed the figures. 309 310 Contributor list (excluding those already listed as coauthors on the title page; in 311 alphabetical order) 312 Mario Abinun, Michael Albert, Sarah Beaussant Cohen, Jacinta Bustamante, Andrew Cant, 313 Jean-Laurent Casanova, Helen Chapel, Genevieve de Saint Basile, Esther de Vries, Inderjeet 314 Dokal, Jean Donadieu, Anne Durandy, David Edgar, Teresa Espanol, Amos Etzioni, Alain 315 Fischer, Bobby Gaspar, Richard Gatti, Andrew Gennery, Sofia Grigoriadou, Steven Holland, 316 Gritta Janka, Maria Kanariou, Christoph Klein, Helen Lachmann, Desa Lilic, Ania Manson, 317 Natalia Martinez, Isabelle Meyts, Nicolette Moes, Despina Moshous, Benedicte Neven, Hans 318 Ochs, Capucine Picard, Ellen Renner, Frederic Rieux-Laucat, Reinhard Seger, Annarosa 319 Soresina, Dominique Stoppa-Lyonnet, Vojtech Thon, Adrian Thrasher, Frank van de 320 Veerdonk, Anna Villa, Corry Weemaes, Klaus Warnatz, Beata Wolska, and Shen-Yin Zhang. 321

323		
324		References
325		
326 327	1.	Modell V, Quinn J, Ginsberg G, Gladue R, Orange J, Modell F. Modeling strategy to identify patients with primary immunodeficiency utilizing risk management and
327		outcome measurement. Immunol Res 2017; 65:713-20.
329	2.	Lankisch P, Schiffner J, Ghosh S, Babor F, Borkhardt A, Laws HJ. The Duesseldorf
330	۷.	warning signs for primary immunodeficiency: is it time to change the rules? J Clin
331		Immunol 2015; 35:273-9.
332	3.	Farmand S, Baumann U, von Bernuth H, Borte M, Foerster-Waldl E, Franke K, et al.
333		[Interdisciplinary AWMF guideline for the diagnostics of primary immunodeficiency].
334		Klin Padiatr 2011; 223:378-85.
335	4.	Arkwright PD, Gennery AR. Ten warning signs of primary immunodeficiency: a new
336		paradigm is needed for the 21st century. Ann N Y Acad Sci 2011; 1238:7-14.
337	5.	Costa-Carvalho BT, Grumach AS, Franco JL, Espinosa-Rosales FJ, Leiva LE, King A, et al.
338		Attending to warning signs of primary immunodeficiency diseases across the range of
339	6	clinical practice. J Clin Immunol 2014; 34:10-22.
340	6.	Heimall JR, Hagin D, Hajjar J, Henrickson SE, Hernandez-Trujillo HS, Tan Y, et al. Use of
341 342		Genetic Testing for Primary Immunodeficiency Patients. J Clin Immunol 2018; 38:320- 9.
342 343	7.	9. Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome
343 344	7.	sequencing for inborn errors of immunity. J Allergy Clin Immunol 2016; 138:957-69.
345	8.	King JR, Hammarstrom L. Newborn Screening for Primary Immunodeficiency
346	0.	Diseases: History, Current and Future Practice. J Clin Immunol 2018; 38:56-66.
347	9.	Kwan A, Puck JM. History and current status of newborn screening for severe
348		combined immunodeficiency. Semin Perinatol 2015; 39:194-205.
349	10.	van der Spek J, Groenwold RH, van der Burg M, van Montfrans JM. TREC Based
350		Newborn Screening for Severe Combined Immunodeficiency Disease: A Systematic
351		Review. J Clin Immunol 2015; 35:416-30.
352	11.	Modell V, Knaus M, Modell F. An analysis and decision tool to measure cost benefit
353		of newborn screening for severe combined immunodeficiency (SCID) and related T-
354	_	cell lymphopenia. Immunol Res 2014; 60:145-52.
355	12.	Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al.
356		International Union of Immunological Societies: 2017 Primary Immunodeficiency
357 358		Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 2018; 38:96-128.
358 359	13.	Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017
360	15.	IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 2018;
361		38:129-43.
362	14.	Phenotypical classification of PIDD. 2017. [Android]. 2017.] Available from
363		https://play.google.com/store/apps/details?id=com.horiyasoft.pidclassification
364	15.	Phenotypical classification of PIDD, iTunes. 2017. 2017.] Available from
365		https://itunes.apple.com/us/app/pid-phenotypical-diagnosis/id1160729399?mt=8.
366	16.	Maccari ME, Abolhassani H, Aghamohammadi A, Aiuti A, Aleinikova O, Bangs C, et al.
367		Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-
368		Kinase delta Syndrome: The European Society for Immunodeficiencies-Activated
369		Phosphoinositide 3-Kinase delta Syndrome Registry. Front Immunol 2018; 9:543.

- 370 17. Registry Working Party Studies. 2018.] Available from <u>https://esid.org/Working-</u>
 371 <u>Parties/Registry-Working-Party/Studies</u>.
- 372 18. ESID Registry Publications. 2018.] Available from <u>https://esid.org/Working-</u>
 373 <u>Parties/Registry-Working-Party/Registry-publications</u>.
- 374 19. ESID Registry Reporting. 2019.] Available from <u>https://esid.org/Working-</u>
 375 <u>Parties/Registry-Working-Party/Reporting-website</u>.
- Primary Immunodeficiency Diagnosis Criteria. 2018.] Available from
 <u>https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria</u>.
- 378 21. ESID Registry List of Diseases and Genes. 2019.] Available from
 379 <u>https://esid.org/Working-Parties/Registry-Working-Party/ESID-Registry/List-of-</u>
 380 diseases-and-genes.
- 381

382 Legends Table 1. Examples of the ESID Registry – Working Definitions for Clinical Diagnosis of PID for 383 384 *Common variable immunodeficiency (CVID), Unclassified (predominantly) antibody* 385 deficiencies, and Combined immunodeficiencies (CID). PID, primary immunodeficiency. 386 387 Figure 1. Simplified algorithm of a patient entry or diagnosis verification process in the ESID 388 registry. ESID, European Society for Immunodeficiencies; IEI, inborn errors of immunity. 389 390 Figure 2. The ESID registry entries under the diagnosis of common variable 391 immunodeficiency (CVID) before (left, *n*=1704) and after (right, *n*=1590) obligatory 392 application of the ESID clinical criteria OR entry of a genetically confirmed diagnosis 393 (direction from left to right). Other humoral immunodeficiencies that were later classified as 394 CVID are shown in yellow (total n=62); entries with CVID that were confirmed as CVID 395 (n=1528) or reclassified under a different IEI category based on clinical criteria are marked in green (n=152; 86.4% of reclassified patients from CVID) or, if based on genetic criteria, in 396 397 purple (*n*=24; 13.6%), and are grouped for clarity. The thickness of lines/bars corresponds to 398 the relative patient number. More detailed data are shown in Supplementary Table 2 in the 399 Online Repository.

400

401 Figure 3. The subgroup of patients previously entered under CVID who were reclassified 402 (n=176) is shown separately for adults (blue) and children (red), and represents the bottom 403 10.3% of the dark grey bar on the left panel of Figure 2. Reclassification from CVID on the 404 left was undertaken by using clinical diagnostic criteria (green) or a genetic diagnosis 405 (purple) on the right, distinguishing children (red) and adults (blue) out of the total of 1704 406 patients with the diagnosis of CVID (1477 adults and 227 children, of whom 1363 and 165, 407 respectively, were verified as CVID and are shown in Figure 2). The thickness of lines/bars corresponds to the relative patient number. More detailed data are shown in Supplementary 408 409 Table 2 in the Online Repository.

- Table 1. Examples of the ESID Registry Working Definitions for Clinical Diagnosis of PID for Common variable immunodeficiency (CVID),
 Unclassified (predominantly) antibody deficiencies, and Combined immunodeficiency (CID).
- 412

Disease	Contributors	Clinical criteria for a probable diagnosis (= clinical diagnosis)
Common variable immunodeficiency disorders (CVID)	Vojtech Thon, Natalia Martinez, Maria Kanariou, Klaus Warnatz, Isabella Quinti, Helen Chapel	At least one of the following: • increased susceptibility to infection • autoimmune manifestations • granulomatous disease • unexplained polyclonal lymphoproliferation • affected family member with antibody deficiency AND marked decrease of IgG and marked decrease of IgA with or without low IgM levels (measured at least twice; <2SD of the normal levels for their age);
Unclassified antibody deficiency	Esther de Vries, Nizar Mahlaoui, David Edgar, Isabella Quinti, Helen Chapel	At least one of the following: • Recurrent or severe bacterial infections • Autoimmune phenomena (especially cytopenias) • Polyclonal lymphoproliferation • Affected family member AND at least one of the following: • marked decrease of at least one of total IgG, IgG1, IgG2, IgG3, IgA or IgM levels • failure of IgG antibody response(s) to vaccines AND secondary causes of hypogammaglobulinemia have been excluded (e.g., infection, protein loss, medication, malignancy) AND no clinical signs of T-cell related disease AND does not fit any of the other working definitions (excluding 'unclassified immunodeficiencies')

Disease	Contributors	Clinical criteria for a probable diagnosis (= clinical diagnosis)
Combined immunodeficiency (CID)	Stephan Ehl, Maria Kanariou, Alain Fischer	 At least one of: at least one severe infection (requiring hospitalization) one manifestation of immune dysregulation (autoimmunity, IBD, severe eczema, lymphoproliferation, granuloma) malignancy affected family member AND 2 of 4 T cell criteria fulfilled: reduced CD3 or CD4 or CD8 T cells (using age-related reference values) reduced naïve CD4 and/or CD8 T cells elevated g/d T cells reduced proliferation to mitogen or TCR stimulation AND HIV excluded AND exclusion of a clinical diagnosis associated with CID (e.g., defined syndromic diseases, DKC, AT, CHH)