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ABSTRACT
Using an advanced computational methodology implemented in CP2K, a non-local PBE0-TC-LRC density functional and the
recently implemented linear response formulation of the Time-dependent Density Functional Theory equations, we test the
interpretation of the optical absorption and photoluminescence signatures attributed by previous experimental and theoretical
studies to O-vacancies in two widely used oxides—cubic MgO and monoclinic (m)-HfO2. The results obtained in large periodic
cells including up to 1000 atoms emphasize the importance of accurate predictions of defect-induced lattice distortions. They
confirm that optical transitions of O-vacancies in 0, +1, and +2 charge states in MgO all have energies close to 5 eV. We test the
models of photoluminescence of O-vacancies proposed in the literature. The photoluminescence of V+2

O centers in m-HfO2 is
predicted to peak at 3.7 eV and originate from radiative tunneling transition between a V+1

O center and a self-trapped hole created
by the 5.2 eV excitation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078682

I. INTRODUCTION

Oxygen vacancies strongly affect physical and chem-
ical properties of oxides and have been studied exten-
sively both experimentally and theoretically.1–4 Experimen-
tal identification of such defects in bulk materials often
relies on the interpretation of recorded optical absorp-
tion, photo-luminescence, and electron paramagnetic reso-
nance spectra. Surprisingly, spectroscopic signatures of O
vacancies in different charge states are not well estab-
lished even in case of the simplest oxides, such as MgO.
This complicates the verification of existence of O vacan-
cies as well as models and hypothesis attributed to effects
of their presence. In this paper, we test the interpre-
tation of optical absorption and photoluminescence (PL)
signatures attributed in the literature to O vacancies in

two widely used metal oxides—cubic MgO and monoclinic
(m)-HfO2.

MgO has long been studied as a model wide bandgap
oxide with numerous technological applications. Extensive
experimental studies have been carried out of defects in MgO
and particularly O-vacancy (also known as an F center).5–10
Theoretical studies, however, still struggle to give reliable
insights into the optical spectra of different charge states of
this defect. For example, theoretical models still continue to
disagree on the exact positions of optical absorption peaks
of neutral and positively charged vacancies. The first optical
absorption peaks of the neutral and +1 charged oxygen vacan-
cies (V0

O and V+1
O centers) occur at very similar energies: 5.01

and 4.96 eV, respectively.5 These peaks are difficult to resolve
both experimentally and in theoretical calculations. Ab initio
cluster model calculations of V0

O and V+1
O defects11 predicted
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very similar optical absorption energies; however, the absolute
value was closer to 6 eV, rather than the experimental 5 eV. It
was argued that the main source of error in this study was
the limited basis set size and that 3d polarization functions
should be added to the oxygen basis set. Further calculations12
using a larger basis set predicted the optical absorption energy
for V0

O at 5.44 eV, in closer agreement with the experiment.
The optical excitation energy for the V+1

O defect, however, was
not improved. It was therefore concluded that much larger
basis sets are necessary for the accurate prediction of the
optical absorption spectrum. In both of these studies, only
excitations in the alpha spin channel were reported for the
V+1
O center. However, there are, in fact, two types of optical

excitation in the V+1
O center (see Fig. 1): a type-V transition

into a higher state located close to the bottom of the con-
duction band (CB) in the α-spin channel and a type-III transi-
tion from the defect-induced valence band (VB) states into the
unoccupied state associated with the V+1

O center in the β-spin
channel.

The β channel excitation was suggested in previous theo-
retical and experimental studies13,14 as a possible origin of the
5 eV absorption peak. Interestingly, both the α and β chan-
nel excitations (type V and type III, correspondingly) in the V+1

O
center are predicted to be close to 5 eV. Thus, all three opti-
cal absorption peaks associated with V0

O and V+1
O centers have

very close energies. A qualitative difference between α and β

spin excitation for the V+1
O center, however, is that β channel

excitations should be associated with the release of holes into
the valence band (VB). It has been shown that, when excit-
ing MgO crystals with 5 eV light, a 2.3 eV absorption band
also develops, which is associated with holes trapped on V-
type centers.13,14 Recent periodic Density Functional Theory
(DFT) calculations15 account for different spin channel exci-
tations in MgO using many-body perturbation theory in the
G0W0 approximation and the Bethe-Salpeter approach. These

FIG. 1. Schematic of the typical optical transitions in oxides with defects. Type-
I is a band-to-band transition. Type II is a VB to the defect-induced unoccupied
resonant state in CB transition. Type III represents the VB to the unoccupied defect
state in the bandgap transition. Type IV is an occupied defect state into defect-
induced state in the CB transition, and type V is an occupied defect state into
un-occupied defect state in the bandgap transition. A type VI transition is from a
shallow, occupied defect state into the defect-induced resonant state in the CB.

calculations predicted the existence of a 3.6 eV absorption
band in the V+1

O center (in addition to the known 5 eV band
in the α channel), which could be used to distinguish between
the V0

O and V+1
O centers. Thus the position and nature of optical

absorption peaks of V0
O and V+1

O centers in MgO remain con-
troversial. They are revisited and discussed in more detail in
Sec. III B.

MgO also has a photoluminescence (PL) band at 2.3 eV
attributed to the V0

O center.8–10,16 The nature of this lumines-
cence has been discussed based on theoretical and experi-
mental data in Refs. 16 and 17 but has not been confirmed
by many-electron calculations. These models are tested and
discussed in detail in Sec. III C.

HfO2 is another topical oxide with many properties
attributed to O vacancies. This high dielectric permittivity
oxide is being used both as a gate dielectric in modern transis-
tors and as a reducible oxide in memory cells.18,19 The exist-
ing and newly generated oxygen vacancies in HfO2 have been
implicated in degradation of these devices and play the central
role in the electroforming process in Resistive Random Access
Memory (RRAM) devices.20–23 Again, spectroscopic signatures
of these defects are still controversial.

Experimentally, there is a well characterized 2.7 eV pho-
toluminescence peak24,25 associated with a 5.2 eV absorp-
tion peak. The optical transitions for all five charge states
of the oxygen vacancy in m-HfO2 were calculated in a DFT
study using both periodic and embedded cluster methods and
Time-dependent DFT (TD-DFT) for calculating optical tran-
sition energies.26 These calculations predicted the absorp-
tion energy of the +2 charged oxygen vacancy (V+2

O defect)
at 4.94 eV, which is appreciably close to the 5.2 eV absorp-
tion peak. This provided evidence that the V+2

O defect may
be responsible for the 5.2/2.7 eV absorption/PL spectrum.
Other experimental work on hafnia films has also connected
this luminescence peak to oxygen vacancies. In a photolumi-
nescence study,25 the 5.2 eV absorption and the 2.7 eV lumi-
nescence bands were interpreted as emerging from neutral
(rather than positively charged) oxygen vacancies. Further-
more, another absorption/emission line—a 3.66 eV PL excited
at 4.4 eV and 5.4 eV—has also been detected.27 The predicted
optical absorption energy for the neutral vacancy is approxi-
mately 3.2 eV.26 This corresponds to an electron being excited
out of a doubly occupied vacancy state [which has its Kohn-
Sham (KS) level in the middle of the bandgap] into an unoc-
cupied state at the bottom of CB (type V excitation in Fig. 1).
These calculations also predict similar positions for absorp-
tion peaks of V−1

O , V0
O, and V+1

O defects, which all have occupied
states at similar energies in the bandgap.

Thus, rather surprisingly considering the amount of
research which went into studies of these two materials,
their optical absorption and photoluminescence (PL) spec-
tra are far from being understood. Predictions of positions
of defect optical absorption and PL peaks rely on several
factors: accuracy of calculations of defect-induced lattice
relaxation, which often requires large periodic cells or clus-
ters; positions of defect levels should be accurately repro-
duced, which requires using non-local density functionals; and
techniques used to calculate optical excitation energies.
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Satisfying all these requirements is challenging, and compro-
mises are often made in favor of one of the variables. For
example, small periodic cells are used to afford more compu-
tationally demanding calculations using the GW approxima-
tion and the Bethe-Salpeter approach for calculating optical
spectra. More efficient but less accurate local density approx-
imation (LDA) calculations are used to optimize the defect
geometry.

Here we attempt to satisfy all the requirements by
using an advanced computational methodology implemented
in CP2K, a non-local PBE0-TC-LRC density functional and
the recently implemented linear response (LR) formulation
of the TD-DFT equations. These are described in detail
in Sec. II and in the Appendix. Using this method, within
the adiabatic approximation, we calculate the optical tran-
sition energies for the 0, +1, and +2 charged O vacancies
in MgO and m-HfO2 and estimate the photoluminescence
energies for the V0

O and V+2
O centers in MgO and m-HfO2.

The results emphasize the importance of accurate predictions
of defect-induced lattice distortions. They confirm that opti-
cal transitions of O-vacancies in 0, +1, and +2 charge states in
MgO all have energies close to 5 eV. We qualitatively confirm
the model proposed to explain the nature of 2.3 eV PL in MgO
in Refs. 16 and 17. The PL at 3.7 eV of V+2

O centers in m-HfO2
is predicted to originate from radiative tunneling transition
(RTT) between a V+1

O center and a self-trapped hole.

II. METHODOLOGY
A. Computational details

All simulations were carried out using periodic boundary
conditions and the implementation of DFT in the CP2K soft-
ware package.28 These calculations sample the Brillouin zone
only at the Γ point. To check the dependence of the results on
the supercell size, the 216, 512 and 1000 atoms supercells were
used for MgO, and 96 and 324 atoms supercells for m-HfO2.
Since we consider the 96 atom cell to be too small, we only
analyze HfO2 defects and optical transitions for the 324 atom
cell.

Charged defects in the periodic model are calculated
using the neutralizing jellium background, as implemented
in CP2K. In this paper, we are mainly concerned with opti-
cal excitations of defects in particular charge states rather
than their formation energies and transition levels, where
charge corrections as well as potential alignment are impor-
tant. TDDFT calculations include KS orbital energy differ-
ences, which are affected by the cell size as well as the extent
of lattice distortion induced by charged defects. These effects
are checked using periodic cells of increasing sizes.

The PBE0-TC-LRC exchange-correlation (XC) func-
tional29 was used with an exact exchange contribution of
32.5% for the MgO calculations and 25% for the HfO2 calcu-
lations. This functional is based on ordinary PBE0;30 however,
HF exchange is only used for ranges up to a selected “trun-
cation radius.” Beyond the truncation radius, a long range
correction (based on the spherically averaged PBE exchange
hole31) is applied. In this work, we use 6 Å for the truncation
radius in MgO and 4 Å in HfO2.

The Goedecker-Tetter-Hutter (GTH) pseudopotentials
and GTH MOLOPT basis sets were used for all atom
species.32,33 In our setup, Mg has 2 valence electrons, whereas
Hf and O both have 6. All periodic cells had lattice param-
eters and optimized geometry such that forces were smaller
than 0.023 eV/Å. The effect of oxygen vacancies on the local
structure was simulated by re-optimizing the cell geometry
after the deletion of an oxygen atom. Lattice parameters were
kept constant during optimization of the defective cells. Since
MgO has an FCC structure, all oxygen atoms in the periodic
cell are equivalent and it is not necessary to sample different
sites. In m-HfO2, O atoms can be either 3- or 4-coordinated
by Hf ions. In this work, we focus only on O vacancies at 3C
sites. Positive or negative oxygen vacancies were simulated by
removal or addition of electrons from the defective cell and
then re-optimizing the geometry.

To calculate optical transition energies and oscillator
strengths, we use the well established linear response for-
mulation of the TDDFT within the local adiabatic approxima-
tion. In this approximation, the XC-functional is simply one
of the usual XC-functionals used for ground state DFT calcu-
lations. The detailed description of mathematical expressions
implemented in CP2K is given in the Appendix.

The calculation of Hartree-Fock electron-repulsion inte-
grals (ERIs) greatly increases the computational cost of hybrid
functionals and renders the ground state DFT and TDDFT
calculations infeasible for the system sizes considered here.
For this reason, it is necessary to employ the auxiliary den-
sity matrix method (ADMM).34 This approximation utilizes a
smaller and faster converging basis set, greatly speeding up
the calculation of HF exact exchange. This allows us to use
large supercells, which means we can more fully represent
the structural relaxation induced by the presence of vacan-
cies. Reducing the basis set quality can introduce errors in
the HF exchange calculations. The key assumption of ADMM
is outlined in Sec. II B.

B. Auxiliary density matrix method
In ground-state KS-DFT, the exact exchange energy,

which is an essential component of hybrid XC-functionals, is
expressed in terms of a density matrix P,34

EHF
x [P] =

∑
µνλσ

PµλPνσ (µν |λσ), (1)

and Electron Repulsion Integrals (ERIs) over Gaussian basis
functions {χ},

(µν |λξ) =
∫
χ∗µ (r)χν (r)

1
|r − r′ |

χ∗λ(r′)χξ (r′)drdr′. (2)

The number of such integrals grows with the total number of
atomic basis functions to the fourth power in a naive imple-
mentation that quickly becomes a bottleneck. However, the
majority of these integrals are negligible. In particular, the
inner product of two Gaussian functions centred on differ-
ent atoms exponentially decays with the distance between
these atoms. This effectively means that the number of non-
negligible ERIs scales quadratically with the system size for a
given basis set.
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To take advantage of this fact, CP2K screens ERIs based
on the Cauchy-Schwarz inequality,

(µν |λσ) ≤
√

(µν |µν)
√

(λξ |λξ), (3)

and ignores the integrals which are less than the given thresh-
old. Screening based additionally on the size of the density
matrix element of the pair of orbitals in the ground state wave
function can further reduce this to linear scaling. However,
even in this case, evaluation of ERIs still remains a challenging
task due to a large prefactor. This prefactor becomes much
larger when the basis set is augmented with diffuse functions
because these functions have a slower long-range decay. This
problem also affects the MOLOPT basis sets commonly used
in CP2K,33 as they contain significant numbers of (contracted)
diffuse basis functions.

The Auxiliary Density Matrix Method (ADMM) addresses
this problem by computing ERIs using a small auxiliary basis
set with rapidly decaying basis functions {χ̃ }. An approximate
auxiliary density matrix P̃ is then constructed by fitting the
density matrix in the primary basis set (P),

P̃ = OPOT, (4)

using a projector from the primary basis set onto the auxiliary
basis set,

O = S̃−1U, (5)

S̃µν = 〈χ̃µ | χ̃ν 〉, Uµν = 〈χ̃µ |χν 〉. (6)

Optionally, the ground-state auxiliary density matrix can be
purified using a number of techniques34 to ensure that all
properties of a true density matrix are met. We have not
implemented purification for use with TDDFT methods, as a
response density matrix P(1)—which appears in Eq. (1) instead
of the ground-state density matrix—does not satisfy all condi-
tions for a pure density matrix (see the Appendix for further
details).

ADMM also assumes that the difference between exact-
exchange energies computed using primary and auxiliary basis
sets has (semi-)local nature and thus can be well described
using some reference LDA or generalised gradient approxima-
tion (GGA) exchange functional (EDFT

x ). It naturally leads to the
trivial expression for the approximate exact-exchange energy
in the primary basis set,

EHF
x [P] ≈ EHF

x [P̃] + (EDFT
x [P] − EDFT

x [P̃]). (7)

Differentiation of the above expression with respect to the
density matrix gives the following contribution to the Kohn-
Sham matrix:35

KHF
x ≈ FDFT

x + OT(K̃HF
x − F̃

DFT
x )O, (8)

where

(FDFT
x )αβ =

∫
χ∗α (r)vx[P](r)χβ (r)dr, (9)

(F̃DFT
x )µλ =

∫
χ̃∗µ (r)vx[P̃](r)χ̃λ(r)dr, (10)

(K̃HF
x )µλ =

∑
νσ

P̃νσ (µ̃ν̃ |λ̃σ̃), (11)

and vx is the (semi-)local reference exchange potential as a
functional of the electron density.

III. RESULTS AND DISCUSSION
A. Properties of perfect crystals

We start from considering the calculated bulk properties
for different cell sizes of MgO and m-HfO2. All calculations
are performed sampling the Brillouin zone at the Γ point. The
bandgap energies are calculated as the difference of Kohn-
Sham (KS) energies and using TDDFT. The results shown in
Tables I and II for MgO and m-HfO2, respectively, demon-
strate good agreement of lattice parameters with experi-
mental reports. However the band gap of HfO2 is slightly
overestimated. We note that in both systems, the TDDFT
calculated optical bandgap is lower than the KS bandgap. This
is because, unlike in GGA-based TDDFT, in hybrid functional
based TDDFT, there is electron-hole interaction.36 Excitation
between delocalized band states creates an electron-hole pair
which is confined within the simulation cell and thus has an
artificially high electron-hole interaction energy. This explains
why the difference between the KS and TDDFT bandgap is
greatest for small simulation cells where the electron-hole
pair is more confined and thus the electron-hole interaction
is greater.

B. Optical transitions of O vacancies
The removal of a neutral oxygen atom in the MgO or

m-HfO2 periodic cell leaves behind a neutral oxygen vacancy,
V0
O. Two electrons localize on the vacancy (see Fig. 2). These

localized electrons occupy two degenerate mid-gap levels
(one state for each spin) which are located 4.45 eV below the
conduction band minimum (CBM) in MgO and 3.3 eV below the
CBM in HfO2. In general, the vacancy perturbs the electronic

TABLE I. The lattice parameters (Å) and bandgap values (eV) for bulk MgO. The
optical bandgap (BG) is calculated using TDDFT. Cell sizes are given in number of
atoms.

Cell size

216 512 1000 Exp.

|a| 4.21 4.21 4.21 4.21137
KS BG 7.7 7.7 7.8 . . .
Optical BG 7.1 7.4 7.5 7.786

TABLE II. The lattice parameters (Å) and bandgap energies (eV) calculated for bulk
m-HfO2. The optical bandgap (BG) is calculated using TDDFT.

Cell size

96 324 Exp.

|a| 5.08 5.07 5.11738
|b| 5.13 5.13 5.1838
|c| 5.25 5.24 5.2938
β (degrees) 99.12 99.11 99.2238
KS BG 6.51 6.66 . . .
Optical BG 6.0 6.1 5.6839
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FIG. 2. The nearest-neighbor environment of neutral O-vacancy in MgO (a) and
HfO2 (b). An isosurface of the wavefunction of the doubly occupied defect state is
shown in blue. Mg ions are colored in peach, Hf in cyan, and O in red.

structure, causing quasi-local states to appear in VB and CB,
as shown in Fig. 1.

Structural relaxation around the neutral vacancy is small
since the Coulomb interaction between the vacancy and
nearby ions is similar to the Coulomb interaction between an
oxygen ion and its neighbors in the bulk. Charging the vacancy
causes greater structural reorganization. For example, charg-
ing the V0

O defect to the +1 state in MgO results in the nearest-
neighbor Mg ions moving outward by 0.11 Å (see Table III). The
calculated displacements are in good agreement with those
derived from the analysis of EPR spectra of the V+1

O center in
Ref. 40.

In this study, we look at the 0, +1, and +2 charge states
of O vacancies in MgO and HfO2. In the +1 charge state, the
vacancy is paramagnetic. Removing an electron from V0

O (and
then relaxing) to create a V+1

O defect splits the doubly occupied
state in the bandgap into two states which are energetically
separated. In MgO, for example, the occupied α spin state sits
5.2 eV below the CBM, whereas the β spin state is unoccupied
and is higher in the bandgap (see Fig. 1). The nature of the tran-
sition in the +1 state therefore depends on the spin channel:
alpha spin excitations will involve a transition from a mid gap
state into CB states, whereas a beta spin transition involves a
VB electron being promoted into a gap state.

TABLE III. The displacements (in Å) of the ions surrounding an oxygen vacancy in
MgO and HfO2. ∆Mg, ∆Hf, and ∆O. In MgO, high symmetry means that all NN Mg
ions are displaced in equal amounts, as are all NNN oxygen ions. In HfO2, however,
the surrounding Hf and O ions are not displaced equally. For HfO2, the range of
displacements is shown.

Ionic displacements

MgO ∆Mg ∆O

V0
O 0.02 0.01

V+1
O 0.11 0.03

V+2
O 0.20 0.08

HfO2 ∆Hf ∆O

V0
O 0.01-0.08 0.02–0.09

V+1
O 0.09-0.11 0.04–0.18

V+2
O 0.19-0.24 0.07–0.39

The wavefunctions of excited states calculated using
TDDFT are linear combinations of determinants where Ψa

i is
a singly excited wave-function, whose ith occupied Molecu-
lar Orbital (MO) is replaced by the ath virtual MO (see the
Appendix). Often one excitation Ψa

i dominates and will be
used to qualitatively represent the excited state in further
discussion.

The lowest energy transition of the MgO V0
O defect has

zero oscillator strength because the singly occupied defect
state and the LUMO state dominating this transition have sim-
ilar cubic symmetry (see Fig. 2) analogous to hydrogenic 1s
and 2s orbitals. The next three higher energy transitions have
equal excitation energies and are responsible for the main
excitation peak seen in V0

O defects in MgO [Fig. 3(a)]. They
correspond to the excitation into a degenerate p-like state.

V0
O center in m-HfO2 has lower symmetry and the TDDFT

calculations predict a broader absorption spectrum with an
onset at 2.5 eV and then with higher energy peaks at 3.0 eV and
3.5 eV. Also, unlike in MgO, the V0

O excitation in HfO2 is from
the vacancy state into the states delocalized at the bottom of
the conduction band, hence much lower oscillator strengths
of these transitions. The calculated spectra of the V0

O in HfO2
are plotted in Fig. 3d. We note that the predicted transition
energies are in good agreement with the results of embedded
cluster calculations in Ref. 26.

In the +1 charge state, transitions in the α and β spin
channels are no longer equivalent. In MgO, the absorption
energies in both spin channels have been predicted to be
close to one another,13 making the interpretation of opti-
cal absorption spectra difficult. Here, however, we predict
that the β spin excitation has higher energy [Fig. 3(b)]. This
should lead to asymmetry in high energy part of the optical
absorption spectrum of the V+1

O center and can explain the
asymmetric line shape observed in Ref. 7. There will also be
qualitative differences between the two types of excitation.
Excitations in the α channel will excite an electron from the
gap state into CB states, similar to the V0

O defect. Excitations
in the β channel, however, will release holes into the valence
band. It is then possible for these holes to be trapped onto
V-centers.13

We note that our results do not support the prediction15

that the β absorption energy should be much lower than the α
spin absorption energy (≈3.6 eV). It is possible that the 3.6 eV
absorption band emerges due to constraint on the V+1

O cen-
ter relaxation imposed by small periodic cells used in Ref. 15.
Indeed, charging the V0

O center to the +1 state but not allow-
ing the structure to relax brings the main β-spin absorption
energy down to 3.5 eV. This is not surprising as the defect-
induced lattice distortion strongly affects the positions of
quasi-local states in the valence band responsible for β tran-
sitions. We therefore find that failure to allow the charged
defect to fully relax can change absorption energies by as
much as 2 eV.

In HfO2, optical excitations in the α and β spin
channels have different energies. To illustrate why, we
can look at the electronic structure of the V+1

O defect in
HfO2. The alpha HOMO-LUMO separation is calculated to
be 3.6 eV, whereas the beta HOMO-LUMO separation is
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FIG. 3. Optical absorption spectra of oxygen vacancies in MgO and m-HfO2. (a) is the V0
O defect in MgO. There is strong absorption peaking at 4.85 eV. This corresponds to

a transition between an s-like and a p-like states. (b) shows transitions in the V+1
O center in MgO. The lower energy absorption peaks at 4.70 and comes from excitation of an

α spin electron in a gap-state into CB states. The higher energy absorption peaks at 5.26 eV and comes from excitation of electrons in VB states into the unoccupied state
in the gap. (c) is the V+2

O defect in MgO. (d), (e), and (f) correspond to the V0
O, V+1

O and V+2
O centers in m-HfO2, respectively. All the transitions represented by (e) are from

excitations in the alpha channel. Individual transitions (without smearing) are shown by delta functions, and in (f), these transitions are too small to be seen. The smeared
spectra is plotted using Gaussian smearing of σ = 0.2 eV.

calculated to be 5.6 eV (very close to the optical bandgap
value). Thus, when irradiating HfO2 with photons of sub-
bandgap energy, we expect the V+1

O spectrum to be dominated
by α spin transitions (transitions from the vacancy state into
the CB states, i.e., type IV in Fig. 1). Indeed we predict that the
first optical absorption peak occurs at 2.9 eV and corresponds
to the transition of the alpha-spin electron from the gap-state
into a quasi-local state in the CB. All the higher energy peaks
up to bandgap energy also correspond to excitations of the
α-spin electron out of the gap-state and into higher energy
CB states. Excitations in the β spin channel are only attain-
able once we arrive at excitation energies comparable with the
bandgap.

In both materials, the V+2
O defect produces an unoccupied

state high in the bandgap as well as resonant states in the CB
(Fig. 1). In MgO, the optical absorption of the V+2

O center has
been predicted26 to be close to the V0

O and V+1
O defects. It is

dominated by transitions from the defect-induced states in
the valence band into the LUMO defect state located close to
the bottom of the CB (type III in Fig. 1). Therefore, all of the
VO defects in MgO are predicted to have optical absorption
peaks near 5 eV. This explains why it is so difficult to distin-
guish between different charge states of the VO defect in MgO
using optical absorption experiments alone.

In HfO2, the optical transition energies from the valence
band into the V+2

O defect are comparable to the bandgap
energy and are predominantly of type II in Fig. 1. Optical
experiments conducted on HfO224 have detected a 5.2 eV
absorption peak which has been attributed to the presence
of oxygen vacancies. We predict that the doubly positively
charged oxygen vacancy (V+2

O ) has an optical absorption peak at
5.3 eV, which is in good agreement with this detected absorp-
tion band. We note that the position of the peak predicted
in this work is at higher photon energy than 4.94 eV cal-
culated in Ref. 26 using TDDFT in a relatively small embed-
ded cluster. This is consistent with our observation that
full account of defect-induced lattice distortion for charged
defects is important for predicting correct optical absorption
energies.

C. Photoluminescence energies
As was mentioned above, MgO has a well-established PL

band at 2.3 eV attributed to the V0
O center.8–10,16 The life-

time of this luminescence is much longer than that for the
V+
O center, which is caused by a single-electron transition in

the doublet state. Therefore the 2.3 eV luminescence of the
V0
O center could be due to a partially allowed 2s → 1s type
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and/or triplet-to-singlet transition. The kinetics of this PL is,
however, much more complicated than that of the V0

O center in
CaO, where the lowest relaxed excited state has been shown
to have a tetragonal (100) triplet state with fast spin-lattice
relaxation (see, for example, Ref. 41). The PL kinetics in MgO
is strongly affected by the presence of H and other impurities
and depends on sample preparation.8,16 Semi-empirical16 cal-
culations suggest that tetragonal singlet and triplet states are
both located very close to the bottom of the CB and that there
are two minima in the relaxed excited state corresponding to
3T1u and 3A1g configurations, respectively. The predicted PL
energies corresponding to transitions from these two minima
are equal to 2.9 eV and 2.2 eV, respectively. The PL peaking at
2.9 eV has been observed experimentally42 but has an excita-
tion energy at about 7 eV. It has been concluded that the PL
peaks at 2.3 eV and 2.9 eV may involve both transitions intrin-
sic to the V0

O center and those caused by electron transfer
from impurities.8,16 We note that the dynamics of similar PL
of F centers in alkali halides has been studied in detail.43 In
that case, the transition is allowed due to mixing of 2s and 2p
terms, with 2s having the lower energy in the relaxed excited
state.43

To shed more light on the nature of excited states, we
have calculated the triplet excited states of the V0

O cen-
ter in MgO using the so-called ∆SCF method. This com-
putational procedure employs a non-Aufbau occupation of
the triplet state in a dielectric to converge the KS equa-
tions to an excited state.44,59 The total energy and geom-
etry of the triplet excited state of a defect are calculated
self-consistently. This approach allows us to predict defect
geometries in the electronically excited state (the feature still
unavailable in TDDFT in CP2K). The lowest energy triplet state
has 3A1g symmetry, and the calculated luminescence energy
from this state is 2.0 eV. A higher energy triplet state has a
geometry formed from a combination of A1g and T2g displace-
ment modes. The calculated PL energy from this state is 2.9 eV.
Thus our calculations support the PL model suggested in ear-
lier studies8,16 with surprising agreement of calculated PL
energies.

We used the same approach to investigate the lumines-
cence of the neutral oxygen vacancy in m-HfO2. In the case
of optical excitation of the V0

O defect, the electron-hole pair
remains bound to the vacancy. The predicted triplet-singlet
PL energy is 0.8 eV.

The situation is, however, more intriguing in the case of
the V+2

O center. It produces an unoccupied state inside the gap
close to the bottom of the CB as well as quasi-local states
in the VB and CB in both MgO and m-HfO2. In alkali halides,
a singly positively charged anion vacancy (also called an
α-center) has a qualitatively similar electronic structure and
a characteristic luminescence, which is close in energy to the
exciton luminescence (the so-called α-luminescence) and is
attributed to exciton perturbed by the vacancy.45 The relaxed
excited state of this center can be also viewed as an elec-
tron transferred into the vacancy and a hole trapped next
to the vacancy.46 Such luminescence has not been observed
for the V+2

O center in MgO because free excitons in MgO are
very mobile and get trapped by impurities. Since excitons and

holes have been suggested to self-trap in m-HfO2,47–49 one
could expect creation of α-type luminescence in this mate-
rial. Recent experiments27 suggest that 3.6 eV luminescence
excited by 5.3 eV photons could be due to charged vacancies
in m-HfO2.

Using the ∆SCF method, we investigated the triplet
excited state of the V+2

O defect in HfO2. It is found that the
relaxed triplet configuration of the V+2

O center has an elec-
tron localized into the vacancy (producing a V+1

O center) and
a hole localized in a polaron state elsewhere in the super-
cell. Holes have been predicted to self-trap in m-HfO2 at
low temperatures.48,50 Due to repulsion with the positively
charged vacancy, the hole cannot sit close to the vacancy—
the closest stable separation we find between the hole polaron
and the vacancy is approximately 5 Å (see Fig. 4). There-
fore the localized hole and vacancy can be viewed as two
separated defects. In such a system, luminescence due to
electron-hole recombination can occur when the electron in
the V+1 defect tunnels into the hole polaron via a radiative
tunneling transition (RTT). The RTT recombination lumines-
cence of spatially well-separated electron and hole defects
has been studied in semiconductors51 and ionic crystals.52 It
usually occurs between ground electronic states of donor and
acceptor.

We predict the photon energy of this emission to be
3.7 eV. Unlike in semiconductors,51 the emission energy does
not depend on the defect separation in the range of up to 11 Å
(this upper limit originates in the finite size of the supercell)
due to dielectric screening in the high-k material. In Ref. 53,
a range of luminescence peaks between 2.0 and 3.7 eV,
attributed to oxygen vacancies, have been detected at approx-
imately 7 K using cathodoluminescence and optical lumines-
cence. In another optical experiment,47 conducted at 10 K,
weak emission in the range of 2.2 to 3.6 eV has been detected.
A recent study27 also found luminescence peaking near 3.6 eV,
again linked to oxygen vacancies. These results are consis-
tent with the optical absorption of the V+2

O defect and the

FIG. 4. The relaxed triplet configuration of the V+2
O defect. An electron localises

around the vacancy (to create a V+1
O defect) and a hole self-traps elsewhere in the

lattice. A range of separations between hole and vacancy are possible. Here, the
closest separation configuration is shown. Transparent surfaces show the |ψ|2 of
the hole (orange) and electron (blue). The iso-surface value is 0.007. The nearest
neighbor atoms of each defect are highlighted.
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predicted RTT luminescence energy. However, further stud-
ies are required to elucidate the nature of experimentally
observed peaks.

IV. CONCLUSIONS
To conclude, we used a newly implemented TDDFT algo-

rithm in CP2K to conduct optical absorption calculations on
oxygen vacancies in MgO and HfO2. Using a range of peri-
odic cells, we demonstrate that failure to properly describe
the geometric structure of a defect significantly affects the
predicted absorption energies, potentially by several eV. We
confirm the existing models of the nature of optical absorption
and photoluminescence of O vacancies in MgO and HfO2 and
predict that the PL at 3.7 eV in HfO2 excited at 5.2 eV could
originate from radiative tunneling transitions between a V+1

center and hole polaron created by this excitation. The results
of our calculations are in good agreement with the available
experimental data and shed light on the nature of optical
absorption and luminescence peaks in these materials. There-
fore the use of TDDFT with a hybrid functional, which strikes a
good balance between accuracy and computational efficiency,
is appropriate for the prediction of the optical properties of
defects in other solid state systems.
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APPENDIX: LINEAR RESPONSE TIME-DEPENDENT
DENSITY FUNCTIONAL THEORY

In the linear response (LR) formulation, TDDFT equations
can be cast in the form of a non-Hermitian eigenproblem,54

*
,

A B

B∗ A∗
+
-

*
,

Xp

Yp

+
-
= ωp*

,

1 0

0 −1
+
-

*
,

Xp

Yp

+
-
, (A1)

where (Xp, Yp) is an eigenvector and ωp is a corresponding
transition energy. In terms of Kohn-Sham orbitals {φ}, the
elements of the matrices A and B can be written as55

Aiaσ,jbτ = AE
iaσ,jbτ + AJ

iaσ,jbτ + cHFXAHFX
iaσ,jbτ + AXC

iaσ,jbτ

= δijδabδστ (εaσ − εiσ ) + (iσaσ |jτbτ )

− cHFXδστ (iσ jσ |aτbτ ) + (iσaσ |fxc;στ |jτbτ ), (A2)

Biaσ,jbτ = (iσaσ |bτ jτ ) − cHFXδστ (iσbσ |aτ jτ )

+ (iσaσ |fxc;στ |bτ jτ ). (A3)

Here AE, AJ, AHFX, and AXC denote orbital energy differ-
ence, electron-hole Coulomb, exact-exchange, and exchange-
correlation (XC) terms, respectively, while notations
(iσaσ |jτbτ ) and (iσaσ |fxc;στ |jτbτ ) stand for four-centre elec-
tron repulsion integrals (ERIs) and XC-integrals,

(iσaσ |jτbτ ) =
∫
φ∗iσ (r)φaσ (r)

1
|r − r′ |

φ∗jτ (r′)φbτ (r′)drdr′, (A4)

(iσaσ |fxc;στ |jτbτ ) =
∫
φ∗iσ (r)φaσ (r)fxc;στ (r, r′)φ∗jτ (r′)φbτ (r′)drdr′.

(A5)

We use the following index convention: i and j label occupied
orbitals, a and b stand for virtual orbitals, and σ and τ refer
to spin components. Besides, the quantity ε iσ stands for the
ith Kohn-Sham orbital energy, and fxc;στ (r, r′) is a response
XC-kernel. The explicit expression for the AXC term in Eq. (A2)
is given in the adiabatic approximation which postulates inde-
pendence of the XC-functional on time. As such, XC-kernel
becomes the second functional derivative of the XC-functional
(Exc) over the ground-state electron density (ρ(0)),56

fxc;στ (r, r′) =
δ2Exc[ρ](r)

δρσ (r′)δρτ (r′)

������ρ=ρ(0)

. (A6)

It is important to note that in case of a hybrid exchange
functional, the exact-exchange term is excluded from the XC-
functional prior taking its functional derivative. For example,
in case of the ordinary PBE0 XC-functional30 which contains
100% PBE correlation, 75% PBE exchange, and 25% exact-
exchange energies, only the first two terms contribute toward
the XC-kernel.

As is customary, we also use the Tamm-Dancoff approx-
imation (TDA)57 which amounts to setting all the elements of
the matrix B in Eq. (A1) to zero. This simplifies the LR-TDDFT
equation by reducing it to a standard Hermitian eigenproblem,

AXp = ωpXp. (A7)

We use the block Davidson method58 to solve this eigenprob-
lem, as the matrix A itself is a diagonally dominant one and
only few excited states are typically in interest.

A significant advantage of the Davidson algorithm follows
from its iterative nature. The algorithm approximates target
eigenvectors by iteratively refining a set of trial vectors Xp—
one vector for each excited state p in question—and only the
action of the response operator on these vectors AXp needs
to be known. In our implementation, we use trial vectors in
form of contracted response orbitals φ(1)

i;pσ (r), which is a linear
combination of virtual Kohn-Sham orbitals φa ;σ (r),

φ
(1)
i;pσ (r) =

LUMO∑
a

Xia;pσφa;σ (r), (A8)

obtained from solving the ground-state KS-DFT equations.
The squared contraction coefficients |Xia;pσ |

2 thus can be
thought as a probability of an electron transition between the
ith occupied and ath virtual KS orbitals.
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By analogy with occupied ground-state KS orbitals φi ,σ ,
the contracted response orbitals are expanded as a linear
combination of atomic basis functions {χ},

φi;σ (r) =
N∑
µ=1

C(0)
µi;σχµ (r), φ

(1)
i;pσ (r) =

N∑
µ=1

C(1)
µi;pσχµ (r), (A9)

subject to orthogonality conditions,

Tr
(
C(0),T
σ SC(1)

pσ

)
= 0, (A10)

Tr
(
C(1),T
p↑ SC(1)

q↑

)
+ Tr

(
C(1),T
p↓ SC(1)

q↓

)
= δpq, (A11)

where Sµν = 〈χµ |χν 〉 is the overlap matrix and δpq is the Kro-
necker delta. The calculation of the action of the response
operator on trial vectors, expressed in the atomic basis set,
is then performed in the following steps, which are essen-
tially the same steps as required for building the Kohn-Sham
matrix in ground-state DFT using the Gaussian and plane wave
method:28

1. For every spin component σ, construct the response
density matrix,

P(1)
pσ =

1
2

(
C(0)
σ C(1),T

pσ + C(1)
pσC

(0),T
σ

)
. (A12)

The initial guess is formed from energetically ordered
single orbital excitations. Note that the response den-
sity matrix is not a pure one, as it does not fulfil the
idempotent property,

P(1)
pσSP

(1)
pσS , P(1)

pσS.

Map the response density onto a real-space grid
P(1)
pσ → ρ

(1)
pσ (r) and the corresponding reciprocal-space

grid by performing the fast Fourier transformation (FFT),

ρ
(1)
pσ (G) = FFT[ρ(1)

pσ (r)].

2. Compute the energy difference term,

AEC(1)
pσ = FσC

(1)
pσ − εσSC

(1)
pσ , (A13)

where Fσ and S are Kohn-Sham and overlap matrices,
respectively, and εσ is a diagonal matrix of Kohn-Sham
orbital energies.

3. Compute the Coulomb term by
(a) solving the Poisson equation on the reciprocal grid,

ρ
(1)
pσ (G)→ v(1)

pσ (G);
(b) calculating components of the electrostatic potential

on the real-space grid using the inverse FFT, v(1)
pσ (r)

= FFT−1[v(1)
pσ (G)].

4. Compute the adiabatic XC term by evaluating the inte-
gral,

f̄xc;pσ (r) =
∑
τ=↑,↓

ητ

∫
fxc;στ (r, r′)ρ(1)

pτ (r′)dr′, (A14)

on the real-space grid. The scaling factors (η↑, η↓) are
equal to (2, 0) or (1, −1) for singlet and triplet states com-
puted using spin-unpolarised electron density, or (1, 1)
otherwise.

5. Transform the sum of electrostatic potential and the XC
term from the grid representation into a matrix represen-
tation in the atomic basis set by evaluating expectation
values,(
AJC(1)

pσ + AXCC(1)
pσ

)
µν
=

∫
χ∗µ (r)

(
v(1)
pσ (r) + f̄xc;pσ (r)

)
χν (r)dr.

(A15)

6. Using precomputed ERIs over atomic basis functions
(µν|λξ), compute matrix elements of the exact-exchange
operator, (

Kpσ
)
µλ
=

∑
νξ

(µν |λξ)
(
P(1)
pσ

)
νξ

. (A16)

The exact-exchange action term is then calculated as
a matrix product scaled by the amount of the exact
exchange,

cHFXAHFXC(1)
pσ = cHFXKpσC

(0)
σ . (A17)

7. When combined with ADMM (see Sec. II B), instead of the
previous step, compute the matrix elements of the exact-
exchange operator in an auxiliary basis set {χ̃ } using the
auxiliary density matrix P̃ from Eq. (4),(

K̃pσ
)
µ̃λ̃
=

∑
ν̃ ξ̃

(µ̃ν̃ |λ̃ξ̃)
(
P̃(1)
pσ

)
ν̃ ξ̃

, (A18)

and then project the obtained matrix back to the primary
basis set,

Kpσ = OTK̃pσO. (A19)

Repeating steps 4 and 5 we also compute two com-
pensation XC terms using a reference (semi-)local XC-
functional in accordance with Eq. (8).

8. All components of the action matrix for the given
response wave function (steps 2, 5, and 6) are then
summed up. Once obtained for all excited states in ques-
tion, these action matrices are then used in the block
Davidson algorithm58 to compute residuals and to refine
the response wave functions.
With no periodic boundary conditions, having the opti-

mised response wave function for the pth transition Ψp, one
can compute the associated oscillator strength using the clas-
sic expression for dipole integrals in the “length” form,54

fp =
2
3
ωp

∑
q=x,y,z

|〈Ψp |q |Ψ0〉 |
2. (A20)

The above expression can be recast in terms of contracted
expansion coefficients,

fp =
2
3
ωp

∑
q=x,y,z

����Tr
[
C(1),T
p SCvirt.Cvirt.,TQqC(0)

] ����
2
, (A21)

where the matrix elements of the dipole operator in atomic
basis set are

Qq,µν = 〈χµ |q |χν 〉, (A22)

and Cvirt. is a matrix of expansion coefficients of virtual
Kohn-Sham orbitals φa ;σ (r) in the atomic basis set. Using the
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commutation relation between Hamiltonian and position
operators

[Ĥ, r̂] = −∇, (A23)

we can rewrite Eq. (A21) in the equivalent “velocity” form,

fp =
2
3
ωp

∑
q=x,y,z

���Tr
[
C(1),T
p SCvirt.

{
W ⊗ (Cvirt.,T ∂S

∂q
C(0))

}]
���
2
, (A24)

to make it suitable for periodic boundary conditions. Here W
is the inverse energy difference matrix between all virtual (a)
and occupied (i) Kohn-Sham orbitals,

Wai = (εa − εi)−1. (A25)
∂S
∂q is a matrix containing the first partial derivative of overlap
integrals along the qth direction,(

∂S
∂q

)
µν

= 〈χµ |
∂χν
∂q
〉, (A26)

and the symbol ⊗ denotes the element-wise (Hadamard) prod-
uct.
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