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Abstract: Correlations in neural activity have been demonstrated to have profound consequences
for sensory encoding. To understand how neural populations represent stimulus information,
it is therefore necessary to model how pairwise and higher-order spiking correlations between
neurons contribute to the collective structure of population-wide spiking patterns. Maximum entropy
models are an increasingly popular method for capturing collective neural activity by including
successively higher-order interaction terms. However, incorporating higher-order interactions in
these models is difficult in practice due to two factors. First, the number of parameters exponentially
increases as higher orders are added. Second, because triplet (and higher) spiking events occur
infrequently, estimates of higher-order statistics may be contaminated by sampling noise. To address
this, we extend previous work on the Reliable Interaction class of models to develop a normalized
variant that adaptively identifies the specific pairwise and higher-order moments that can be
estimated from a given dataset for a specified confidence level. The resulting “Reliable Moment”
model is able to capture cortical-like distributions of population spiking patterns. Finally, we
show that, compared with the Reliable Interaction model, the Reliable Moment model infers fewer
strong spurious higher-order interactions and is better able to predict the frequencies of previously
unobserved spiking patterns.
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1. Introduction

An essential step in understanding neural coding is the characterization of the correlated structure
of neural activity. Over the past two decades, much theoretical work has clarified the strong impact
that correlated variability between pairs of neurons can have on the amount of information that can
be encoded in neural circuits [1–6]. Beyond pairs, recent experimental studies have shown evidence
of higher-order correlations in cortical [7–11] and retinal [12,13] population activity. Depending on
their stimulus-dependent structure, these higher-order correlations could also have a strong impact
on population coding [14,15]. Moreover, capturing higher-order correlations in neural spiking may
be important for identifying functional networks in neural circuits [16], or for characterizing their
collective statistical activity [17]. Therefore, to incorporate higher-order spiking statistics into an
information theoretic framework, we require flexible modeling tools that can capture the coordinated
spiking of arbitrary orders within neural populations.

Maximum entropy models are an increasingly common tool for fitting and analyzing neural
population spiking patterns. Intuitively, maximum entropy models fit certain specified features
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(e.g., firing rates, correlations between cells) while making minimal additional assumptions about the
population structure [18]. Several variants of the maximum entropy model have been used to fit the
collective activity of spiking patterns in neural data [4,11,13,16,19,20]. However, it is still unclear how to
efficiently incorporate higher-order features into maximum entropy models for two reasons. First, the
number of parameters (and hence the computational expense of model fitting) increases exponentially
as higher-order features are incorporated. Second, because higher-order synchronous spiking occurs
infrequently, empirical estimates tend to be noisy; therefore, massive amounts of data may be necessary
to create a model with higher-order interactions that can generalize to held-out data. These issues have
been addressed by the Reliable Interaction model [12], which uses a maximum entropy inspired model
to fit a sparse network of features based on the most “reliable” (i.e., high-frequency) spiking patterns
within their data. This approach is extremely efficient numerically and reproduces the frequencies
of the most commonly occurring patterns with high accuracy. However, because the model is not a
normalized probability distribution, it cannot be used to calculate information theoretic quantities
such as the Kullback–Leibler divergence or mutual information.

To address these challenges, we introduce an adaptive maximum entropy model that identifies
and fits spiking interactions of all orders, based on the criterion that they can be accurately estimated
from the data for a specified confidence level. Towards this end, we adapt the Reliable Interaction
model by making two small but critical modifications in the fitting procedure and fitting criterion;
these modifications normalize the model, allowing information theoretic quantities to be calculated.
The resulting model is able to fit cortical-like distributions of spiking patterns with dense higher-order
statistics. Finally, we show that these modifications have two further important consequences: they
reduce spurious higher-order interactions, and improve the model’s ability to predict the frequencies
of previously unseen spiking patterns.

2. Results

2.1. The Reliable Moment Model

To analyze population-level activity in neural recordings, it is often necessary to first model the
distribution of spiking patterns. Certain spiking features of neural population activity are likely to be
more relevant for modeling than others: for example, each neuron’s firing rate and the correlations
between pairs of neurons. In general, there may be an infinite family of models that fit these key
features in the data, making any particular choice seem potentially arbitrary. One approach is to take
the distribution that captures the identified statistical features while making the fewest additional
assumptions on the structure of the data. Mathematically, this is equivalent to matching the average
values of the features observed in the data while maximizing the statistical entropy [21]. The resulting
distribution is called the maximum entropy model and can be derived analytically via Lagrange
multipliers [18], resulting in the following probability:

P(x) =
1
Z

exp

{
∑

i
hi fi(x)

}
. (1)

Here, x represents a binary spiking pattern across the population in a small time bin (i.e., xi = 1 if
neuron i spiked in that time bin, otherwise xi = 0), fi(x) are the chosen spiking features, and hi are
interaction parameters that are fitted to match the average fi(x) to the values observed in the data.
Z is a normalizing factor, also called the partition function.

The quality of fit of a maximum entropy model relies critically on which features are included.
Traditionally, first-order (i.e., firing rate) and second-order features (correlations) are chosen [4] to
isolate the effect of pairwise correlations on population activity patterns. However, this may miss
important information about higher-order dependencies within the data. In principle, the pairwise
maximum entropy model can be generalized by fitting features of up to kth order; but this becomes
computationally expensive for large datasets as the number of parameters grows as O(Nk). Moreover,
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higher-order features are more susceptible to overfitting, because they represent spiking features that
occur less frequently in the data (and consequently have noisy empirical estimates). An alternative is to
incorporate a limited subset of predetermined phenomenological features that increase the predictive
power of the model, such as the spike count distribution [13] or frequency of the quiescent state [11].
While these models have been able to capture the collective activity of populations of neurons (e.g., to
determine whether neural activity operates at a critical point [17]), they are not able to dissect how
the functional connectivity between specific subgroups of neurons contributes to the population
level activity.

To address these challenges, a method is needed for data-driven adaptive identification of relevant
spiking features of all orders. The Reliable Interaction (RI) model [12] has previously been used to fit
sparse networks of pairwise and higher-order interactions to retinal populations. The RI model fits
only the features corresponding to spiking patterns whose observed frequencies are larger than an
arbitrary threshold. For example, in a 10-cell population, the fourth-order feature fi(x) = x1x3x5x9

would be fitted only if the spiking pattern x = 1010100010 occurs with frequency above this threshold.
Once these features have been identified, the RI model uses an algebraic approximation for rapid
parameter fitting by first calculating the partition function Z as the inverse of the frequency of the
silent state: Z = P(00 . . . 0)−1. Subsequently, the interaction parameters can be estimated recursively
from the observed frequencies and Z. However, while the RI model has been shown to be able to
accurately fit the frequencies of spiking patterns, its fitting procedure does not generate a normalized
probability distribution (as originally discussed in [12]; see Appendix A for an intuitive example).
This limits certain applications of the model: for example, information theoretic measures such as
the Kullback–Leibler divergence and mutual information cannot be calculated. Another limitation
(demonstrated below and in Appendix A) is that the RI model often cannot predict the frequencies of
rarely occurring spiking patterns.

We propose the Reliable Moment (RM) model, an adaptation of the RI model that makes
two key modifications in the fitting procedure and fitting criterion. First, we take advantage of
a recently developed method for rapid parameter estimation: Minimum Probability Flow (MPF)
learning [22]. While still substantially slower than the algebraic method employed in [12] (which is
essentially instantaneous), using a parameter estimation method such as MPF guarantees a probability
distribution that, in theory, can be readily normalized. In practice, calculating the partition function
(Z in Equation (1)) may be computationally expensive, as it requires summing 2N probabilities. In this
case, the partition function can be quickly estimated using other techniques, such as the Good–Turing
estimate [23] (see Methods). As we shall see below, attempting to apply these approaches to the RI
model strongly disrupts its predictions.

Second, instead of fitting the features corresponding to the most commonly occurring spiking
patterns, we fit the features corresponding to the largest moments. Taking the previous example,
feature fi(x) = x1x3x5x9 would be fitted only if the moment x1x3x5x9 is greater than some threshold.
As in the RI model, the threshold parameter pmin implicitly determines the number of fitted features.
For binary systems, the uncentered moment of a subset of neurons is equal to the marginal probability
of those neurons spiking, so that the previous condition is equivalent to:

P(x1 = 1, x3 = 1, x5 = 1, x9 = 1) ≥ pmin.

The choice of pmin can be made less arbitrary by choosing its value to bound the 95% confidence
interval of the relative error in the sample moments (with some minimal assumptions; [14]):

pmin =
1

1 + M
(

α
2
)2 . (2)

where M is the number of samples and α is the maximum desired relative error. In this way, the RM
model can adaptively identify which moments within a specific dataset are large enough to be
accurately estimated by the sample frequency.
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Unlike the spiking pattern frequencies used in the RI model, these marginal probabilities satisfy
an important hierarchy: the moment of any set of neurons is necessarily bounded by the moment of
any subset of those neurons, e.g.:

x1x3x5x9 ≤ x1x3x5 ≤ x3x5 ≤ x3

This means that for every higher-order interaction fitted by the RM model, all of its corresponding
lower-order interactions are automatically fitted as well. Although this may seem to be a minor change
from the RI model, we will demonstrate the significance of this change with the following toy model
(we later consider larger and more realistic models, see Sections 2.3–2.5).

2.2. Illustration with a Toy Example

Consider N = 3 homogeneous neurons with only first and second-order interactions:

P(x) =
1
Z

exp

{
−α ∑

i
xi +

β

2 ∑
i 6=j

xixj

}
. (3)

The probability of each pattern can be found analytically:

P(x) =


1
Z if 0 spikes

e−α

Z if 1 spike
e−2α+β

Z if 2 spikes
e−3α+3β

Z if 3 spikes

where Z = 1 + 3e−α + 3e−2α+β + e−3α+3β. In particular, for α = 1, β = 1.2:

P(x) ≈


0.1896 if 0 spikes
0.0698 if 1 spike
0.0852 if 2 spikes
0.3455 if 3 spikes

To gain intuition on the fundamental differences between the RM and RI models, we will take
the “best-case” scenario for the model fits; i.e., assuming infinite data and infinite fitting time.
This eliminates any error due to statistical sampling or parameter fitting for this toy example. We will
first see that the difference in fitting criterion can lead the RI model to identify spurious higher-order
interactions. This can be seen by setting the threshold at pmin = 0.1. Then, the RI model will only
identify the spiking patterns x = 000 and 111 as reliable, resulting in the following:

PRI(x) =
1
Z

eh123x1x2x3 , (4)

where h123 = log(Z ∗ P(111)) = 0.6. While the ground truth distribution only contains first-
and second-order interactions, the RI fitting procedure mistakenly infers a pure triplet model.
This happens because the RI model criterion for selection is based on the frequencies of spiking
patterns, which (unlike the moments) do not necessarily follow a natural hierarchy. In contrast,
because it relies on the frequency of the marginal probabilities, the RM model identifies all first, second,
and third order interaction parameters:

PRM(x) =
1
Z

exp

{
∑

i
h(1)i xi + ∑

i 6=j
h(2)ij xixj + h(3)123x1x2x3

}
. (5)
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This demonstrates that the RM model cannot infer higher-order interactions without also fitting the
corresponding lower-order interactions.

Second, the RI model can fail to predict the frequencies of rare spiking patterns; i.e., those that
were not selected as reliable by the model. To see this, consider that the RI model estimates the partition
function as Z = P(000)−1. While this gives an accurate estimate of the partition function of the true
underlying distribution (in this example, the pairwise model; Equation (3)), it may be a poor estimate
of the partition function for the model with interactions inferred by the RI fitting criterion (i.e., the pure
triplet model). This mismatch between model form and the estimated partition function is the reason
the model cannot be normalized. Because the estimated Z is also used to determine the interaction
parameters, the RI model frequencies match the true probabilities of the spiking patterns that are used
for fitting (i.e., the most common or reliable patterns), but is inaccurate for patterns that are below the
threshold frequency (Figure 1). However, naïve renormalization of the model would make all of the
probabilities inaccurate.
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Figure 1. Toy model of N = 3 neurons with only first- and second-order interactions. Ground-truth
probabilities are shown for each spiking pattern (black). Also shown are the frequencies predicted
by the best-case (i.e., assuming infinite data and fitting time) Reliable Interaction (RI, magenta) and
Reliable Moment (RM, blue) models (assuming a threshold of 0.1). Under these assumptions, the RM
model would fit the ground-truth frequencies exactly. The RI model exactly fits the frequencies for
spiking patterns above threshold, but is inaccurate for rare patterns. Note that the RI model cannot be
normalized because the fitted partition function does not match fitted interaction terms (see main text
and Appendix A for a detailed explanation). Model parameters: α = 1, β = 1.2 (see Equation (3)).

On the other hand, because it falls in the class of maximum entropy distributions, the RM model is
guaranteed to converge to the ground-truth solution under the following assumptions: first, assuming
that all interaction terms in the ground-truth model are incorporated into the RM model; second,
assuming infinite data; and finally, assuming infinite time and a convex iterative fitting procedure
such as Iterative Scaling [24]. For this toy example, this means that the “best case” RM model given by
Equation (5) will converge to the ground-truth distribution (Equation (3)). However, note that this is
not necessarily the case due to sampling noise, unidentified interaction terms, and the necessity for
approximate methods due to time limitations. In the latter case, we advocate the use of the approximate
MPF learning algorithm as a more practical option than Iterative Scaling, but this choice introduces
some error into the fitted model.

Approximate methods are also useful for calculating the partition function. While the partition
function can be calculated exactly by brute-force summing all 2N unnormalized probabilities, this can
become prohibitively slow for large populations. We instead approximate the partition function;
e.g., by the Good–Turing estimate [23]. Another alternative is to use Gibbs sampling [25] to generate
spiking patterns from the inferred interaction parameters, then use the RI estimate of the partition
function as the inverse probability of the non-spiking state in the Gibbs sampled “data”. Regardless
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of which of these methods is used, our toy example shows the fundamental differences between the
RM and RI models, namely, that the RM model can in principle be normalized without disrupting its
predictions of spike pattern probabilities.

2.3. The RM Model Infers Fewer Strong Spurious Higher-Order Interactions

Using this toy model, we have demonstrated that the RM model may be: (1) less likely to infer
spurious higher-order interactions, and (2) better able to predict the frequencies of new spiking patterns.
Do these improvements hold for more realistic population spiking statistics? To test this, we modeled
populations of N = 20 neurons using pairwise maximum entropy models. Specifying the desired
statistics of a maximum entropy model is a notoriously difficult inverse problem. We therefore tuned
the ground-truth interaction parameters to generally give low firing rates (Figure 2a, mean ± std,
3.3 ± 1.9 Hz) and a broad distribution of correlations (Figure 2b, 0.01 ± 0.05; see Methods). However,
we will subsequently test the ability of the RM model to fit a class of models for which we can directly
prescribe cortical-like distributions of firing rates and spiking correlations (see Section 2.5).
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Figure 2. Fitting a ground-truth pairwise maximum entropy model (N = 20). (a,b) Distribution of (a)
firing rates (assuming a time window of 20 ms) and (b) pairwise correlation coefficients generated by
the ground truth models. (c–e) Example of Reliable Moment (RM) model fit to 200 s of a simulated
pairwise ground truth model (pmin = 10−3). In this example, the RM model identified all 20 units,
154 pairs, 103 triplets, and 5 quadruplets. (c) Uncentered sample moments in the fitted RM model
plotted against the empirical sample moments (estimated from training data) to show quality of model
fit. Blue indicates all moments (single, pairwise, and higher-order) that were identified by the RM
model. For comparison, red indicates the 36 pairs that were not identified by the RM model (and hence
not fitted). (d) Cross-validated RM model probabilities versus ground-truth probability (i.e., estimated
from held-out “test” data), for an example ground-truth model. Each point represents a different spiking
pattern. (e) RM model correlations plotted against cross-validated empirical correlations (i.e., sample
correlations plotted against empirical sample correlations from test data). Again, red points indicate pairs
whose corresponding interaction terms were not identified. Inset shows the same for firing rates.
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We generated population spiking patterns under the resulting distribution using Gibbs sampling
(equivalent to 200 s worth of data) [22,25]. Figure 2c shows the fitted moments of a RM model for an
example simulated population dataset (pmin = 10−3). This choice of threshold parameter identifies
all 20 units, and 154 pairs (out of 190 possible) as having moments above threshold, which are fitted
via MPF learning to reproduce the sample moments from the training data (blue; for comparison,
the 36 pairs that were not included in the fitting are shown in red). The model is able to reproduce
the probability distribution of spiking patterns in a “test” dataset that was not used to fit the model
(Figure 1d), as well as the firing rates and correlations (Figure 1e; including the pairs that were not
explicitly used for fitting, in red). This choice of model also identifies 108 higher-order moments
(103 triplets and 5 quadruplets) as being above threshold. Since the ground truth model is pairwise,
ideally their interaction parameters should be zero after fitting. Because of sampling noise in the data,
as well as idiosyncrasies of MPF learning (see Discussion), they are nonzero but small on average
(magnitude 0.235 ± 0.231).

How does this compare to the RI model? We next systematically tested whether the RM and
RI models infer spurious higher-order interactions by simulating 50 random pairwise populations
(using the same firing rates and correlations given by the distributions in Figure 2a,b). For each
ground-truth model, we fit 20 RM and RI models with varying thresholds (see Methods), and compared
the magnitudes of the higher-order interaction parameters. We found that the fitted higher-order
interaction terms were smaller for the RM model than the RI model, regardless of the number of
inferred parameters (Figure 3). This was true even when correcting for potential differences in the
fitted lower-order interaction parameters (see Appendix B). Moreover, for the RM model, the average
magnitude of the higher-order interaction terms was nonzero, but small and constant across different
thresholds; whereas for the RI model, they increased in both magnitude and in variance. When a
sparse subset of triplet interaction terms is added to the ground-truth model, the RM model is also
better able to fit the corresponding interaction parameters (see Appendix C). These results reinforce
the intuition we developed previously with the toy model (Figure 1) that the RM model finds fewer
strong, spurious higher-order interactions, and is better able to fit existing higher-order interactions.
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2.4. The RM Model Fits Rare Spiking Patterns 

Our toy model also predicted that, while the RI model is very accurate at capturing the frequencies 
of commonly occurring spiking patterns, it is unable to predict the probabilities of rare patterns. This 
could be a strong limitation for large population recordings, as the number of previously-unseen 
spiking patterns grows as O(2N) assuming fixed recording lengths. We therefore tested this effect by 
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Figure 3. The Reliable Moment (RM) infers fewer strong, spurious higher-order interactions.
(a) Average magnitude of all fitted higher-order interaction parameters as a function of the number of
fitted higher-order interactions, shown for both the Reliable Interaction (RI; magenta) and RM (blue)
models. Note that all higher-order interactions should have magnitude 0. Points represent 50 random
ground-truth models (i.e., random interaction parameters), each of which is fitted 20 times with varying
threshold parameters (see Methods). Solid lines indicate the RM and RI fits to a specific example
ground-truth model. (b) Same as (a) but for standard deviation.
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2.4. The RM Model Fits Rare Spiking Patterns

Our toy model also predicted that, while the RI model is very accurate at capturing the frequencies
of commonly occurring spiking patterns, it is unable to predict the probabilities of rare patterns.
This could be a strong limitation for large population recordings, as the number of previously-unseen
spiking patterns grows as O(2N) assuming fixed recording lengths. We therefore tested this effect by
generating a new testing dataset for each ground-truth model, and separating it into “old” spiking
patterns (those that also occurred within the training dataset) and “new“ spiking patterns (those that
only occurred within the test dataset). In order to compare the RM and RI models, we must specify
which threshold values to use for each model. Since the RM and RI threshold use different “units”
(i.e., the RI threshold is based on the frequencies population spiking patterns, and the RM threshold
is based on marginal probabilities or moments), it is difficult to directly compare them. For a fair
comparison of the model fits, it is therefore necessary to compare models that have the same number
of fitted interaction parameters. Otherwise, any difference in model performance might be attributed
to a model having more parameters to fit. We therefore first chose the threshold parameters in this
example so that the RM and RI models have exactly the same number of fitted interaction parameters
(in this case, 395). Figure 4a shows an example of model vs. empirical frequencies (calculated from
held-out test data) for old spiking patterns.
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Figure 4. The Reliable Moment (RM) model is able to predict the probabilities of new spiking patterns.
(a) Reliable interaction (RI; magenta) model frequencies and RM (blue) model probabilities of previously
observed spiking patterns plotted against ground-truth probability, for an example ground-truth model.
Each point represents a different “old” spiking pattern (i.e., occurring within both test and training
datasets). For a fair comparison, we chose an example in which the RM and RI models had the same
number of fitted interaction parameters (in this case, 395). (b) Dissimilarity (see Methods) between
ground-truth distribution and model distribution of spiking patterns over different numbers of fitted
higher-order interactions. Points represent 50 random ground-truth models (i.e., random interaction
parameters), each of which is fitted 20 times with varying threshold parameters. Solid lines indicate the
RM and RI fits to a specific example ground-truth model. (c,d) Same as (a,b) for new spiking patterns
(i.e., those observed in the test data but not observed in the training data).
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Because the RI model is unnormalized, we cannot use the Kullback–Leibler divergence. Instead,
we calculated the dissimilarity between the distributions using the weighted average of the magnitude
of the log-likelihood (see Methods, [12]). RM and RI model performances were comparable across
different ground-truth populations and different threshold parameters (Figure 4b). However, the RI
model was much less accurate for predicting the frequencies of new spiking patterns (Figure 4c,d).
As discussed for the toy model, this is because the RI fitting procedure is only able to capture data that
was used for fitting, which precludes new spiking patterns. Therefore, in both the toy model and the
more realistic case here, the RM model is better able to predict the frequencies of the many unobserved
spiking patterns that inevitably occur in large array recordings.

2.5. Fitting a Model with Cortical-Like Statistics and Dense Higher-Order Correlations

Thus far we have focused on fitting data generated by ground-truth pairwise maximum entropy
models. Therefore, we now test the performance of the RM model on the Dichotomized Gaussian
(DG) model, which simulates population spiking activity by generating multivariate Gaussian samples
(representing correlated inputs to the population) and thresholding them [26]. The DG model generates
dense higher-order statistics and can reproduce higher-order correlations observed in cortical data [8].
Unlike maximum entropy models, we can directly specify the firing rates for the DG model in
order to generate cortical-like statistics. We chose log-normal, low-rate (mean 4 Hz) firing rate
distributions [27,28] (Figure 5a), and normally distributed (mean 0.1) pairwise correlations [29]
(Figure 5b; see Methods). We next compared the ability of the RM and RI models to fit the DG
model spike patterns by comparing the dissimilarity between the model frequencies and the empirical
probabilities from a held-out test dataset. The RM model was able to fit the DG patterns well, with the
classic U-shaped curve with the number of parameters, whereas the RI model had an oscillatory shape
(Figure 5c). The oscillations occur due to instabilities in the model’s ability to fit rare spiking patterns.
To see this, Figure 5d shows an example of cross-validated model vs. empirical frequencies of spiking
patterns that occur more than once in the test dataset. This is analogous to comparing the performance
of the models for old spiking patterns (as in Figure 4a,b). For a fair comparison, we chose this example
so that the RM and RI models had the same number of fitted interaction parameters (in this case, 239).
Both models describe the data well, with the RI model performing slightly better because of its more
accurate fit to the most common (quiescent) spiking patterns. However, when considering all the
spiking patterns that occur in the test dataset, the RI model produces incoherent values for rare spiking
patterns (i.e., those that only occur once, analogous to the “new” spiking patterns in Figure 4c,d),
with frequencies often far surpassing 1 (Figure 5d, inset). Finally, note that an advantage of the RI
model is that its fitting procedure is essentially instantaneous (Figure 5e). We therefore conclude that
the RI model is a highly efficient method for capturing the frequencies of observed spiking patterns
with relatively few parameters, but is unstable for predicting previously-unseen spiking patterns.
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Figure 5. Fitting a Dichotomized Gaussian model with cortical-like statistics (N = 20). (a,b) Distribution
of (a) firing rates (assuming a time window of 20 ms) and (b) pairwise correlation coefficients
generated by the model. The Dichotomized Gaussian model is known to generate dense higher-order
correlations [9,26]. (c) Cross-validated dissimilarity between the empirical and model distributions,
for both Reliable Interaction (RI; magenta) and Reliable Moment (RM; blue) models. Points represent
50 random ground-truth models (i.e., random interaction parameters), each of which is fitted 20 times
with varying threshold parameters. Solid lines indicate the RM and RI fits to a specific example
ground-truth model. (d) Cross-validated model frequencies versus empirical probability, for an example
ground-truth model. Each point represents a different spiking pattern. Only patterns occurring at least
twice in the dataset are shown. Inset shows same plot, including spiking patterns that only occur once.
For a fair comparison, we chose an example in which the RM and RI models had the same number of
fitted interaction parameters (in this case, 239). (e) Time required for fitting RM and RI models.

3. Discussion

We developed the Reliable Moment (RM) model, a novel class of maximum entropy model for
adaptively identifying and fitting pairwise and higher-order interactions to neural data. To do this,
we extended a previous model [12] by making two key modifications in the fitting criterion and
the fitting procedure. First, we include spiking features whose corresponding uncentered moments
are above a threshold value. This threshold need not be arbitrary, as it can be used to bound the
confidence interval of the relative error (Equation (2)) [14]. Second, we take advantage of recent fast
parameter fitting techniques [22], which results in a normalized probability distribution. We show
that the RM model is able to fit population spike trains with cortical-like statistics, while inferring
fewer strong, spurious higher-order correlations, and more accurately predicting the frequencies of
rare spiking patterns.

We extended the intuition of the Reliable Interaction (RI) model [12] by determining which spiking
features were most “reliable” as a criterion for inclusion in the model. However, our modifications
confer several benefits. First, the RM model is normalized. While this does not necessarily affect the
ability of a model to fit spiking pattern frequencies, it means that certain quantities that depend on the
full distribution, such as mutual information or specific heat, can be applied to the RM model (although
the RI model can be used to decode spiking patterns, as in [12]). This allows the RM model to be used
for analyzing population coding or Bayesian inference, or for measuring signatures of criticality [17].
Second, the RM model is better able to predict the frequencies of previously-unseen spiking patterns.
This is important for neural data, as the number of unseen spiking patterns increases significantly for
large-scale population recordings. On the other hand, as a result of its fitting method, the RI model
can be unstable for rare patterns (Figure 5d, inset; although it is able to predict the frequencies of
common patterns well). Third, the RM model is less likely to find spurious higher-order interactions
in a pairwise model, as compared to the RI model. This is because the hierarchical structure of the
uncentered moments guarantees that no higher-order spiking feature can be fitted without also fitting
all of its lower-order feature subsets. Finally, the main disadvantage of the RM model is that it is
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much slower to fit than the RI model, even using Minimum Probability Flow learning [22]. Therefore,
the RM model performs better for determining the higher-order statistical structure of the data or
predicting the frequencies of new patterns, while the RI model performs better as a fast method for
fitting commonly occurring spiking patterns.

Several variants on the RM model are possible. While we chose to use MPF learning due to its
speed, there are many alternative methods that are available [24,30–32]. In particular, classic Iterative
Scaling [24] finds the interaction parameters that maximize the log-likelihood of the data. This is
equivalent to minimizing the Kullback–Leibler divergence between the data and the model, which can
be shown to be a convex problem. However, it can be prohibitively slow even for reasonably sized
populations. On the other hand, MPF defines a dynamical system that would transform the empirical
distribution into the model distribution, then minimizes the Kullback–Leibler divergence between the
empirical distribution and the distribution established by this flow (after an infinitesimal time) [22].
While there is no guarantee on convexity, MPF in general works very well in practice (see Figure 2)
and is much faster. Another possibility is to add a regularization term to the cost function during
fitting to ensure sparse interaction parameters. Moreover, there is some flexibility in choosing the
threshold parameter. Here, we advocated determining the threshold parameter to bound the error of
the moments (Equation (2)). An alternative option would be to use the Akaike Information Criterion to
determine the threshold that results in the optimal number of interaction parameters [33]; however, this
would require multiple model fittings for validation. The criterion for inclusion of specific interactions
may also be modified, for instance, by requiring that fitted interaction parameters have moments
exceeding a threshold based on the empirical values. For each of these variants, the RM model extends
the ideas behind the RI model by fitting a sparse subset of the most “relevant” higher-order interactions,
while ensuring that the corresponding lower-order interactions are also fit.

We focused on capturing stationary correlations in neural data, while neglecting temporal
dependencies between neurons. In principle, temporal correlations could be incorporated into
the RM model, and into the maximum entropy models more generally, by fitting concatenated
spatiotemporal spiking patterns [34–36]. This dramatically increases the cost of fitting, although
emerging techniques are making this problem more tractable [37,38]. Another, more widely-used
approach to fitting spatiotemporal models of neural spiking is the generalized linear model
(GLM) [39,40]. GLMs and Maximum entropy models are not mutually exclusive; hybrid approaches are
possible [41], and maximum entropy models can be interpreted in a linear-nonlinear framework [15,19].
Future work could incorporate higher-order moments into the GLM framework, as has been done
for common inputs [42]; indeed, there is a long history of moment-based methods for point process
models that could be drawn upon [43–46]. Such an advance could provide a powerful tool for
fitting higher-order spatiotemporal statistics to neural circuits, and help to illuminate the structure of
collective neural activity.

4. Materials and Methods

4.1. Ground Truth Models

We simulated ground-truth pairwise maximum entropy models for N = 20 neurons. Throughout,
we assumed time bins of 20 ms for the spiking patterns. To test the performance of the Reliable Moment
(RM) model on data without any higher-order interactions, we first assumed a pairwise maximum
entropy distribution of spiking patterns with random, normally distributed first and second-order
interaction parameters: hi ∼ N (3, 0.25), hij ∼ N

(
0, 2

N
)
. The metaparameters for the distributions

were tuned to give low average firing rates and a broad distribution of correlations (Figure 2a).
To calculate probabilities from the ground-truth model, we either calculate the empirical frequency of
spiking patterns (“empirical probability”, Figure 2d) or else we calculate the exact probability from
model parameters (“ground-truth probability”, Figure 4). The latter requires an expensive calculation
of the partition function.
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For cortical-like models with higher-order statistics, we used a technique based on the
Dichotomized Gaussian (DG) model [47] to generate spike trains with specified firing rates and
spiking correlations. In this case, we drew firing rates from a lognormal distribution with a mean of
4 Hz and standard deviation of 2 Hz, and correlations were normally distributed ρij ∼ N (0.1, 0.05).
In this case, all probabilities are calculated based on empirical frequency (Figure 5).

4.2. Identification of Reliable Moments

To fit the RM model, we must first identify which moments are greater than pmin. This process
can be made efficient by taking advantage of the hierarchical arrangement of moments. We first find
the set of neurons whose mean firing rates in the training data are greater than threshold:

S1 = {i : xi ≥ pmin}.

S1 is the set of first-order interaction parameters. Similarly, the set of kth-order interaction parameters
is given by:

Sk =

{
{s1 · · · sk} :

k

∏
i=1

xsi ≥ pmin

}
.

The RM model fits the interactions corresponding to all elements in Sk, k = 1, . . . , N. Enumerating
all Sk can be computationally expensive as the number of possible interactions increases as O(Nk).
Because of the hierarchy of moments, this search can be expedited by only considering the kth-order
subsets {s1 · · · sk} for which all of their (k− 1)th-order subsets are elements of Sk−1. This determines
whether the corresponding moment is above threshold. This step is performed iteratively until Sk = ∅.

4.3. Model Fitting and Sampling

We fit the interaction parameters for the RM model using Minimum Probability Flow learning [22],
which we adapted to accommodate arbitrary spiking interactions. After fitting the model, we used
the Good–Turing estimate [23] to estimate the partition function empirically. For each ground-truth
model, we fit 20 RM models with threshold parameters varying from pmin = 0.05 to pmin = 0.001.
Because MPF is not convex (and therefore not guaranteed to converge), it is important to check that
the model correlations reproduce the data correlations. To do this, we calculate sample correlations via
Gibbs sampling.

The Reliable Interaction (RI) models were fit using the procedure described in [12].
Because spiking pattern frequencies are smaller than the marginal frequencies, we used smaller
thresholds for the RI model, ranging from pmin = 5 ∗ 10−3 to 10−5, as these resulted in similar numbers
of fitted parameters in the RM and RI models.

4.4. Dissimilarity Between Empirical Data and Models

Since the RI model is not normalized, the Kullback–Leibler divergence returns incongruent
(negative) values. We therefore follow [12] in measuring the dissimilarity between the ground-truth
and the model frequencies as:

d(P, Q) = ∑
x∈D

P(x)
∣∣∣∣log2

P(x)
Q(x)

∣∣∣∣
where D is the set of all observed spiking patterns in the test data (however, in contrast to [1], we do
not exclude spiking patterns that only occurred once).

4.5. Code Availability

All relevant code is available at: https://github.com/caycogajic/Reliable-Moment.

https://github.com/caycogajic/Reliable-Moment
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Appendix A

Here we demonstrate why the RI model cannot be normalized, using an intuitive example
that can only be described in the maximum entropy formulation in the limit that the interaction
parameters → −∞ . However, note that the RI model for the toy example discussed in the main text
(described by Equations (3) and (4)) is also unnormalizable in its exact form.

Consider N neurons that never spike: then, P(00 . . . 0) = 1, and zero for all other spiking patterns.
Informally, this distribution can be described by the limit of the following first-order maximum
entropy model:

P(x) =
1
Z

exp

{
∑

i
hixi

}
,

as hi → −∞ . Under the RI model, the partition function is estimated as Ẑ = P(00 . . . 0)−1=1. Since this
is the only occurring pattern, all interactions are set to 0. As a result, the frequency of any spiking
pattern is:

PRI(x) =
1
Z

exp{0} = 1,

so that the frequencies sum to 2N. Although the RI model accurately (in this example, perfectly) fits the
most common spiking pattern (silence), it is unnormalized. Furthermore, naive renormalization would
result in a probability distribution that is inaccurate for every spiking pattern. This dilemma occurs
because Ẑ is an accurate (in this example, perfect) estimate of the partition function of the underlying
distribution, but not for the model defined by the interaction parameters identified by the RI model.

Appendix B

We have shown that the RM model predicts infers smaller higher-order interaction parameters
in a ground-truth pairwise model than the RI model. In principle, this fact could be due to changes
in the lower-order terms. In other words, it is possible that the RI higher-order interaction terms
are larger in absolute magnitude, but not in relative magnitude as compared to the e.g., pairwise
terms. We therefore quantified the average magnitude of fitted higher-order interaction parameters,
normalized by the average magnitude of all fitted pairwise terms. However, we still found that
the normalized higher-order interaction terms were larger in the RI model than in the RM model
(Figure A1a). This is due to the fact that the pairwise interaction terms were similar between the RM
and RI models (Figure A1b). Therefore, we conclude that the RM model infers fewer strong, spurious
higher-order interactions, even when controlling for differences in the lower-order terms.
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Appendix C

To test whether the RM model is better able to fit higher-order interactions than the RI model,
we augmented the pairwise maximum entropy model with a sparse set of nonzero triplet interaction
terms. Specifically, the lower-order terms were generated in the same manner as for the pairwise model

(see Methods). Then, each of the (
N
3

) possible triplet terms was chosen with probability p = 0.05,

and the corresponding interaction parameters for these triplets (referred to as the “ground-truth
triplets”) were drawn from a standard normal distribution. We repeated the same fitting protocol
as previously described for the pairwise maximum entropy model. The number of ground-truth
triplets that were not identified by the RM model was slightly higher than the RI model (mean ± std,
53.00 ± 0.29, RM model; 46.00 ± 0.37, RI model). However, we found that the inferred interaction
parameters for these ground-truth triplets are more accurate for the RM model than the RI model
(Figure A2). Therefore, while the RM model misses slightly more ground-truth triplets than the RI
model, it more accurately fits their interaction parameters.
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Figure A2. The Reliable Moment (RM) model more accurately fits higher-order interaction
parameters of a maximum entropy ground-truth model incorporating a sparse subset of triplet terms.
Fitted interaction parameters for ground-truth triplets inferred by the RM model (blue) and the Reliable
Interaction model (RI, magenta), plotted against the ground-truth values of the interaction parameters.
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