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Neuronal populations in sensory cortex produce variable responses to sensory stimuli, and ex-
hibit intricate spontaneous activity even without external sensory input. Cortical variability and
spontaneous activity have been variously proposed to represent random noise, recall of prior
experience, or encoding of ongoing behavioral and cognitive variables. Recording over 10,000
neurons in mouse visual cortex, we observed that spontaneous activity reliably encoded a high-
dimensional latent state, which was partially related to the mouse’s ongoing behavior and was
represented not just in visual cortex but across the forebrain. Sensory inputs did not interrupt
this ongoing signal, but added onto it a representation of external stimuli in orthogonal dimen-
sions. Thus, visual cortical population activity, despite its apparently noisy structure, reliably
encodes an orthogonal fusion of sensory and multidimensional behavioral information.

In the absence of sensory inputs, the brain pro-
duces structured patterns of activity, which can be as
large as or larger than sensory-driven activity (1). On-
going activity exists even in primary sensory cortices,
and has been hypothesized to reflect recapitulation or
expectation of sensory experience. This hypothesis is
supported by studies that found similarities between
sensory-driven and spontaneous firing events (2–7).
Alternatively, ongoing activity could be related to be-
havioral and cognitive states. The firing of sensory
cortical and sensory thalamic neurons correlates with
behavioral variables such as locomotion, pupil diame-
ter, and whisking (8–23). Continued encoding of non-
visual variables when visual stimuli are present could
at least in part explain the trial-to-trial variability in
cortical responses to repeated presentation of identi-
cal sensory stimuli (24).

The influence of trial-to-trial variability on stimu-

lus encoding depends on its population-level structure.
Variability that is independent across cells – such as
the Poisson-like variability produced in balanced re-
current networks (25) – presents little impediment to
information coding, as reliable signals can still be ex-
tracted as weighted sums over a large enough popu-
lation. In contrast, correlated variability has conse-
quences that depend on the form of the correlations. If
correlated variability mimics differences in responses
to different stimuli, it can compromise stimulus en-
coding (26, 27). Conversely, correlated variability in
dimensions orthogonal to those encoding stimuli has
no adverse impact on coding (28), and might instead
reflect encoding of signals other than visual inputs.
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Figure 1: Structured ongoing population activity in visual cortex. (A,B) Two-photon calcium imaging of
∼10,000 neurons in visual cortex using multi-plane resonance scanning of 11 planes spaced 35 µm apart. (C)
Distribution of pairwise correlations in ongoing activity, computed in 1.2 second time bins (yellow). Gray: dis-
tribution of correlations after randomly time-shifting each cell’s activity. (D) Distribution of pairwise correlations
for each recording (showing 5th and 95th percentile). (E) First PC versus running speed in 1.2 s time bins. (F)
Example timecourse of running speed (green), pupil area (gray), whisking (light green), first principal component
of population activity (magenta dashed). (G) Neuronal activity, with neurons sorted vertically by 1st PC weight-
ing, same time segment as F. (H) Same neurons as in G, sorted by a manifold embedding algorithm. (I) Shared
Variance Component Analysis (SVCA) method for estimating reliable variance. (J) Example timecourses of SVCs
from each cell set in the test epoch (1.2 s bins). (K) Same as J, plotted as scatter plot. Title is Pearson correlation
between cell sets: an estimate of that dimension’s reliable variance. (L) % of reliable variance for successive di-
mensions. (M) Reliable variance spectrum, power law decay of exponent 1.14. (N) % of each SVC’s total variance
that can be reliably predicted from arousal variables (colors as in E). (O) Percentage of total variance in first 128
dimensions explainable by arousal variables.

2



Spontaneous cortical activity reliably en-
codes a high-dimensional latent signal

To distinguish between these possibilities, we char-
acterized the structure of neural activity and sensory
variability in mouse visual cortex. We simultaneously
recorded from 11,262 ± 2,282 (mean ± s.d.) exci-
tatory neurons, over nine sessions in six mice using
2-photon imaging of GCaMP6s in an 11-plane config-
uration (29) (Fig. 1A,B, Movie S1). These neurons’
responses to classical grating stimuli revealed robust
orientation tuning as expected in visual cortex (Fig.
S1).

We began by analyzing spontaneous activity in
mice free to run on an air-floating ball. Six of nine
recordings were performed in darkness, but we did not
observe differences between these recordings (shown
in red on all plots) and recordings with gray screen
(yellow on all plots). Mice spontaneously performed
behaviors such as running, whisking, sniffing, and
other facial movements, which we monitored with an
infrared camera.

Ongoing population activity in visual cortex was
highly structured (Fig. 1C-H). Correlations between
neuron pairs were reliable (Fig. S2), and their spread
was larger than would be expected by chance (Fig.
1C,D), suggesting structured activity (30). Fluctua-
tions in the first principal component (PC) occurred
over a timescale of many seconds (Fig. S3), and
were coupled to running, whisking, and pupil diam-
eter. These arousal-related variables correlated with
each other (Fig. S4A,B), and together accounted for
approximately 50% of the variance of the first neu-
ral PC (Fig. 1E, Fig. S4C). Correlation with the first
PC was positive or negative in approximately simi-
lar numbers of neurons (57% ± 6.7% SE positive),
indicating that two large sub-populations of neurons
alternate their activity (Fig. 1F,G). The slowness of
these fluctuations suggests a different underlying phe-
nomenon to previously-studied up and down phases
(5, 31–34), which alternate at a much faster timescale
(∼100 ms instead of multiple seconds) and correlate
with most neurons positively. Indeed, up/down phases
could not even have been detected in our recordings,
which scanned the cortex every 400 ms.

Spontaneous activity had a high-dimensional
structure, more complex than would be predicted by
a single factor such as arousal. We sorted the raster
diagram so that nearby neurons showed strong corre-
lations (Figs. 1H, S5). Position on this continuum

bore little relation to actual distances in the imaged
tissue (Fig. S6), suggesting that this activity was not
organized topographically.

Despite its noisy appearance, spontaneous popu-
lation activity reliably encoded a high-dimensional la-
tent signal (Fig. 1I-K). We devised a method to iden-
tify dimensions of neural variance that are reliably
determined by common underlying signals, termed
Shared Variance Component Analysis (SVCA). We
divided the recorded neurons into two spatially seg-
regated sets, and divided the recorded timepoints into
two equal halves (training and test; Fig. 1I). The
training timepoints were used to find the dimensions
in each cell set’s activity that maximally covary with
each other. These dimensions are termed Shared Vari-
ance Components (SVCs). Activity in the test time-
points was then projected onto each SVC (Fig. 1J),
and the correlation between projections from the two
cell sets (Fig. 1K) provided an estimate of the reliable
variance in that SVC (see Methods and Appendix).
The fraction of reliable variance in the first SVC was
97% (Fig. 1K,L), implying that only 3% of the vari-
ance along this dimension reflected independent noise.
The reliable variance fraction of successive SVCs de-
creased slowly, with the 50th SVC at ∼50% reliable
variance, and the 512th at ∼9% (Fig. 1L).

The magnitude of reliable spontaneous variance
was distributed across dimensions according to a
power law of exponent 1.14 (Fig. 1M). This value
is larger than the power law exponents close to 1.0
seen for stimulus responses (35), but still indicates a
high-dimensional signal. The first 128 SVCs together
accounted for 86% ± 1% SE of the complete popu-
lation’s reliable variance, and 67% ± 3% SE of the
total variance in these 128 dimensions was reliable.
Arousal variables accounted for 11% ± 1% SE of the
total variance in these 128 components (16% of their
reliable variance), and primarily correlated with the
top SVCs (Fig. 1N,O). Thousands of neurons were
required to reliably characterize activity in hundreds
of dimensions, and the estimated reliability of higher
SVCs increased with the number of neurons analyzed
(Fig. S7A-E), suggesting that recordings of larger
populations would identify yet more dimensions.
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Figure 2: Multi-dimensional behavior predicts neural activity. (A) Frames from a video recording of a mouse’s
face. (B) Motion energy, computed as the absolute value of the difference of consecutive frames. (C) Spatial masks
corresponding to the top three principal components (PCs) of the motion energy movie. (D) Schematic of reduced
rank regression technique used to predict neural activity from motion energy PCs. (E) Cross-validated fraction of
successive neural SVCs predictable from face motion (blue), together with fraction of variance predictable from
running, pupil and whisking (green), and fraction of reliable variance (the maximum explainable; gray; cf. Fig.
1L). (F) Top: raster representation of ongoing neural activity in an example experiment, with neurons arranged
vertically as in Fig. 1H so correlated cells are close together. Bottom: prediction of this activity from facial
videography (predicted using separate training timepoints). (G) Percentage of the first 128 SVCs’ total variance
that can be predicted from facial information, as a function of number of facial dimensions used. (H) Prediction
quality from multidimensional facial information, compared to the amount of reliable variance. (I) Adding explicit
running, pupil and whisker information to facial features provides little improvement in neural prediction quality.
(J) Prediction quality as a function of time lag used to predict neural activity from behavioral traces.
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Ongoing neural activity encodes multidi-
mensional behavioral information

Although arousal measures only accounted for a small
fraction of the reliable variance of spontaneous popu-
lation activity, it is possible that higher-dimensional
measures of ongoing behavior could explain a larger
fraction (Fig. 2A-C, Movie S2). We extracted a 1,000-
dimensional summary of the motor actions visible on
the mouse’s face by applying principal component
analysis to the spatial distribution of facial motion at
each moment in time (36). The first PC captured mo-
tion anywhere on the mouse’s face, and was strongly
correlated with explicit arousal measures (Fig. S4B),
while higher PCs distinguished different types of fa-
cial motion. We predicted neuronal population activ-
ity from this behavioral signal using reduced rank re-
gression: for any N , we found the N dimensions of
the video signal predicting the largest fraction of the
reliable spontaneous variance (Fig. 2D).

This multidimensional behavior measure pre-
dicted approximately twice as much variance as the
three arousal variables (Fig. 2D-J, Movie S3). To
visualize how multidimensional behavior predicts on-
going population activity, we compared a raster rep-
resentation of raw activity (vertically sorted as in
Fig. 1H) to the prediction based on multidimensional
videography (Fig. 2F, see Fig. S5 for all recordings).
To quantify the quality of prediction, and the dimen-
sionality of the behavioral signal encoded in V1, we
focused on the first 128 SVCs (accounting for 86%
of the population’s reliable variance). The best one-
dimensional predictor extracted from the facial motion
movie captured the same amount of variance as the
best one-dimensional combination of whisking, run-
ning, and pupil (Fig. 2G). Prediction quality contin-
ued to increase with up to 16 dimensions of video-
graphic information (and beyond, in some record-
ings), suggesting that visual cortex encodes at least
16 dimensions of motor information. These dimen-
sions together accounted for 21%± 1% SE of the total
population variance (31% ± 3% of the reliable vari-
ance; Fig. 2H), substantially more than the three-
dimensional model of neural activity using running,
pupil area and whisking (11% ± 1% SE of the to-
tal variance, 17% ± 1% SE of the reliable variance).
Moreover, adding these three explicit predictors to the
video signal increased the explained variance by less
than 1% (Fig. 2I), even though the running signal pro-
vided information not derived from video. A neuron’s

predictability from behavior was not related to its cor-
tical location (Fig. S8). The timescale with which
neural activity could be predicted from facial behavior
was∼1 s (Figs. 2J, S7H), reflecting the slow nature of
these behavioral fluctuations.

Behaviorally-related activity is spread
across the brain

Patterns of spontaneous V1 activity were a reflection
of activity patterns spread across the brain (Fig. 3A-
E). To show this, we used 8 Neuropixels probes (37) to
simultaneously record from frontal, sensorimotor, vi-
sual and retrosplenial cortex, hippocampus, striatum,
thalamus, and midbrain (Fig. 3A,B). The mice were
awake and free to rotate a wheel with their front paws.
From recordings in three mice, we extracted 2,296,
2,668 and 1,462 units stable across ∼1 hour of ongo-
ing activity, and binned neural activity into 1.2 s bins,
as for the imaging data.

Neurons correlated most strongly with others in
the same area, but also correlated with neurons in
other areas, suggesting non-localized patterns of neu-
ral activity (Fig. 3C). All areas contained neurons
positively and negatively correlated with the arousal-
related top facial motion PC, although neurons in
thalamus showed predominantly positive correlations
(Fig. 3D, p < 10−8 two-sided Wilcoxon sign-
rank test). Sorting the neurons by correlation re-
vealed a rich activity structure (Fig. 3E). All brain
areas contained a sampling of neurons from the en-
tire continuum (Fig. 3E, right), suggesting that a
multidimensional structure of ongoing activity is dis-
tributed throughout the brain. This spontaneous ac-
tivity spanned at least 128 dimensions, with 35% of
the variance of individual neurons reliably predictable
from population activity (Fig. S9).

Similar to visual cortical activity, the activity of
brainwide populations was partially predictable from
facial videography (Fig. 3F-H). Predictability of
brain-wide activity again saturated around 16 behav-
ioral dimensions, which predicted on average across
areas 21.9% of the total variance (40% of the esti-
mated maximum possible) (Fig. 3F). The amount
of behavioral modulation differed between brain re-
gions, with neurons in thalamus predicted best (35.7%
of total variance, 59% of estimated maximum). The
timescale of videographic prediction was again broad:
neural activity was best predicted from instantaneous
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Figure 3: Behaviorally-related activity across the forebrain in simultaneous recordings with 8 Neuropixels
probes. (A) Reconstructed probe locations of recordings in three mice. (B) Example histology slice showing or-
thogonal penetrations of 8 electrode tracks through a calbindin-counterstained horizontal section. (C) Comparison
of mean correlation between cell pairs in a single area, with mean correlation between pairs with one cell in that
area and the other elsewhere. Each dot represents the mean over all cell pairs from all recordings, color coded as in
panel D. (D) Mean correlation of cells in each brain region with first principal component of facial motion. Error
bars: standard deviation. (E) Top: Raster representation of ongoing population activity for an example experiment,
sorted vertically so nearby neurons have correlated ongoing activity. Bottom: prediction of this activity from facial
videography. Right: Anatomical location of neurons along this vertical continuum. Each point represents a cell,
colored by brain area as in C,D, with x-axis showing the neuron’s depth from brain surface. (F) Percentage of
population activity explainable from orofacial behaviors as a function of dimensions of reduced rank regression.
Each curve shows average prediction quality for neurons in a particular brain area. (G) Explained variance as a
function of time lag between neural activity and behavioral traces. Each curve shows the average for a particular
brain area. (H) Same as G in 200ms bins.
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behavior, decaying slowly over time lags of multiple
seconds (Figs. 3G-H, S10), with a full-width at half-
max of 2.5±0.4 s (mean± SE). Neural population ac-
tivity showed coherent structure at timescales faster
than this behavioral correlation (280 ± 43 ms, mean
± SE) (Fig. S10). The fast-timescale structure modu-
lated nearly all neurons in the same direction, leading
to rapid fluctuations in the total population rate (“up
and down phases”); by contrast, the structure seen at
lower time scales was dominated by alternation in the
activity of different neuronal populations, and steadier
total activity (Figs. S10, S11, S12 (38)).

Stimulus-evoked and ongoing activity
overlap along one dimension

We next asked how ongoing activity and behavioral
information relates to sensory responses (Fig. 4A-
B). We thus interspersed blocks of visual stimulation
(flashed natural images, presented 1 per second on av-
erage) with extended periods of spontaneous activity
(gray screen), while imaging visual cortical popula-
tion activity (Fig. 4A). During stimulus presentation,
the mice continued to exhibit the same behaviors as
in darkness, resulting in a similar distribution of facial
motion components (Fig. 4B).

There were not separate sets of neurons encod-
ing stimuli and behavioral variables; instead, repre-
sentations of sensory and behavioral information were
mixed together in the same cell population. The frac-
tions of each neuron’s variance explained by stimuli
and by behavior were only slightly negatively cor-
related (Fig. S13; r = -0.18, p < 0.01 Spearman’s
rank correlation), and neurons with similar stimulus
responses did not have more similar behavioral corre-
lates (Fig. S13; r = -0.005, p > 0.05).

The subspaces encoding sensory and behavior in-
formation overlapped in only one dimension (Fig.
4C-E). The space that encoded behavioral variables
contained 11% of the total stimulus-related variance,
96% of which was contained in a single dimension
(Fig. 4C) with largely positive weights onto all neu-
rons (85% positive weights, Fig. 4D). Similarly, the
space of ongoing activity, defined by the top 128
principal components of spontaneous firing, contained
23% of the total stimulus-related variance, 86% of
which was contained in one dimension (85% positive
weights). Thus, overlap in the spaces encoding sen-
sory and behavioral variables arises primarily because

both can change the mean firing rate of the population:
the precise patterns of increases and decreases about
this change in mean were essentially orthogonal (Fig.
4E). Analysis of electrophysiological recordings con-
firmed that the relationship between stimulus-driven
and spontaneous activity was dominated by a single
shared dimension: the correlation between sponta-
neous and signal correlations was greatly reduced af-
ter projecting out this one-dimensional activity (Fig.
S14).

Stimulus decoding analysis further confirmed that
information about sensory stimuli was concentrated in
the stimulus-only subspace. To show this, we trained
a linear classifier to identify which stimulus had been
presented, from activity in different 32-dimensional
neural subspaces. Decoding from the stimulus space
yielded a cross-validated error rate of 10.1 ± 4.0 %;
activity in the spontaneous- or behavior-only spaces
yielded errors of 53.1 ± 6.4 % and 56.8 ± 6.7 %, no
better than randomly-chosen dimensions (Fig. 4F).

To visualize how the V1 population integrated sen-
sory and behavior-related activity, we examined the
projection of this activity onto three orthogonal sub-
spaces: a multidimensional subspace encoding only
sensory information (stimulus-only); a multidimen-
sional subspace encoding only behavioral information
(behavior-only); and the one-dimensional subspace
encoding both (stimulus-behavior shared dimension)
(Fig. 4G; Fig. S15). During gray-screen periods
there was no activity in the stimulus-only subspace,
but when the stimuli appeared this subspace became
very active. By contrast, activity in the behavior-
only subspace was present prior to stimulus presenta-
tion, and continued unchanged when the stimulus ap-
peared. The one-dimensional shared subspace showed
an intermediate pattern: activity in this subspace was
weak prior to stimulus onset, and increased when
stimuli were presented. Similar results were seen
for the spontaneous-only and stimulus-spontaneous
spaces (Fig. 4G, lower panels). Across all exper-
iments, variance in the stimulus-only subspace was
119 ± 81 SE times larger during stimulus presenta-
tion than during spontaneous epochs (Fig. 4H), while
activity in the shared subspace was 19 ± 12 SE times
larger; activity in the face-only and spontaneous-only
subspaces was only modestly increased by sensory
stimulation (1.4 ± 0.13 SE and 1.7 ± 0.2 SE times
larger, respectively).

Trial-to-trial variability in population responses
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to repeated stimulus presentations reflected a combi-
nation of multiplicative modulation in the stimulus-
space, and additive modulation in orthogonal dimen-
sions. To visualize how stimuli affected activity in
these subspaces, we plotted population responses to
multiple repeats of two example stimuli (Fig. 4I-J).
When projected into the stimulus-only space, the re-
sulting clouds were tightly defined with no overlap
(Fig. 4I), but in the behavior-only space, responses to
the two stimuli were directly superimposed (Fig. 4J).
Variability within the stimulus subspace consisted of
changes in the length of the projected activity vectors
between trials, resulting in narrowly elongated clouds
of points (Fig. 4I), consistent with previous reports
of multiplicative variability in stimulus responses (39–
42). A model in which stimulus responses are multi-
plied by a trial-dependent factor accurately captured
the data, accounting for 89% ± 0.1% SE of the vari-
ance in the stimulus subspace (Fig. 4K). Furthermore,
the multiplicative gain on each trial could be predicted
from facial motion energy (r = 0.61±0.02 SE, cross-
validated), and closely matched activity in the shared
subspace (r = 0.73 ± 0.06 SE, cross-validated; Fig.
4L). Although ongoing activity in the behavior-only
subspace and visual responses in the stimulus-only
subspace added independently, we did not observe ad-
ditive variability within the stimulus-only space itself:
an “affine” model also including an additive term did
not significantly increase explained variance over the
multiplicative model (p > 0.05, Wilcoxon rank-sum
test). Similar results were obtained when analyzing
responses to grating stimuli rather than natural images
(Fig. S16).

Discussion
Ongoing population activity in visual cortex reliably
encoded a latent signal of at least 100 linear dimen-
sions, and possibly many more. The largest dimen-
sion correlated with arousal and modulated about half
of the neurons positively and half negatively. At least
16 further dimensions were related to behaviors vis-
ible by facial videography, which were also encoded
across the forebrain. The dimensions encoding motor
variables overlapped with those encoding visual stim-
uli along only one dimension, which coherently in-
creased or decreased the activity of the entire popula-
tion. Activity in all other behavior-related dimensions
continued unperturbed regardless of sensory stimu-
lation. Trial-to-trial variability of sensory responses

comprised additive ongoing activity in the behavior
subspace, and multiplicative modulation in the stim-
ulus subspace, resolving apparently conflicting find-
ings concerning the additive or multiplicative nature
of cortical variability (39–42).

Our data are consistent with previous reports de-
scribing low-dimensional correlates of locomotion
and arousal in visual cortex (8, 10–16, 33), but sug-
gest these results were glimpses of a much larger set
of non-visual variables encoded by ongoing activity
patterns. 16 dimensions of facial motor activity can
predict 31% of the reliable spontaneous variance. The
remaining dimensions and variance might in part re-
flect motor activity not visible on the face or only de-
codable by more advanced methods (43–48), or they
might reflect internal cognitive variables such as mo-
tivational drives.

Many studies have reported similarities between
spontaneous activity and sensory responses (2–7). We
also observed a similarity, but found it arose nearly ex-
clusively from one dimension of neural activity. This
dimension summarized the mean activity of all cells
in the population, and variations along it reflected
both spontaneous alternation of up and down phases
and differences in mean population response between
stimuli. These results therefore demonstrate that the
statistical similarity of firing patterns during stimu-
lation and ongoing activity need not imply recapit-
ulation of previous sensory experiences, merely that
cortex exhibits mean rate fluctuations with or without
sensory inputs. While our results do not exclude that
genuine recapitulation could occur in other behavioral
circumstances, they reinforce the need for careful sta-
tistical analysis before drawing this conclusion: even
a single dimension of common rate fluctuation is suf-
ficient for some previously-applied statistical methods
to report similar population activity (49).

The brain-wide representation of behavioral vari-
ables suggests that information encoded nearly any-
where in the forebrain is combined with behavioral
state variables into a mixed representation. We found
that these multidimensional signals are present both
during ongoing activity and during passive viewing of
a stimulus. Recent evidence indicates that they may
also be present during a decision-making task (50).
What benefit could this ubiquitous mixing of sensory
and motor information provide? The most appropri-
ate behavior for an animal to perform at any moment
depends on the combination of available sensory data,
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ongoing motor actions, and purely internal variables
such as motivational drives. Integration of sensory in-
puts with motor actions must therefore occur some-
where in the nervous system. Our data indicate that
it happens as early as primary sensory cortex. This is
consistent with neuroanatomy: primary sensory cor-
tex receives innervation both from neuromodulatory
systems carrying state information, and from higher-
order cortices which can encode fine-grained behav-
ioral variables (9). This and other examples of per-
vasive whole-brain connectivity (51–54) may coordi-
nate the brain-wide encoding of behavioral variables
we have reported here.
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Materials and methods
All experimental procedures were conducted according to the UK Animals Scientific Procedures Act (1986). Ex-
periments were performed at University College London under personal and project licenses released by the Home
Office following appropriate ethics review.

Preparation for two-photon calcium imaging in visual cortex
The imaging methods were similar to those described elsewhere (14). Briefly, surgeries were performed in seven
adult mice (P35-P125) in a stereotaxic frame and under isoflurane anesthesia (5% for induction, 0.5-1% during
the surgery). We used mice bred to express GCaMP6s in excitatory neurons (1 EMX-CRE x Ai94 GCaMP6s
mouse, 3 CamKII x tetO GCaMP6s mice, and 1 Rasgrf-CRE x Ai94 GCaMP6s mouse), or mice bred to express
tdTomato in GAD+ inhibitory neurons (2 GAD-Cre x tdTomato mice), allowing inhibitory neurons to be identified
and excluded from further analysis. We did not observe epileptiform activity in any of these mice (57).

Before surgery, Rimadyl was administered as a systemic analgesic and lidocaine was administered locally at
the surgery site. During the surgery we implanted a head-plate for later head-fixation, made a craniotomy of 3-4
mm in diameter with a cranial window implant for optical access, and, in Gad-Cre x tdTomato transgenics, per-
formed virus injections with a beveled micropipette using a Nanoject II injector (Drummond Scientific Company,
Broomall, PA 1) attached to a stereotaxic micromanipulator. We used AAV2/1-hSyn-GCaMP6s, acquired from
University of Pennsylvania Viral Vector Core. Injections of 50-200 nl virus (1-3 x1012 GC/ml) were targeted to
monocular V1, 2.1-3.3 mm laterally and 3.5-4.0mm posteriorly from Bregma. To obtain large fields of view for
imaging, we typically performed 4-8 injections at nearby locations, at multiple depths (∼500 µm and ∼200 µm).
Rimadyl was then used as a post-operative analgesic for three days, delivered to the mice via their drinking water.

Data acquisition
We optically recorded neural activity in head-fixed awake mice implanted with 3-4 mm cranial windows centered
over visual cortex, obtaining∼10,000 neurons in all recordings. The recordings were performed using multi-plane
acquisition controlled by a resonance scanner, with planes spaced 30-35 µm apart in depth. In 9 recordings, 10 or
12 planes were acquired simultaneously at a scan rate of 3 or 2.5 Hz. For 3 further recordings we used single-plane
configuration, with a scan rate of 30Hz. The mice were free to run on an air-floating ball and were surrounded by
three computer monitors. Spontaneous activity was recorded in darkness (monitors off), or with a gray background
or presented visual stimuli on these monitors arranged at 90o angles to the left, front and right of the animal, so
that the animal’s head was approximately in the geometric center of the setup.

For each mouse imaged, we typically spent the first imaging day finding a suitable recording location, where
the following three conditions held:

• the GCaMP signal was strong, in the sense that clear transients could be observed in large numbers of cells
• a large enough field of view could be obtained for 10,000 neuron recordings,
• the receptive fields of the neuropil were clearly spatially localized on our three monitors.

In animals for which there was a choice over multiple valid recording locations, we chose either: 1) a hori-
zontally and vertically central retinotopic location or 2) a lateral retinotopic location, at 90o from the center, but
still centered vertically. We did not observe differences related to retinotopic location (central or lateral), and
thus pooled data across recording locations. We also did not observe significant differences between recordings
obtained from GCaMP transgenic animals and from virus injections, nor between recordings made in complete
darkness or with a gray screen. Thus, we pooled data over all conditions.
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Recording protocol and visual stimuli
Spontaneous multiple-plane recordings were performed with either constant gray screen background (3 recordings)
or monitors switched off (6 recordings). The 9 multi-plane recordings were of lengths 162 min, 155 min, 120 min,
117 min, 105 min, 90 min, 70 min, 70 min, 70 min. We also performed 3 gray-screen recordings in single plane
mode (30Hz frame rate), of lengths 93 min, 87 min, 49 min.

Natural images responses were recorded by presenting 90-114 repetitions of 32 images manually selected from
the ImageNet database (58), from ethologically-relevant categories: “birds”, “cat”, “flowers”, “hamster”, “holes”,
“insects”, “mice”, “mushrooms”, “nests”, “pellets”, “snakes”, “wildcat”. We chose images in which less than 50%
of the image was a uniform background, and containing a balance of low an high spatial frequencies. Images were
flashed on all three screens for 0.5 sec, with a randomized gray-screen inter-stimulus interval between 0.3 sec and
1.1 sec. The images were shown in a random order during each repeat block. In three sessions a 30 s period of
gray screen period occurred in between each repeat block; each of these sessions lasted at least 110 min in total.
In one session, we first recorded a gray screen period (10 min), then interleaved longer blocks of stimuli (25 min)
and gray screen (15 min) three times, for a total of 130 minutes of recording.

In four recordings we presented full-field drifting gratings on all 3 monitors, at one of 32 directions evenly
spaced at 11◦, with a spatial frequency of 0.05 cycles per degree and temporal frequency of 2Hz. Each direction
was presented 70-128 times with a duration of 0.5 s, and a gray-screen inter-stimulus interval randomly distributed
between 0.3 and 1.1 s. Gratings were presented in random order in blocks of 32, and in between blocks there was
an additional gray screen period of length 30 s (4 recordings) or 0.5 sec (1 recording). Each recording session was
at least 90 min long.

In six electrophysiological recordings (six mice) we targeted visual cortex with neuropixels probes while pre-
senting natural images from the ImageNet database. Stimuli were presented for 400ms, with a random gray-screen
inter-stimulus interval of 300-700ms. We presented 700 different stimuli, two times each.

Calcium imaging processing
The pre-processing of all raw calcium movie data was done using a toolbox we developed called Suite2p, using
the default settings (29). The software is available at www.github.com/Mouseland/suite2p.

Briefly, Suite2p first aligns all frames of a calcium movie using 2D rigid registration based on regularized
phase correlation, subpixel interpolation, and kriging. For all recordings we validated the inferred X and Y offset
traces, to monitor any potential outlier frames that may have been incorrectly aligned. In a few recordings, a very
small percentage (<0.01%) of frames that had registration artifacts were removed and the extracted traces were
replaced with interpolated values at those frames. In all recordings, the registered movie appeared well-aligned
by visual inspection. Next, Suite2p performs automated cell detection and neuropil correction. To detect cells,
Suite2p computes a low-dimensional decomposition of the data, which is used to run a clustering algorithm that
finds regions of interest (ROIs) based on the correlation of the pixels inside them. The extraction of ROIs stops
when the pixel correlations of new potential ROIs drops below a threshold parameter, which is set as a fraction of
the correlation in the high SNR ROIs; thus, it does not require the number of clusters to be set a priori. A further
step in the Suite2p GUI classifies ROIs as somatic or not. This classifier learns from user input, reaching 95%
performance on this data (29), thus allowing us to skip the manual step altogether for most recordings. We note
that the 5% errors might be attributable to human labelling error, or to dendritic signals from backpropagating APs,
reflecting the spiking of deeper cells. Thus, there is little risk of ROIs measuring signals other than neuronal action
potentials.

We took great care to compensate cellular fluorescence traces for the surrounding neuropil signal (59). This
contamination is typically removed by subtracting out from the ROI signal a scaled-down version of the neuropil
signal around the ROI; the scaling factor was set to 0.7 for all neurons. Importantly, for computing the neuropil
signal, we excluded all pixels that Suite2p attributed to an ROI, whether somatic or dendritic. After neuropil
subtraction, we subtracted a running baseline of the calcium traces with a sliding window of 60 seconds to remove
long timescale drift in baseline, then applied non-negative spike deconvolution using the OASIS algorithm with a
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fixed timescale of calcium indicator decay of 2 seconds (60,61). To further ensure out-of-focus fluorescence could
not contribute to our results, we excluded neurons whose signal might span two planes by excluding neurons in
sequential planes that had a greater than a 0.6 correlation (in 1.2 second bins) with each other, and whose centers
were within 5 µm of each other in XY.

In addition, we ensured the cell sets used for reliable variance estimation (Fig. 1I) were spatially non-
overlapping: we segregated the field of view into 16 strips in XY (encompassing all Z) of width 60 µm, and
put cells from the odd strips in one group and the cells in the even strips in the other group. This ensured that no
cells from different groups were at the same XY position but at a different depth. For peer prediction analyses (Fig.
S9), we excluded all peer cells within 70 µm of the target (Euclidean distance in three-dimensional space).

Facial videography
Infrared LEDs (850nm) were pointed at the face of the mouse to enable infrared video acquisition in darkness. The
videos were acquired at 30Hz using a camera with a zoom lens and an infrared filter (850nm, 50nm cutoff). The
wavelength of 850nm was chosen to avoid the 970nm wavelength of the 2-photon laser, while remaining outside
the visual detection range of the mice.

Running speed was not monitored videographically, but rather by optical mice placed orthogonally to the air
floating ball on which the mouse stood.

Automated extraction of orofacial behaviors of mice
We developed a toolbox with a GUI for videographic processing of orofacial movements of mice. The software
is termed FaceMap, and is available at www.github.com/MouseLand/FaceMap. The processing time taken by the
software scales linearly with the number of frames, and runs 4x faster than real-time on 30 Hz videos.

Motion processing of regions of interest

To extract defined behavioral variables (e.g. pupil diameter, whisking), we used a graphical user interface which
allows manual selection of face areas. The user can choose any region of the frame in which to compute the total
absolute motion energy, the SVDs of the absolute motion energy or the SVDs of the raw frames.

The absolute motion energy at each time T is computed as the absolute value of the difference between con-
secutive frames, resulting in a matrix ~M of size Npixels ×Ntimepoints. The whisker signal used in the current study
(Fig. 1F) was defined to be the total motion energy summed over all pixels in a manually-defined region covering
the whisker pad.

SVD computation for large matrices

To extract a high-dimensional representation of the facial signal, the toolbox applies singular value decomposition
(SVD) to the raw movie, the motion energy movie, or both. The computation is identical in both cases.

The movie matrices are too large to decompose in their raw form. To compute their SVD, we first split the
movie ~M into temporal segments ~Mi of length ∼1 minute, and compute the SVD of each segment individually.
Since the number of pixels is very large (> 1 million), we compute the SVD of of each movie segment by com-
puting the top 200 eigenvectors ~Vi of its time by time covariance matrix. We then compute the spatial projections
of the segment onto these components, ~Ui = ~Mi

~Vi. Each matrix ~Ui consists of the left singular vectors of ~Mi,
scaled by the singular values and is thus a 200-dimensional summary of the segment ~Mi, related via an orthogonal
projection. To estimate the SVD of the entire movie, we concatenate the ~Ui for all segments of the movie, and
re-compute the SVD: [~U1...~Un] = ~U ~S~V >. The matrix ~U represents the spatial components of the full movie, and
we project the the movie onto the top 1000 components of it, to obtain their temporal profiles: ~Wmotion = ~U> ~M .
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Pupil processing

To compute pupil area, the user first defines a region of interest using the FaceMap interface. The minimum value
in this region is subtracted from all pixels for robustness across illumination changes. The darkest pixels in this
region, identified by a user-selected threshold, correspond to the pupil. We estimate the pupil center as the center
of mass of these dark pixels: ~̄x =

∑
~x ~xR(~x)/

∑
~xR(~x), where ~x is the two-dimensional pixel location, R(~x) is

that pixel’s darkness level relative to the threshold, and the sum runs over all pixels ~x darker than the threshold.
We compute the covariance of a 2D Gaussian fit to the region of interest:

∑
~x(~x− ~̄x)(~x− ~̄x)>/N~x, where the sum

runs over all pixels darker than the threshold and N~x is the number of such pixels. For robustness, this process is
iterated 4 times after re-selecting only pixels that are 2 standard deviations away from the center, and recomputing
the Gaussian covariance fit. The final result is an outline of the pupil defined by an ellipse 2 standard deviations
from the center of mass.

Neuropixels recordings
Neuropixels electrode arrays (37) were used to record extracellularly from neurons in seven mice. In three of
these mice, eight neuropixels probes were used to target multiple brain areas. The three mice were: 73 days old,
male, wild-type (mouse 1); 113 days old, female, TetO-GCaMP6s;Camk2a-tTa (mouse 2); 99 days old, male,
Ai32;Pvalb-Cre (mouse 3). In four of these mice, 1-4 neuropixels probes were used to target visual cortex. These
mice were between 8 and 24 weeks old at the time of recording, and were of either gender. The genotypes of these
mice were Slc17a7-Cre;Ai95, Snap25-GCaMP6s, Ai32;Pvalb-Cre, or Emx1-Cre;CaMKIIa-tTA;Ai94.

In all cases, a brief (<1 hour) surgery to implant a steel headplate and 3D-printed plastic recording chamber
(∼12mm diameter) was first performed. Following recovery, mice were acclimated to head-fixation in the record-
ing setup. During head-fixation, mice were seated on a plastic apparatus with forepaws on a rotating rubber wheel.
Three computer screens were positioned around the mouse at right angles. On the day of recording, mice were
again briefly anesthetized with isoflurane while two to eight small craniotomies were made with a dental drill.
After several hours of recovery, mice were head-fixed in the setup. Probes had a silver wire soldered onto the
reference pad and shorted to ground; these reference wires were connected to a Ag/AgCl wire positioned on the
skull. The craniotomies as well as the wire were covered with saline-based agar, which was covered with silicone
oil to prevent drying. Each probes was mounted on a rod held by an electronically positionable micromanipulator
(uMP-4, Sensapex Inc.) and was advanced through the agar and through the dura. Once electrodes punctured
dura, they were advanced slowly (∼10 µm/sec) to their final depth (4 or 5 mm deep). Electrodes were allowed to
settle for approximately 15 minutes before starting recording. Recordings were made in external reference mode
with LFP gain=250 and AP gain=500, using SpikeGLX software. The mice were in a light-isolated enclosure
and, during the spontaneous part of the recording, the computer screens were black. Data were preprocessed by
re-referencing to the common median across all channels (62).

Spike sorting the Neuropixels data

We spike sorted the data using a modification of Kilosort (63), termed Kilosort2, that tracks drifting clusters (Fig.
S17). Code is available at www.github.com/MouseLand/Kilosort2. Without the modifications, the original Kilosort
and similar algorithms can split clusters according to drift of the electrode, which would confound our behavioral-
related analyses. Kilosort2 tracks neurons across drift levels and for longer periods of time (∼1 hour in our case).
In addition, Kilosort2 performed automated splits and merges similar to what a human curator would do based on
spike waveform similarity, the bimodality of the distribution of waveform features, and the spike auto- and cross-
correlograms.

The final single units used were from several cortical areas (visual: 709, sensorimotor: 371, frontal: 842,
retrosplenial: 122), hippocampal formation (753), striatum (310), thalamus (2743), midbrain (570).
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Correlations
Pairwise correlations were computed after binning activity at 1.2-1.3 s (3 or 4 frames respectively for 12 and
10 plane recordings; 1.2 s bins for Neuropixels recordings). To compute shuffled correlations (Figure 1C), we
circularly shifted each neuron’s activity in time by a random number of bins (at least ±1000), and correlated all
the shifted traces with all the original traces.

Arranging rasters by correlation
To visualize high-dimensional structure in raw data, raster plots were sorted vertically along a 1d continuum so that
nearby neurons were most correlated. To do this, the binned activity of each neuron was first z-scored, and electrode
data was high-pass filtered (100 s Gaussian kernel; this was not necessary for 2p data as traces had already been
high-passed in preprocessing). Neurons were sorted using a generalization of scaled k-means clustering, where
the clusters are ordered along a 1D axis to have similar means to their nearby clusters. Neurons were initially
ordered based on their weights onto the first principal component of population activity, and divided into 30 equal-
sized clusters along this ordering. On each iteration, we computed the mean activity of each cluster, smoothed it
across clusters with a Gaussian window, then reassigned each neuron to the cluster whose smoothed activity it was
most correlated with. This process was repeated for 75 iterations. The width of the Gaussian smoothing window
was held at 3 clusters for the first 25 iterations, then annealed to 1 over the following 50 iterations. On the final
pass, we upsampled the neurons’ correlations with each cluster by a factor of 100 via kriging interpolation with
a smoothing constant of 1 cluster. This allowed us to determine sub-integer assignments of neurons to clusters,
resulting in a continuous distribution of neurons along a 1D axis. The algorithm is available, implemented in
Python and MATLAB at www.github.com/MouseLand/RasterMap. We ran the MATLAB version on the data
here.

Although the electrode data was high-pass filtered to compute sorting, we display the original raw activity in
Fig. 3E.

Shared Variance Component Analysis
The SVCA method gives an asymptotically unbiased lower-bound estimate for the amount of a neural population’s
variance reliably encoding a latent signal. A mathematical proof of this is given in the appendix; here, we describe
how the algorithm was implemented for the current study.

We first split the population into two spatially segregated populations. To do so, we divided the XY plane
into 16 non-overlapping strips of width 60 µm, and assigned the neurons in the even strips to one group, and the
neurons in the odd strips to the other group, regardless of the neuron’s depth. Thus, there did not exist neuron pairs
in the two sets that had the same XY position but a different depth, avoiding a potential confound that a neuron
could be predicted from its own out-of-focus fluorescence.

Neural population activity was binned at 1.2-1.3 s resolution (see above), and each neuron’s mean activity was
subtracted from its firing trace. We divided the recording into training and test timepoints (alternating periods of
72 s each), thereby obtaining four neural activity matrices: ~Ftrain, ~Ftest, ~Gtrain, and ~Gtest of size Nneurons×Ntimepoints,
where ~F and ~G represent activity of the two cell sets. We compute the covariance matrix between the two cell sets
on the training timepoints as

~Ctrain = ~Ftrain ~G
>
train/Ntimepoints

We then compute the top 1024 left and right singular vectors of ~C, yielding Nneurons-dimensional vectors ~uk
and ~vk for k = 1...1024. These vectors are the shared variance components (SVCs) for each population. The
amount of reliable variance in each SVC (Fig. 1M) is then estimated by the covariance of the SVC projections
over the test samples:

Ŝk = ~u>k
~Ftest ~G

>
test~vk/Ntimepoints
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To obtain the fraction of reliable variance (Fig. 1L), we normalize this reliable variance by the arith-
metic mean of the variances of the test set data for each cell set on the corresponding projections, Sk,tot =(
~u>k

~Ftest ~F
>
test~uk + ~v>k

~Gtest ~G
>
test~vk

)
/2.

Predicting neural activity from behavioral variables
To estimate the fraction of neural variance that could be predicted from explicitly-computed arousal variables (Fig.
1N,O), we resampled their traces into the same 1.2-1.3 s bins as the neural data. The arousal variables (either
single traces of running, whisking, pupil area or all three together) defined predictor matrices ~Xtrain and ~Xtest for
the training and test sets. We predicted the SVCs of neural activity ~U> ~Ftrain and ~V > ~Gtrain from the training-set
behavior traces by unregularized multivariate linear regression, obtaining weight matrices ~A and ~B that minimized
the squared errors ‖~U> ~Ftrain− ~A ~Xtrain‖2 and ‖~V > ~Gtrain− ~B ~Xtrain‖2. We then used these weight matrices to predict
activity in the test set, and computed the covariance matrix of the residual error of each SVC:

Sk,res =
(
~u>k

~Ftest − ~ak ~Xtest

)(
~v>k

~Gtest −~bk ~Xtest

)>
/Nsamples

Sk,res represents the amount of variance along SVC k that cannot be predicted by the behavioral traces, and (Ŝk −
Sk,res)/Ŝk represents the fraction of reliable variance that can be so predicted. To compute the fraction of total
variance explainable by behavioral traces (Fig. 1N,O; Fig. 2E,G-J), we normalize instead by the total test-set
variance: (Ŝk − Sk,res)/Sk,tot.

To predict the fraction of neural variance that could be predicted from unsupervised videographic analysis (Fig.
2), we took a similar approach, but computed the weight matrices ~A and ~B by reduced-rank regression. Reduced-
rank regression is a form of regularized linear regression, with the prediction weights matrix restricted to a specific
rank (64), reducing the number of parameters and making it more robust to overfitting. Fig. 2E shows the fraction
of total variance in successive dimensions that can be predicted by rank-16 prediction, while Fig. 2G shows how
the predicted fraction of variance in the first 128 dimensions depends on the rank of the predictor.

Peer prediction analysis
The shared variance component analysis described above – like a related algorithm for estimating reliable stimulus
coding (35) – provides unbiased estimates, but requires thousands of simultaneously-recorded neurons per brain
area. Because this many neurons were not available in our Neuropixels recordings, we turned to another method
to estimate the reliable variance in these data. This method is an adaptation of the previously-described “peer
prediction” method (65, 66). Peer prediction analysis attempts to predict each neuron individually from the other
simultaneously recorded cells (the neuron’s “peers”). In contrast, SVCA finds the dimensions of activity in a large
population that can be most reliably predicted from a held-out set of neurons. Because a substantial fraction of
a single neuron’s variance arises from independent noise, which is averaged out when projecting onto the SVCA
dimensions, peer prediction gives systematically lower values of variance explained than SVCA.

To apply peer prediction to our data, we again binned neural activity with 1.2-1.3 s resolution, and divided
these timepoints into a training set and a test set, consisting of alternating blocks of duration 72 s. Each neuron
took a turn as target for prediction from the activity of simultaneously recorded “peer” cells, defined to be any cells
on all other probes and cells on the same probe greater than 5 sites away (40 µm) for neuropixels recordings; for 2p
recordings we used all neurons greater than 70 µm from the cell in 3D distance, in order to avoid potential optical
contamination from the target neuron. We denote peer cell activity in the training and test sets byNcells×Ntimepoints

matrices ~Ftrain and ~Ftest, respectively, and target cell activity in the training and sets as 1×Ntimepoints vectors ~gtrain and
~gtest. We first computed the singular value decomposition of peer cell activity on the training set: ~Ftrain = ~U ~S~V >.
We then predicted the target neuron activity by ridge regression from n singular value components of peer cell
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activity, where n took values n = 1, 2, 4, 8, 16, ..., 512, 1024. The prediction weights were thus

~wn =

[
(~gtrain~Vn~Sn)

(
(~Vn~Sn)>(~Vn~Sn) + λI

)−1]
~U>n

where ~Un, ~Vn, ~Sn are matrices containing the top n singular vectors. Then the prediction of the single neuron
activity on the test set was ~̂gntest = ~wn ~Ftest, and the fraction of variance explained was 1− ‖~gtest − ~̂gntest‖2/‖~gtest‖2.
We chose λ to be 10 by hand.

Subspaces of stimulus and behavioral activity
The stimulus subspace (Fig. 4) was defined as the space spanned by the trial-averaged responses of each of the 32
stimuli presented. We computed the Nneurons ×Nstimuli matrix of trial-averaged responses ~R from one third of the
stimulus responses, saving the other two thirds of the stimulus responses for variance estimation.

The behavior subspace was defined via the reduced-rank regression prediction method described above. We
performed the regression on one-half of the spontaneous activity, leaving the other half of the spontaneous activity
for variance estimation. This method produces a weight matrix of size Nneurons × NfacePCs, that factorizes as a
product of two matrices of sizes Nneurons × r and r × NfacePCs, where r is the rank of prediction. We defined the
behavior space as the space spanned by the first 32 columns of the former matrix, and we define a Nneurons × 32
matrix ~EB whose columns contain an orthonormal basis for this space.

To determine dimensions inside the behavioral subspace that contain stimulus information, we found the se-
quence of orthogonal directions ~ei maximizing the sum of squared projections (the power) of the trial-averaged
stimulus responses ~R:

~ei = argmax(‖~e>i ~R‖2) such that ‖~ei‖2 = 1, ~ei ∈ Span( ~EB), and ~ei orthogonal to ~e1 . . . ~ei−1

The solution to this maximization problem is given by the left singular vectors of ~E>B ~R. To determine the amount
of stimulus variance in shared dimension i (Fig. 4C), we projected test data onto ~ei and quantified the stimulus-
related variance in this projection using the unbiased method of (35) on the remaining two thirds of stimulus
responses. We call ~e1 the “shared stimulus-behavior” dimension, because it contains significant stimulus variance,
as opposed to ~e2, ~e3, ... which contain very little (Fig. 4C). A histogram of the weights of ~e1 on all neurons are
plotted in Fig. 4D.

The behavior-only subspace was defined by projecting out the shared dimension ~e1 from all columns of ~EB .
The stimulus-only subspace was defined by projecting out from all rows of ~R the top right singular vector of the
matrix ~E>B

~R. Timecourses of neural activity projected into these subspaces is plotted in Fig. 4F. To quantify the
amount of variance in each subspace (stimulus-only, behavior-only, stimulus-behavior) (Fig. 4G), we computed
the total projected variance as the sum of squared projection lengths along each axis of an orthonormal basis.

An identical analysis was used to define the stimulus-spontaneous shared dimension, and spontaneous-only
subspace, by replacing the subspace of the top 32 behavioral components with the subspace of the top 128 principal
components of activity computed in one half of the spontaneous period.

To account for trial-to-trial variability in the stimulus subspace, we fit a multiplicative gain model. A gain
parameter gt was fit for each trial t, and the activity of dimension n in response to the stimulus σt shown on this
trial was modelled as f̄n,σt

(1 + gtαn). Here, f̄n,σ represents the mean activity of dimension n to stimulus σ, and
αn represents the susceptibility of this dimension to gain fluctuations. Note that the mean of gt across trials from
the same stimulus is 0 by definition. We used an alternating optimization method to obtain the best fit ~g given ~α,
then ~α given ~g, repeating for 100 iterations. We also evaluated an affine model, allowing both the gain and offset
of each neuron’s responses to change on a trial by trial basis: f̄n,σt(1 + gtαn) + atβn. Here, at is an additive
offset on trial t, with each neuron scaling this offset by a factor βn. The vector β can therefore describe directions
of additive variability inside the stimulus subspace.

21



Stimulus decoding analysis
To predict stimulus identity from population responses, we fit a linear multi-class support vector machine (SVM)
model, using MATLAB’s “fitcecoc” function. This function fits K*(K-1)/2 binary linear SVM models, where K is
the number of different stimuli. Stimulus repeats were divided into equal thirds: one for estimating the stimulus
subspace, one for training the classifier, and one for evaluating performance. For the 32 natural image stimuli,
decoding error was defined as the fraction of responses not assigned to the correct stimulus. For drifting grating
responses, we fit two decoders: one to direction (32 possibilities) and one to orientation (16 possibilities). We
defined the error as the number of degrees the prediction was off, averaged across all the test set responses.

Population activity was always decoded from a 32-dimensional subspace. For the spont-only and behavior-
only subspaces, we used the top 32 dimensions. Random 32-dimensional subspaces were found by generating a
matrix of standard Gaussian variates of size neurons × 32, and normalizing each column so the sum of its squares
was 1. For each experiment we computed 20 different random subspaces, computed the decoding error and SNR
in these subspaces, and averaged the results.

Supplementary Text

Proof that SVCA is an asymptotically unbiased estimate of reliable variance
Here we describe the SVCA method in more detail, and prove that the reliable variance it estimates has an expec-
tation that is a lower bound for the true value, with bias vanishing in the limit of many neurons and stimuli.

The key to the SVCA method is to split spontaneous neuronal activity into a reliable component – which
coherently and deterministically encodes an unobservable state variable – and an unreliable component, which is
random and independent between neurons. The unreliable component is sometimes referred to as “Poisson noise”,
as it would occur in a model where neurons fired a number of spikes drawn from a Poisson distribution whose rate
deterministically encoded the state variable. Such behavior can also occur in networks where strong and balanced
excitation and inhibition lead to chaotic variations in spike counts even in deterministic simulations (25, 33, 67).

As we show in the main text, spontaneous activity encodes details of ongoing facial behavior – but the reliable
component of spontaneous activity can also represent internal cognitive variables that cannot be directly measured.
SVCA allows one to estimate the amount of neuronal population variance that coherently and reliably encodes an
unobservable state variable, distinguishing it from the variance that is independently variable between neurons.

Formally, we consider the reliable component of spontaneous population activity to represent a state variable s,
which is drawn from a set of possible states S according to a probability distribution P (s). We model the activity
of neuron n at timepoint t as the sum of a reliable response f̄(n, st) that depends deterministically on the state st
at this timepoint, plus a noise term εn,t which is independent between neurons, and independent of the state st:

fn(t) = f̄(n, st) + εn,t

To estimate the variance of reliable population activity, we divide the recorded neurons into two sets of size
N and M . We denote the responses of the first set on trial t by fn(t) for n = 1 . . . N , and the second set by
gm(t) with m = 1 . . .M , summarizing their activity in random vectors f(t) ∈ RN and g(t) ∈ RM . Define the
expected N ×M cross-covariance matrix of these vectors as C, with entries Cn,m = Est,εt [fn(t)gm(t)] which
is equal to Es[f̄(n, s)ḡ(m, s)] by independence of the noise terms. We write its singular value decomposition as
C =

∑
i σiuiv

>
i , where the σi are non-increasing real numbers, and the ui and vi are orthonormal systems in RN

and RM respectively.
To estimate the amount of reliable variance in an optimal k-dimensional subspace, we compute the first k left

and right singular vectors ûi and v̂i from the covariance matrix estimated from training timepoints, and estimate
the k-dimensional reliable variance as

Ŝ≤k =
1

T

T∑
t=1

k∑
i=1

f(t) · ûi g(t) · v̂i
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where the first sum runs over test set trials t. Because the training and test sets are independent, and because ε is
independent of s,

Etest set

[
Ŝ≤k

]
= Es

[
k∑
i=1

f(s) · ûi g(s) · v̂i

]
=

k∑
i=1

û>i Cv̂i

Now, because ûi and v̂i are orthonormal systems,
∑k
i=1 û

>
i Cv̂i ≤

∑k
i=1 σi, with equality when ûi and v̂i are the

first k singular vectors of C, which they approach when the number of training timepoints becomes large. Thus,
the expectation of Ŝ≤k is a lower bound for

∑k
i=1 σi, that becomes accurate in the limit of a large number of

training timepoints.
Finally, we show that as the number of recorded neurons increases,

∑k
i=1 σi converges to the reliable variance

of the entire population’s top k dimensions. Recall that the singular values of C are square roots of the eigenvalues
of CC>. Concatenating the reliable rate vectors into T ×N and T ×M matrices F and G so C = F>G, we see
that σ2

i is the ith eigenvalue of F>GG>F, which is also the ith eigenvalue of GG>FF> by cyclic permutability
of eigenvalues. No matter how many neurons we record from, FF> and GG> are both T × T matrices, and we
next consider their limit as the number of neurons becomes large.

To do so, we consider the neurons to be drawn from a hypothetically infinite population of neuronsN according
to a probability distribution P(n). As the number N of neurons sampled from this distribution becomes large, the
(t1, t2)th entry of the matrix 1

NFF> converges to

Kt1,t2 = En
[
f̄(n, st1)f̄(n, st2)

]
1
NGG> converges to the same limit as the number of neurons M in the second set becomes large. Thus, the k
first singular values of C tend to the k first eigenvalues of K, whose sum is the amount of reliable variance in the
optimal k-dimensional subspace of population activity.
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Figure S1: Robust orientation tuning in recorded V1 neurons. (A) Orientation tuning curve, showing
population-averaged responses as a function of angle relative to each cell’s preferred orientation (obtained from
held-out responses). Stimuli were Gabor drifting gratings of spatial and temporal frequency of .05 cpd and 2 Hz.
Each row shows responses a single recording session from a single mouse. (B) Orientation tuning curves of the
400 most tuned neurons in each experiment (as assessed by orientation selectivity index), arranged horizontally by
preferred orientation (computed from held-out responses). (C-E) Orientation tuning curves of 400 neurons taken
from the 75th, 50th, and 25th percentile of orientation selectivity, displayed similarly.
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Figure S2: Correlation matrices are structured and consistent across time. (A,B) Pseudocolor representation
of spontaneous correlation matrices for a subset of cells, computed independently from two halves of recording.
(C) Scatter plot showing correlations of each cell pair in a single recording, for two independent halves. (D)
Histogram showing Pearson correlation coefficient of of pairwise correlations (as in C), for all recordings.
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Figure S3: Temporal autocorrelation of ongoing neural activity. Each panel shows data for one recording;
within each plot, each curve shows the temporal autocorrelation of a single principal component of ongoing pop-
ulation activity (1.2 second bins; log x-scale). Second plot on top row is for the example recording shown in Fig.
1.
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Figure S4: Correlations between arousal vari-
ables. (A) Time courses of running speed, pupil
area, whisker motion energy, and first PC of motion
energy, for a 160 s segment of an example experi-
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imum. (B) Pearson correlations for each pair of
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Figure S5: Additional examples of predicting high-dimensional neural population activity from facial videog-
raphy. For each panel, the top plot shows a raster diagrams sorted vertically to place correlated neurons together
(cf. Fig. 1H). Bottom plots show predictions from facial videography (cf. Fig. 2F).
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Figure S6: Spontaneous correlations bear little
relationship to cortical distance. (A) Mean corre-
lation over cell pairs, as a function of distance on
the cortical surface. Each line represents a single
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ters according to a 1d manifold-embedding algo-
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Figure S7: Varying the numbers of neurons and the time bin size. (A) SVCA analysis for randomly subsampled
neural populations of different sizes. For each of the 9 recordings, we analyzed 10 random subsets of the recorded
neurons, of sizes indicated by the color scheme. Each curve shows the percentage of neural variance explained as
a function of SVC dimension (cf. Fig. 1L), averaged over all recordings. (B) Reliable variance spectrum (cf. Fig.
1M) as a function of subsampled population size, colors as before. (C) Percentage of reliable variance estimated
in the first 128 SVCs, as a function of population size. (D) Prediction of SVCs by facial videography (cf. Fig.
2E), as a function of subsampled population size. Darker thick lines represent the prediction from face motion for
each subset of neurons, and lighter thin lines show the fraction of reliable variance as in panel A. (E) Percentage
of the first 128 SVCs’ total variance that can be predicted from facial videography, as a function of number of
facial dimensions used (cf. Fig. 2G) Colors indicate subsample size as in previous panels. (F-J) Same as (A-E),
but now the number of neurons is fixed, and the size of the time bin varies. This analysis was performed on three
single-plane recordings, which allowed a faster scan rate of 30 Hz, but yielded a smaller numbers of neurons: 817,
945, and 1685. Each curve shows an average over these three recordings.
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Figure S8: Predictability of neural activity from facial motion is spatially uniform in V1 recordings. (A)
Percentage of single-neuron variance explained by facial motion, averaged over cells as a function of cortical
depth (16-dimensional reduced rank regression, cross-validated, 1.2 second bins). Each line represents a different
experiment. Note that single-neuron prediction explains a lower percentage of variance than SVC prediction (Fig.
S9). (B) Neurons were split into two groups: low variance explained (<3%) and high variance explained (>10%).
The average vertical distance between neurons in the same group (“same variance”) was similar to the distance
between neurons with different variance levels (“diff variance”) (115 µm vs 117 µm, p > 0.05 Wilcoxon rank-sum
test). The lack of difference indicates that predictability from facial motion does not depend systematically on
cortical depth. (C) Fraction of variance explained as a function of XY position in V1, for an example recording
plane. Each dot represents a cell, of size proportional to the explained variance; crosses indicate cells of negative
explained variance on the test set. (D) Same as B, but for XYZ distance. The lack of difference (516 µm vs 525
µm, p > 0.05 Wilcoxon rank-sum test) indicates that variance explained does not depend systematically on XYZ
position.
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Figure S9: Explaining single neuron variance using peer prediction and behavioral variables. Shared variance
component analysis – like a related algorithm for estimating reliable stimulus coding (35) – requires thousands of
simultaneously-recorded neurons per brain area. Because this many neurons were not available in our Neuropixels
recordings, we instead estimated the reliable variance predictable from facial behavior using an adaptation of
the “peer prediction” method (65, 66). (A) In this method, each neuron takes a turn as target cell, and principal
component analysis is applied to the activity of its simultaneously recorded peers by ridge regression, excluding
spatially neighboring neurons. The activity of the target cell is predicted from these principal components, and
prediction quality is assessed via cross-validation. (B) Average single neuron variance explained by peer prediction
as a function of the number of principal components, for each brain area (neurons pooled across 3 mice). (C)
Similar analysis for two-photon calcium imaging in V1. The peak predictability of 20.2% ± 1.7% of variance
explained is obtained when predicting from 256 peer PCs; because the independent noise in a single neuron’s
activity cannot be predicted from other neurons, this is substantially lower than the 97% reliability of the first SVC,
and the 67% reliability of the first 128 SVCs together. (D) Predicting single neuron activity from arousal variables;
because the independent noise in a single neuron’s activity cannot be predicted from behavior, predictability is
lower than when predicting SVCs (cf. Fig. 1O). (E) Predicting single neuron activity from multidimensional
behavior information using reduced rank regression (cf. Fig. 2G).
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Figure S10: Timescales of neural activity. (A) Prediction of neural activity from other neurons in electrophys-
iological recordings using SVCA, with a time lag artificially inserted between the two cell sets to determine the
timecourse of coherent population activity. Each curve represents a different recording in a different mouse. Neu-
ral activity was binned at 30 Hz; this smaller time bin size provides more temporal accuracy but lower percentages
than with longer bins (cf. Fig. S7H). The sharp peak indicates coherent structure at fast timescales. (B) Prediction
of same neural activity as in panel A using face motion PCs with varying time lags between the face motion and
the neural activity. Neural activity and face motion PCs were binned at 30 Hz. (C) The averages of (A) and (B)
normalized to a maximum of 1, plotted together to reveal differences in timescale. (D) Zoom in of (C), revealing
that videographic prediction operates at slower timescales than neural prediction.
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Figure S11: Behaviorally-related population patterns differ from up and down phases. (A) Raster represen-
tation of 14 minutes of electrophysiological recording across brain areas, sorted vertically so nearby neurons are
correlated (cf. Fig. 3E). Top: timecourse of first three videographic behavior PCs. (B) Zoom in to a shorter time
segment with no facial motion, with neurons arranged by brain region. Note that alternating periods of population
activity and silence (up and down phases) are present, indicating they do not reflect behavioral events. (C) Zoom
in to a shorter time segment with facial motion, showing slower changes in population activity but suppression of
up and down phases.
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Figure S12: Structure of correlations varies across timescales in visual cortex. (A) Pairwise correlation
matrix of spontaneous electrophysiologically-recorded V1 population, computed for different time bin sizes (above
each matrix). Neurons were sorted by their weights onto the first principal component of activity binned at each
resolution. With 50 ms bins almost all neurons are positively correlated, reflecting up and down phase modulation.
With 10 s bins neurons are positively and negatively correlated, reflecting the slower-timecourse behaviorally-
related fluctuations also seen in 2-photon recordings. Neurons with spontaneous rates of less than 0.1 Hz were
excluded. (B) Temporal autocorrelation of population activity binned at 10 ms resolution, and projected onto
principal component dimensions estimated from a range of bin sizes. Short timescale activity was most marked in
the 1st PC computed at 50 ms bins (for which correlations were all positive, cf. part A).
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Figure S13: Mixed representation of stimuli and behavior in visual cortex. (A) Comparison of variance ex-
plained by stimuli and by behavior videography for single neurons. X- and y-coordinates represent each neuron’s
rank order from least to most predictable by stimulus and behavior, respectively. The extremely weak correlation
(r = -0.18, p < 0.01 Spearman’s rank correlation) indicates that the strength with which a neuron is modulated by
stimuli is essentially unrelated to the strength with which it is modulated by behavior. (B) Comparison of tuning
to behavior and to stimuli. Each point represents a neuron, and the x- and y-coordinates represent its rank in two
separate 1D embeddings computed from stimulus responses, and from behavioral coefficients of the face predic-
tion model (16D), respectively. (C) Pairwise comparison of visual-tuning similarity (x- axis) and behavioral-tuning
similarity (y- axis). Each point represents a pair of cells; tuning similarities are defined as the pairwise distance in
the 1D embeddings on the x- and y-axes of panel B. The lack of correlation (r = -0.005, p > 0.05) indicates that
neurons which are tuned for similar stimuli are no more likely to be tuned for similar behavioral features.
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Figure S14: One shared dimension causes similarity of spontaneous and stimulus-driven correlations in elec-
trophysiological recordings. (A) Pairwise correlations between neurons during periods of spontaneous, ongoing
activity in 50ms bins (cf. Fig. S12A). Neurons of spontaneous firing rate less than 0.1 Hz or less than 2.5% signal-
related variance were excluded. (B) Pairwise signal correlations for these neurons, computed from responses to
presentation of 700 natural image stimuli. Stimulus responses were estimated in time bins 20-70 ms following the
onset of each stimulus, and an unbiased estimate of signal correlation was obtained using the covariance of the neu-
rons’ responses to these stimuli across the two repeats (35). (C) Similarity of spontaneous correlations and signal
correlations. Each point represents a pair of neurons from one of fourteen probes in six population recordings in
visual cortex. Inset: Pearson correlation coefficient. (D-F) Same analyses as A-C, after projecting out the leading
dimension of spontaneous activity estimated by principal component analysis with 50ms bins. The similarity of
spontaneous and signal correlations has gone, indicating that this similarity was due to one dimension only. (G)
Similarity of spontaneous and signal correlations, before and after projecting out the single shared dimension, for
each experiment individually. Each dot represents a different electrophysiological recording. Colors represent 3
different possible bin sizes used to compute correlations of neural activity (in each case, stimulus response win-
dows started 20 ms after stimulus onset). The average Pearson correlation values before subtraction were 0.28,
0.29, and 0.26 for 50, 200 and 500 ms bins respectively, and after subtraction were -0.002, 0.073, and 0.070. This
reduction in correlation was significant for each time bin (n=14 recording probes, p < 10−4, p < 10−4, and
p < 10−2 Wilcoxon one-sided sign-rank test for 50, 200 and 500 ms bins respectively).
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Figure S15: Short-timescale view of projections onto activity subspaces, corresponding to a zoom into Fig.
4G.
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Figure S16: Responses to drifting gratings overlap in only one-dimension with spontaneous/behavioral
variables (cf. Fig. 4). (A) Comparison of face motion energy for each PC during presentation of drifting gratings
(16 orientations, 32 directions, 11 degree separation), and spontaneous periods. Color represents recording identity.
(B) The percentage of stimulus-related variance in each dimension of the shared subspace between stimulus- and
behavior-driven activity. (C) Distribution of cells’ weights on the single dimension of overlap between stimulus
and behavior subspaces. (D) Orientation decoding analysis, from 32 dimensions of activity in the stimulus-only,
behavior-only, and spontaneous-only subspaces, together with randomly-chosen 32-dimensional subspaces. Y-axis
shows orientation decoding error (degrees). (E) Same as D but for direction decoding. (F) Amount of variance of
each of the projections. Each point represents summed variances of the dimensions in the subspace corresponding
to the symbol color, for a single experiment. (G) Projection of neural responses to two example stimuli into two
dimensions of the stimulus-only subspace. (H) Same as G for the behavior-only subspace. (I) Fraction of variance
in the stimulus-only subspace explained by: constant response on each trial of the same stimulus (avg. model);
multiplicative gain that varies across trials (mult. model); and a model with both multiplicative and additive terms
(affine model). (J) The multiplicative gain on each trial (red) and its prediction from the face motion PCs (blue).
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Fully automated spike-sorting with Kilosort2. (A) Waveforms of two example neurons. (B) Spike amplitude
on largest channel (measured by waveform principal component 1), shown as as a function of time for 20

subclusters found by Kilosort1 that were determined by a human curator to contain spikes from these neurons.
(C) Same as B, showing the output of Kilosort2, which identified two single clusters found to account for these

two neurons. (D) Spike amplitudes on two channels of largest amplitude shows incomplete separation of the two
clusters. (E) Projection of spike waveforms onto the time-varying templates tracked by Kilosort2 shows complete
separation of the two clusters. (F) Auto- and cross- correlograms (ACG, CCG) of the two neurons show very few

refractory period violations (which would result in an incomplete dip in the ACG) and very little
cross-contamination (which would result in a dip in the CCG). (G) Population average of ACGs for all units on

one probe, again indicating very little refractory period violation. (H) Population average of CCGs for one probe,
including for each good cluster its CCG to the other cluster of most similar waveform. (I) Number of units
passing quality checks for Kilosort2 vs Kilosort1 (refractory violations < 20% than expected from Poisson

process, and no CCGs with apparent refractory periods at < 20%). Dotted line shows the average ratio of 1.90.
(J) Total number of spikes for units passing quality checks. Dotted line shows the average ratio of 3.33.

Figure S17:
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Movie S1. Spontaneous neural activity of 10,000+ neurons in visual cortex of awake mice. Two-photon
calcium imaging of 11 planes spaced 35 µm apart. Movie speed is 10x real-time.

Movie S2. Multi-dimensional spontaneous behaviors. Movie speed is 5x real-time.
Movie S3. Spontaneous behaviors are correlated with spontaneous neural activity. Video of mouse face

recorded simultaneously with neural activity. Movie speed is 10x real-time.
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