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Abstract—In mainstream computer vision and machine learn-
ing, public datasets such as ImageNet [1], COCO [2] and KITTI
[3] have helped drive enormous improvements by enabling re-
searchers to understand the strengths and limitations of different
algorithms via performance comparison. However, this type of
approach has had limited translation to problems in robotic
assisted surgery as this field has never established the same level
of common datasets and benchmarking methods.

In 2015 a sub-challenge was introduced at the EndoVis
workshop where a set of robotic images were provided with auto-
matically generated annotations from robot forward kinematics.
However, there were issues with this dataset due to the limited
background variation, lack of complex motion and inaccuracies
in the annotation. In this work we present the results of the 2017
challenge on robotic instrument segmentation which involved 10
teams participating in binary, parts and type based segmentation
of articulated da Vinci robotic instruments.

I. INTRODUCTION

As robotic minimally invasive surgery has developed, with
platforms such as da Vinci R© becoming the de-facto standard-
of-care for certain urological, gynecological and general sur-
gical procedures, there has been an increase in focus in how
assistive systems based on computer vision and machine learn-
ing can improve surgeon performance and patient outcomes.
Many potential applications are dependent on scene under-
standing and for this, accurate segmentation of instruments
is an important component. For instance, instrument tracking
algorithms which underlie automation and guidance assistance
often build upon segmentation [4] or alternatively masking
augmented reality overlays of 3D imaging modalities requires
pixel labelling of the instruments to prevent their occlusion
(see Fig. 1).

Interest in the problem has increased dramatically in the
last few years as the dominant methodology has switched from
classical machine learning algorithms such as Naı̈ve Bayes [5]
and Support Vector Machine (SVM) [6] to deep Convolution
Neural Networks (CNNs) [7]–[9]. The enormous improvement
in performance demonstrated by these techniques has likely
been responsible for the increased focus as there begins to be
a shift into a position where commercial quality applications
become possible.

However, a significant limitation within the field is the
lack of common data and validation sets which allow ease of

comparison between methods [10] and also prevents further
development with possible training of larger networks [9]. In
2015 the first endoscopic vision sub challenge on instrument
segmentation was organized with robotic instrument being one
out of four components1. However, despite heavy usage of this
dataset in subsequent publications [7]–[9], [11], [12] there are
significant limitations due to the limited background variability
and also misalignments due to the ground truth being gen-
erated by forward kinematics of the da Vinci Research Kit
(dVRK) [13] which has significant offsets due to the cable
driven joints.

In 2017 we organized a follow-up challenge2 where a team
at Intuitive Surgical manually segmented images from porcine
robot assisted nephrectomy procedures. We aimed to improve
on the previous challenge by first increasing the label quality
by using hand-created labels rather than automatic labelling,
secondly by adding greater variance in the background by
using 10 separate procedures and finally by providing more
type and part labels for the instruments.

II. INSTRUMENT SEGMENTATION CHALLENGE

A. Challenge Overview

Our challenge was made up of 3 sub-problems. The first
was binary instrument segmentation, where each frame was
separated into da Vinci Xi instruments and a background
class, which contained an ultrasound probe, surgical clips
and porcine tissues. The second task was instrument part
segmentation, where we scored the participants on whether
they could correctly segment each articulating part of the
instrument (see Fig. 3). Our final task was to segment and
classify the instruments (see Fig. 4).

B. Data collection

Our dataset was made up of 10 sequences of abdominal
porcine procedures recorded using da Vinci Xi systems. From
each procedure we selected active sequences where significant
instrument motion and visibility was observed and sampled

1https://endovissub-instrument.grand-challenge.org
2https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.
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Fig. 1: An example of masking an instrument so that the
augmented reality overlay does not occlude the surgeon’s view.

300 frames at a rate of 1 Hz. In cases where instrument
motion ceased for several frames we manually removed these
frames and extended the sequence so that exactly 300 frames
remained. We provided left and right eye images from the
stereo camera on the Xi system and also provided camera
calibration information in case participants wished to use
stereo reconstruction as a feature.

We provided the first 225 frames of 8 sequences as training
data and kept the last 75 frames of those 8 sequences as
test data. 2 of the full 300 frame sequences were kept as
test sequences. Test labels were kept hidden from the partici-
pants. Our datasets contain 7 different robotic surgical instru-
ments. The Large Needle Driver, Prograsp Forceps, Monopolar
Curved Scissors, Cadiere Forceps, Bipolar Forceps, Vessel
Sealer and additionally a drop-in ultrasound probe, which is
typically held in the jaws of the Prograsp Forceps instrument.
Samples from the training datasets are depicted in Fig. 2 and
examples of the different instrument types are shown in Figure
3 and 4.

As we had training sets and test sets from the same surgical
sequence, we disallowed participating teams from using the
corresponding training set when performing evaluation on each
of the 8 split test sets. This resulted in teams needing to train
at least 9 models to perform the evaluation. To avoid unfair
advantages being given to teams which had access to their own
surgical training data, augmenting the dataset with additional
data was forbidden. In an exception to this, CNNs pretrained
on publicly available, non-surgical data were permitted.

C. Data labelling

Our labelling was performed by a dedicated segmentation
team at Intuitive Surgical using the open source software
Viame3 which provides functionality for frame-by-frame poly-
gon creation. We labelled only the left eye in the stereo pair

3https://github.com/Kitware/VIAME

to reduce labelling time. Labels were provided on an instance
level with separate annotated images per object.

III. PARTICIPATING METHODS

A. National Center for Tumor Diseases (Dresden)

Method 1 was from a team at the National Center for
Tumor Diseases (NCT) in Dresden. It consisted of Sebastian
Bodenstedt, Isabel Funke and Stefanie Speidel. Their method
was based on residual CNNs and the topology of the network
can be seen in Fig. 5. Before training, they cropped the black
borders off the images, equally removing rows and columns
to leave an image of resolution (1536, 1024) and then down-
sampled the image to (768, 512). Random augmentations of
increasing the pixel value by [32,−32], vertical and horizontal
flips, zooms of [0.75, 1.25] and rotations of [−10, 10] degrees.
Training was performed for 200 epochs using a categorical
cross entropy as a loss function and Adam as the optimizer.

B. Universty of Bern

The method proposed from Thomas Kurmann at the Uni-
versity of Bern (UB) is based on a cascaded Fully Convolu-
tion Neural Network (FCN) structure. The cascaded structure
attempts to reuse the results of previous stages in order to
refine the active stage’s result. The first stage of the cascade
is the binary segmentation of the instruments. Both instrument
part and instrument type segmentation tasks rely on a proper
removal of the background, hence profiting from an available
binary mask which delineates the background. For all three sub
tasks they use the same FCN which is based on an encoder-
decoder structure, similar to the U-Net [14]. Their network
uses 6 layers in both the decoder and encoder structure. A layer
block is built as follows, Convolution-Batch Normalization
(BN) [15]-Activation-Convolution-BN. They use short skip
connections and compute the residuals at the end of each
block followed by a ReLu activation. Every encoder block
is completed by a max pooling operation with a stride of 2.
Decoder layers begin with a transposed convolutional layer
to double the size of the input. Before the output they add
a last convolution layer with a kernel size of 1x1. All other
convolutions in the network use a kernel size of 3x3. The
input and output size is 384x384 pixels. Every layer doubles
the number of channels in the encoder stage starting with 32.
In the decoder stage the number of channels is reduced by
0.5 in every layer. The networks are not pre-trained on any
external dataset. The code is available publicly.4

C. Beijing Institute of Technology

Method 3 was from a team at the Beijing Institute of
Technology (BIT). It consisted of Jian Yang, Yakui Chu, Xilin
Yang, Zhijia Yang and Shiyun Zhou. To address the problem
they trained an ensemble model of 3 separate U-Nets [14] and
then fused the output to obtain a final prediction.

4https://github.com/tkurmann/endovis2017 unibe

https://github.com/Kitware/VIAME
https://github.com/tkurmann/endovis2017_unibe
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Fig. 2: Example frames from the training datasets in order from left to right Dataset 1-8.

Fig. 3: A ground truth overlay showing example da Vinci
Xi instruments. The different parts of the instrument that
are annotate in the parts based segmentation challenge are
illustrated with green, red and blue colors. An interesting case
is the Monopolar Curved Scissors (2nd from left) which has
a protective sheath to insulate the electric current used to
provide electro-cautery features. We decided in this case to
label the entire sheath as shaft as there is no visible wrist for
this instrument.

D. MIT

Method 4 was from a joint team of Alexey Shvets at MIT
and Vladimir Iglovikov at Lyft. As an improvement over
vanilla U-Net, they used similar networks with pre-trained
encoders. TernausNet is a U-Net-like architecture that uses
relatively simple pre-trained VGG11 or VGG16 networks as
an encoder [16], [17]. VGG11 encoder consists of seven
convolutional layers, each followed by a ReLU activation
function, and five max polling operations, each reducing
feature map by 2. The later portion of the network consists
of repetitive residual blocks. All convolutional layers have 3x3
kernels. In every residual block, the first convolution operation

is implemented with stride 2 to provide down-sampling, while
the rest convolution operations use stride 1. In addition, the
decoder of the network consists of several decoder blocks
that are connected with the corresponding encoder block. As
for vanilla U-Net, the transmitted block from the encoder is
concatenated to the corresponding decoder block. The output
of the model is a pixel-by-pixel mask that shows the class
of each pixel. TernausNet16 has a similar structure and uses
VGG16 network as an encoder. The code for their approach
is available publicly5.

E. Shenzhen Institute of Advanced Technology

Method 5 was from a team at the Shenzhen Institute of
Advanced Technology (SIAT) consisting of Huoling Luo,
Ahmed Elazab, Xingguang Duan, Chihua Fang, Qingmao Hu
and Fucang Jia. They made use of the SegNet architecture
[18] to address the challenge. This architecture is composed
of a symmetric encoder-decoder structure where the output
of the decoder is passed into a softmax classification layer
(see Fig. 6). Following the original paper, a VGG16 encoder-
decoder pretrained on ImageNet was used and fine-tuned on
the challenge data. Models were trained for the binary and
multi-label segmentation tasks, and the multi-label segmen-
tation network is adapted for the type-segmentation task, by
taking the weights from the parts segmentation data, modifying
the number of outputs to equal the number of classes and fine-
tuning this last layer.

The image aspect ratio was kept unchanged throughout
training (via padding) however the images were resized to
(480, 270) due to hardware limitations. To handle data imbal-
ance between the instrument wrist and probe classes, a weight
compensation strategy was used in the softmax layer:

σi(z) = ki
exp(zi)∑m
j=1 exp(zj)

, i = 1, ...,m (1)

5https://github.com/ternaus/robot-surgery-segmentation

https://github.com/ternaus/robot-surgery-segmentation


4

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: The different instrument types used in our type based segmentation challenge. (a) shows the Maryland Bipolar Forceps
and (b) shows the Fenestrated Bipolar instruments which we combine into a single label Bipolar Forceps due to similar
appearance. (c) shows the Prograsp Forceps instrument. (d) shows the Large Needle Driver instrument. (e) shows the Vessel
Sealer, the most visually distinctive instrument in our dataset. (f) shows the Grasping Retractor. (h) shows the Monopolar
Curved Scissors and (g) shows a drop-in Ultrasound probe from BK Medical which was present in our dataset but not labelled
as an instrument.

where ki denotes the class weights, m is the number of
instrument part classes and zi is the prediction of class i. Data
augmentation of random flips and color, contrast and sharpness
modifications were applied. Stochastic gradient descent was
used to train the models with a learning rate of 0.001 and
momentum of 0.9. Training time on an NVIDIA P100 GPU
was 12 hours using a batch size of 4.

F. University College London

Method 6 was from a team at University College London
(UCL) consisting of Luis C. Garca-Peraza Herrera, Wenqi
Li, Tom Vercauteren, and Sebastien Ourselin. They used a
custom network design for instrument segmentation called
ToolNet [11] which is inspired by holistically-nested edge
detection network [19] with an aggregated multiscale loss.
Inference runs in real-time. In their original paper they used
Dice loss, however in the challenge they modified this to use
the intersection-over-union metric:

ŷ(s̄)(z,θ) =

M∑
j=1

wjŷ
(sj)(z,θ)

LMSIoU (y, z,θ) = λ̄LIoU

(
ŷ(s̄), (z,θ),y

)
+

M∑
j=1

λjLIoU

(
ŷ(sj), (z,θ),y

)
(2)

where y, z and θ represent ground truth label, input image,
and weights of the network respectively. ŷ(sj)(z,θ) represents
a probabilistic prediction at scale j ∈ {1, ...,M}. M is the
number of different scales at which a prediction is gener-
ated by the network (i.e. M = 6 in ToolNet). ŷ(s̄)(z,θ)
represents the averaged probabilistic prediction across all
scales (i.e. the output of the 12 convolution next to all the
upsampled predictions in ToolNet). It is worth noting that by
learning the weighting parameters wj (initialized equally for
all the scales) for summing predictions coming from multiple
scales, we are learning the contribution from each scale to
the final loss. λ̄ and λj are hyper-parameters that weight the
contribution of the losses at different scales (set to 1 in our
implementation).

G. Technical University of Munich

Method 7 was from a team at the Technical University of
Munich (TUM) consisting of Nicola Rieke and Iro Laina.
The presented method is based on the CSL network for
simultaneous segmentation and 2D pose estimation of the
instrument that they published with joint first authorship in the
main conference [7]. As the challenge data does not provide
points of interest to track, the network architecture is reduced
to the segmentation-only version of CSL method (see Fig. 8).

The network follows an encoder-decoder structure based on
a Fully Convolutional Residual Network (FCRN) [20] with
added long-range skip connections. ResNet-50 [21] is used
as the encoder, which maps the input frames of resolution
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Deconv (4 × 4, 256, 2, 2)

BatchNorm

Image (3, 512, 768)

Conv (4 × 4, 64, 2, 2)
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ReLu
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ReLu

ReLu

BatchNorm

ReLu

BatchNorm
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Deconv (4 × 4, 128, 2, 2)

Deconv (4 × 4, 512, 2, 2)

× 5

× 3

BatchNorm

Dropout

Deconv (4 × 4, 128, 2, 2)

Deconv (3 × 3, 8, 1, 1)

Instrument Parts

Softmax

Deconv (4 × 4, 5, 2, 2)

Softmax

Softmax

Instrument Types

Fig. 5: The network architecture from the team at NCT. The convolutional layer notation is kernel size, output dimensions,
stride size and padding. The network has two output layers, one providing part-based segmentation and the other providing
type segmentation.

Fig. 6: The network design from the team from Shenzhen
Institute of Advanced Technology.

(480, 480) to feature maps of lower resolution through a set of
residual blocks. The decoder consists of residual up-sampling
layers which successively increase the feature map resolution
to the output space where they set one output channel per class.
To counteract the loss of spatial information due to down-
sampling, skip connections are added to allow the gradient to
bypass part of the network and flow directly from encoding
layers to decoding layers. These long-range skip connections
reshape the respective encoding layer with a 1x1 convolution
and add it to the decoding layer of the same resolution.
Separate models are trained for binary segmentation (2 classes)
and part segmentation (5 classes).

During training, standard photometric and geometric aug-
mentations are employed to extend the variability of the
training dataset. In addition, an application-specific augmen-
tation is introduced to increase the robustness of the proposed
model against specular reflections on the instruments which
are often the cause of misclassification. Thus, as a form of
augmentation, specularities of random strength and size are
added along the shaft of the instruments.

In contrast to the original publication, an additional post-

Fig. 7: The holistically-nested edge detection network from
the UCL team.

processing operation is performed to reduce the noise. Due to
the surgical setup, the instruments always enter the recorded
scene from one of the image borders. This prior knowledge is
included indirectly as a post-processing step by computing the
connected components and assigning the background class to
spurious instrument predictions that are not connected to the
border. Morphological operations are applied to fill holes and
make the prediction smoother.

The resulting method runs with near real-time performance
on a NVIDIA GeForce GTX TITAN X.

H. IIIT Delhi
Method 8 was from the Indraprastha institute of Information

Technology in Delhi and consisted of Rahul Duggal and Dr
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Anubha Gupta. Their approach was geared towards answering
the question - how well does a simplistic baseline perform?
Essentially, their deep learning based approach consisted of a
CNN trained as a foreground detector followed by a Condi-
tional Random Field (CRF) based post processing [22]. The
foreground detector was a VGG-19 [16] model trained on
51×51 patches from the original image, with ground patched
containing any portion of an instrument labelled 1, and others
0. The code for their approach is available publicly6.

I. University of Alberta

Method 9 was from the University of Alberta (UA). The
team consisted of members Zichen (Vincent) Zhang, Xuebin
Qin, Min Tang, Shida He, Dana Cobzas and Martin Jager-
sand. Their method was based on FCN [23] and the overall
architecture is illustrated in Fig. 9. It consists of a repurposed
FCN-8s for all three tasks. This network architecture was used
since it’s relatively smaller than other popular choices such as
Resnet-101 [21]. For each video, there are only 1575 (225
× 7) frames (not considering data augmentation) for training
the network. A smaller network would help reduce the risk of
overfitting in this setting.

For datasets 1-8, they trained a separate model for each.
That is, for each dataset, training was performed using the
other seven videos and validation was done on the target video.
For dataset 9 and 10, since the entire videos were in the test
set, there was no need for excluding any training data. Due
to time constraints, they had to reuse the model trained from
the dataset 1-8. They ended up picking the model trained for
dataset 7 since this dataset contained data that were rarely seen
in the other datasets and was perhaps the least useful to train
the network on (note that this model was trained on dataset 1-
6 and 8). In total, they trained 8 sets of weights for each task,
i.e. 24 models in total. The hyperparameters were fixed for

6https://github.com/duggalrahul/MICCAI17 EndoVis RoboSeg

Fig. 8: Architecture overview of method 7 from TUM.

FCN-8s
Binary Segmentation 2 channels

5 channels

8 channels

Part Segmentation 
(5 classes) 

Type Segmentation 
(8 classes) 

Re-purposed for 3 tasks 

VGG16 
backbone

Fig. 9: Architecture overview of the submission from Univer-
sity of Alberta

all datasets and all tasks. In the binary segmentation task, the
network weights were initialized with the pretrained model on
PASCAL dataset [23] and fine-tuned on it. The best weights
for this task were then used to initialize the network in the part
and type segmentation tasks. The input images were resized
to 320 × 256 for faster training.

The network prediction contained some small false positive
regions. In post-processing, connected regions smaller than
15000 pixels were removed. This threshold was tuned on the
training data.

J. University of Washington

Method 10 was from the University of Washington (UW)
and the team was made up of Yun-Hsuan Su and Niveditha
Kalavakonda. Unlike the solutions from many other teams,
they are interested in developing a surgical tool segmentation
method without machine learning, and see how far traditional
computer vision approaches can go in this matter. The motiva-
tion comes from the lack of massive pre-labeled surgical image
dataset in general situations [24]. In fact, this work is inspired
by another study by the team - surgical tool segmentation with
robot kinematics prior [25]. Few advantages for this algorithm
are that no training is required, and efficient on-line execution
is possible without GPU.

Color filtering was used to initially generate a mask of
instruments to distinguish from the background, where color
features are extracted using thresholds on the opponent color
space and hue/saturation channels. The initial mask was then
fed to the Grabcut Algorithm [26] for refining the prediction
of tool versus tissue. Many image features including shape
masking, edge constraints, border constraints, and disparity
discontinuity have potential impact on the segmentation result.
Depending on the blurriness of the image, the weights for the
chosen image features vary. For example, edge constraints and
disparity information are less reliable in blurry images, and can
be misleading in the case of interlacing [27]. To address this,
a high level classification of image blurriness is performed
using the variance of the response of a Laplacian kernel.

https://github.com/duggalrahul/MICCAI17_EndoVis_RoboSeg
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Upon computing a weighted sum of the features, one may
be able to determine whether each pixel belongs to a tool or
tissue based on blurriness score. Finally, a probability mask is
generated and the border constraint prior is enforced to remove
erroneous islands from the final mask. This is determined with
the knowledge that contours for instruments will be connected
to at least one of the four edges of the image.

IV. RESULTS

A. Evaluation Criteria

Our evaluation criteria for each challenge was based on
mean intersection-over-union (IoU), a current standard for
assessing segmentation scores in computer vision literature [2].
The IoU for a single class is defined as

IOU = TP/(TP + FP + FN) (3)

where TP is the number of true positive predictions for a
class label, FP is the number of false positives and FN is the
number of false negatives. To compute the mean IoU we use
the arithmetic mean of the IoU for all classes that are present
in a given frame. If we are considering a set of classes and
none are present in the frame, we discount the frame from the
calculation. We compute this score for each frame and average
over all frames to get a per-dataset score. When computing
overall scores we weight each score by the size of the dataset.

Rather than releasing test labels directly to teams, the anno-
tations were kept private and teams made a single submission
of their segmentations. On the challenge day at MICCAI 2017
the results were made public. This meant that teams were
not able to tune their methods on the test data by making
multiple submissions. However, as the entire training set was
released prior to the challenge day and we had to rely on the
fairness of the teams to follow the challenge rules to exclude
the corresponding training set for a test set, as described in
Section II-B.

B. Binary Segmentation

Our first challenge was binary segmentation, where the
objective was to divide images into a class made up of any da
Vinci surgical instrument and any other object, anatomical or
man-made. Although this challenge was by far the simplest of
the three, there were significant challenges due to drop-in US
probes and needles having quite similar appearance and color
to surgical instruments. The numerical results of computing
the mean IoU for each dataset for each of the 10 participating
teams are shown in Table I. The highest scores for each dataset
were shared between the methods of University of Bern (UB)
and MIT and the highest average score was MIT with 0.854.
In total 5 teams scored an average of over 0.8 for mean IoU
over all datasets. The worst scoring dataset was dataset 1 with
a mean IoU of 0.589 yet several methods (UB and MIT) were
able to score above 0.8 for this dataset.

In Fig. 10 we show qualitative results of randomly chosen
frames from each dataset. In the top row, we show frame
278 from dataset 1, which contained 2 Prograsp Forceps
instruments and a drop in ultrasound probe. The 3 selected
frames were from methods that all averaged over 0.8 mean

IoU yet showed considerable difference in their ability to
differentiate the US probe. There was also visibly different
performance across the methods in dataset 7, which contained
a Vessel Sealer and complex lighting.

C. Parts Segmentation
Our second challenge was on instrument part segmentation

where the participants were challenged to divide the binary
instrument labels into a shaft, wrist and jaws. As in the
binary segmentation challenge, the drop-in US probe and other
man-made devices as well as all anatomical objects were to
be labelled as background. We compute the mean IoU for
each frame of each dataset and for frames where no instance
of a class occurred, such as when the shaft is withdrawn
completely from the field of view. Nine teams participated in
this challenge, the only team abstaining was from IIT Delhi.

In Table II we show quantitative results for the 9 partic-
ipating teams. The TUM team achieved the highest overall
accuracy achieving a mean IoU of 0.751 however the MIT
achieved the highest mean IoU in 7 of the 10 datasets. The
TUM score averaged higher due to the larger weighting on
Datasets 9 and 10 which contained 4x as many frames as
Datasets 1-8.

In Fig. 11 we show qualitative results from 6 datasets
with randomly chosen method outputs for each frame. Again
the vessel sealer instrument causes numerous problems with
inconsistent labelling occurring all over the shaft.

D. Type Segmentation
The final challenge was to identify each instrument type

from the list of Large Needle Driver, Prograsp Forceps,
Monopolar Curved Scissors, Vessel Sealer, Fenestrated Bipolar
Forceps and Grasping Retractor (see Fig. 4). Only 6 teams
participated in this challenge, due particularly to the significant
increase in difficulty in recognizing many of the da Vinci
instruments from one another.

V. DISCUSSION AND CONCLUSIONS

Different methods have been proposed to tackle the problem
of creating CNNs designed to be an efficient architecture
for pixel-wise semantic segmentation. These networks can
produce a segmentation map for an entire input image in a
single forward pass. One of the most successful state-of-the-
art deep learning methods is based on the FCN [23]. The
main idea of this approach is to use CNN as a powerful
feature extractor by replacing the fully connected layers with
convolutional layers to output spatial feature maps instead of
classification scores. Those maps are further up-sampled to
produce dense pixel-wise output. This method has been further
improved and is now known as U-Net neural network [14]. The
U-Net architecture uses skip connections to combine low-level
feature maps with higher-level ones, which enables precise
pixel-level localization. A large number of feature channels in
the up-sampling part allows propagating context information to
higher resolution layers. To date, the networks based on U-Net
have become standard tools in segmentation tasks for medical
images. Further improvements take into account encoders such
as VGG, ResNets etc. pre-trained on ImageNet [28].
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NCT UB BIT MIT SIAT UCL TUM Delhi UA UW Mean IoU
Dataset 1 0.784 0.807 0.275 0.854 0.625 0.631 0.760 0.408 0.413 0.337 0.589
Dataset 2 0.788 0.806 0.282 0.794 0.669 0.645 0.799 0.524 0.463 0.289 0.606
Dataset 3 0.926 0.914 0.455 0.949 0.897 0.895 0.916 0.743 0.703 0.483 0.788
Dataset 4 0.934 0.925 0.310 0.949 0.907 0.883 0.915 0.782 0.751 0.678 0.803
Dataset 5 0.701 0.740 0.220 0.862 0.604 0.719 0.810 0.528 0.375 0.219 0.578
Dataset 6 0.876 0.890 0.338 0.922 0.843 0.852 0.873 0.292 0.667 0.619 0.717
Dataset 7 0.846 0.930 0.404 0.856 0.832 0.710 0.844 0.593 0.362 0.325 0.670
Dataset 8 0.881 0.904 0.366 0.937 0.513 0.517 0.895 0.562 0.797 0.506 0.688
Dataset 9 0.789 0.855 0.236 0.865 0.839 0.808 0.877 0.626 0.539 0.377 0.681
Dataset 10 0.899 0.917 0.403 0.905 0.899 0.869 0.909 0.715 0.689 0.603 0.781
Mean IOU 0.843 0.875 0.326 0.888 0.803 0.785 0.873 0.612 0.591 0.461

TABLE I: The numerical results for the binary segmentation task. The highest scoring method is shown in bold. 6 Datasets
were won by the team from MIT, 3 by the team from UB and 1 by the team from TUM.

NCT UB BIT MIT SIAT UCL TUM UA UW Mean IoU
Dataset 1 0.723 0.715 0.317 0.737 0.591 0.611 0.708 0.485 0.235 0.569
Dataset 2 0.705 0.725 0.294 0.792 0.632 0.606 0.740 0.559 0.244 0.589
Dataset 3 0.809 0.779 0.319 0.825 0.753 0.692 0.787 0.640 0.239 0.649
Dataset 4 0.845 0.737 0.304 0.902 0.792 0.630 0.815 0.692 0.238 0.662
Dataset 5 0.607 0.565 0.280 0.695 0.509 0.541 0.624 0.473 0.240 0.504
Dataset 6 0.731 0.763 0.271 0.802 0.677 0.668 0.756 0.608 0.235 0.612
Dataset 7 0.729 0.747 0.359 0.655 0.604 0.523 0.727 0.438 0.207 0.554
Dataset 8 0.644 0.721 0.300 0.737 0.496 0.441 0.680 0.604 0.236 0.540
Dataset 9 0.561 0.597 0.273 0.650 0.655 0.600 0.736 0.551 0.221 0.538
Dataset 10 0.788 0.767 0.273 0.762 0.751 0.713 0.807 0.637 0.241 0.638
Mean IOU 0.699 0.700 0.289 0.737 0.667 0.623 0.751 0.578 0.357

TABLE II: The numerical results for the parts based segmentation task where the metric used is mean IoU over all classes.
The highest scoring method is shown in bold. 7 datasets were won by the team from MIT, 1 by the team from UB and 2 by
the team from TUM.

NCT UB BIT MIT SIAT UCL TUM UA UW Mean IoU
Dataset 1 0.831 0.855 0.267 0.886 0.634 0.692 0.820 0.402 0.241 0.625
Dataset 2 0.676 0.663 0.078 0.747 0.614 0.579 0.703 0.543 0.256 0.540
Dataset 3 0.856 0.803 0.274 0.868 0.794 0.724 0.809 0.688 0.272 0.676
Dataset 4 0.950 0.857 0.298 0.957 0.913 0.817 0.923 0.829 0.611 0.795
Dataset 5 0.674 0.574 0.143 0.799 0.712 0.663 0.759 0.560 0.259 0.571
Dataset 6 0.861 0.875 0.153 0.887 0.769 0.789 0.861 0.755 0.325 0.697
Dataset 7 0.585 0.701 0.154 0.388 0.453 0.312 0.640 0.148 0.075 0.384
Dataset 8 0.807 0.876 0.276 0.921 0.450 0.420 0.788 0.861 0.349 0.639
Dataset 9 0.476 0.572 0.180 0.668 0.707 0.641 0.804 0.652 0.318 0.558
Dataset 10 0.868 0.868 0.158 0.859 0.867 0.806 0.900 0.778 0.559 0.740
Mean IOU 0.727 0.751 0.188 0.786 0.729 0.676 0.822 0.660 0.373

TABLE III: The numerical results for the shaft component of parts based segmentation task where the metric used is mean
IoU over all classes. The highest scoring method is shown in bold. 7 datasets were won by the team from MIT, 1 by the team
from UB and 2 by the team from TUM.

NCT UB BIT MIT SIAT UCL TUM UA UW Mean IoU
Dataset 1 0.581 0.522 0.009 0.530 0.399 0.438 0.567 0.318 0.089 0.383
Dataset 2 0.592 0.598 0.014 0.681 0.465 0.404 0.611 0.374 0.062 0.422
Dataset 3 0.756 0.730 0.012 0.766 0.665 0.566 0.728 0.561 0.140 0.547
Dataset 4 0.656 0.382 0.004 0.765 0.540 0.232 0.571 0.381 0.000 0.392
Dataset 5 0.457 0.440 0.005 0.565 0.246 0.397 0.390 0.282 0.027 0.312
Dataset 6 0.594 0.687 0.011 0.727 0.572 0.551 0.676 0.481 0.123 0.491
Dataset 7 0.691 0.627 0.012 0.654 0.380 0.428 0.588 0.352 0.085 0.424
Dataset 8 0.665 0.686 0.019 0.720 0.435 0.333 0.774 0.501 0.023 0.462
Dataset 9 0.354 0.371 0.000 0.475 0.407 0.372 0.562 0.255 0.013 0.312
Dataset 10 0.711 0.664 0.000 0.672 0.641 0.583 0.742 0.512 0.145 0.519
Mean IOU 0.578 0.551 0.005 0.625 0.495 0.449 0.634 0.396 0.074

TABLE IV: The numerical results for the wrist component of parts based segmentation task where the metric used is mean
IoU over all classes. The highest scoring method is shown in bold. 5 datasets were won by the team from MIT, 2 by the team
from NCT and 3 were won by the team from TUM.
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Frame 278 NCT SIAT MIT

Frame 237 BIT TUM UCL

Frame 251 IIIT Delhi U Alberta U Bern

Frame 247 BIT U Washington U Alberta

Frame 256 U Bern MIT IIIT Delhi

Frame 101 NCT SIAT TUM

Fig. 10: Qualitative results showing frames from different datasets with the corresponding results from randomly selected
methods. In order, the datasets shown are Dataset 1, Dataset 3, Dataset 4, Dataset 7, Dataset 8 and Dataset 10.
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Frame 278 BIT MIT TUM

Frame 227 U Bern UCL U Washington

Frame 257 U Alberta NCT SIAT

Frame 230 BIT MIT TUM

Frame 224 U Bern U Washington NCT

Frame 28 U Alberta SIAT UCL

Fig. 11: Qualitative results for the parts based labelling showing frames from different datasets with the corresponding results
from randomly selected methods. In order, the datasets shown are Dataset 1, Dataset 2, Dataset 5, Dataset 7, Dataset 8 and
Dataset 10.
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NCT UB BIT MIT SIAT UCL TUM UA UW Mean IoU
Dataset 1 0.491 0.494 0.058 0.538 0.356 0.337 0.460 0.272 0.082 0.343
Dataset 2 0.588 0.656 0.106 0.743 0.501 0.485 0.665 0.380 0.000 0.458
Dataset 3 0.634 0.593 0.070 0.676 0.565 0.497 0.620 0.337 0.000 0.444
Dataset 4 0.782 0.720 0.031 0.892 0.727 0.490 0.776 0.588 0.175 0.576
Dataset 5 0.332 0.260 0.005 0.433 0.131 0.131 0.381 0.085 0.000 0.195
Dataset 6 0.483 0.503 0.026 0.606 0.385 0.354 0.501 0.225 0.052 0.348
Dataset 7 0.613 0.582 0.274 0.494 0.458 0.271 0.613 0.283 0.313 0.433
Dataset 8 0.111 0.331 0.002 0.314 0.151 0.067 0.165 0.061 0.001 0.134
Dataset 9 0.421 0.449 0.000 0.462 0.512 0.398 0.583 0.318 0.033 0.353
Dataset 10 0.583 0.543 0.000 0.529 0.504 0.475 0.596 0.272 0.057 0.395
Mean IOU 0.503 0.507 0.034 0.542 0.460 0.384 0.556 0.288 0.060

TABLE V: The numerical results for the clasper component of parts based segmentation task where the metric used is mean
IoU over all classes. The highest scoring method is shown in bold. 7 datasets were won by the team from MIT, 1 was tied
between the team from NCT and the team from TUM and 2 were won outright by the team from TUM.

NCT UB MIT SIAT UCL UA Mean IoU
Dataset 1 0.056 0.111 0.177 0.138 0.073 0.068 0.104
Dataset 2 0.499 0.722 0.766 0.013 0.481 0.244 0.454
Dataset 3 0.926 0.864 0.611 0.537 0.496 0.765 0.690
Dataset 4 0.551 0.680 0.871 0.223 0.204 0.677 0.534
Dataset 5 0.442 0.443 0.649 0.017 0.301 0.001 0.309
Dataset 6 0.109 0.371 0.593 0.462 0.246 0.400 0.363
Dataset 7 0.393 0.416 0.305 0.102 0.071 0.000 0.215
Dataset 8 0.441 0.384 0.833 0.028 0.109 0.357 0.359
Dataset 9 0.247 0.106 0.357 0.315 0.272 0.040 0.223
Dataset 10 0.552 0.709 0.609 0.791 0.583 0.715 0.660
Mean IOU 0.409 0.453 0.542 0.371 0.337 0.346

TABLE VI: The numerical results for the type based segmentation task where the metric used is mean IoU over all classes.
The highest scoring method is shown in bold. 7 datasets were won by the team from MIT, 1 was won by the team from SIAT,
1 by the team from NCT and 1 by the team from UB.

Frame 229 Ground Truth SIAT MIT UCL

Frame 240 Ground Truth U Bern MIT U Alberta

Frame 59 Ground Truth NCT SIAT U Bern

Fig. 12: Quantitative Results for the type based segemtation. The ground truth frame shows the correct labelling for each
pixel. In order, the datasets shown are Dataset 3, 5 and 9. Although the masks are quite accurate for many of the frames,
identification is much poorer with many instruments either partially or completely misclassified.
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A. Data Augmentation

Data augmentation is a common technique used in deep
learning to increase the size and variability of the training
dataset by making geometric or photometric modifications
such as rotations, croppings, and modifications to the color
palette. Given the correlated nature of the data in a single
sequence, data augmentation provides a simple and effective
way of improving generalization and reducing overfitting.
Endoscopic surgical robotic data differs vastly from computer
vision tasks on natural images, making it more challenging
to find data augmentation techniques which are advantageous
for the model. Certain techniques may even degenerate the
performance as model capacity is used for scenes which never
appears in the test set.

Most teams performed spatial augmentations rather than
photometric augmentations which makes sense given that all
of the images in the training set were captured with the
da Vinci Xi endoscopic camera. This is a factory calibrated
camera with a limited set of color display settings and a
single Xenon light source illuminating the scene which leads
to fairly uniform images. Typically the variation of observed
scene orientations in robot surgery is larger than real world
images which are usually taken with cameras in a upright
orientation. The most common spatial augmentations were
to flip the images horizontally and vertically which fits with
the set of common orientations that are observed in robotic
surgery. The physical constraints created by the robot design
allow instruments to typically enter the field of view from
the side of the image and point towards a single central point
due to the triangulation created by the design of the arms.
The limited use of zooming transformations, either as crops
or zoom outs with padding was surprising given that this is the
most common type of image shift observed during surgery.

Table VII illustrates the augmentation choices made by
the participating teams. All of the highest performing teams
conducted some photometric augmentation alongside the ubiq-
uitous spatial augmentations suggesting that these are still
important to obtain good performance. One particularity in
endoscopic surgery data is due to the directed light source
that results in specular reflections on the instrument as well as
the tissue. This poses an additional difficulty to segmentation
algorithms. To address this problem, the team of the Technical
University of Munich proposed to augment the training data
by placing simple specular reflections randomly in the image
which improved the segmentation result.

B. Challenge Design

There are several limitations with the challenge design.
The largest and most significant limitation is the relatively
small size of the dataset, being made up of only 3000 frames
of which 1800 were selected as training data. This is much
smaller in comparison to industry standard computer vision
segmentation datasets such as Microsoft COCO [2] (328k im-
ages). The selection of data from a small number of procedures
is typical in surgical datasets due to difficulty of obtaining data
from varied sources however, it creates bias in the ranking

(a) (b) (c)

(d) (e) (f)

Fig. 13: Interesting failure case in a mildly smoky scene
where the instrument appearance is clearly observable to the
human eye. (a) shows a frame with a thin smoke layer from
usage of the Monopolar Curved Scissors. (b) shows the binary
segmentation of this frame by the UB method and (c) shows
the binary segmentation from the method of TUM. (d-f) shows
the same setup for the next frame where the smoke has cleared.
Despite UB and TUM having very similar overall accuracy,
the method of UB has near total failure when the smoke is
present.

towards models which can overfit without properly testing gen-
eralization. Moving forwards video segmentation challenges
should aim to reduce the number of frames contributed by each
dataset while increasing the number of separate procedures.
A related issue which occurs due to sampling from a small
number of procedure videos is that the occurrence of different
instrument types in the training dataset may not accurately
reflect their true distribution which is set by by how often
the instrument is used in surgery. For instance, the Monopolar
Curved Scissors appeared in just 2 training sequences yet is a
commonly used instrument in da Vinci procedures.

Labelling errors also create complications for the challenge
participants. Alongside standard errors due to carelessness
amongst annotators, fast instrument motion causing image blur
(see Fig. 14) may result in labelling errors. Severe ambiguities
which confuse even a human annotator due to lighting or
smoke which can be common in laparoscopic procedures are
not present in our datasets. Recent work [29] on reducing er-
rors by validating all annotations with repetitions and majority
voting is an effective strategy although it requires a significant
duplication of effort. A simpler and faster alternative may be
to require different annotators verify each sample [2]. Due to
delays in beginning the annotation and a limited time window
to release the data before the challenge deadline, we only
had sufficient time for a single trained annotator to complete
each sample with review by a single expert. Limitations in
the labelling software used to label the images also creates
inconsistencies. As many of the da Vinci grasping instruments
contain one or more holes in the clasper and these should be
correctly reflected in the annotations. However, the annotation
tool used in this challenge did not allow holes in the polygons
and our training instructions did not explicitly request that the
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Augmentation NCT UB BIT MIT SIAT UCL TUM IIT UA UW
Horizontal Flips X X ? X X X X
Vertical Flips X X ? X X
Zooms/Crops X ? X
Translations X ? X
Rotations X X ? X
Color X ? X X
Normalization X ? X X
Contrast ? X
Specular Highlights ? X

TABLE VII: The different data augmentation selections made by the participating teams. The column for University of
Washington (UW) is blank as they pursued a non-deep learning approach and therefore did not perform any data augmentation.
The columns for University of Alberta (UA) and UCL are also blank as they did not perform data augmentation due to time
limitations. We currently have no data for the augmentations used by the team from Beijing Institute of Technology (BIT).

Fig. 14: An example of ambiguous labelling needs for a
blurred frame where due to instrument motion it is not clear
where the border should lie.

annotators spent the additional time to ensure that the hole was
properly annotated. By the time this problem was identified
there was not sufficient time to correct the annotations before
the challenge data release and to ensure consistency across
training and test set, the hole was not reannotated in any
frames.

A further limitation of the challenge design is that it
expected teams to make submissions for 10 datasets requiring
9 separate models to be trained. Although this increased the
number of sequences that had associated test data, many
teams felt that the computational requirement of training and
evaluating so many models was too high to allow for proper
experimentation. In future challenges, we plan to release
entirely separate training and test sets so that only a single
model needs to be evaluated.

C. Future Challenges

Although segmentation of robotic instruments is an inter-
esting and important problem, there is significant value to
providing dense segmentation entire scene by annotating the
anatomy as well as the instruments. Algorithms with the ability
to recognize different tissues would have the potential to

provide much more context aware assistance to surgeons. In
2018 we released a further dataset7 with complete annotation
of several different tissue types as well as multiple third party
devices such as clips, thread and suction/irrigation tools.
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