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Summary

The great ambition to treat cancer through harnessing a patient’s own immune responses has started 

to become reality. Clinical trials have shown impressive results and some patients reaching the end of 

existing treatment options have achieved full remission. Yet the response rate even within the most 

promising trials remain at just 30-40% of patients. To date, the focus of immunotherapy research has 

been to identify tumour antigens, and to enhance activation of effector lymphocytes. Yet this is only 

the first step to effective immunotherapy for a broader range of patients. Activated cytotoxic T cells 

can only act on their tumour cell targets if they have free and easy access to all tumour regions. Solid 

tumours are complex, heterogeneous environments which vary greatly in their physical properties. 

We must now focus our efforts on understanding how factors such as the composition, density, and 

geometry of tumour extracellular matrix (ECM) acts to impede or promote immune cell infiltration 

and activation, and work to design novel pharmacological interventions which restore and enhance 

leukocyte trafficking within solid tumours. 
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1 Introduction

2

3 An early pioneer study in the 1890’s by William Coley treating cancer patients with live bacteria, is one 

4 of the first examples demonstrating that boosting the patient’s immune response against transformed 

5 cells was a possibility to cure cancer [1]. Many years later it is now widely demonstrated that the 

6 immune system can control tumour growth and that evading this specific immune response is a 

7 hallmark of cancer [2]. Over the last decades scientists have developed a number of therapeutic 

8 avenues to exploit the possibility of harnessing immune responses to treat cancer.

9

10 Therapeutic cancer vaccines include inoculation of cancer cell lysates, isolated tumor associated 

11 antigens and neoantigens, and autologous dendritic cells loaded with these same tumour antigens. 

12 Normally triggered by an adjuvant of choice, this approach generates an adaptive immune response 

13 against the tumour [3-6]. Inoculation of specifically-designed chimeric antigen receptor (CAR) T cells 

14 and NK cells could be considered a more targeted version of cancer vaccination [7,8]. Alternatively, 

15 spontaneous anti-tumour responses in cancer patients can be exploited by adoptive transfer of 

16 expanded popoluations of autologous tumor-infiltrating lymphocytes. Adjuvant treatment is still used 

17 today, and immunotherapy is the most successful therapy for non-muscle-invasive bladder cancer [9]. 

18 Last but not least, immune checkpoint blockade therapy neutralises molecules that cancer cells and 

19 associated stromal cells use to dampen the immune response. The most popular and effective targets 

20 are CTLA-4 and PD-1 used alone, together, or in combination with other therapies [10].

21

22 The enormous potential of these therapies is backed up by a large number of studies using animal 

23 models. Nevertheless, efficacy in humans is not as good as expected. In order to work, all 

24 immunotherapy approaches have specific requirements to meet. One of these is the ability of effector 

25 immune cells to access the whole tumour. Here we review the importance of the tumour stroma in 

26 shaping the tumour microenvironment and how this impacts the effectiveness of immunotherapy. 

27 We focus particularly in the extracellular matrix composition and organisation, how it creates both 

28 physical and signalling niches around tumours and its impact on immunological anti-tumoural 

29 responses.

30

31

32 The generation of the extracellular matrix in the tumour microenvironment

33
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34 The extracellular matrix (ECM) is composed of a network of macromolecules including fibrillar 

35 proteins, proteoglycans and glycoproteins that serve both biophysical and biochemical functions. It 

36 acts as a physical scaffold to maintain the structure and mechanical integrity of tissues, as well as an 

37 active signalling constituent through the sequestration and release of growth factors and cytokines 

38 [11]. The composition, anisotropy and biomechanics of the ECM is uniquely tailored to the specific 

39 function of the tissue. 

40

41 The primary mediators of ECM deposition and maintenance are fibroblasts. In pathological contexts 

42 such as wound healing and fibrosis, fibroblasts are activated by soluble mediators like Transforming 

43 growth factor beta (TGF-β) to increase ECM production and remodelling. In cancer, fibroblasts are 

44 chronically activated like a ‘wound that does not heal’ resulting in severe desmoplasia, as well as 

45 dramatic changes in ECM composition and topography. The tumour microenvironment is typically 

46 enriched in fibrillar collagens, fibronectin, periostin, tenascin C, hyaluronan, and versican among 

47 others, and their upregulation is associated with poor prognosis [12-17]. At the structural level 

48 upregulation of the lysyl oxidase (LOX) family of enzymes elevates ECM cross-linking, and there is a 

49 progressive transition to ECM anisotropy or alignment which requires both cell intrinsic factors such 

50 as polarity and actomyosin contractility, but also external factors such as the physical forces exerted 

51 by the growing tumour [18-20]. 

52

53

54 Extracellular Matrix structures define tumour microenvironments

55

56 These pathological changes in ECM abundance, cross-linking and architecture modify the mechanics 

57 of tumour tissue, increasing tumour stiffness and ECM engagement. Integrin and FAK dependant 

58 adhesions in turn stimulate proliferative signalling and inhibition of growth suppression and apoptosis 

59 in transformed cells [21-23]. The tumour-associated ECM also generates alignotactic, haptotactic and 

60 durotactic gradients that enhance invasion and metastasis. During the initial phase of metastasis 

61 tumour cells must depart the primary site and navigate toward blood and lymphatic vessels, and 

62 aligned collagen and fibronectin bundles generate permissive ‘highways’ directing their migration and 

63 intravasation [20,24-27]. Stiffness and fibronectin gradients have also been shown to provide 

64 guidance cues to migrating normal and transformed breast epithelial cells [28-31]. Metastatic 

65 dissemination is also favoured by ECM rigidity by driving an epithelial to mesenchymal transition 

66 [32,33]. Tumour-associated desmoplasia could be explained as a foreign body response, a ‘walling off’ 

67 of transformed cells through the generation of an obstructive barrier parallel to the invasive front. 

Page 3 of 16

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

68 Conceivably this would act in a tumour suppressive manner, preventing tumour cell escape and 

69 inducing cell cycle arrest through elevated compressive stress [34]. However, during tumour 

70 progression the re-orientation of ECM bundles perpendicular to the tumour front is likely to 

71 counteract these initial effects [20]. Understanding the different functions of ECM in tumour 

72 progression and the balance between tumour suppressive versus tumour promoting functions will be 

73 necessary to designing therapeutic interventions.  

74

75 Extracellular matrix and immune infiltration

76

77 Just as the composition of the ECM determines architecture, and compartmentalisation of healthy 

78 tissues, the newly generated ECM around tumours also impacts tumour composition; including the 

79 spread of blood and lymphatic vessels and infiltration of immune cells. Many studies have also shown 

80 the relevance of the ECM in the regulation of the immune response in different pathological 

81 processes. ECM is a range of complex structures that can both provide a route through tissues, and a 

82 physical barrier to cell migration. This depends greatly on the patterns of ECM fibres, since T cells 

83 actively migrate along matrix fibres meaning that directionality of ECM fibres dictates leukocyte 

84 migration [35]. Additionally, ECM components can bind specific immune receptors, affecting 

85 leukocyte proliferation, polarisation/differentiation and trafficking. For example, glucosaminoglycans 

86 and proteoglycans can act as functional ligands directly regulating recruitment and activation of innate 

87 and adaptive immune cells [36,37]. The duality of ECM to be either protective or tumour promoting 

88 means that we need a nuanced and carefully studied approach to ECM as a target for enhancing 

89 immunotherapy, but the potential benefits of getting this right are immense. 

90

91 Extracellular matrix control of angiogenesis and lymphangiogenesis

92

93 For immune infiltration, there must be an adequate blood supply surrounding the tumour for 

94 leukocytes to be recruited from. These vessels are the major routes of traffic for immune cells 

95 infiltrating the tumour site. Their abundance and intrinsic properties of the tumour vasculature 

96 conditions leukocyte infiltration [38-40] ECM components regulate angiogenesis by both binding 

97 angiogenic factors such VEGFs [41], and by affecting the elasticity of tissues. Stiffer ECM promotes 

98 angiogenesis via increased expression of VEGFR2 in endothelial cells (Figure 1), positively regulated by 

99 p190RhoGAP/GATA2 [42]. Furthermore, mechanosensing counteracts the antiproliferative role of IL-

100 1b on endothelial cells, suggesting that stiff tissues dictates angiogenesis also under inflammatory 

101 stress [43]. Interestingly, lymphatic vessel development seems to respond in a reverse manner. Soft 
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102 tissues (0.2-0.3 kPa) induce GATA2 expression in lymphatic endothelial cell (LEC) precursors, enhances 

103 their response to VEGF-C, promoting LEC migration and vessel sprouting [44]. Atomic force 

104 microscopy on human breast cancer has shown that stiffness gradients are formed in solid tumours, 

105 being generally stiffer than surrounding tissue (0.4kPa healthy vs 1.2kPa tumour), with the invasive 

106 front being the stiffest [45,46]. These mechanical gradients influence where and when new vessels 

107 form during tumour progression (Figure 1), and therefore the access routes for immune infiltrate. 

108 Fankhauser et al. recently demonstrated that VEGF-C treatment potentiates immunotherapy by 

109 attracting naïve T cells, which are locally activated upon immunotherapy-induced tumour cell killing 

110 [47]. Interestingly, targeting the tumour vasculature can also improve immune therapy [39,48]. 

111 Overall, careful characterisation of tumour vasculature remodelling will determine the value of 

112 combined therapies.

113

114 Immune filtration determined by extracellular matrix structure

115

116 The presence of capillaries in the tumour microenvironment does not necessarily ensure 

117 intratumoural blood flow, since high interstitial pressure and solid-stress causes anomalous 

118 hydrodynamic blood flow [49], and ECM structures can accumulate to form physical barriers [35]. For 

119 example, hyalunoranic acid (HA), which plays essential roles in tumour growth [50], and is associated 

120 with poor prognosis,  also increases the tumour interstitial fluid pressure (tIFP) impairing vascular 

121 function and hindering access of drugs and immune cells (Figure 2) [51]. Targeting hyalunoran 

122 increases efficacy of immunotherapy by increasing infiltration of cytotoxic T cells [52]. Both cancer 

123 cells and CAFs are considered sources of HA and studies have shown that contact between both cell 

124 types promotes high HA production [53,54]. A relatively large number of secreted factors induce HA 

125 synthesis, such as platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), epidermal 

126 growth factor (EGF), transforming growth factor beta (TGFβ), cytokines and some chemokines [55]. 

127 Extracellular ATP and UTP also upregulates hyaluronic acid synthase 2 (HAS2) in human epidermal 

128 keratinocytes [56,57].  On the other hand, other secreted factors lower HA production in fibroblasts, 

129 such as IL-10 and IFN alpha [58]. Many of these signalling molecules are produced by leukocytes [59], 

130 however the complex interplay between leukocytes and fibroblasts, and the inflammatory 

131 microenvironment is still not fully understood.

132

133 Physical constraints are not the only mechanism by which abnormal ECM impedes leukocyte 

134 recruitment. ECM-affiliated proteins [60] can sequester growth factors and chemoattractants leading 

135 to defects in leukocyte extravasation (Figure 2). For example, secretion of galectin-3 by tumour cells 
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136 binds the glycans of glycoproteins and forms lattices by oligomerization. These lattices sequester 

137 other glycosylated molecules such as IFN gamma, inhibiting formation of a functional gradient, and 

138 blocking T cell recruitment [61]. Galectin-3 targeting augments the efficacy of T cell therapy, also 

139 demonstrating the impact of this mechanism. These sink-like structures may apply to other 

140 glycosylated proteins such as chemokines, affecting tumour infiltration of other leukocytes. 

141 Chemokine availability is also influenced by the glycocalyx, which retains glycosylated proteins on the 

142 surface of cells, essential for the establishment of chemokine gradients [62]. Oligomerization of 

143 chemokines can drive glycocalyx cross-linking, establishing a mechanism that can alter the physical 

144 properties of cells and ECM [62,63]. In an in vitro system, lung tumour cell-derived TNF alpha, 

145 disrupted the endothelial glycocalyx via activation of endothelial heparanase [64] affecting its capacity 

146 to present chemokines [65]. It is therefore important to assess the glycocalyx status of tumour 

147 vasculature in order to maximize recruitment of immune cells for immunotherapy.

148

149 Matrix-immune response feedback

150

151 With 275 protein-coding genes (195 glycoproteins, 36 proteoglycans and 44 collagens), elements of 

152 the core matrisome [66] there exists an immense array of ligand domains for specific receptors 

153 expressed infiltrating immune cells. A wealth of studies has shown how these ECM-ligands regulate 

154 the adaptive immune response, with pathogen recognition receptors and adhesion molecules as key 

155 regulators [67].  Apart from acting as ligands, the ECM scaffolding and mechanoproperties can directly 

156 modulate the anti-tumour immune response. High substrate stiffness induces expression of the 

157 immune suppressor molecule PD-L1 in a number of tumour cells, which is blocked when actin 

158 polymerization is inhibited [68]. Inhibitory PD-1 ligands are also expressed by tumour stromal cells, 

159 including CAFs [69]. Although the mechanism is not characterised, these finding sheds light on the 

160 regulation of PD-L1 expression by the ECM, relevant for immune evasion and selective depletion of 

161 tumour-specific CD8+ cytotoxic cells.

162

163 Tumour-draining lymph nodes (TDLN) represent an important immunological barrier against cancer, 

164 being privileged sites for generating tumour-specific immune responses [70]. Leukocyte-fibroblastic 

165 stroma interactions in LNs also provides a model system to study the signalling between leukocytes 

166 and fibroblastic stroma within tumours and how these influence ECM remodelling. TDLNs often 

167 present an immunosuppressive profile characterised by overrepresentation of regulatory CD4+ T cells 

168 [71,72]. This inhibitory profile of TDLNs can be reverted by TDLN-targeted adjuvant treatment, which 
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169 induces Th1 responses and results in higher frequencies of intratumoural CD8+ cells, slowing down 

170 tumour growth in the murine B16–F10 melanoma model [73]. 

171

172 Evidence shows that abnormal ECM composition in TDLNs may affect anti-tumour immune response. 

173 In breast cancer, metastatic TDLNs present with accumulation of subcapsular collagen I and III [74] 

174 and fibrosis in metastatic LNs is also strongly correlated with poor prognosis in colorectal cancer [75]. 

175 More specifically, increased levels of collagen and hyaluronic acid in non-metastatic TDLNs correlated 

176 with high bulk tissue elasticity and viscoelasticity, and with elevated intranodal pressures [76].  In pre-

177 metastatic TDLNs, the lymphoid stromal population of fibroblastic reticular cells (FRCs) is increased in 

178 number and gradually reprogrammed towards a CAF-like phenotype in response to tumour factors. 

179 Importantly, TDLN FRCs present differential regulation of ECM genes and lower expression of Il7 and 

180 CCL21, key factors in T cell homeostasis [77-79]. In these studies, loss of IL-7 correlated with low 

181 numbers of LN T cells, which may lead to poor anti-tumour responses. It is therefore important to 

182 study which cellular interactions might be inducing fibrosis in TDLNs and whether the fibrotic status 

183 of TDLNs may affect the response to immunotherapy. These mechanisms may be similar to those 

184 controlling ECM production within and surrounding the primary tumours.

185

186 Therapeutic opportunities

187

188 Given the contribution of ECM to tumour progression, many have reasonably hypothesised that 

189 targeting the fibroblastic stroma might offer some therapeutic benefit [80,81]. Targeting the 

190 fibroblast-activation protein (FAP) with the neutralising antibody sibrotuzumab has unfortunately 

191 failed to show efficacy in a phase II trials for the treatment of metastatic colorectal cancer [82]. More 

192 promisingly, the anti-fibrotic agent pirfenidone inhibits tumour promoting actions of CAFs and 

193 increases vascular functionality and perfusion, improving doxorubicin chemotherapy treatment in two 

194 different cancer models [83,84]. In a landmark study by Olive et al, targeting tumour stroma cross talk 

195 using Sonic HedgeHog (SHH) inhibitors improved drug delivery and response in murine PDAC [85]. 

196 Despite this promise, phase II clinical trials of a SHH inhibitor have so far been ineffective. More recent 

197 studies have enabled a more nuanced picture.  Pharmacological and genetic ablation of fibroblast SHH 

198 signalling transiently stabilised tumours but ultimately accelerated disease progression [86]. Similarly, 

199 genetic depletion of activated fibroblasts gave rise to tumours that were less differentiated, more 

200 invasive and overall more aggressive [87]. These studies and others have highlighted the context-

201 dependent role of the stroma and associated ECM, seemingly acting in both tumour promoting and 

202 tumour suppressive roles. 
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203

204 As an alternative to targeting the cancer-associated fibroblasts themselves, a number of therapies 

205 have focused on the ECM directly, targeting either specific ECM components or structural 

206 modifications like cross-linking. Most attention has focused on the latter using a monoclonal antibody 

207 against LOXL2 (GS-6624/Simtuzumab) or small molecule inhibitor of transglutaminase 2. Whilst pre-

208 clinical investigations were promising, phase II clinical trials with Simtuzumab in both cancer and 

209 fibrosis have so far displayed no clear benefit for patients. A study using a PEGylated enzyme against 

210 hyaluronan in pancreatic adenocarcinoma may provide some hope [88]. A recent Phase II study 

211 demonstrated a significant increase in objective response and a 3-month extension in median overall 

212 survival in patients with high hyaluronan [89].

213

214 Another approach has been to target ECM associated mechano-signalling in cancer cells directly using 

215 ligand mimetics or blocking antibodies against integrins. Cilengitide, a small peptide targeting αvβ3 

216 showed promise in Phase II trials in patients with glioblastoma, but unfortunately demonstrated 

217 limited efficacy in Phase III [90]. An antibody against αvβ6 has also been trialled in idiopathic lung 

218 fibrosis to prevent integrin mediated release of TGF-β1, however the results of the Phase II study 

219 (NCT01371305) are yet to be published. Signalling nodes downstream of integrins also offer additional 

220 points of therapeutic intervention. The tyrosine kinase FAK is activated upon ECM engagement by 

221 integrins, and works primarily through Src and downstream Rho/ROCK, ERK, PI3K and YAP to promote 

222 further ECM deposition, cell contractility, growth and survival. Small molecule inhibitors of FAK have 

223 been developed to disrupt its kinase function through either direct inhibition of the ATP-binding site 

224 or allosteric interference. Two of these (PF-04554878/VS-6063 and GSK2256098) are currently in early 

225 stage clinical trials. Like other kinase inhibitors, these drugs are challenged by the structural ubiquity 

226 of the catalytic domain which confers undesirable cross-reactivity. Another recent approach has been 

227 to target specific scaffolding interactions of the kinase target which should give rise to greater 

228 selectivity.

229

230 Concluding remarks

231

232 The key role that the ECM plays in tumour progression is undisputed. Nevertheless, targeting the ECM 

233 is yet to prove therapeutic benefit. While combined therapies might be the future, we need to 

234 increase our understanding of ECM composition and structure that impacts the efficacy of 

235 immunotherapy. Furthermore, arrival of immune cells to the TME will cause changes to stromal cell 
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236 behaviour, in turn, feeding back to the immune response. A better understanding of these complex 

237 reciprocal interactions will be essential in order to design new effective therapeutic approaches.
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Figure� 1:� Differential� tissue� stiffness� in� cancer� impacts�
angiogenesis.�
Tissue�stiffness�varies�dramatically�from�healthy�(0.4kPa)�to� tumoral�
(1.2kPa)�tissue,�with�an�increase�in�stromal�stiffness�heterogeneity�in�
the� invasive�region.�ECM�rigidity�induces�blood� vessel�sprouting�via�
upregulation�of� GATA2�and� increased�VEGFR2/VEGF-A�signalling�in�
blood� endothelial�cells� (BECs).�On� the� contrary,�ECM�rigidity�might�
suppress� lymphangiogenesis�in� a� similar�manner,� since� lymphatic�
endothelial�cells�(LECs)�present�lower�levels�of�GATA2�and�decreased�
VEGFR3/VEGF-C�response� in� stiffer� substrates.� This� may� lead� to�
angiogenic�hot�spots�across�the�tumour�tissue.
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Figure�2:�Immune�infiltration.� Similar�osmotic�pressures�between�
fenestrated�small� capillaries�and� adjacent�tissue� enables� normal�
exchange�of�small�molecules�in�organs.�During�acute�inflammation,�
this�allows�diffusion�and�gradient�formation�of�chemoattractants�that�
are�partially�trapped�by�the�luminal�glycocalyx�of� the�endothelium,�
assisting�leukocyte�recruitment�into�the� inflammation�site.�Cancer�
development�represents�a�chronic�inflammatory�response�in�which�
vasculature�is� affected�in� a� number�of� ways.�Tumour�growth�and�
excess�of�ECM�components�such�as�collagens�and�hyaluronan�acid�
increases�interstitial�fluid�pressure�that�hinders�molecule�exchange.�
Blood� vessels� become� tortuous,� impeding� normal� flow� and�
extravasation�of� leukocytes.�Furthermore,�cancer�cells�can� induce�
loss� of� the� luminal�glycocalyx�in� endothelial�cells,� impeding�the�
formation�of�chemoattractant�gradients,�which�are�retain�within�the�
tissue�bound�to�tumour-derived�galectin-3�lattices.
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