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Abstract 

 

The Economic Community of West African States aims to achieve 100% electrification rates 

by 2030 in all member countries. To achieve this ambitious target, electricity generation 

capacities need to be increased significantly. Forecasting hourly electricity demand is 

imperative for capacity planners in optimizing investment options and ensuring reliable 

electricity supply. However, modelling hourly electricity demand in developing countries can 

be a challenge due to paucity of historical demand data and methodological frameworks that 

adequately capture technology transitions and urban-rural communities. In this study, we 

address this gap by developing an hourly electricity demand model for 14 West African 

countries in the year 2016 and 2030.The model takes into accounts electrification rates, 

available household appliances, occupancy patterns of household members, type of day, 

available daylight hours and hourly weather conditions. Annual electricity demand in non-

residential sectors and electricity access rates in urban and rural households are forecasted 

using multiple regression analysis. We validated the developed model using actual 2016 

monthly and annual electricity demand data. The results show the seasonal variations of 

electricity demand, with hourly electricity demand in dry seasons relatively higher than 

demand in wet seasons. The results also indicate that in 2030, electricity demand in the West 

African region is estimated to be five times its 2016 level. The methodology presented in this 

study can be applicable for modelling hourly electricity demand in developing countries that 

have scarce historical hourly demand data, a significant electricity supply-demand gap, and 

varying electricity access rates in urban and rural areas. 
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Nomenclature 

 

Symbols 

 Description (Unit) 

 

P 

Electricity consumption (Watts) 

U 

 Probability of use of an appliance 

R 

 Power rating (Watts) 

O 
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 Appliance ownership rate (%) 

H 

 Electrified population 

𝓆 

 Air flow rate (m3/s) 

𝜌 

 Air density (kg/m3) 

ℎ 

 Enthalpy (kj/kg) 

H 

 Relative humidity (%) 

HR 

 Humidity ratio  

𝐶 

 Specific heat (Kj/kgoC) 

T 

 Temperature (oC) 

p 

 Pressure (Pa) 

L 

 Artificial light (Lumens) 

I 

 Lighting level (Lux) 

A 

 Area (m2) 

CU 

 Coefficient of utilization 

Lf 

 Light loss factor 

Le 

 Luminous Efficacy (Lumens/watts) 

E 

 Electricity demand (GWh) 

HC 

 Hourly Coefficient 

 

 

 

1. Introduction 

 

In West African countries1 approximately 171 million people have no access to electricity, with 

18% of these people living in urban areas and 82% in rural areas [1]. On the other hand, those 

with access to electricity experience frequent unplanned power outages due to insufficient 

generation capacities [2,3]. With the concept of utilizing available energy resources in the 

region to benefit all countries and a mission to provide reliable and affordable electricity, the 

                                                      
1 The West African countries referred to in this study are 14 out of the 15 members of the Economic 

Community of West African States (ECOWAS) who are members of the West African Power Pool. They 

include; Benin, Burkina Faso, Cote D’Ivoire, Gambia, Ghana, Guinea, Guinea Bissau, Liberia, Mali, Niger, 

Nigeria, Senegal, Sierra Leone and Togo   
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West African Power Pool (WAPP) was created. WAPP set an ambitious goal to interconnect 

the power systems of all member countries into a single regional electricity market by 2025, 

by developing generation and transmission infrastructures [3]. Furthermore, the Economic 

Community of West African States (ECOWAS) has set an ambitious target to achieve 100% 

electrification rates in all member countries by 2030 [4]. Given that electricity supply and 

demand need to balance at all times to ensure a stable power system, forecasting demand and 

planning supply is of particular importance to increase electricity access in the region and 

provide reliable power supply. However, major challenges to electricity demand forecasting in 

developing countries include lack of quality data, and existing modelling methodologies that 

do not adequately capture the electricity supply-demand gap, transition to modern 

technologies, and urban-rural economic divide [5].  

 

Due to the aforementioned challenges, there are limited studies that have developed 

methodologies for forecasting hourly and annual electricity demand in West African countries. 

Majority of these studies forecast only annual electricity demand based on projected GDP and 

population growth [6–13]. In order to capture some specific characteristics of the power sector 

in developing countries, some studies include other parameters in addition to macro-economic 

parameters. Examples include income elasticity of electricity consumption [11]; assumed 

electricity access rates [7,11,13] ; tiers of electrification [10]; and existing unserved demand 

[12,13].  

 

There are currently several  national and regional targets with plans to integrate large shares of 

renewable energy sources (RES) in the West African region. In order to capture the impact of 

the RES intermittency and assess the operational flexibility of the future power system, there 

is a need to model and  forecast hourly electricity demand in a country. This study develops an 

hourly and annual electricity demand model for West African countries in the base year 2016 

using a hybrid methodology. The hourly electricity demand in the residential sector of each 

country is modelled using a bottom-up methodology for the urban and rural households, while 

the non-residential sectors (industrial, commercial and services) are aggregated and modelled 

using a top-down methodology. We consider several economic, social, technical and weather 

factors when modelling the hourly electricity demand. These factors include projected GDP 

and population growth, electricity access rates, weather (temperature and humidity) conditions, 

time and type of day, unserved demand, household appliance ownership and economic 

activities in urban and rural households. We then validate the results from the model with the 

actual 2016 monthly and annual demand data, and proceed to forecast the hourly and annual 

electricity demand for each country in the year 2030. 

 

This study contributes to the growing literature on hourly electricity demand modelling in 

developing countries. Firstly, so far to our knowledge, this is the first study to take weather 

conditions in different parts of a country, and appliance ownership rates in urban and rural 

households into account when modelling hourly electricity demand for an entire year in 

developing countries. Secondly, with plans by the WAPP to create a single regional electricity 

market where generation companies bid to supply hourly electricity demand a day in advance, 

this study provides a 2030 hourly demand dataset for West African countries useful for short-

term unit commitment planning of power plants. Thirdly, while this study was focused on the 

development of a detailed hourly and annual West African electricity demand model, the 

methodology outlined in this paper can be applicable to other developing countries that have 

similar challenges in demand modelling, such as lack of quality data, electricity supply-demand 

gap, and urban-rural economic divide. 
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The rest of the paper is structured as follow; Section 2 discusses literature on hourly electricity 

demand modelling. Section 3 presents a description of the model and the data used. Section 4 

discusses the validation of the model and electricity demand results in 2016 and 2030. Section 

5 summarizes the main conclusions and application of the study. 

 

2. Literature Review 

 

Numerous studies have modelled and forecasted hourly electricity demand for both developed 

and developing countries, on a country, regional and sector level. These studies have used 

several methodologies which has been reviewed in literature [14]. Total electricity demand for 

a country can be estimated by aggregating the electricity demand of individual sectors in the 

country, which are typically the residential, industrial, services and transport sectors [15].  

 

Several studies have focused only on developing hourly demand models for specific sectors in 

a country. In comparison to the residential sector, there are fewer studies focused on the 

industrial, service and transport sector. The hourly electricity demand in residential households 

has been modelled for  an entire year in Japan[16], United Kingdom [17], Finland [18], Brazil 

[19], Sweden [20], Australia [21], United States [22],Germany[23], and Denmark [24] . These 

models typically involve using behavioural, economic, social, technical and weather data to 

model the electricity demand of representative households and its members. The modelled 

demand in most studies can be further aggregated to represent the entire residential sector of a 

country. In Shimoda et al. [16], all the households in Osaka city, Japan were divided into 460 

types of dwellings, and the electricity consumption for each type of dwelling was simulated 

based on appliance ownership and rating, weather data, dwelling insulation, and schedule of 

activities of household members estimated from a national Time Use (TU) survey. The 

stochastic model in Yao and Steemers [17] uses number of occupants, occupancy hours, daily 

electricity consumption of appliances, randomly generated occupancy scenarios and appliance 

usage to synthesize the hourly electricity demand profiles for 100 UK households . The model 

in Paatero and Lund [18] first defines the appliances and their daily fluctuation trends, then the 

demand profile of each appliance in each household was simulated based on its consumption 

cycle obtained from previously measured data in Finland.  Widén and Wäckelgård  [20] 

developed a stochastic bottom-up model to synthesize the hourly electricity demand for a set 

of households in Sweden. The model takes into account TU survey data to generate activity 

patterns for each member of the household using a Markov chain model, these patterns are then 

converted into electricity demand. Similar to [20], Sandels et al. [25] used Markov chain model 

to synthesize activity patterns, however their model considers not only appliances but also 

domestic hot water and space heating when simulating the hourly electricity consumption for 

a number of households in Sweden. 

 

On the other hand, other studies have focused on modelling and forecasting hourly electricity 

demands in non-residential sectors. Aman and Ping [26] used the MEAD model to forecast the 

hourly demand of the steel sector in Malaysia , with one year historical data used to define the 

seasonal, daily and hourly fluctuations in the sector. Pielow et al. [27] presented a regression 

model to generate the hourly electricity demand for the entire year in both the industrial and 

commercial sector of three cities in US. The model used four years historical hourly datasets 

and takes into account weather and calander variables. In examining the growth of electric 

vehicles in Iran’s transportation sector, Sadri et al. [28] used EnergyPLAN simulation model 

to synthesize the hourly electricity demand in the sector up to 2025. Voulis et al. [29] used 

time, weather and building data from both Neatherlands and US as inputs data in the 

EnergyPlus modelling tool, in order to generate the hourly electricity demand of the service 
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sector in Netherlands. Kipping and Trømborg [30] models the hourly electricity consumption 

of the service sector in Norway and takes into account temprature, type of day, building age 

and floor space, hourly meter and energy label data. 

  

There are a number of studies that focused on modelling and forecasting hourly electricity 

demand for an entire year at an aggregated country level. Hainoun [31] used the Model for 

Analysis of Energy and Electricity Demand (MAED), previous weekly, daily and hourly 

electricity demand, to reconstruct and forecast hourly electricity demand in Syria’s four sectors. 

Pina et al. [32] developed a high resolution TIMES model for Sao Miguel in order  to model 

the hourly electricity demand for the island by using historical hourly electricity demand data 

for three types of days in the four season in a year, in each of the five sectors on the island. 

Andersen et al. [33] modelled and forecasted hourly electricity demand in Denmark up to 2030 

using hourly metering data from 4500 customers representing different categories of customers 

in different sectors. Spataru and Barrett [34] developed a demand model that accounts for 

weather and social activity patterns in the residential, services, industrial and transport sectors 

at a distribution network level in United Kingdom. Bobmann and Staffell [35] used two models 

and historical hourly load curve data to forecast the hourly electricity load curves of the major 

economic sectors in Britain and Germany in 2050. Yukseltan et al. presented a linear model 

used to forecast hourly electricity demand in the residential and industrial sector of Turkey, by 

using hourly demand data from three consecutive previous years [36]. 

 

These aforementioned studies in literature use either previously recorded TU survey data and 

or available historical hourly electricity demand data for the entire year, which is a challenge 

for majority of the developing countries. Therefore, there are very few hourly electricity 

demand models for an entire year in developing countries. In Miketa and Merven [37] ,the 

hourly demand for each country in West Africa for the entire year up to 2030 was defined by 

three demand categories (urban, rural, and heavy industry), three seasons (pre-summer, 

summer and post-summer) in a year and three blocks (day-time, evening and night-time) of 

equal demand during the day. Adeoye and Spataru [38] forecast 2025 hourly demand for each 

country in West Africa by linearly scaling up the 2009 hourly demand profiles developed in 

Miketa and Merven [37] to the projected  annual electricity demand and peak demand in the 

WAPP master plan [12] . Ouedraogo [39] modelled the hourly demand profile for sub-Sahara 

African countries up to 2040 using the Long-range Energy Alternative Planning (LEAP) 

model, with residential sector demand forecasted using projected household size, population, 

electrification rate and electricity intensity, while the non-residential sectors (agriculture, 

industries and services) were forecasted using only projected electricity intensity  and number 

of customers.  

 

Unlike the previous studies that modelled the hourly electricity demand in West African 

countries, this study takes into account several economic, social, technical, weather and 

calendar factors when modelling the hourly demand for the residential and non-residential 

sectors in West African countries. The developed model also captures the change in ownership 

rate and transition to modern household appliances in both urban and rural households. Given 

the lack of TU survey data in West African countries, our model generates synthetic TU data 

for urban and rural households in the residential sector based on the type of days in the year, 

hours spent on income generating activities, and average appliance operation times. In this 

study, we validate the developed model against actual monthly and annual electricity demand 

in 2016. 
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3. Demand model description 

 

The proposed demand model in this study is for the 14 WAPP countries and has been developed 

with the aim to estimate the current and future hourly electricity demand profiles in these 

countries. The model has a temporal resolution of 1 hour and the base year is 2016 ,while the 

forecast year is 2030 because all the proposed interconnections in the WAPP are expected to 

installed and in operation by 2030 [3]. The electricity demand in each country is divided into 

two components as shown in the flow chart in Figure 1. The first part is the residential demand 

which is modelled using a bottom-up methodology, to simulate the hourly electricity demand 

in urban and rural households. The model takes into account the electricity access rates, 

appliance ownership rates and usage, weather conditions (temperature and humidity), time and 

type of day, unserved demand, and economic activities The second part is the non-residential 

demand which is the aggregated industrial, commercial and services demand. The annual non-

residential electricity demand is first forecasted using a top-down methodology, then the hourly 

demand is modelled based on the forecasted annual demand, cooling coefficients, typical non-

residential demand profiles, and time and type of day. The demand model is written and 

implemented in MATLAB [40].  

 

3.1.Residential demand model 

 

The total hourly electricity demand in the residential sector comprises of demand in both 

electrified urban and rural households as shown in Eq. (1) 

 

𝑃ℎ
𝑑 =   𝑃ℎ,𝑢

𝑑 + 𝑃ℎ,𝑟
𝑑     (watts)                                                                             (1) 

 

Where 𝑃ℎ
𝑑 is the total electricity consumption in electrified households in an hour of a type of 

day (weekday or weekend/holiday); 𝑃ℎ,𝑢
𝑑  and 𝑃ℎ,𝑟

𝑑  are the total electricity consumption in urban 

and rural electrified households respectively in an hour of a type of day. The 2016 electricity 

access rates for urban and rural households used in the model are from the World Bank’s 

database [1] and presented in Table A.1. The hourly electricity consumption in a type of 

household can be estimated from several factors such as: electricity consumption of the 

different appliances, geometry and thermal properties of the household, behavior of household 

occupants, previously measured load curves and weather conditions [41,42]. However due to 

the lack of data on the type of construction materials and historical daily electricity 

consumption of the different types of households in West African countries, only certain factors 

have been taken into consideration in the developed demand model. They include; occupancy 

patterns, types and number of appliances, power rating of appliance, probability of use of 

appliances, daylight hours and weather conditions such as temperature, humidity. The 

limitation of not including the building envelope properties in the model is that the cooling 

demand may be overestimated as heat gains in the building materials are not considered. Based 

on the factors that determine the electricity consumption of appliances in occupied households, 

the bottom-up demand model is split into 3 components; occupancy dependent appliances, 

weather and occupancy dependent appliances and lighting. The appliances considered in this 

demand model and the factors that determine their electricity consumption when households 

are occupied are presented in Table 1. 
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Figure 1. Flow chart of the electricity demand model  

 

The occupancy patterns for the different types of households in this study are based on the type 

of day and the type of employment of households and hours spent in the different types of 

employments. The days in the year in the model have been classified into two types: weekdays 

and weekends/national holidays. For this study, the type of employment of households has 

been divided into four categories: wage employment, non-farm enterprise, agriculture and stay 

at home/retired households. Data sources for each country on the different types of employment 

and their respective share in urban and rural areas are presented in Table A.2. Based on the 

2016 national household survey in Nigeria [43], Figure 2 and 3 shows the generated occupancy 

patterns of urban and rural households in the Nigeria respectively. The share of employment 

categories in urban and rural households for West African countries is presented in Table A.3. 

 

 
Number Household appliances  Electricity consumption factors 

1 Audio-visual appliances (Televisions, radio and 

sound systems) 

  

Occupancy patterns 

 

2 Cooking appliances (Electric cookers, ovens, kettles, 

and microwaves) 

3 Computing appliances (Computers, laptops, and 

printers) 

4 Washing machines and cloth dryers 

5 Electric irons 

6 Air conditioners Occupancy patterns and weather conditions 

(Temperature and humidity) 7 Electric  fans 

8 Lighting Occupancy patterns and daylight hours 
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9 Cold appliances (fridges and freezers) - 

 

Table 1. Household appliances and their respective electricity consumption factors. 

 

       
 

       
 

Figure 2. Urban household weekday (Top) and weekend (Bottom) generated occupancy 

patterns in Nigeria. 

 

       

       
        

Figure 3. Rural household weekday (Top) and weekend (Bottom) occupancy patterns in 

Nigeria. 

 

Periods when the households are occupied has a value of 1 and periods when the household is 

unoccupied has a value of 0. During periods when the house is not occupied, it is assumed that 

appliances are not in use, with the exception of cold appliances like fridges and freezers. The 

electricity consumption of cold appliances fluctuates when the doors are open and also during 

defrosting, however given that this demand model has a temporal resolution of 1 hour, we 

assume all cold appliances have a constant electricity usage pattern throughout the day. Figure 

4 presents the flow chart of the bottom-up demand model used to generate the hourly demand 

profile for the residential sector in each country. Due to insufficient electricity generation 
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capacity in all the countries, daily load shedding is carried out by the system operators and 

electricity outages are experienced in the residential sector. The model takes into account these 

outages [1] for both urban and rural households. 

 

 
 

 

Figure 4. Flow chart of the bottom-up residential sector demand model. 

 

 

3.1.1. Occupancy dependent appliances 

 

The occupancy dependent appliances are appliances whose use is strongly dependent on 

household member’s behaviours when present in the house. These appliances which are 

presented in Table 1 are; audio-visual, cooking, computing, cloth dryer, electric iron and 

washing machines. When occupants are not present in the households, appliance are assumed 

to have a power rating of 0W and when in use during occupancy hours, these appliances are 

assumed to have a constant power rating value as shown in Table A.4.  Given that appliances 

have ranges of power ratings which vary between manufacturers, urban households are 

assumed to have the lower range and rural households are assumed to have the higher ratings. 
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The use of appliances in homes is very random as it is dependent on the unpredictable 

behaviours of occupants in the household. The TU survey data for households is best obtained 

through measurement data from households as used in previous studies [16,20,25,44,45] . 

However, due to the lack of TU survey data in West African countries, synthetic TU data is 

generated. Therefore, to determine the probability of use of appliances during occupancy 

periods, a stochastic time use model is developed for the different occupancy patterns in urban 

and rural households. A random number generator, occupancy patterns from national surveys 

and appliance operation times [46] are used to generate synthetic hourly probability of 

appliance use for each of the electrified household. For washing machines and cloth dryers, the 

operating time runs consecutively, so the random generator generates sequential hourly 

probability use patterns for these appliances. Occupancy hours are split into active and inactive 

hours, during inactive hours it is assumed that household occupants are asleep or resting and 

have a relatively lower probability of using appliances. The probability of use of each appliance 

in households as shown in Eq. (2) is aggregated according to the type of household (urban and 

rural). The aggregated hourly electricity consumption for each appliance in a type of household 

is calculated using Eq. (3) and illustrated in Figure 4.  

 

∑ 𝑈𝑎,𝑡,ℎ
𝑑

 
24
𝑖=1 = 1                                                                                                                        (2) 

 

 

𝑃𝑎,𝑡,ℎ
𝑑 =   𝑁𝑎,𝑡  ∗   𝑈𝑎,𝑡,ℎ

𝑑   ∗  𝑅𝑎,𝑡 ∗ (𝑂𝑎,𝑡 ∗ 𝐻𝑡)                                                                         (3) 

 

Where 𝑈𝑎,ℎ
𝑑  is the probability of use of an appliance (a), in a type of household (t),in an hour 

(h) of a type of day (d). 𝑃𝑎,𝑡,ℎ
𝑑   is the electricity consumption of an appliance in a type of 

household in an hour of a type of day. 𝑁𝑎,𝑡  is the number of an appliances in a type of 

household and is assumed to be one for each household, with the exception of computing 

devices which are assumed to be 1 in one and two bedroom households and 2 in 3 bedrooms 

and above households. 𝑅𝑎,𝑡   is the electricity power rating of an appliance in a type of 

household as presented in Table A.4. 𝑂𝑎,𝑡   is the ownership rate of an appliance in a type of 

household. 𝐻𝑡 is the population of electrified type of household. Table A.2 contains details on 

the data sources for household sizes, number of bedrooms in each type of household and 

appliance ownership in each country. Figure 5 and 6 show the synthetic probability of use of 

cooking and audio-visual appliances in urban and rural households during weekdays and 

weekends/holidays in Nigeria. The probability of use of other occupancy dependent appliances 

in Nigeria can be seen in the Figures A.1 and A.2.  

 

  
  

Figure 5. Probability of use of cooking appliances in urban and rural households in Nigeria. 
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Figure 6. Probability of use of audio-visual appliances in urban and rural households in Nigeria. 

 

3.1.2. Weather and Occupancy dependent appliances 

 

The weather and occupancy dependent appliances as presented in Table 1 are air conditioners 

and electric fans.  The use of air conditioners and electric fans in households is dependent on 

household members’ presence and on both external and internal temperature and relative 

humidity levels. Air conditioners are automatic devises that provide thermal comfort by 

maintaining a pre-set internal temperature level, through the process of using electricity to 

move heat from indoor to outdoor. The electricity consumption of an air conditioner in an hour 

to maintain a set temperature when the household is occupied is calculated using Eq. (4) 

 

𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔,ℎ =  𝓆 ∗ 𝜌 ∗  Δℎ,ℎ                                                                                                       (4) 

 

Where  𝓆 is the air conditioner’s air flow rate [0.1m3/s], 𝜌 is the density of air [1.202kg/m3] 

and Δℎ,ℎ is enthalpy difference [kj/kg] between indoor and outdoor air at hour (h), and is 

calculated from Eq.(5).  

 

Δℎℎ = ℎ𝑜,ℎ + ℎ𝑖,ℎ                                                                                                                    (5) 

 

Where  ℎ𝑜,ℎ   and  ℎ𝑖,ℎ  are the enthalpy of outdoor air and indoor air in an hour respectively, 

which are both calculated using Eqs.( 6) –(10). When the enthalpy of the outside air is less than 

that of the inside air, the air conditioner unit is assumed to go into standby mode and power 

consumption is assumed to be 0.9W 

 

ℎ𝑇 = ℎ𝑎𝑇,ℎ + (𝐻𝑅𝑇,ℎ ∗  ℎ𝑔𝑇,ℎ)                                                                                                (6)  

 

ℎ𝑎𝑇,ℎ = 𝐶𝑝𝑎 ∗ 𝑇ℎ                                                                                                                      (7) 

 

𝐻𝑅𝑇ℎ = 0.622 ∗ (
𝑝𝑤𝑇,ℎ

𝑝−𝑝𝑤𝑇,ℎ
)                                                                                                      (8) 

 

𝑝𝑤𝑇,ℎ =  𝑝𝑠,𝑇 ∗ 𝐻ℎ                                                                                                                    (9) 

 

ℎ𝑔𝑇,ℎ =  ℎ𝑤 + (𝐶𝑝𝑤 ∗ 𝑇ℎ)                                                                                                      (10) 

 

 

At a temperature (T) in the hour (h), ℎ𝑎𝑇,ℎ  is the specific enthalpy of dry air, 𝐻𝑅𝑇,ℎ is humidity 

ratio , and ℎ𝑔𝑇,ℎ is specific enthalpy of water vapour. Calculating the specific enthalpy of dry 
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air is dependent on 𝐶𝑝𝑎, the specific heat of air, [1.006 kJ/kgoC] and 𝑇ℎ is the temperature [oC] 

in that hour. The 2016 external hourly temperature and relative humidity data for the urban and 

rural cities with the highest electricity access rates for each country is gotten from [47], while 

the target internal hourly temperature is set at 22oC to provide thermal comfort [48]. The 

humidity ratio at a certain temperature in an hour is based on 𝑝𝑤𝑇,ℎ ,the water vapour pressure 

and  𝑝, the atmospheric pressure [101325 Pa]. The water vapour pressure is calculated from 

𝑝𝑠,𝑇, saturation vapour pressure  and hourly relative humidity. The indoor relative humidity is 

set at 45% .The specific enthalpy of water vapour is calculated from 𝑇ℎ ;the hourly temperature,  

ℎ𝑤 ; the specific enthalpy of water vapour at 0o [2501kJ/kg], and 𝐶𝑝𝑤; the specific heat of water 

vapour [1.86 kJ/kgoC].  

 

Maintenance of indoor temperature is also dependent on heat loss through the wall and 

windows of the buildings, however due to insufficient data about the building materials of the 

different buildings in the West Africa region, these heat losses are not taken into consideration 

in this demand model. This may result in an overestimation of the electricity consumption of 

air conditioners, as less electricity consumption will be needed to maintain the internal 

temperature. 

 

Unlike the air conditioner, majority of the electric fans are not automatic and are operated 

manually. The electricity consumption of electric fans is therefore assumed to be dependent on 

the speed of the fan, which is set manually by the user. For the demand model, the electrical 

fan is assumed to have a maximum power rating of 70 watts, and a 5 speed selection regulator 

fan with 60% minimum regulation.  The electricity consumption of the electric fan in an hour 

when the household is occupied is determined using Eq. (11). 

 

𝑃𝑓𝑎𝑛ℎ =  {

𝑃𝑚𝑎𝑥,𝑡                                                      𝑇𝑒  ≥ 27°𝐶

𝑃𝑜𝑓𝑓,𝑡                                                        𝑇𝑒  ≤ 22 °𝐶

𝑃𝑘,𝑡                                           22 °𝐶 < 𝑇𝑒  < 27 °𝐶
}                                             (11) 

 

Where 𝑃𝑚𝑎𝑥,𝑡 is the maximum electricity consumption [70W], 𝑃𝑜𝑓𝑓,𝑡 is the electricity 

consumption of the when switched off [0W],and  𝑃𝑘,𝑡 is electricity consumption in one of the 

other 4 speed selections shown in Table A.5. The total hourly electricity consumption of air 

conditioners and fans is calculated using Eq. (12) and illustrated in Figure 4. 

 

𝑃𝑎,𝑡,ℎ
𝑑 =   𝑁𝑎,𝑡  ∗   𝑂𝑎,𝑡 ∗  𝐻𝑡                                                                                                    (12) 

 

For the number of appliances 𝑁𝑎,𝑡, each type of household is assumed to have only one air 

conditioner unit. 1, 2, and 3 bedrooms urban and rural households are assumed to have 1,2, and 

3 units of electric fans respectively. 𝑂𝑎,𝑡   is the ownership rate of an appliance in a type of 

household. 𝐻𝑡 is the population of electrified type of household. 

 

3.1.3. Lighting appliances 

 

The electricity consumption of lighting appliances in a household depends on occupancy in the 

household, daylight illumination level, type of lighting bulbs, type of household and number 

and type of spaces in the household. The required artificial light (lumens) for each type of space 

in urban household is calculated using Eq. (13). The total artificial light required in rural 
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households are assumed to be 40% the values in urban households due to assumed ignorance 

of recommended standards and also relatively higher poverty rates. 

 

𝐿𝑠𝑠,𝑢 =   
𝐴𝑠∗𝐼𝑠  

𝐶𝑈∗𝐿𝑓
                                                                                                                        (13) 

 

Where 𝐴𝑠 is the area of the space (m2), 𝐼𝑠 is the recommended lightning level (Lux) [49] for 

the space, 𝐶𝑈 is the coefficient of utilization assumed to be 0.6, and 𝐿𝑓 is the light loss factor 

assumed to be 0.8. The sizes, numbers and recommended lighting levels assumes for the 

different spaces in the different sizes of households are presented in Table A.6. The total 

artificial light required in a household is an aggregate of all the required artificial light in each 

of the spaces. During daylight hours, daylight illumination is assumed to be 50lux in each space 

of the household and therefore the required level of illumination for lighting appliances is 

reduced, and the required artificial light is calculated using Eq. (14). 

 

𝐿𝑑𝑠,𝑢 =   
𝐴𝑠∗(𝐼𝑠−50) 

𝐶𝑈∗𝐿𝑓
                                                                                                                 (14) 

 

Daylight period in a day is determined by the sunset and sunrise times in a day, and varies from 

one country to the other. Eqs. (A.1) - (A.5). are used to determine the sunset and sunrise time 

for each day of 2016 in each country. The electricity consumption of a type of lighting 

appliance in an urban household during sunset and daylight hours is calculated using the Eq. 

(15). 

 

𝑃𝑠𝑏,𝑢 =   
∑ 𝐿𝑠𝑠,𝑢 

𝐿𝑒 
                ,   𝑃𝑑𝑏,𝑢 =   

∑ 𝐿𝑑𝑠,𝑢 

𝐿𝑒
                                                                        (15) 

 

Where 𝐿𝑒 is the luminous efficacy (lumens/watts) of the different bulb types of lighting 

appliances.  The bulb types considered in this study are fluorescent lamps, compact fluorescent 

lamps (CFL), LED lamps and incandescent lamps. The assumed ownership rate of each type 

of lamp in each country is presented in Table A.7. Five lighting power levels are assumed for 

each of the types households, 𝑃𝑜𝑓𝑓 is 0W and is when there are no occupants in the household, 

𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑢𝑛𝑠𝑒𝑡  and 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡   are when the occupants are awake during sunset hours and 

daylight hours respectively, and in these states we assume 80% of the all the lighting appliances 

in the household are in use. 𝑃𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑢𝑛𝑠𝑒𝑡  and 𝑃𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡   are when occupants are asleep 

during sunset hours and daylight hours respectively and in these states we assume 10% of the 

lighting appliances in the household are in use.  The calculation of the total hourly electricity 

consumption of the different types of lighting is illustrated in Figure 4.  

 

 

3.2.Non-residential demand model 

 

The non-residential component of the demand model consists of the electricity demand in the 

industrial, commercial and services demand sector of each country. The annual electricity 

consumption in the non-residential sector of a country in the base year 2016, is modelled using 

multiple linear regression analysis. Unlike the residential demand sector, a bottom-up approach 
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is not used due to the lack of survey data about the buildings and its occupants in these sector. 

The hourly electricity consumption in the non-residential sector is then synthesized based on 

the modelled annual demand, cooling coefficients and typical non-residential demand profiles. 

 

3.2.1. Annual electricity demand 

 

A multiple linear regression model Eq.(16) is developed using 26 years (1990-2015) of 

historical annual non-residential demand [50,51] , GDP [1] and population data [52],to forecast 

the 2016 annual electricity demand in the non-residential sectors.  

 

𝐸𝑁𝑅,𝑦 =  𝛽0,𝑎 + 𝛽1𝑋1,𝑦 +  𝛽2𝑋2,𝑦                                                                                         (16) 

 

Where 𝐸𝑁𝑅,𝑦 is the electricity demand in the aggregated non-residential sectors in year (y) in 

GWh, 𝛽0,𝑎   is the regression constants for the multiple linear regression model. 𝑋1,𝑦 and 𝑋2,𝑦 

are GDP in constant US$ and population in year (y). 𝛽1𝑎𝑛𝑑 𝛽2  are regression coefficient of 

GDP and population respectively. Table 2 shows the resultant multiple linear regression 

equations for each country. In order to validate the resultant regression models for all the 

countries, two statistical test were carried out and their values are presented in Table 2. The 

first test is the adjusted coefficient of determination (R2), which is used to measure how well 

the examined data fits the multiple linear model. The value of R2 typically is between 0 and 1. 

Burkina Faso and Sierra Leone have the highest and lowest R2 values, with 0.987 and 0.283 

respectively. This indicates that both the GDP and population data in the models account for 

98.7% and 28.3 % of the variability in their respective modelled annual electricity demand 

value. Sierra Leone has a significantly lower R2 value than the other countries and this is due 

to other factors significantly influencing the annual demand in the non-residential sector, such 

as the civil war from 1991-2002. The second test is the F-test, which is used to check the overall 

significant linear regression relationship between the dependent variable (annual electricity 

demand) and the independent variables (GDP and population). The critical F-value of the 

models with (2,23) degrees of freedom at 5% level of significance is 3.42. The F-statistical 

values of each of the models (Table 2) is greater than the critical F value, therefore all the 

multiple linear regression models for each country is significant.  

 

Furthermore, a validation test is carried out on the multiple regression model for each country 

by excluding data between 2013 and 2015 from the dataset, and testing the results from the 

model against actual data in these years. The results from these tests are presented in Table 

A.8. The results show that for each of the three years tested, most of the countries have high 

forecasting performance. With 8 countries having relative errors less than 10% and 5 countries 

having less than 15% relative error. However, Sierra Leone had a significant relative error of 

up to 79%, which could be attributed to the previously mentioned 11-year civil war in the 

country. These aforementioned tests indicate that the presented multiple regression models for 

the non-residential sectors, are significant and valid in forecasting the 2016 and 2030 electricity 

demand. 

 
Country Multiple linear regression model Adjusted R2 F-statistic value 

Benin 𝐸𝑁𝑅,𝑦 = −418.3 + 1.87𝑒−8𝑋1,𝑦 − 8.42𝑒−5𝑋2,𝑦  0.969 393 

Burkina Faso 𝐸𝑁𝑅,𝑦 = 228.7 + 1.34𝑒−7𝑋1,𝑦 − 6.28𝑒−5𝑋2,𝑦 0.987 924 

Cote D’Ivoire 𝐸𝑁𝑅,𝑦 = −1685 + 7.91𝑒−8𝑋1,𝑦 + 7.88𝑒−5𝑋2,𝑦 0.956 272 

Gambia 𝐸𝑁𝑅,𝑦 = −71.1 + 1.13𝑒−7𝑋1,𝑦 + 5.01𝑒−5𝑋2,𝑦 0.932 172 

Ghana 𝐸𝑁𝑅,𝑦 = 3866.3 + 1.72𝑒−7𝑋1,𝑦 − 2.04𝑒4𝑋2,𝑦 0.883 95 

Guinea 𝐸𝑁𝑅,𝑦 = −75.2 − 5.95𝑒−9𝑋1,𝑦 + 4.32𝑒−5𝑋2,𝑦 0.762 41 
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Guinea Bissua 𝐸𝑁𝑅,𝑦 = 25.9 + 3.56𝑒−8𝑋1,𝑦 − 2.59𝑒−5𝑋2,𝑦 0.460 11.6 

Liberia 𝐸𝑁𝑅,𝑦 = −75.9 − 2.75𝑒−8𝑋1,𝑦 + 6.06𝑒−5𝑋2,𝑦 0.953 257 

Mali 𝐸𝑁𝑅,𝑦 = −1123.5 − 8.24𝑒−8𝑋1,𝑦 + 1.7𝑒−4𝑋2,𝑦 0.897 110 

Niger 𝐸𝑁𝑅,𝑦 = −66.4 + 8.33𝑒−8𝑋1,𝑦 − 8.08𝑒−6𝑋2,𝑦 0.962 315 

Nigeria 𝐸𝑁𝑅,𝑦 = 3033.3 + 2.49𝑒−8𝑋1,𝑦 − 1.96𝑒−5𝑋2,𝑦 0.946 219 

Senegal 𝐸𝑁𝑅,𝑦 = −786.1 + 1.22𝑒−7𝑋1,𝑦 + 5.36𝑒−5𝑋2,𝑦 0.944 212 

Sierra Leone 𝐸𝑁𝑅,𝑦 = 136.2 + 4.66𝑒−8𝑋1,𝑦 − 3.16𝑒−5𝑋2,𝑦 0.283 5.93 

Togo 𝐸𝑁𝑅,𝑦 = −69.13 + 1.39𝑒−7𝑋1,𝑦 − 2.10𝑒−6𝑋2,𝑦 0.734 35.5 

 

Table 2. Non-residential annual electricity demand models and test results.  

 

 

3.2.2. Hourly electricity demand 

  

In order to estimate the hourly electricity demand in the non-residential sector based on the 

modelled annual demand, several factors are considered. They include weather, type of day, 

typical hourly trends in the sector and are expressed in Eqs. (17) – (19). 

 

𝑃𝑁𝑅,ℎ =  
𝐸𝑁𝑅,𝑦

𝑁
∗ 

𝐻𝐶ℎ+𝐻ℎ 

2
                                                                                                        (17) 

 

 𝐻𝐶ℎ =  
𝑁

∑ 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔,ℎ
𝑁
ℎ=1

∗  𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔,ℎ                                                                                             (18) 

 

𝐻ℎ =  
𝐻𝐼,ℎ+ 𝐻𝑆,ℎ + 𝐻𝐶,ℎ 

3
                                                                                                                 (19) 

 

Where 𝑃𝑁𝑅,ℎ  is the electricity consumption in non-residential sectors in hour (h), 𝐻𝐶ℎ  is the 

hourly cooling coefficient of the non-residential sectors, 𝐻ℎ is typical hourly coefficient of 

non-residential sectors, and 𝑁 is the total number of hours in the year (8784 in 2016). The 

cooling coefficient is estimated from the electricity consumption of an air conditioner (Eq.4), 

and therefore takes into account the temperature and humidity in each day throughout the year. 

In addition, the cooling coefficient also takes into consideration the type of day (weekday or 

weekend/holiday) and generated occupancy patterns of wage employment in urban areas. This 

is to account for the typical operating hours of non-residential buildings. 𝐻𝐼,ℎ  , 𝐻𝑆,ℎ  𝐻𝐶,ℎ are 

the typical hourly coefficient of industrial, service, and commercial sectors that reflect the 

trends of electricity demand in these sectors. 
 

3.3. 2030 demand model 

 

The hourly and annual electricity demand for each county in 2030 has been modelled using the 

same methodology as the base year 2016, however with different datasets. The 2030 annual 

electricity demand in the non-residential sector and electricity access rates in urban and rural 

households are forecasted using multiple linear regression models similar to Eq. (16). The 

independent variables for forecasting annual electricity demand in the non-residential sector 

are GDP and total population. In addition to the 27 years historical (1990-2016) datasets, 

forecast datasets (2017-2030) are implemented in the regression models. Population forecast 

are obtained from [52], while  GDP forecast is based on the International Monetary Fund [53] 

growth rate up to 2023 and a constant growth rate is assumed up to 2030.  

 

In order to assess the performance of the new models that include the 2017-2030 population 

and GDP forecast dataset, we compare the mean absolute percentage error (MAPE) and the 
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root mean square error (RMSE) of the models in Table 2 and the new models for each country. 

The MAPE and RMSE are defined in Eqs. (20) – (21) and the results are presented in Table 3. 

The MAPE is used to assess the average absolute relative deviation of the predicted electricity 

demand values from their corresponding measured values. The RMSE indicates the fit of the 

multiple regression model, by measuring the variance of the error between the measured 

electricity demand and model’s predicted values. Therefore, the smaller the RMSE, the better 

the fit of the model. From the results in Table 3, the new models for all the countries with the 

1990-2030 dataset performed better in terms of forecasting accuracy, as they have lower MAPE 

values than the models with 1990-2015 dataset. With the exception of Cote d Ivoire and Guinea 

Bissua, the RMSE values for all the countries decrease in the new models, thus indicating an 

improved quality on the fit of the model. This better performance can be attributed to the new 

models having an addition dataset with significantly lower fluctuations in GDP and population 

values. Therefore, the GDP and population forecast dataset are suitable for forecasting the 2030 

non-residential electricity demand. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛−𝑘
∑ (𝐸𝑦 − É𝑦)2𝑛

𝑦=1                                                                                               (20) 

 

 

𝑀𝐴𝑃𝐸(%) =  
1

𝑛
 ∑

|𝐸𝑦− É𝑦|

𝐸𝑦

𝑛
𝑦=1                                                                                                   (21) 

 

Where 𝐸𝑦 and É𝑦  are the measured and predicted electricity demand in the non-residential 

sector in year (y) respectively. 𝑛 is the number of years in the data set and 𝑘 is the number of 

regression coefficients in the model. 

 

On the other hand, 2030 electricity access rates in urban and rural households for each country 

are forecasted based on urban and rural population respectively [52] and GDP. Average 

household sizes and appliance ownership rates with the exception of lighting devices are 

forecasted based on the growth trends in the last three national household surveys carried out 

in each country. More details on national surveys for each country is provided in Table A.2. 

The type of lighting bulbs used in households in 2030 is based on national lighting efficiency 

plans. For countries with no national plans, lighting efficiency policies with the aim of reducing 

usage of incandescent lamps are assumed and presented in Table A.9. We assume all countries 

have sufficient generation capacities and reserve margin in 2030, therefore system operators 

do not carry out daily load shedding and have 0% forced outage rates. The 2016 weather and 

generated residential TU datasets are used in the 2030 demand model. 

 
 

Country 

RMSE (GWh) 

[1990-2015 dataset] 

RMSE (GWh) 

[1990-2030 dataset] 

MAPE (%) 

[1990-2015 dataset] 

MAPE (%) 

[1990-2030 dataset] 

Benin 31 24 12 7 

Burkina Faso 22 17 8 5 

Cote D’Ivoire 119 146 7 6 

Gambia 10 8 11 7 

Ghana 382 298 8 5 

Guinea 35 27 10 6 

Guinea Bissua 0.5 0.8 13 9 

Liberia 9 7 10 7 

Mali 88 69 26 14 

Niger 18 14 8 5 

Nigeria 580 452 5 3 

Senegal 115 90 11 7 



 17 

Sierra Leone 20 16 36 23 

Togo 49 38 14 9 

 

Table 3. Performance metrics of the multiple regression models. 

 

4. Results 

 

4.1.Validation 

 

The developed demand model for West African countries is validated by comparing its 2016 

annual and monthly results with actual data for each country. Table 4 shows actual [50,54] and 

simulated 2016 annual electricity demand for each country by sector. The results for the 

residential sector in the model varies from the actual data, with the demand in most of the 

countries overestimated as indicated by the relative error in Table 4. These variations between 

the results from the residential model and actual data can be attributed to three major 

assumptions in the model. First, not all household appliances have been simulated individually, 

with four categories (Table 1) which aggregate similar appliances implemented in the model. 

Second, for the lighting demand the model assumes that the different rooms in urban and rural 

households have the same required lumens. Third, the hourly demand simulation for air 

conditioners and electric fans assumes a target indoor temperature and humidity of 22oC and 

45% relative humidity respectively for all   households. In reality, these target figures will vary 

significantly from households to household members. For Sierra Leone, the results for the 

modelled residential sector deviates significantly from the actual 2016 values, with a relative 

error of 47.5%. In addition to the aforementioned major assumptions to the residential model, 

this significant difference is also due the 11 years (1991 -2002) of civil war which impacted 

the electricity demand and is not quantified in the model. 

 

On the other hand, the results from the model for the non-residential sector is similar to actual 

data from majority of the countries. The relative error of the models’ result to the actual data 

is less than 15% for all countries with the exception of Sierra Leone having a relative error of 

-38.5%. This significant difference can be attributed to the previously mentioned civil war in 

the country. Overall the model’s 2016 total annual electricity demand for most of the countries 

varies slightly from the 2016 actual data with less than absolute 15% relative error, with the 

exception of Guinea Bissua. 

 
 Residential 

demand 

(GWh) 

   Non-

residential 

demand 

(GWh) 

   Total 

annual 

demand 

(GWh) 

  

Country 

Actual 

demand  

Modelled 

demand  

Relative 

error 

(%)  

Actual 

demand  

Modelled 

demand  

Relative 

error 

(%)  

Actual 

demand  

Modelled 

demand  

Relative 

error 

(%) 

Benin 521 550 5.7  781 667 -14.6  1302 1217 -6.5 

Burkina 

Faso 658 583 -11.3  712 720 1.1  1370 1303 -5 

Cote d 

Ivoire 3068 3665 19.5  2832 3095 9.3  5900 6760 14.6 

Gambia 110 88 -20  140 153 9.3  250 241 -3.6 

Ghana 6704 5424 -19  6377 6370 -0.1  13081 11794 -9.8 

Guinea 619 668 8  412 403 -2.3  1031 1071 3.9 

Guinea 

Bissua 20 27 34  15 17 13.3  35 44 25.1 

Liberia 97 92 -4.8  145 159 9.5  242 251 3.8 

Mali 918 974 6.1  848 871 2.7  1766 1845 4.5 

Niger 674 551 -18.3  450 442 -1.7  1124 993 -11.6 

Nigeria 13650 14481 6.1  10294 10722 5.3  23947 25203 5.2 
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Senegal 992 1002 1  2015 2086 3.5  3007 3088 2.7 

Sierra 

Leone 104 153 47.5  96 59 -38.5  200 212 6.2 

Togo 716 780 8.9  586 512 -12.6  1302 1292 -0.8 

Table 4. Recorded and simulated 2016 annual electricity demand by sector in West African 

countries. 

 
2016 monthly electricity demand data for nine countries were provided by the WAPP 

information and coordination center [54]. These are the countries that are currently involved in 

cross-border electricity trading in the region. The model is further validated by comparing the 

simulated monthly electricity demand for these 9 countries with the actual monthly demand 

data which includes transmission and distribution losses. Figure 7 highlights the similar trends 

between the actual and simulated monthly demand in Benin/Togo, Burkina Faso, Cote d Ivoire, 

Ghana, Mali, Niger, Nigeria and Senegal, with the countries having a correlation coefficient of 

0.8, 0.5, 0.9, 0.8, 0.6, 0.7, 0.6 and 0.8 respectively. The monthly data for Benin and Togo are 

presented aggregated because the transmission network in both Benin and Togo is operated by 

a single organization. Burkina Faso, Mali and Nigeria have comparatively lower correlation 

coefficient (0.5,0.6 and 0.6), and there are noticeable differences between the simulated and 

actual demand in these countries in certain months. In Burkina Faso and Mali, there were 

considerable decrease in electricity generation from diesel power plants in July and August due 

to increased forced outages. While in Nigeria, the decrease in electricity generation from gas 

power plants in May and June was caused by vandalism to gas pipelines. These sudden 

disruptions to electricity supply which consequently impacted the electricity demand are not 

taken into consideration in the model. 
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Figure 7. 2016 simulated and actual monthly demand data for 7 countries.  

 

4.2.  Hourly electricity demand profiles  

 

The hourly electricity demand in urban and rural households on selected days in Guinea Bissua 

and Nigeria in 2016 are presented in Figure 8 and 9. These are the countries with the lowest 

and highest demand levels in West African region. The aggregate weekday demand profiles 

for urban and rural households in both countries have considerably higher peak demand than 

the weekend/holiday profiles. These demand profiles correspond to the simulated hourly 

occupancy patterns of household members in the different types of households. In Nigeria, air 

conditioners and lighting appliances are the predominate source of electricity consumption in 

urban and rural households respectively. This is due to Nigeria having a comparatively higher 

ownership rate of air conditioners in urban households (5.1%) than in rural households (1%). 

On the other hand, In Guinea Bissua, where the ownership rate of air conditioners in urban 

households and rural households are 1.7% and 0% respectively, majority of the demand in both 

types of households are from lighting appliances. An estimated 49% of Nigeria’s total 

population reside in urban areas, however the peak demand on a weekday (April 1st) in urban 

and rural households in Nigeria was 2640MW and 287MW respectively. These figures 

highlight the considerable difference between appliance ownership rates and electricity access 

rates in urban (86%) and rural (41%) areas. On the same weekday, Guinea Bissua with an 

electricity access rate of 30% and 4% in urban and rural areas respectively has a peak demand 

of 5.6MW and 0.26MW in its urban and rural households. With an assumed decrease in load 

shedding, increasing electricity access and appliance ownership rates, the hourly demand 

profiles during weekdays and weekends changes in all the countries in 2030. Figure A.3 and 

A.4 shows the 2030 hourly demand profiles in urban and rural households on selected days in 

Guinea Bissua and Nigeria. 
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Figure 8. Weekday (1st April 2016) and weekend (2nd April 2016) simulated residential 

electricity demand profiles in Guinea Bissau’s urban and rural households 

 

 

  

 
 

Figure 9. Weekday (1st April 2016) and weekend (2nd April 2016) simulated residential 

electricity demand profiles in Nigeria’s urban and rural households 
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Figure 10. 2016 Hourly demand profiles of representative weeks in dry and wet seasons. 
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Electricity demand from cooling appliances (air conditioners and electric fans) plays a 

significant role in the overall demand in West African countries given their tropical climate. 

The cooling demand in the residential sector and cooling coefficient in the non-residential 

sectors are a function of both temperature and humidity. There are two season in West African 

countries; dry and wet season. These seasons vary from country to country and Figure 10 shows 

the modelled hourly demand for representative weeks in dry and wet seasons in each of the 

countries. For most of the countries, the hourly demand in a week in dry season is 

comparatively higher than the demand in wet season. This is a reflection of the higher 

temperature and humidity experienced during dry season in these countries and therefore 

increased use of cooling appliances. In Burkina Faso, Gambia and Guinea Bissua, the hourly 

demand profiles in the two seasons are quite similar due to little temperature and humidity 

variations throughout the year in the countries. However, in Mali the hourly demand levels in 

the wet seasons is observed to be higher than the dry season. This is mainly due to Mali having 

higher humidity levels in the wet season that in the dry season. The hourly demand profiles for 

representative weeks in dry and wet seasons for all the countries in 2030 are presented in Figure 

A.5. The 2030 hourly demand from the model reflects the impact of seasons, increasing 

electricity access and appliance ownership on future demand in the region, and can be useful 

for planning short-term unit commitment in each country. Furthermore, with the plans to create 

a single electricity market in West Africa by 2030, the model provides system operators and 

capacity planners with a dataset to plan spot electricity market operation in the region.   

 

As shown in Figure 10, the weekdays in both seasons for all the countries have two distinct 

peak times: early morning and evening. This is as a result of increased occupancy activities in 

households, and start of the day for the non-residential sectors. Unlike weekdays, the weekend 

peak times vary from country to country due to increased occupancy of households and thus 

increased random use of household appliances. Lighting demand is modelled as a function of 

available daylight hours which varies between the different seasons in some countries. As a 

result of the different sunset and sunrise times in the two seasons, peak times in countries like 

Burkina Faso, Cote d Ivoire, Gambia and Senegal, changes between seasons.  

 

4.3.Annual electricity demand profiles  

 

The results for the peak and annual electricity demand by sector for West African countries in 

2016 and 2030 is presented in Table 5. As expected the lowest and highest peak demand in 

2016 and 2030 are in Guinea Bissua and Nigeria respectively, as these are the countries with 

the highest and lowest population in both years. The peak demand with respect to Guinea 

Bissua and Nigeria was 20MW and 5360MW in 2016, and 58MW and 30,688MW in 2030. 

Similarly, the 2030 forecasted peak demand in all the countries increases significantly in 

comparison to their 2016 levels. The peak times vary from country to country due to the 

different occupancy patterns, weather conditions and daylight hours experienced in each 

country. Both the residential and non-residential sectors in all countries experiences an increase 

in annual demand in 2030 in comparison with 2016, with more increase observed in the latter.  

 
 2016     2030    

Country Peak 

demand 

(MW) 

Residential 

demand 

(GWh) 

Non-

residential 

demand 

(GWh) 

Total 

demand 

(GWh) 

 Peak 

demand 

(MW) 

Residential 

demand 

(GWh) 

Non-

residential 

demand 

(GWh) 

Total 

demand 

(GWh) 

Benin 240 550 667 1217  1292 2010 3228 5238 

Burkina 

Faso 

317 
583 

720 
1303 

 
1989 3344 3802 7146 
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Cote d 

Ivoire 

1355 
3665 

3095 
6760 

 
3968 9572 10403 19975 

Gambia 70 88 153 241  535 716 1047 1763 

Ghana 2467 5424 6370 11794  8013 20494 20160 40654 

Guinea 210 668 403 1071  811 3307 1258 4565 

Guinea 

Bissua 

20 
27 

17 
44 

 
58 132 123 255 

Liberia 51 92 159 251  253 420 770 1190 

Mali 462 974 871 1845  1648 3865 2576 6441 

Niger 260 551 442 993  1576 3420 1850 5270 

Nigeria 5360 14481 10721 25202  30688 120805 51532 172337 

Senegal 840 1108 2086 3194  4367 6558 8446 15004 

Sierra 

Leone 

45 
153 

59 
212 

 
221 628 520 1148 

Togo 248 780 512 1292  1015 3151 2348 5499 

  

Table 5. Simulated 2016 and 2030 peak and annual electricity demand by sector in West 

African countries 

 

In 2016, the residential sector accounts for 53% of the annual electricity demand in the region, 

however by 2030, this share is projected to increase to 62%. This is primarily as a result of the 

substantial increase Nigeria’s residential demand which accounts for 68% of the total 

residential demand in the region. The 2030 forecast of the non-residential sector takes into 

account unserved demand, population and GDP growth. The annual electricity demand in the 

non-residential sector increases from 26TWh in 2016 to 108TWh in 2030. On the other hand, 

in addition to unserved demand, population and GDP growth, the 2030 forecast of the 

residential sector takes into account increase in electricity access and appliance ownership rates 

in both urban and rural households.  

 

Results from the model show that in 2016, demand from urban households constitutes 91% of 

the total residential annual demand (29TWh), with electricity access rates ranging from 30% 

in Guinea Bissua to 92% in Cote d Ivoire. With a share of 9% in the residential demand mix, 

rural households’ electricity access ranges from 0.8% in Burkina Faso to 67% in Ghana. By 

2030, electricity access rates in urban households ranges from 26% in Liberia to 100% in Cote 

D Ivoire, Guinea, Senegal and Togo.  While electricity access rates in rural households ranges 

from 1.1% in Burkina Faso to 100% in Ghana. Furthermore, there is barely any change in the 

urban/rural demand mix as urban households account for 92% of the annual residential demand 

(178TWh) in 2030. Therefore, based on the projected annual GDP and population (urban and 

rural) growth rate, the results from the model indicate that the ECOWAS ambitious target of 

100% electricity access by 2030 in all member countries will not be achieved.  The electricity 

access rates for all the countries in 2016 and 2030 is presented in Table A.1. 

 

Figure 11 shows the modelled residential electricity demand mix for West African countries in 

2016 and 2030.  In 2016, with the exception of Cote D Ivoire, Ghana, and Nigeria, lighting 

demand accounted for more than 50% of the residential demand in each country. However, all 

the countries are expected to experiences a decrease in the share of lighting demand by 2030. 

This is as a result of the assumed national lighting efficiency policies (Table A.9) implemented 

in the model. These policies vary from country to country with the goal of significantly 

reducing the use of incandescent lamps and integrating more CFL and LED bulbs in the 

households. In 2016, the share of cooling appliances (air conditioners and electric fans) in the 

total residential demand mix vary from 18% in Liberia to 64% in Nigeria. By 2030, based on 

the forecasted increase of electricity access rates in the model, cooling appliances are projected 

to account for at least 50% of the total residential demand in each country.  
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The 2016 annual demand results from the model are compared with the results in the WAPP 

master plan [12], and are presented in Table A.10 .The demand values from our model are 

lower than the results in the 2016 base demand scenarios in the master plan, with our results 

closer to the actual 2016 values for each country. The lower demand values in our model can 

be attributed mostly to two factors. First in the WAPP master plan, demand forecast is based 

on 10 years historical GDP and population growth rates for each country, while demand in the 

non-residential sectors of our model is based on 26 years historical GDP and population growth 

rates. Second, our model does not aggregate the residential sector and is able to account for the 

varying electricity access rates in urban and rural areas. Overall our modelled annual electricity 

demand in the West African region is estimated to reach five times its actual 2016 levels, from 

55TWh to 286TWh.  

 

 
 

Figure 11. 2016 and 2030 simulated residential electricity demand mix in West African 

countries 

 

 

5. Conclusion 

 

Low electricity access rates and daily load shedding due to insufficient generation  and 

capacities are key factors that hinder the economic development of developing countries. 

Modelling and forecasting electricity demand plays an important role in the long and short term 

planning of electricity supply to provide reliable access to electricity. In developing countries, 

modelling hourly electricity demand has been a challenge, due to scarcity of historical demand 

data and methodological frameworks that adequately capture technology transitions and urban-

rural energy divide. This study develops a hybrid demand model for 14 West African countries 

in 2016 and 2030,using bottom-up and top-down methodology to simulate and forecast hourly 

and annual electricity demand. Hourly electricity demand in electrified urban and rural 

households are modelled by taking into account nine categories of household appliances, 

occupancy patterns of household members, weather (temperature and humidity) conditions, 

type of day and daylight hours. Synthetic hourly probability of use of household appliances are 

generated using average appliance operation times, occupancy patterns from national surveys 

and a random generator. 2030 electricity access rates in urban and rural households are 

forecasted using multiple linear regression methodology. The demand model for the non-
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residential sectors is developed using 26-years historical GDP and population dataset, weather 

dataset, type of day and typical hourly demand coefficients.  

 

The developed model is validated using actual 2016 annual and monthly electricity demand 

data of West African countries. The model’s annual demand for 13 out of 14 countries had an 

absolute relative error of 15% in comparison to the actual data. The actual and modelled 

monthly electricity demand of the 9 countries assessed had correlation coefficients ranging 

from 0.5 to 0.9. The significant deviations in monthly trends can be attributed to the sudden 

decrease in monthly electricity generation , as a result of the forced outages of power plants 

which were not taken into consideration in the model . Results from our model indicate that in 

2016, more than 50% of the residential demand in 11 countries come from lighting appliances. 

However, as electricity access and appliance ownership rates increase in 2030 , at least 50% of 

the total residential demand in each country is forecasted to come from cooling appliances (air 

conditioners and electric fans).  Policy makers in each of the West African countries therefore 

have an opportunity to significantly improve its energy efficiency, by implementing policies 

targeted at increasing the use of air conditioners with relatively higher energy efficiency ratio.   

 

The relationship between weather conditions and electricity demand is presented in our study 

by comparing weekly electricity demand during wet and dry season in each country. With most 

countries having comparatively higher demand in dry seasons than in wet seasons, due to the 

increased utilization of cooling appliances. Results from the 2030 demand model indicate that 

annual electricity demand in the West African region is expected to be five times its 2016 

levels, with most of the countries experiencing more increase in the non-residential sectors in 

comparison to the residential sector. Thus highlighting the need for investment in both 

operating and reserve generation capacities, to ensure the elimination of load shedding in West 

African countries by 2030. Furthermore, contrary to the target by the Economic Community of 

West African States to achieve 100% electricity access by 2030 in all countries, results from 

the model indicate only four countries achieve 100% electricity access in its urban areas and 

one country in its rural areas by 2030.  

 

The 2030 hourly demand datasets produced in this study can be useful in evaluating regional 

targets to increase integration of renewable energy sources and cross-border electricity trading 

in an interconnected West African electricity grid. The study area in this study is West Africa, 

however the methodology developed in this study can be applicable in modelling hourly and 

annual electricity demand in other developing countries that have similar challenges such as: 

unavailability of hourly historical demand data, electricity supply-demand gap, and varying 

electricity access rates in urban and rural areas in a country. National policies like lighting 

efficiency, electrification targets, transition to modern technologies and demand side 

management can be assessed using the proposed methodology. The accuracy of the developed 

model can be improved in future work by modelling the non-residential sectors (industry, 

services, commercial and transport) in each country separately as they all have different hourly 

electricity demand profiles. 
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Appendix A 

 
Country Electricity access rates (%) 

 Urban areas Rural areas 

 Actual 2016 rates Forecasted 2030 rates Actual 2016 rates Forecasted 2030 rates 

Benin 70.8 54.1 18.0 47.0 

Burkina Faso 60.7 68.4 0.8 1.1 

Cote d Ivoire 92.0 100.0 38.0 40.0 

Gambia 69.0 70.5 16.0 17.5 

Ghana 90.0 98.0 67.0 100.0 

Guinea 82.2 100.0 6.9 14.7 

Guinea Bissua 29.8 31.6 4.0 5.3 

Liberia 34.0 26.0 1.3 2.0 

Mali 83.6 91.4 1.8 4.1 

Niger 65.4 78.8 4.7 6.8 

Nigeria 86.0 86.0 41.0 43.0 

Senegal 87.7 100.0 38.8 51.8 

Sierra Leone 47.0 50.0 2.5 3.6 

Togo 87.5 100.0 19.4 30.0 

 

Table A.1 Actual 2016 and forecasted 2030 electricity access rates of urban and rural areas in 

West African countries. 

 
Country Sources 

Benin Demographic and health survey 2017 [55] 

Burkina Faso Social demographic characteristics survey 2016 [56] 

 Malaria indicator survey 2014 [57] 

Cote d Ivoire Household lifecycle survey 2015 [58] 

 Demographic and health survey and multiple indicator [59] 

Gambia Demographic and health survey 2014 [60] 

Ghana Malaria indicator survey 2016 [61] 

 Ghana Living Standards Survey Round 6 [62] 

Guinea Multiple indicator cluster survey 2016 [63] 

Guinea Bissua Multiple indicator cluster survey 2014 [64] 

Liberia Household Income and Expenditure Survey 2016 [65] 

 Malaria indicator survey 2016 [66] 

Mali Multiple indicator cluster survey 2015 [67] 

 Malaria indicator survey 2015 [68] 

Niger National assessment study of socio-economic and demographic 

indicators survey 2016 [69] 

Nigeria Integrated surveys on agriculture and general households survey panel 

2016 [43] 

Senegal Demographic and continuing health survey 2016 [70] 

Sierra Leone Multiple indicator cluster survey 2017 [71] 

Togo Malaria indicator survey 2017 [72] 

 

Table A.2. Sources of demography input data used in the model 

 
 Urban areas Rural areas 

Country Wage 

employment 

(%) 

Non-farm 

enterprise 

(%) 

Agriculture 

(%) 

Stay home all 

day /retired 

(%) 

Wage 

employment 

(%) 

Non-farm 

enterprise 

(%) 

Agriculture 

(%) 

Stay home all 

day /retired 

(%) 

Benin 37.7 37.3 12.5 12.5 15.8 29.6 45.6 9.0 
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Burkina 

Faso 

32.6 41.8 6.2 19.4 1.5 48.3 25.3 24.9 

Cote d 

Ivoire 

33.6 54.0 8.3 4.1 7.5 25.0 56.2 11.3 

Gambia 53.2 31.8 11.5 3.5 11.9 6.8 80.7 0.6 

Ghana 24.3 36.8 13.6 25.3 7.3 17.1 60.5 15.1 

Guinea 40.2 45.8 4.1 9.9 10.4 14.0 64.0 11.6 

Guinea 

Bissua 

28.0 56.0 5.0 11.0 13.5 36.0 40.0 10.5 

Liberia 28.0 60.5 5.0 6.5 13.5 46.5 38.0 2.0 

Mali 37.8 44.8 5.0 12.4 5.2 26.7 60.0 8.1 

Niger 41.0 21.0 14.0 24.0 12.6 29.4 42.5 15.5 

Nigeria 10.5 54.5 8.4 26.6 3.4 18.1 42.5 36.0 

Senegal 42.0 31.3 8.1 18.6 22.0 15.0 50.0 13.0 

Sierra 

Leone 

29.3 54.0 10.0 6.7 3.5 22.8 70.7 3.0 

Togo 39.0 50.0 3.0 8.0 17.9 20.0 53.4 8.7 

 

Table A.3. 2016 share of employment categories in urban and rural areas in West African 

countries. 

 
Appliances Urban household power 

rating (Watts) 

Rural household power 

rating (Watts) 

Operating time  

Audio-visual  125 200 7hr±5hr  

Cooking  2000 2200 2hr±1hr 

Computing  50 100 7hr±5hr  

Cloth dryers and washing 

machines 

2000/1200 4000/3000 2hr±1hr consecutive 

Electric Iron 750 1100 1hr 

Table A.4 Assumed parameters for occupancy dependent appliances 

 
Speed selection (k) Power consumption 

(Watts) 

1 42 

2 49 

3 56 

4 63 

Table A.5. Speed selection and power rating of modelled electric fan 

 
Space Sizes (m2) Recommended lighting 

levels (Lux) 

Number in 1 

bedroom 

households 

Number in 2 

bedroom 

households 

Number in 

3 or more 

bedroom 

households 

Living room 20 100 1 1 1 

Dining room 4.65 150 0 1 1 

Kitchen 4.65 200 1 1 1 

Bedrooms 9.3 100 1 2 3 

Bathroom 4.2 100 1 1 2 

Toilet 2.32 100 0 0 1 

Storage 1.5 100 0 1 1 

  

Table A.6. Sizes, numbers and illumination levels of spaces in households 
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 Urban households Rural households 

Country Fluorescent 

lamps (%) 

Incandesc

ent lamps 

(%) 

CFL lamps 

(%) 

LED lamps  

(%) 

Fluorescent 

lamps (%) 

Incandesc

ent lamps 

(%) 

CFL lamps 

(%) 

LED lamps  

(%) 

Benin 20 30 40 10 5 40 45 10 

Burkina 

Faso 

20 30 40 10 5 40 45 10 

Cote d 

Ivoire 

15 20 40 25 32 45 21 2 

Gambia 20 40 30 10 5 60 25 10 

Ghana 2 0 90 8 2 0 96 2 

Guinea 20 30 40 10 5 40 45 10 

Guinea 

Bissua 

20 30 40 10 5 40 45 10 

Liberia 20 40 30 10 5 60 25 10 

Mali 20 30 40 10 5 40 45 10 

Niger 20 30 40 10 5 40 45 10 

Nigeria 6 10 50 34 10 30 40 20 

Senegal 20 20 50 10 5 20 65 10 

Sierra 

Leone 

20 25 30 25 20 35 25 10 

Togo 20 30 40 10 5 40 45 10 

 

Table A.7. 2016 assumed ownership rate for lighting bulbs in urban and rural households. 

 
 

Benin  Burkina Faso  Cote d Ivoire 

Year Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error (%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

2013 580 569 -2%  612 581 -5%  2292 2240 -2% 

2014 578 600 4%  651 611 -6%  2670 2441 -9% 

2015 672 629 -7%  687 637 -7%  2721 2657 -2% 

    
 

   
 

   

  
Gambia   Ghana  Guinea 

Year Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

2013 131 146 11%  6099 6308 3%  358 402 12% 

2014 135 152 13%  6145 6501 6%  366 409 12% 

2015 134 154 15%  6210 6694 8%  372 421 13% 

            

 Guinea Bissua  Liberia  Mali 

Year Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

2013 16 14 -13%  137 145 6%  744 809 9% 

2014 15 13 -11%  137 152 11%  832 831 0% 

2015 16 14 -13%  138 158 15%  840 855 2% 

            

 Niger  Nigeria  Senegal 

Year Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%)                                     

2013 347 365 5%  10029 10609 6%  1818 1667 -8% 
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2014 383 404 5%  10436 11226 8%  1896 1730 -9% 

2015 429 426 -1%  10713 11442 7%  1943 1870 -4% 

            

 Sierra Leone Togo   

Year Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%) 

 Actual 

demand 

(GWh) 

Forecasted 

demand 

(GWh) 

Relative 

error 

(%) 

  

2013 73 130 79%  446 383 -14%  

2014 80 131 64%  494 421 -15%  

2015 78 66 -15%  546 471 -14%  

 

Table A.8. Validation test showing the actual and forecasted non-residential electricity demand 

data for West African countries between 2013-2015 
 

 Urban households Rural households 

Country Fluorescent 

lamps (%) 

Incandesc

ent lamps 

(%) 

CFL lamps 

(%) 

LED lamps  

(%) 

Fluorescent 

lamps (%) 

Incandesc

ent lamps 

(%) 

CFL lamps 

(%) 

LED lamps  

(%) 

Benin 0 0 70 30 0 0 60 40 

Burkina 

Faso 

0 0 70 30 0 0 60 40 

Cote d 

Ivoire 

10 5 55 30 20 10 60 10 

Gambia 0 0 70 30 0 0 60 40 

Ghana 0 0 90 10 0 0 95 5 

Guinea 0 0 70 30 0 0 60 40 

Guinea 

Bissua 

0 0 70 30 0 0 60 40 

Liberia 0 0 70 30 0 0 60 40 

Mali 0 0 70 30 0 0 60 40 

Niger 0 0 70 30 0 0 60 40 

Nigeria 6 0 50 44 10 5 40 45 

Senegal 0 0 70 30 0 0 60 40 

Sierra 

Leone 

20 0 50 30 20 0 50 30 

Togo 0 0 70 30 0 0 60 40 

 

Table A.9. 2030 assumed ownership rate for lighting bulbs in urban and rural households. 
 

 

Country Actual 2016 annual 

demand (GWh) 

WAPP master plan 

2016 annual demand 

(GWh) 

Modelled 2016 

annual demand 

(GWh) 

Benin 1302 1968 1217 

Burkina Faso 1370 1265 1303 

Cote d Ivoire 5900 8197 6760 

Gambia 250 747 241 

Ghana 13081 15223 11794 

Guinea 1031 1718 1071 

Guinea Bissua 35 187 44 

Liberia 242 279 251 

Mali 1766 2898 1845 

Niger 1124 1306 993 

Nigeria 23947 72926 25202 

Senegal 3007 4311 3194 

Sierra Leone 200 715 212 
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Togo 1302 1873 1292 

 

Table A.10. 2016 actual, modelled and WAPP master plan electricity demand levels.  

 

  
 

Figure A.1. Probability of use of cloth dryers and washing machines in urban and rural 

households in Nigeria. 

 

  
 

Figure A.2. Probability of use of electric irons in urban and rural households in Nigeria 
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Figure A.3. Weekday (5th April 2030) and weekend (6th April 2030) simulated residential 

electricity demand profiles in Guinea Bissau’s urban and rural households 

 

 

 

 

 
 

Figure A.4. Weekday (5th April 2030) and weekend (6th April 2030) simulated residential 

electricity demand profiles in Nigeria’s urban and rural households 
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Figure A.5. 2030 Hourly demand profiles of representative weeks in dry and wet seasons. 

 

 

𝜔𝑠  =  cos−1(− tan 𝜙 tan 𝛿)                                                                                               (A.1) 

 

𝛿 = 23.45 × sin(
360

365
 ) ×  (𝑑 + 284))                                                                                  

(A.2) 
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 𝜔𝑠  

15
+ 12 ) + 𝑇𝑍                                                                                                      (A.3) 
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𝐷𝐿 =   
2𝜔𝑠  

15
                                                                                                                               (A.4) 

 

𝑇𝑆𝑅 =  𝑇𝑆𝑆 −  𝐷𝐿                                                                                                                        (A.5) 

 

Where 𝜔𝑠  is  the sunset hour angle, 𝜙 is the country’s latitude, and  𝛿 is the sun’s daily 

declination angle.  𝑑  is the day of the year, where January 1st is 1 and December 25th is 366.  

𝑇𝑍 is the country’s time zone and 𝐷𝐿  is the length of day.  𝑇𝑆𝑆 and 𝑇𝑆𝑅 are the sunset and sunrise 

time respectively. 
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