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Abstract 

Objective Researchers often perform arbitrary outcome transformations to fulfil the normality 

assumption of a linear regression model. This manuscript explains and illustrates that in large 

data settings, such transformations are often unnecessary, and worse, may bias model 

estimates.  

Design Linear regression assumptions are illustrated using simulated data and an empirical 

example on the relation between time since type 2 diabetes diagnosis and glycated 

haemoglobin (HbA1c). Simulation results were evaluated on coverage; e.g., the number of times 

the 95% confidence interval included the true slope coefficient. 

Results While outcome transformations bias point estimates, violations of the normality 

assumption in linear regression analyses do not. Instead this normality assumption is necessary 

to unbiasedly estimate standard errors, and hence confidence intervals and p-values. However, 

in large sample sizes (e.g., where the number of observations per variable is larger than 10) 

violations of this normality assumption do not noticeably impact results. Contrary to this, 

assumptions on, the parametric model, absence of extreme observations, homoscedasticity and 

independency of the errors, remain influential even in large sample size settings.  

Conclusions Given that modern healthcare research typically includes thousands of subjects 

focussing on the normality assumption is often unnecessary, does not guarantee valid results, 

and worse more may bias estimates due to the practice of outcome transformations.  

Keywords Epidemiological methods; Bias; Linear regression; Assumptions   



 

3 
 

What is new? 

 To ensure the residuals from a linear regression model follow a normal distribution, researchers 

often perform arbitrary outcome transformations (here arbitrary should be interpreted as using an 

unspecified transformation function). These transformations also change the target estimate (the 

estimand) and hence bias point estimates. Unless these transformations are distributive (in the 

mathematical sense) in nature inverse transforming model parameters does not necessarily 

decrease bias.  

 Linear regression models with residuals deviating from the normal distribution often still produce 

valid results (without performing arbitrary outcome transformations), especially in large sample 

size settings (e.g., when there are 10 observations per parameter).  

 Conversely, linear regression models with normally distributed residuals are not necessarily valid. 

Graphical tests are described to evaluate the following modelling assumptions on: the parametric 

model, absence of extreme observations, homoscedasticity and independency of errors.   

 Linear regression models are often robust to assumption violations, and as such logical starting 

points for many analyses. In the absence of clear prior knowledge, analysts should perform model 

diagnoses with the intent to detect gross assumption violations, not to optimize fit. Basing model 

assumption solely on the data under consideration will typically do more harm than good, a prime 

example of this is the pervasive use of, bias inducing, ‘arbitrarily’ outcome transformations.  
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Introduction 

Linear regression models are often used to explore the relation between a continuous outcome 

and independent variables; note that binary outcomes may also be used [1,2]. To fulfil “the” 

normality assumption researchers frequently perform arbitrary outcome transformation. For 

example, using information on more than 100,000 subjects Tyrrel et al 2016[3] explored the 

relation between height and deprivation using a rank-based inverse normal transformation, or 

Eppinga et al 2017[4] who explored the effect of metformin on the square root of 233 metabolites.  

 

In this paper we argue that outcome transformations change the target estimate and hence bias 

results. Second, the relevance of the normality assumption is challenged, namely, that non-

normally distributed residuals do not impact bias, nor do they (markedly) impact tests in large 

sample sizes. Instead of focussing on the normality assumption, more consideration should be 

given to the detection of 1) trends between the residuals and the independent variables, 2) 

multivariable outlying outcome or predictor values, and 3) general errors in the parametric 

model. Unlike violations of the normality assumption these issues impact results irrespective of 

sample size. As an illustrative example the association between years since type 2 diabetes 

mellitus (T2DM) diagnosis and HbA1c (outcome) is considered [5]. 

 

Bias due to outcome transformations 

First, let us define a linear model and which part of the model the normality assumption pertains 

to:  

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖  [𝑒𝑞 1]. 

Here 𝑦 is the continuous outcome variable (e.g., HbA1c) 𝑥 an independent variable (e.g., years 

since T2DM diagnosis), parameter 𝛽0 the 𝑦̅  value when 𝑥 = 0 (e.g., the intercept term 

representing the average HbA1c at time of diagnosis), and 𝜖 the errors which are the only part 

assumed to follow a normal distribution. Often one is interested in estimating 𝛽1 (e.g., the slope) 
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in this example the amount HbA1c changes each year, and the residuals 𝜖̂ (the observed errors) 

are a nuisance parameter of little interest. Note that 𝛽̂ notation represents an estimate of a 

population quantity such as 𝛽, and similarly 𝑦̅ represents an estimate of the (population) average 

HbA1c. 

 

Throughout this manuscript it is assumed that 𝑦 is measured on a scale of clinical interest, for 

example HbA1c as a percentage, or lipids in mmol/L or mg/dL. In these cases, transforming the 

outcome to ensure the residuals better approximate a normal distribution often results in a 

biased estimate of 𝛽1. To see this let’s define 𝑔(⋅) as an arbitrary function used to transform the 

outcome resulting in an effect estimate 𝛽1,𝑡 = 𝑔(𝑦𝑥) + 𝑔(𝑦𝑥+1), with 𝑥 + 1 indicating a unit 

increase from 𝑥 to 𝑥 + 1 and index 𝑡 for “transformed”. Clearly 𝛽1,𝑡 cannot equal 𝛽1 unless the 

transformation pertains simple addition 𝑔(𝑥) = 𝑥 + 𝑐 (with 𝑐 a constant), hence 𝛽̂1,𝑡 is a biased 

estimate of 𝛽1 in the sense that 𝛽̅1,𝑡 ≠ 𝛽1.  

 

Often one tries to reverse such transformations by applying 𝑔−1(⋅) on 𝛽1,𝑡. Such back 

transformations can only equal 𝛽1 when the function 𝑔(⋅) is “distributive” 𝛽1,𝑡 = 𝑔(𝑦𝑥) +

𝑔(𝑦𝑥+1) = 𝑔(𝑦𝑥 + 𝑦𝑥+1); where we assume 𝑔(𝑥) ≠ 𝑥 + 𝑐 in which case 𝛽1,𝑡 = 𝛽1. However, 

functions most often used for outcome transformations do not have this distributive property and 

hence the “back transformed” effect estimate 𝑔−1(𝛽1,𝑡) will not equal 𝛽1. Take for example a 

logarithmic transformation log10 10 + log10 100 ≠ log10(10 + 100) or the square root 

transformation √10 + √100 ≠ √10 + 100.  

 

Readers should note that this bias pertains only to arbitrary transformation where the original 

measurement scale has clinical relevance (and is not normally represented on the transformed 
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scale), and not to the general use of the logarithmic scale (or any other mathematical functions) 

as an outcome. For example, the acidity of a solution is typically indicated by the pH (potential of 

hydrogen) which is best understood on the logarithmic scale. Similarly, this type of bias is only 

relevant in so far one is interested in interpreting 𝛽̂1, if for example one is concerned with 

prognostication, outcome transformations are less of an issue. Furthermore, hypothesis tests 

from linear regression models using arbitrary transformed outcomes are still valid. However, as 

stated before, in using linear regression models we assume researchers are interesting in 

estimating the magnitude of an association. If, instead, a researcher is interested in testing a 

(null-) hypothesis non-parametric methods will often be more appropriate.  

 

The normality assumption in large sample size settings 

We define large sample size as a setting where the 𝑛 observations are larger than the number of 

𝑝 parameters one is interested in estimating. As a pragmatic indication we use 
𝑝

𝑛
> 10, but 

realize that this may likely differ from application to application.  

 

To discuss the relevance of the normality assumption we look to the Gauss–Markov theorem [6], 

which states that the ideal linear regression estimates are both unbiased and have the least 

amount of variance, a property called the “best linear unbiased estimators” (BLUE). Linear 

regression estimates are BLUE when the errors have mean zero, are uncorrelated  and have 

equal variance across different values of the independent variables (i.e., homoscedasticity)[6]. 

The normality assumption is thus not necessary to get estimates with the BLUE property.  

However, in small sample size settings (relative to 𝑝) the standard error estimates may be 

biased (and hence confidence intervals and p-values as well) when the errors do not follow a 

normal distribution. For formal proofs of the BLUE characteristics please see the historically 

relevant Aitken, 1936 [6], and chapter 2 of Faraway, 2015 [7] 
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To empirically assess the relevance of the normality assumption we performed an illustrative 

simulation using 4 scenarios with a single independent variable and an error distribution, 

following either: 1) the standard normal distribution, 2) a uniform distribution, 3) a beta 

distribution, 4) a normal distribution where the errors depend on 𝑥 (i.e., heteroscedasticity). 

Figure 1 depicts a sample of 1,000 subjects from each of the 4 scenarios, the top row shows the 

outcome distribution, the middle figures depicts quantile-quantile (QQ) plots exploring how well 

the model residuals follow the normal distribution (diagonal line of perfect fit); showing clear 

deviations in scenarios 2 and 3. With the bottom row revealing a trend between the residuals 

and the fitted values; with a clear relationship being observed in scenario 4; note the fitted 

values are defined by 𝑦̂𝑖 = 𝛽̂0 + 𝛽̂1𝑥𝑖, or informally, outcome = fitted values + residuals.  

 

Based on these scenarios 3, 10, 100, 1000, 10 000 and 100 000 subjects were sampled (repeated 

10 000 times) and the linear model of equation 1 was fitted to the data. Given that in these 

settings point estimates  will be unbiased on average (𝛽̅1 = 𝛽1), we evaluated performance on 

the number of times the 95% confidence interval included 𝛽1 (i.e., coverage). Figure 2 shows 

that despite the errors not following a normal distribution, in scenario 2-3 coverage is ~0.95 in 

larger sample sizes. However, in scenario 4 despite the residuals more closely following a 

normal distribution coverage in large sample sizes is consistently lower than the nominal 0.95 

level. Moreover, as the sample size increased coverage did not improve. 

 

Model diagnostics 

As the above illustrates, linear models without normally distributed residuals may nevertheless 

produce valid results, especially given sufficient sample size. Conversely, the following 

modelling assumptions are sample size invariant and should be carefully checked regardless of 
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the size of the collected data: miss-specification of the parametric model, presence of extreme 

observations, homoscedasticity and independency of errors.  

 

An example of model miss-specification would be if the linear model of equation 1 was used, 

when in reality the association was curved. To detect such a model miss-specification one can 

compare the residuals to the fitted values, for example figure 3 shows the residuals plotted 

against the fitted values from the model association time since T2DM diagnosis to HbA1c level. 

The slope becomes negative at about 9.5 years since diagnosis. A different example of miss-

specification would be if unknown to the analysist the association differed between males and 

females (interaction). While interaction or non-linearity are often cited forms of model miss-

specification, as we discuss next, other assumption violations may be indicative of miss-

specification as well.  

 

In (multivariable) linear regression an outlier is defined as an observed outcome value 𝑦𝑖 that is 

far away from the predicted outcome value 𝑦̂𝑖. Outliers can influence model parameters, and are 

therefore important to detect, for example by comparing the fitted values to the Studentized 

residuals (see Appendix page 16). Similar to outliers, unusual 𝑥 values may be over-influential 

as well. Such observations are said to have high leverage and can be detected using the 

leverage statistic (as shown in the Appendix page 18). Removal of observations with high 

leverage and/or outlying outcome values may seem like a logical decision, however applying this 

as a general rule will often severely bias a model. Outlying values may of course indicate errors, 

however these errors may pertain to the model not necessarily to the data. Similarly, 

observations with high leverage may point to data issues, however it may also be indicative of 

interesting subgroups.  
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Correlated errors often arise in time series, for example when modelling the association 

between mortality and temperature the previous day(s) temperature is influential as well. More 

generally, correlated errors occur when clustering in the data is ignored. As a hypothetical 

example, subjects in our HbA1c dataset may have been related, if ignored such clustering will 

artificially decrease the standard errors and may even bias point estimates. Heteroscedastic 

occurs when the variance of the residuals depends of the predicted value (see Figure 1: row 4, 

column 1). Similar, to the omission of a cluster indicator, heteroscedasticity may be indicative of 

an omitted interaction term affecting the variance instead of the mean. Given that interactions 

are scale dependent [8] arbitrary outcome transformation are often applied here as well, 

however, as discussed this may bias results. Instead, in the presence of heteroscedasticity or 

correlated errors, a relatively straightforward solution is to replace the erroneously attenuated 

standard errors by larger heteroscedastic robust standard errors [9] (see Appendix). 

 

As an example, in the Appendix we have applied the above discussed modelling diagnostics on 

the HbA1c data. Based on these steps we come to the conclusion that conditional on the 

covariates, age, marital status, and body mass index (BMI), time since T2DM diagnosis has a 

non-linear relation with HbA1c; where its level initially increases, only to decrease around 9.5 

years after T2DM diagnosis. 

 

Discussion and recommendations 

In this brief outline of much larger theoretical works [6,10] we show that given sufficient sample 

size, linear regression models without normally distributed errors are valid. Despite this well-

known characteristic, arbitrarily outcome transformations are often applied in an attempt to force 

the residuals to follow a normal distribution. As discussed such transformation frequently bias 

slope coefficients (as well as standard errors) and should be discouraged. What constitutes 

large sample size obviously differs between analyses, before we mentioned a ratio of 10 
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observations per parameter, however lower values have been found sufficient as well [11]. 

Conversely, larger values (e.g., 50) may be necessary when variables are correlated or variable 

distributions result in localized (multivariate) sparse data settings. As such in no way should this 

manuscript be misconstrued into arguing that linear regression should always be used, and 

especially not without critical reflection of modelling assumptions. Instead we simply wish to 

make the point that the linear model often performs adequately, even when some assumptions 

are violated. This robust behaviour of linear regression can be extended in many ways, for 

example generalized least square can be used in the presence of correlated errors, weighted 

least squares in the presence of heteroscedasticity, or RIDGE and LASSO regression in the 

presence of sparse data (e.g., 
𝑛

𝑝
≤ 1). All these methods are in essence still linear models 

making a thorough understanding of the underlying modelling assumptions, as presented here, 

crucial.  

 

Ideally, model decisions should be based on prior, topic specific, knowledge. If such external 

information is absent graphical tests (as presented here) should be used to detect grossly wrong 

assumption, not to optimize fit, which likely biases results far beyond any assumption 

violation[12,13].  

 

In conclusion, in large sample size settings linear regression models are fairly robust to 

violations of the normality assumption and hence arbitrary - bias inducing - outcome 

transformations are usually unnecessary. Instead, researchers should focus on detection of 

model miss-specifications such as outlying values, high leverage, heteroscedasticity, correlated 

errors, non-linearity, and interactions which may bias results irrespective of sample size. 
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Figure captions 

 

Figure 1 Graphically exploring the normality of the outcome (row 1), normality of the 

residuals (row 2), and potential trends between the residuals and the fitted values (row 3) 

for 4 different linear regression scenarios.  

 

N.b. The columns represent a 1,000 subjects sampled from 4 scenarios: normally distributed 

errors 𝜀~𝑁(0,1) (column 1), uniformly distributed errors𝜀~𝑈(−1,1) (column 2), skewed beta 

distributed errors 𝜀~𝐵(10,0.05) (column 3), and heteroscedastic but normally distributed errors 

𝜀~𝑥𝑖𝑁(0,1) (column 4). Top row contains histograms of the outcome. The middle row contains 

QQ plots comparing the observed model residuals to the expected residuals from the normal 

distribution with the red diagonal line indicating perfect fit. The bottom panel compared the 

residuals to the fitted values In all scenarios the outcome was generated based on 𝑦𝑖 = 20 +
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𝛽1𝑥𝑖 + 𝜀. In scenarios 2 and 4 𝑥𝑖 was (arbitrarily) generated based on 𝑁(10,3), 𝑈(−50, 50) in 

scenario 1, and the square of 𝑁(10,3) in scenario 3  

 

Figure 2 The impact of sample size on coverage of linear regression model parameters 

with differently distributed errors.  

 

n.b. results from scenario 1-3 are depicted by a circle, a triangle or a square, respectively. 

Scenario 4, where the normally distributed errors depend on the predictor variable, is depicted 

by a diamond.  

 

Figure 3 A residual plot of the linear regression model regressing HbA1c
 on years since 

type 2 diabetes diagnosis.  
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N.b. the red curve represents a LOESS (a generalization of the locally weighted scatterplot 

smoother) curve.  


