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ABSTRACT

Test generation can have a large impact on the software engineering
process by decreasing the amount of time and effort required to
maintain a high level of test coverage. This increases the quality
of the resultant software while decreasing the associated effort. In
this paper, we present TestNMT, an experimental approach to test
generation using neural machine translation. TestNMT aims to
learn to translate from functions to tests, allowing a developer to
generate an approximate test for a given function, which can then
be adapted to produce the final desired test.

We also present a preliminary quantitative and qualitative eval-
uation of TestNMT in both cross-project and within-project sce-
narios. This evaluation shows that TestNMT is potentially useful
in the within-project scenario, where it achieves a maximum BLEU
score of 21.2, a maximum ROUGE-L score of 38.67, and is shown to
be capable of generating approximate tests that are easy to adapt
to working tests.

CCS CONCEPTS

• Computing methodologies → Machine translation; • Soft-
ware and its engineering→ Software testing and debugging.
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1 INTRODUCTION

TestNMT is an exploratory approach to test generation which
aims to generate tests by learning to translate from the function
domain to the test domain. However, as the model only sees the
output as a sequence of tokens and has no concept of the syntax of
the target programming language or test framework, there is no
guarantee that the output will be a syntactically correct test. We,
therefore, refer to the output as approximate tests. Given this, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6055-5/18/11. . . $15.00
https://doi.org/10.1145/3283812.3283823

goal is to allow a user to provide a function as input and receive an
approximate test as output, which the developer can then manually
adapt to a working test for that function.

This document provides an overview of the preliminary investi-
gation into the potential of this approach, including the network
design, data collection, and a preliminary quantitative and qualita-
tive evaluation of TestNMT for two usage scenarios: cross-project
and within-project.

The evaluation shows that, while TestNMT is most likely not
useful in the cross-project scenario, it does have the potential to
be of use within-project. The quantitative evaluation demonstrates
this with a maximum BLEU score of 21.2, a maximum ROUGE-
L score of 38.67, and edit distances between existing linked tests
and generated approximate tests which show that on average ap-
proximately half of the content of the tests can be generated by
TestNMT. The qualitative evaluation also shows that TestNMT
has a strong potential for usefulness by demonstrating that it can
produce approximate tests that are easy to adapt to the desired
tests.

2 APPROACH

TestNMT uses the techniques of neural machine translation for
natural languages and applies them to the programming language
domain, specifically to translate from functions to tests. TestNMT
uses an encoder-decoder with attention architecture for sequence
to sequence translation, such as that shown in Figure 5 of the Ten-
sorflow neural machine translation tutorial [3]. In this architecture
the encoder encodes the source sequence into a vector representa-
tion which is then decoded into a translated target sequence by the
decoder.

The encoder builds the vector representation of the source se-
quence by traversing the sequence one token at a time converting
each token into a real-valued vector embedding via an embedding
layer which is then provided as input to the encoder recurrent
neural network (RNN) for that time step. After the source sequence
has been fully processed, the final hidden state of the encoder RNN
is used to initialise the hidden state of the decoder RNN. Then,
at each time step, the decoder RNN uses the current hidden state,
the previously generated target sequence token, and the attention
mechanism, to generate a new target sequence token. This contin-
ues until the end-of-sequence token is generated.

To create the training data we apply a function-to-test traceabil-
ity technique over a corpus of software, generating a set of example
function-to-test links. These links are pre-processed into source and
target token sequences which are then used to train the embedding
layer and RNN units by backpropagating the sequence-to-sequence
cross-entropy loss. The implementation used for these experiments
was derived from the implementation provided by Luong et al. [3].
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3 EXPERIMENTAL SETUP

The experiments are split into two scenarios: cross-project, and
within-project. The cross-project scenario tests the possibility of
training a single model using a large, general corpus taken from
many projects, and using it to generate an approximate test for any
arbitrary function. The within-project scenario tests the possibility
of training a model for an individual project and using it to generate
an approximate test for a function from the same project.

Experiment configuration one tests the cross-project scenario
using 156 open source projects from GitHub. Configurations two,
three, and four test thewithin-project scenario by individually using
the OpenJDK 9, Netbeans, and OpenLiberty projects respectively.
A natural language translation baseline for the chosen translation
quality measures was obtained by also training the model for Viet-
namese to English translation on a small corpus of TED talks [4].

3.1 Data

To train the model we need a dataset consisting of test-to-function
traceability links – pairs of functions and tests where the test tests
the function. As the performance of the model is dependent on the
size and accuracy of the training data, we need to gather as much
high-accuracy training data as possible. Ideally, the dataset would
be constructed from manually labelled test-to-code traceability
links but given the amount of data required this is infeasible and,
therefore, we must use an automated traceability establishment
technique.

When selecting an automated traceability establishment tech-
nique, we must balance precision with recall; low precision tech-
niques will result in very noisy training data, whereas low recall
techniques will result in a dataset that is too small. Both of these
factors can limit the performance of the model.

3.1.1 Generation through Naming Conventions (NC). For this set
of initial experiments, we have limited the data to Java projects
with JUnit test cases and are generating the training data using
variants of the Naming Convention (NC) [7] technique. NC was
selected for these initial experiments as it is performed statically
and should have relatively high precision on projects that use the
naming convention, however, in future work a more extensive set
of traceability techniques could be used to increase both the size
and precision of the dataset.

The two variants of NC that we tested are Strict NC and Relaxed
NC. Strict NCmatches both the class names and the function names,
for example, the toString() function in the class Point will only be
matched to a test called testToString() or toStringTest() in a test
class called TestPoint or PointTest. Relaxed NC however, matches
only on the function name, so toString() in any class will match to
testToString() or toStringTest() in any test class. Therefore, Strict NC
is better for precision, while Relaxed NC is better for recall.

NC Generation Experiments. Table 1 shows the results of an ex-
periment comparing the sizes of the datasets generated by Strict
NC and Relaxed NC on a set of popular open source Java projects.

We can see from these results that while projects which closely
follow the naming convention, such as JFreeChart and Commons
Lang, may produce a good amount of links for Strict NC, most
projects do not follow the convention closely and produce little

Table 1: Number of test-to-code trace links generated by

naming convention techniques.

Project JUnit Tests Strict NC Relaxed NC
Apache Poi 1,582 0 10,546
JFreeChart 2,482 1,016 1,016
Closure Compiler 153 56 101
Commons Lang 3,061 2,385 10,647
Commons Math 4,461 770 10,033
Commons Collections 2,661 455 12,167
Eclipse CDT 856 42 1,759
Android Platform 4,021 1,128 34,711
Chromium 6,334 435 7,347
Netbeans 1,582 399 57,156
Total 28,500 5,688 145,828

to no links for Strict NC. Overall the number of links found using
Strict NC is not enough for training a model.

When we switch to Relaxed NC the number of links increases
to levels that make training a model feasible. While this increase
in links has a concomitant increase in noise due to false positives
(functions and tests that are incorrectly matched), some of the
false positives may provide useful information for the model in
cases where the test is related to the function even though it does
not directly test it. One example of this is typically overridden
methods (toString, hashCode, equals), which should all share a
similar structure and relationship to their tests. Therefore these
links can provide useful information for the network to learn even
if they are false positives. Given this, we selected Relaxed NC to
generate the data for our experiments.

3.1.2 Preparation. The data for the experiments was obtained by
first applying the Relaxed NC technique over the subject(s) to estab-
lish the traceability links. The source of the functions and tests was
then pre-processed to remove camel-casing, convert all strings to
lower case, remove all numbers, and add spaces between all words
and symbols. Programming language keywords and syntax were
retained. Camel-cased tokens were split into individual tokens in
an effort to keep the vocabulary sizes manageable as the individual
tokens are more likely to appear in multiple sequences than the
complete camel-cased tokens, the same applies to adding spaces
between words and symbols. Numbers were removed as some ex-
ploratory experiments showed that their inclusion degraded the
results. The pre-processed sequence pairs are then split between the
training and test sets and all training set pairs that contain a source
or target sequence that also appears in the test set are removed,
this helps to avoid overfitting.

3.2 Network Configuration

The network configuration used for the experiments set the dimen-
sions of the embeddings at 128, the number of RNN layers at 2,
dropout at 0.2, and uses an attention mechanism named Scaled
Luong, a scaled variant of the attention mechanism described in [5].
This network configuration was selected simply as a default ref-
erence; the optimisation of the network configuration has not yet
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been explored. The maximum sequence length for training was
set to 50 tokens for the baseline natural language translation and
200 tokens for the test translation experiments, with any longer
sequences are truncated to this limit. This difference is due to the
fact that the functions and tests are significantly longer than the
natural language sentences. This sequence length limitation hin-
ders the learning of any relationships that are predominantly found
in long sequences, after the 200 token limit. Therefore, increasing
the maximum sequence length could improve the results, however,
it also increases the training time which made using a sequence
length longer than 200 infeasible for these initial experiments.

4 EVALUATION

We evaluate the performance of TestNMT both quantitatively
and qualitatively. The quantitative evaluation is carried out using
the standard techniques for measuring the quality of translations
BLEU [6] and ROUGE-L [2]. BLEU is a precision-based measure
which utilises a modified n-gram precision to calculate the co-
occurrence of tokens in the candidate and reference sequences.
Clipping is applied at the frequency of the n-gram in the reference
sequence. ROUGE-L uses the Longest Common Subsequence (LCS)
between the candidate and reference to calculate the precision and
recall of the matching unigrams which are then used to calculate
the F-Score. At each training step, these measures are calculated
over all instances in the test set and averaged to get the scores for
that step. The maximum scores for each experiment are reported
in the results.

The quantitative evaluation also includes statistics for the aver-
age length of the pre-processed linked tests and the median edit
distance from the generated approximate tests to these linked tests
for the functions from the test set. This gives us a metric for how
close the approximate tests generated by TestNMT are to the linked
tests, therefore indicating the potential usefulness of TestNMT in
a real-world scenario.

The qualitative evaluation is conducted by inspecting some ex-
ample generated approximate tests and comparing them to the
pre-processed linked tests for the input function to determine the
type of edits that the developer would have to make to adapt the
approximate tests for use.

4.1 Quantitative Results

The results from the quantitative evaluation are presented in Table 2.
The Config 1 results indicate that the cross-project scenario may
not be feasible as the maximum BLEU (1.3) and ROUGE-L (16.3)
scores are very poor and the median edit distance is larger than the
average length of the pre-processed linked tests. These numbers also
saw no improvement during training showing that no significant
translation is occurring and suggests that no amount of training will
improve the scores at this dataset size of ~750k training examples.
It is possible that more training data will bring this scenario into a
reasonable range of performance but the dataset may have to be
extremely large.

Configs 2, 3, and 4 indicate that TestNMT has significant poten-
tial for usefulness in the within-project scenario as the maximum
BLEU scores are equivalent to that of the Vietnamese to English
natural language translation baseline, and the ROUGE-L scores

average 73% of the baseline score, which is also a strong result. The
edit distance results also reinforce this conclusion by indicating
that, on average, the edit distance between the generated approxi-
mate tests and the pre-processed linked tests is within ~50% of the
length of the pre-processed linked tests. This demonstrates that
TestNMT is producing useful content and indicates that using it
should save the developer time over creating tests from scratch.

4.2 Qualitative Results

Here we present some examples taken from the approximate tests
generated by the trained models in each experiment. The "linked
test" is the test from an example link drawn from the test set after
the data pre-processing has been applied. The "approximate test"
is the output of the model when provided with the function from
the example link as input. The differences are highlighted with red
to indicate deletions and green to indicate insertions in the diffs
between the linked and generated approximate tests.

Examples from Config 1 are not included as the model did not
train, however, configs 2 and 4 demonstrate the potential of Test-
NMT in the within-project scenario as we can see that there are
only a few differences between the linked and approximate tests.
For the first example of Config 2, the differences are only a change
in the naming of the test case and the arguments for one function
call. For the second example of Config 2, there is just a type change
to a related exception type and a change to an assert condition.
The only differences in the examples from Config 4 are two string
literals and two changes to an assert.

4.2.1 Config 2 – Example 1. Pre-processed linked test:
@ test public void test _ minus _ long period unit _ zero () { local

date time t = test _ _ _ _ _ _ _ . minus ( ,chrono unit . days ) ;

assert same ( t , test _ _ _ _ _ _ _) ; }

Generated approximate test:
@ test public void test _ minus _ period _ zero ( ) { local date

time t = test _ _ _ _ _ _ _ . minus ( mock simple period . zero _

days ) ; assert same ( t , test _ _ _ _ _ _ _ ) ; }

4.2.2 Config 2 – Example 2. Pre-processed linked test:
@ test public void test ( ) { sql transaction rollback exception ex

= new sql transaction rollback exception ( ) ; assert true ( ex . get

message ( ) = = null & & ex . get sql state ( ) = = null & & ex .

get cause ( ) = = null & & ex . get error code ( ) = = ) ; }

Generated approximate test:
@ test public void test ( ) { sql data exception ex = new sql data

exception ( reason ) ; assert true ( ex . get message ( ) . equals (
reason ) & & ex . get sql state ( ) = = null & & ex . get cause ( )
= = null & & ex . get error code ( ) = = ) ; }

4.2.3 Config 4 – Example 1. Pre-processed linked test:
@ test public void get unique group id ( ) throws exception { string

group = " vmmgroup " ; string unique group id = "cn = vmmgroup ,

ou = users , dc = rtp , dc = raleigh , dc = ibm , dc = com " ; log . info (

c , " get unique group id " , " checking with a valid group . " ) ;

assert d ns equal ( null , unique group id , servlet . get unique

group id ( group ) ) ; }

Generated approximate test:
@ test public void get unique group id ( ) throws exception { string

group = " vmmgrp " ; string unique group id = "cn = vmmgrp , o = ibm ,
c = us " ; log . info ( c , " get unique group id " , " checking with
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Table 2: TestNMT experimental results.

Baseline (VI-to-EN) Config 1 Config 2 Config 3 Config 4
Data

Project(s) N/A 156 OSS OpenJDK 9 Netbeans OpenLiberty
Train Set Size 133k 744k 105k 11k 88k
Test Set Size 1500 300 100 100 100
Source (Func.) Vocab Size 17k 24k 9k 6k 7k
Target (Test) Vocab Size 8k 13k 2k 2k 4k

Results
Max BLEU 20.24 1.3 19.51 21.20 19.60
Max ROUGE-L 50.40 16.3 38.3 33.73 38.67
Avg. Linked Test Len. N/A 375 522 543 625
Median Edit Dist. N/A 1431 246 344 269

a valid group . " ) ; assert d ns equal ( unique group id , servlet

. get unique group id ( group ) ) ; }

4.2.4 Config 4 – Example 2. Pre-processed linked test:
@ test public void get groups _ empty list ( ) throws exception {

search result result = reg . get groups ( " * " , ) ; assert not null

( " search result must never be null " , result ) ; assert true (

result . get list ( ) . is empty ( ) ) ; assert false ( result .

has more ( ) ) ; }

Generated approximate test:
@ test public void get groups _ empty list ( ) throws exception {

search result result = reg . get groups ( " * " , ) ; assert not

null ( " search result must never be null " , result ) ; assert

equals ( , result . get list ( ) . size ( ) ) ; assert false ( result

. has more ( ) ) ; }

4.3 Results Discussion

Overall these preliminary results are encouraging and show that
although TestNMT may not be able to produce complete and fin-
ished tests that can be plugged directly into the system in question,
it has the potential to produce recommendations that are very close
to the required test. A developer may then only have to make small
changes to the generated approximate test in order to adapt it for
use in the system.

5 FUTURE DIRECTIONS

There are a few key areas in which this research can be expanded to
produce an extensive and robust investigation. Firstly no attempt
has yet been made to optimise the network architecture or hyperpa-
rameters, which could have a large impact on the results. Aspects to
explore in this area include using different types of RNN units, such
as GRU, DGRU, or peephole LSTM units, as well as greater numbers
of layers and different attention mechanisms. Bi-directional units
should also be tested as previous works have noted the effect that
the order of the input sequence can have [8], and the effectiveness
of Bi-directional units in exploiting this [1]. The use of Beam Search
could also be investigated.

The evaluation also needs to be extended to confirm the findings
of the cross-project scenario with a larger dataset and confirm
the findings of the within-project scenario with a wider range
of projects of varying sizes. This will facilitate the application of

statistical analysis to strengthen the results and empirically test the
effect of project size on the results. This analysis could also provide
insights into any other properties of a project that may affect its
viability for use with TestNMT and more generally uncover any
currently hidden problems with the approach.

Further, as TestNMT learns from human-written tests that con-
tain elements that are difficult or impossible for typical test gen-
eration tools to produce, such as oracles and specific test inputs,
TestNMT may be more useful than typical test generation tools for
generating these types of elements. Testing this hypothesis should
also be addressed in future work.

6 CONCLUSION

This preliminary investigation into the performance of TestNMT
and, more generally, the viability of using neural machine trans-
lation as a test generation technique has shown that it has the
potential to be of use, especially when applied to large individual
projects. However, there is still much work to be done to optimise
the implementation and carry out a full evaluation to determine
the overall benefit and generality achievable by TestNMT.
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