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Abstract 

Purpose of review: 

Treatment of drug-sensitive tuberculosis (DS-TB) is effective, whereas that of multi-drug resistant 

(MDR-) and extensively drug resistant tuberculosis (XDR-TB) as well as non-tuberculous 

mycobacterial (NTM) disease are less so. Therapy in general requires good adherence to potentially 

toxic drug regimens over prolonged periods. Poor adherence is associated with resistance 

development and poor outcome. This review will present promising new treatments, both new drugs 

and regimens, for difficult mycobacterial pulmonary infections. 

Recent findings: 

A number of new and repurposed drugs including bedaquiline, delamanid, pretomanid, linezolid 

and clofazimine, and drug regimens, such as the STREAM trial regimens, are currently progressing 

from basic research through clinical trials. 

Summary:  

1. The role of bedaquiline and delamanid in TB and NTM treatment is still not clearly defined 

2. New and repurposed drugs such as pretomanid, linezolid and clofazimine have the potential to 

advance TB and NTM treatment. Inhaled liposomal amikacin shows promise in pulmonary NTM 

disease 

3. Patients with MDR-TB, XDR-TB and NTM disease should be offered the choice to participate in 

drug trials that may shorten or otherwise improve their experience of treatment 

4. The use of an effective regimen based on appropriate NTM-specific drug susceptibility testing 

should be a cornerstone of treatment for NTM as much as it is for Mycobacterium tuberculosis (Mtb) 

treatment 

5. All new drugs identified for Mtb should also be tested for activity against NTM, though robust 

tools for NTM drug susceptibility testing are required 
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Introduction 

Current treatment for drug sensitive (DS-TB) tuberculosis (Mtb) dates from the MRC trials of the 

1970s, after introduction of TB drugs in the 1940s (1). Treatment of TB unresponsive to initial 

protocol-led treatment is based on sensitivity results.  Although effective, treatment needs to be 

prolonged and can have significant adverse effects (2,3). 

 

Treatment for NTM is dependent on combinations of rifamycin and macrolide antibiotics, largely 

extrapolated from Mtb studies, in the absence of much needed clinical trial or pharmacokinetic data 

as NTM studies have lagged behind TB research (4–6). However, NTMs in general, and the rapid-

growing mycobacteria such as M. abscessus in particular, have significantly more intrinsic and 

inducible resistance than Mtb (7–10). NTM research disease in vivo is further limited by a lack of 

animal models (11–13). Current NTM guidelines are therefore based on no more than a handful of 

randomised controlled trials and observational studies in NTM disease and often use poorly-

effective and badly tolerated drug combinations (4,5). Regimen efficacy, if not patient acceptability, 

has recently been improved by the addition of drugs such as tigecycline, clofazimine, linezolid, 

telithromycin, moxifloxacin and carbapenems. 

 

Multi-drug resistant (MDR-), extensively drug resistant (XDR-), totally-drug resistant tuberculosis 

(TDR-TB) and pulmonary NTM disease, most frequently due to Mycobacterium avium complex 

(MAC, which includes M. intracellulare and M. chimaera), M. kansasii, M. abscessus and M. 

fortuitum, are increasingly common. This plus less than satisfactory outcomes for NTM disease 

mean that now more than ever we need new solutions for TB and NTM disease (6,7,14) The Stop 

TB Partnership’s (http://stoptb.org/) Working Group on New TB Drugs plays a major role in raising 

awareness of MDR-TB and co-ordinating information about preclinical data and trials. They 

maintain an up-to-date list of potential new drugs for DS-TB and MDR-TB (www.newtbdrugs.org). 

The state of the current drug development pipeline for tuberculosis has been recently reviewed (15). 

http://stoptb.org/
http://www.newtbdrugs.org/


 

In this current article, we will discuss new and recently repurposed drugs for use in the treatment of 

difficult mycobacterial infection including novel drug regimens. Here, difficult mycobacterial 

infection is taken to mean active complex pulmonary DS-TB with single-agent resistance or toxicity, 

MDR-/XDR-TB or NTM disease. Adjunct therapies will not be reviewed. 

 

Novel Drugs in Mycobacterial infection 

For the first time in many years, antituberculosis drug development is an active area of research (16) 

(Figure 1). Delamanid and bedaquiline are the first drugs to obtain a license as treatment for Mtb in 

nearly 50 years. Both have now entered clinical practice and are major components of many on-

going clinical trials. In addition, there are studies optimising the dose of currently used therapies 

including high-dose rifampicin or isoniazid and fluoroquinolones (TBTC 32/NIAID OPTI-Q). 

 

Rifampicin is the most important drug for treatment of DS-TB, and increasing the dose up to three 

times is well tolerated and associated with improved bacteriological although not clinical outcome 

(17–23). The related rifamycin, rifapentine, is non-inferior to rifampicin in the standard regimen or 

when ethambutol is replaced by moxifloxacin (24–29). Rifapentine-containing regimens are being 

evaluated in TBTC 31, a registration trial for US FDA licensing. Such studies may have an 

influence on how we best treat difficult pulmonary TB and NTM disease dependent on the 

resistance profile.  

 

Bedaquiline and related compounds 

Bedaquiline is a novel oral agent that inhibits Mycobacterial ATP synthase, increasing culture 

conversion rate and improving outcomes in MDR-TB (30–32). Although a very promising drug 

with bactericidal activity in Mtb infection, it is bacteriostatic and lacks in vivo activity against 



Mycobacterium avium (33,34). Despite this, anecdotal evidence suggests that bedaquiline may be 

useful in pulmonary NTM disease (35). 

 

Bedaquiline pioneered a novel and productive line of research investigating respiratory chain targets 

in mycobacteria. TBAJ-587 and -876 are related molecules identified by high-throughput screening 

of novel members of the diarylquinoline family for greater anti-tubercular activity with an improved 

safety profile. They are undergoing preclinical evaluation (36–38). 

 

Telacebec/Q203 

Like bedaquiline, Q203, acts on the respiratory chain. It is bacteriostatic in vitro although its 

activity can be increased by inhibition of parallel pathways (39–41). Current research is aimed at 

making the molecule less lipophilic (42,43) and at determining its synergism with other 

antimycobacterial agents. Early bactericidal activity (EBA) phase 2 studies in humans started in 

2018. 

 

An interesting possibility is targeting different parts of the mycobacterial terminal respiratory chain 

with different agents and achieving synthetic lethality. Oxidative phosphorylation is essential to 

both actively dividing and persister mycobacteria and such an approach would, therefore, 

potentially target the different mycobacterial states with the same agents (41,44–46). 

 

Delamanid 

Delamanid inhibits cell wall synthesis and improves culture conversion rates in MDR-TB patients 

when added to an optimised background regimen (47,48). Several trials of optimised background 

regimen plus or minus delamanid in MDR-TB, including a trial involving people living with HIV 

(PLHIV) on antiretroviral therapy (ART), are due to report in the near future (NCT01424670) 



(49,50). Delamanid has some activity in vitro against M. kansasii but not M. avium or M. 

intracellulare and there is no current in vivo data (11). 

 

Neither bedaquiline nor delamanid were initially tested in children, however, there are several 

recently completed trials (NCT01859923 and NCT01856634) of delamanid in paediatric MDR-TB 

plus anecdotal reports of the safety and efficacy of both agents in paediatric MDR-TB cohorts 

(51,52). 

 

Initially there were concerns when combining delamanid and bedaquiline due to overlapping 

cardiac toxicity. However, clinical practice has shown that this is safe with careful monitoring, and 

that the effects on the electrocardiographic QT interval are neither additive nor synergistic (50). A 

trial is currently assessing this combination together with an optimised background regimen for 

MDR-TB (ACTG5343). 

 

Pretomanid/PA-824 

Pretomanid is a pro-drug structurally related to delamanid. In addition to effects on mycolic acid 

synthesis, it is a respiratory chain poison by acting as a nitrous oxide donor, with effects, therefore, 

on both dividing and non-replicating, anaerobic, persistent mycobacteria (53–55). It has activity 

against M. tuberculosis and M. kansasii but not against M. avium, M. chelonae or M. fortuitum 

(11,53,55). It has been evaluated for EBA with bedaquiline and pyrazinamide (56–58) as well as 

with moxifloxacin and pyrazinamide - and the latter combination is now in a phase 2 study for DS 

and MDR-TB (SimpliciTB) (58). 

 

Linezolid and related oxazolidinones 

Linezolid is effective in the treatment of MDR-TB but prolonged use is associated with 

myelosuppression and neuropathies (59,60). Sutezolid, AZD5847/posizolid, contezolid and 



delpazolid are currently in clinical phases of development that appear to have similar activity to 

linezolid against Mtb, although may not share resistance mechanisms (61–66). Delpazolid, in 

particular, has activity against Mycobacterium abscessus (67) and is in phase 2 trials against DS-TB 

(NCT02836483). Finally, TBI-223 has reduced activity against mammalian mitochondrial protein 

synthesis, which predicts less myelosuppression and neuropathy (68). 

 

Carbapenems 

Meropenem-clavulanate is a combination of commonly-used antimicrobials with good safety 

profiles. It shows efficacy in Mtb sputum conversion, albeit with the caveats that it requires 

intravenous administration and has only been proven in combination with linezolid (69). Other 

carbapenems, especially once-daily ertapenem, are also of interest (70). 

 

Clofazimine 

The antileprotic agent, clofazimine, has recently been repurposed as a useful part of MDR-TB 

treatment (71) and included as one of the key drugs in the 2018 WHO revised MDR-TB guidelines 

with linezolid, bedaquiline and the fluoroquinolones (72). However the efficacy, optimal dose and 

duration of clofazimine remain to be determined. It has no activity in the 14 day extended EBA, 

suggesting it primarily has a sterilising effect (57). 

 

Clofazimine has a low minimum inhibitory concentration (MIC) against most NTM species, 

synergises with amikacin and clarithromycin and has been successfully used in a number of cohort 

studies (73–77). M. abscessus can aquire resistance through an identified mechanism, potentially 

allowing rapid genotypic resistance testing (78). Clofazimine has few drug-drug interactions and 

has been used successfully in solid organ transplant patients with MAC infection (79).  However, it 

has a number of adverse effects; and the clofazimine analogue, TBI-166, is currently in phase 1 

trials as a drug with potentially less toxicity (80,81).   



 

Gycylcyclines 

The first in class antibiotic, tigecycline, has potent anti-NTM activity (82). The addition of 

tigecycline is beneficial in infections caused by fast-growers such as M. chelonae and M. abscessus 

but it has no activity against slow-growing Mycobacteria including M. tuberculosis (82–85). 

 

Co-trimoxazole 

Co-trimoxazole has shown activity in observational studies but requires proof of efficacy in 

controlled trials (86). 

 

SQ109 

SQ109 has several distinct mechanisms of action. synergises with first-line and novel agents, 

improves culture conversion rates in MDR-TB and is approaching phase 3 studies (87–91). 

However, some in vivo studies showed no EBA and a large trial closed the SQ109 arm early when 

no activity was demonstrated (22,92). 

 

Benzothiazinones 

BTZ-043 and macozinone function by inhibition of cell wall synthesis. Both have significant anti-

tubercular activity though no activity against slow-growing NTMs (93,94). They are undergoing 

optimisation studies (95–97). Macozinone (PBTZ-169) has good activity against M. tuberculosis in 

vitro and in animal models and has recently entered Phase 1 and 2 clinical trials (NCT03036163/ 

03423030/ 0333473) (98). 

 

Spectinamides 

A number of semisynthetic spectinomycin analogues have been developed with narrow-spectrum 

anti-tubercular activity (99,100). The current lead candidate, Lee-1810, has a good safety profile 



and is active in several mouse models of MDR- and XDR-TB. In addition it synergises with 

rifampicin and pyrazinamide (101). There is no reported evidence of any effect on NTMs. 

 

Others 

GSK-286 is a member of a new antimicrobial class active against intracellular Mtb via effects on 

cholesterol catabolism. First in human studies are expected in 2019. 

 

Glaxo-Smithkline is developing a range of oral leucyl-tRNA synthetase inhibitors for use against 

Mtb infection (102–104). GSK-656 is the current lead compound and is completing first in human 

dose-ranging and early antimicrobial activity studies (NCT03075410) (105). 

 

OPC-167832 is a novel antimycobacterial agent that inhibits cell wall synthesis. It is being 

developed in combination with delamanid and has begun a phase 2 clinical trial (106,107). 

 

TBA-7371 inhibits PDE6 as well as DprE1, the same target as the benzothiazinones. It is being 

evaluated in phase I trials, and preclinical properties have been published (NCT03199339) (108). 

 

Auranofin is an oral gold preparation used in Rheumatic conditions. Auranofin is active against 

replicating and non-replicating Mtb via inhibition of mycobacterial thioredoxin (109). Its role in 

Mtb treatment is being investigated (NCT20968927). 

 

Nitazoxanide, the anti-helminthic agent, is currently being assessed for EBA in a study in Haiti 

(NCT02684240) (110,111). 

 



The novel fluoroquinolone DC-159a has some activity against DS-TB, quinolone-resistant MDR-

TB, M. kansasii and M. leprae but only limited effect on other NTMs, and no in vivo data are 

available (11,112,113).  

 

The capuramycin analogue SQ-641 targets mycobacterial translocase 1, which is essential for cell 

wall synthesis. In vitro, SQ641 is a potent agent with strong bactericidal activity when compared to 

standard treatments for DS-TB, MDR-TB and NTMs. It has synergistic activity with ethambutol, 

rifamycins and aminoglycosides where these are used. However there are little current in vivo data 

(11,114–116). 

 

The fluorocycline antibiotic TP-271 has activity against M. fortuitum and M. abscessus but there are 

no in vivo data (117). 

 

The benzimidazole SPR720 is the orally available prodrug of SPR719 and is active against a range 

of NTM species in vitro (118). 

 

The caprazamycin derivative CPZEN-45 targets cell wall synthesis. It has the potential to be used in 

aerosol therapy. It has activity both against MDR-TB strains and against MAC (11,119,120). 

 

Trials of new drug regimens for TB 

Novel regimens for tuberculosis use new or repurposed agents to shorten the standard WHO 

treatment regimens or to reduce their inherent toxicity (Figure 2). There is also the interesting 

possibility that a single regimen for DS- and MDR-TB may be developed, simplifying practice. TB 

drug trials now often adopt the multi-arm design previously seen in oncology studies to more 

rapidly compare several multiple-agent regimens in parallel (121). 

 



Modifications to WHO standard regimens 

The current role, dose and duration of isoniazid and rifampicin in standard DS-TB treatment are 

reasonably well-established, although isoniazid can be effectively substituted by moxifloxacin (29).  

Several studies have sought to shorten the WHO standard DS-TB regimen by adding or substituting 

additional sterilising agents such as high dose rifampicin, linezolid, bedaquiline, rifapentine, 

fluoroquinolones or delamanid to standard therapy. Many of these regimens would also be useful 

for difficult pulmonary TB including MDR-TB as they do not rely solely on first-line drugs for 

efficacy. However, adding fluoroquinolones to standard regimens does not allow them to be 

shortened despite the fluoroquinolone-containing regimens having a higher initial bactericidal 

activity (122–124). In fact, none of the modified regimens has yet been shown to be non-inferior to 

standard therapy (TRUNCATE-TB ;CDC TBTC study 31, RIFASHORT) (25–28). 

 

Trial evidence suggests that not all DS-TB patients need the currently-recommended 6 month 

course of treatment, and that some are therefore over-treated for the benefit of those who require at 

least 6 months of therapy (1,125). The TRUNCATE-TB trial suggests a new paradigm where those 

who do not achieve success with an initial 2 month rapid treatment will go on to receive the 

standard 6 month course. The new or repurposed drugs used include combinations of high-dose 

rifampicin or rifapentine, linezolid, levofloxacin, clofazimine and bedaquiline.  

 

Similarly, several studies set out to define populations (SHINE-TB; PredictTB (NCT02821832), 

NexGen EBA(NCT02371681)) who require different durations of therapy, and thereby allow the 

personalisation of treatment, using host and mycobacterial markers such as CT-PET scanning, site 

of disease, bacterial load, specific resistance patterns and biomarkers (126,127). 

 

An important, recent development in treatment of MDR-TB, the “Bangladesh regimen,” 

demonstrated good clinical outcomes for MDR-TB with 9 rather than 20-24 months treatment 



(75,128,129). It is unclear how it will function in areas where there is a higher level of resistance to 

key components (130). Early results from STREAM stage 1, comparing the Bangladesh regimen 

head-to-head with the WHO standard regimen, did not show non-inferiority of the 9-month regimen 

to the standard 20-24 month treatment. However, the fully enrolled study continues to monitor 

patient outcomes. Stage 2 (NCT02409290) assesses additional shortened regimens, including at 

least one that would be the first completely oral regimen for MDR-TB (131,132). 

 

Regimens using new agents 

A number of novel regimens are being assessed where rifampicin and isoniazid are replaced by 

bedaquiline or delamanid. These regimens would also function well in MDR-TB, allowing a single 

therapeutic combination to be used for both major forms of the disease (75,128,129). Such regimens 

lack rifampicin’s drug-drug interactions, for example with antiretroviral medication, an important 

factor given the high HIV-TB co-infection rate in many parts of the world. 

 

In EBA, regimens such as 2 months moxifloxacin, pyrazinamide and pretomanid are equivalent or 

superior to standard DS-TB treatment in terms of culture conversion (STAND trial) (56–58). This 

regimen is improved by the addition of bedaquiline (SimpliciTB trial NCT03338621/ 

NCT02193776). Preliminary results presented at CROI 2017 was positive with good sputum 

conversion and safety profile data (133). Similarly, pretomanid and bedaquiline, in combination 

with varying doses and durations of linezolid, are being assessed in patients (50% of whom will be 

PLHIV) with DS- and XDR-TB or who have not responded to, or been intolerant of, treatment for 

MDR-TB (Nix-TB/ZeNix-TB trials). 

 

Many important studies are due to report over the next few years. These include novel partnerships 

between NGOs, the WHO, academic and private partners. TB-PRACTECAL (NCT02589782) is 

investigating regimens for MDR-TB including bedaquiline and pretomanid. endTB is looking at 



MDR-TB regimens including bedaquiline and/or delamanid. NexT is looking at 9 months treatment 

of MDR-TB with a combination of bedaquiline and traditional drugs. 

 

Important trials in NTM infections 

Reflecting the inevitable focus on TB, there are few current clinical trials evaluating new drugs or 

regimens in NTM infection. A contemporary workshop suggested a road-map for NTM research 

(134). Recent phase II and III RCTs of liposomal inhalational amikacin show some benefit when it 

is added to a multi-drug regimen (135,136). There is also interest in the potentially synergistic 

combination of clofazimine and amikacin against several species of NTM (74,76). The only 

currently-recruiting studies involving NTM involve the use of inhaled nitrous oxide in NTM 

infection (NCT03473314).  

 

Conclusion 

The Mtb drug pipeline is in better health than it has been for several years with a number of 

interesting compounds in or approaching clinical trials. Similarly, the licensing of the first two new 

drugs for Mtb infection in 50 years, delamanid and bedaquiline, has resulted in a flurry of novel 

regimens against both DS- and MDR-TB undergoing evaluation. In contrast, many of these new 

drugs have barely been tested on NTM. With the increasing incidence of NTM disease in resource-

rich countries and the recognition that this is likely to be significantly underestimated in TB-

endemic areas, it is surely only a matter of time before priorities shift to encompass the need for 

focussed research developing drug therapies to treat NTM. This must be in parallel with the 

production of robust tools that can accurately determine NTM drug susceptibility. 

 

Key points 

1. Bedaquiline and delamanid are new effective drugs against Mycobacterium tuberculosis that are 

forming the core of novel regimens for drug sensitive and resistant tuberculosis. 



2. New regimens have the potential to significantly reduce the length and toxicity of treatment for 

drug sensitive and resistant tuberculosis 

3. Research on non-tuberculous mycobacteria is at a much earlier stage than research on 

Mycobacterium tuberculosis 

4. Several promising novel drugs are in development that possess activity against Mycobacterium 

tuberculosis and may have activity against non-tuberculous mycobacteria 

5. Research into non-tuberculous mycobacteria needs to be prioritised due to its increasing 

frequency and poor outcomes  
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Figure Legends: 

 

Figure 1: New and repurposed anti-mycobacterial drugs in the Global TB Drug Development 

pipeline (Updated Oct 2018) 

Figure 2:  Drug regimens to treat tuberculosis currently in trials and studies (Updated Oct 2018)  
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Figure 1: New and repurposed anti-mycobacterial drugs in the Global TB Drug Development 

pipeline (Updated Oct 2018) 

 

 



Figure 2:  Drug regimens to treat tuberculosis currently in trials and studies (Updated Oct 2018) 

 

 


