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11.1 Introduction 

Transport of molecules across multiple length scales is of great practical importance, from food 

products and building materials to the recovery, production and distribution of chemicals and 

energy. Many relevant processes involve porous media; these include catalytic and separation 

processes, oil and gas recovery, and the delivery of pharmaceuticals. An effective transport 

system should be scalable, efficient and robust. These properties depend on the multiscale 

architecture of the transport system, that is, its morphology (shape) and topology (connectivity) 

at multiple length scales. An optimized transport system boosts production, saves time and cost, 

and reduces waste. This holds true for the infrastructure for transporting goods and information, 

as much as for the transport of molecules in porous media. To be optimal, the transport system 

needs to be suited to serve the other processes in the system, where production or consumption 

occurs. If these are not properly matched, transport limitations occur. This includes processes 

involving porous catalysts in chemical engineering, which we focus on in this Chapter, although 

much of the discussion can be translated to other processes involving porous media as well. 

The optimized transport system for such technical applications is not easy to obtain, but we can 

seek inspiration from biology. Indeed, through billions of years of evolution, plants and animals 

have acquired highly effective transport systems, crucial to their survival. Although a chemical 
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engineering application is different from a biological one in terms of materials (which could be 

inorganic instead of organic) and operating conditions (which could involve high temperatures 

and pressures instead of mild, ambient conditions), they share fundamental features. All rely on 

effectively connecting the action at microscopic scales (of cells, in the case of biology, or active 

sites, in the case of catalysts) with the overall system (the organism in biology or the reactor in a 

catalytic process). Robustness and scale independence are important in both instances. For this, 

they both rely on multiscale architectures, an example of which is illustrated in Fig. 11.1, while 

the dominant transport mechanism at each scale is governed by physics that are length scale 

dependent. Based on these common features, it is desirable to seek guidance from nature, to help 

improve the transport architectures of porous media for engineering applications. Another reason 

is the ability to design and optimize porous materials for these applications from scratch. This is 

possible in certain applications, like catalysis or fuel cells, as opposed to applications where 

transport networks would have to be adapted from existing plans, and are thus more difficult to 

change, as in city planning or in resource exploration in porous rocks. 

 

Fig. 11.1. The multiscale architecture of trees. Cells, 10-100 µm in size [1], are the basic 

building blocks (microscale) containing “active sites” for photosynthesis (nanoscale), converting 

CO2 and water into carbohydrates; leaves, 1-100 cm in size, function as “porous photo-catalysts” 

with a veinal architecture for transport (mesoscale); the tree itself, with its water- and nutrient-
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transporting tree-crown, 1-100 m in size, function as a living “reactor”, providing mechanical 

strength and scalability during growth. 

 

Unlike transport architectures in nature, which were introduced in Part II of this book, transport 

pathways in artificial porous media are currently not the product of organic evolution. However, 

they can be optimized by mathematical modeling and computation, which could, for that matter, 

employ genetic algorithms inspired by evolution. Incredible progress in materials synthesis and 

manufacturing methods, with increasing control over structure extending down to ever-smaller 

scales, provides the opportunity to boost the performance of processes employing these materials. 

To do so effectively, requires guidance from theoretical insights and computational optimization. 

In this Chapter, some fundamental features of transport networks in porous media are introduced, 

and the structure-function relationships in these systems are briefly reviewed to introduce the 

available “handles” that can be used to manipulate molecular transport and improve the 

performance of processes that depend on it, like catalysis and molecular separations. These two 

Sections are presented first, because a good understanding is essential to optimize transport 

phenomena in engineered systems. Subsequently, the nature-inspired chemical engineering 

(NICE) approach for transport optimization is introduced, and applications to heterogeneous 

catalysis and proton exchange membrane (PEM) fuel cells are given to illustrate this 

methodology. 

11.2 Fundamental features of mass transport phenomena in porous media 

Mass transport in porous media occurs primarily by two mechanisms, namely convective flow 

and diffusion. In wide pore channels, convective, pressure-driven flow is often the principal 
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transport mechanism [2]. In narrower channels, diffusion is the dominant transport mechanism. 

Self-diffusion is a result of the thermal motion of molecules, while transport diffusion results 

from a chemical potential gradient; for non-interacting molecules, at sufficiently low pressure, 

self- and transport diffusivities are the same [3,4]. For many processes in chemical engineering 

and beyond, involving porous catalysts, membranes, building materials and pharmaceutical 

tablets, for example, diffusion takes place in porous materials containing a hierarchical pore 

network, and diffusion can be subdivided into molecular diffusion, Knudsen diffusion, surface 

diffusion, and configurational diffusion, according to the interactions between the molecules and 

the pore walls [5–7]. Molecular diffusion dominates when the mean free path of a molecule is 

much smaller than the local pore size, so that the frequency of intermolecular collisions exceeds 

that of molecule-wall collisions. Knudsen diffusion becomes dominant when molecule-wall 

collisions are important. Surface diffusion describes the movement of adsorbed molecules along 

pore wall surfaces, and becomes important for very narrow pores and strongly adsorbed 

molecules [8]. Configurational diffusion dominates in zeolites and other microporous 

materials [7,9], in which the effect of pore walls on the movement of molecules is so strong that 

diffusion is typically an activated process and, therefore, can be well described in terms of a 

succession of hops. Some state-of-the-art technologies, like interference microscopy (IFM) and 

IR microscopy (IRM), are now available to record such transport processes experimentally, even 

in single particles, which is introduced in Chapter 10. In addition, viscous flow plays an 

important role for transport in porous materials with wide pores, such as porous membranes for 

microfiltration and ultrafiltration [6].  

Depending on the length scale, different transport mechanisms are involved. These different 

transport mechanisms often take place simultaneously, which complicates the optimization of the 
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transport network. Let us take mass transport and reactions in a fixed-bed reactor packed with 

catalyst pellets as an example to illustrate this multiscale transport, shown in Fig. 11.2. Reactions 

take place on the so-called “active sites”, which are of atomic or nanoscale dimensions, and 

dispersed on the internal surface of the porous pellets. The geometric and electronic properties of 

the active sites determine how some species are bound and converted on the catalyst surface. The 

local physicochemical conditions around these active sites, like the local species concentrations 

and temperature, affect the local reaction rates and, thus, the catalytic activity and selectivity. 

This local environment is influenced by the multiscale transport of reactant and product 

molecules toward and away from these sites, which frequently leads to spatially non-uniform 

distributions of reactants and products:  

(1) Reactants are transported into catalyst pellets from the bulk phase by overcoming external 

film mass transfer resistance, and subsequently diffuse into the macropore (>50 nm diameter) 

and mesopore (2-50 nm) network, where molecular diffusion and Knudsen diffusion dominate. 

In, for example, the case of zeolites, molecules further diffuse into the micropore network (pores 

< 2 nm diameter), where surface diffusion and configurational diffusion become dominant. 

Simultaneously, molecules adsorb and react on active sites on the pore walls. Products desorbed 

from the active sites are transported out of the catalyst pellets in the opposite direction. 

Intrinsically fast reactions may lead to transport limitations, meaning that the resistance to 

molecular transport dominates the overall rate of the combined process. 

(2) The flow of molecules in the fixed-bed reactor removes products that have been transported 

out of the catalyst pellets, and brings in reactants that enter the catalyst pellets. This leads to a 

decrease in reactant concentrations and an increase in product concentrations in the direction of 
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the flow. Due to this, the boundary conditions at the interface between the catalyst pellets and the 

bulk flow in the reactor change from reactor inlet to outlet.  

 

Fig. 11.2. Multiscale structure of a fixed bed reactor packed with zeolitic catalyst pellets and the 

dominant mass transfer mechanisms on different length scales. Reproduced from [10], with 

permission.  

 

This multiscale transport of molecules is one of the most important, fundamental features for 

various engineering processes, beyond the example of fixed-bed reactors. In Section 11.6, the 

example of multiscale transport in PEM fuel cells is also depicted. Already, we can see a parallel 

with the tree shown in Fig. 11.1, something we will come back to in Section 11.4. 

11.3 Basic description of transport in porous media  

The effective transport properties (permeability for viscous flow and diffusivity for diffusion) 

depend on the structure of the porous medium, especially the pore size distribution. This 

provides abundant room for designing porous media with optimized transport properties. To do 
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so, it is necessary to formulate relationships between material structure and transport properties. 

There is a huge literature on this subject, which will not be discussed here in detail. A brief 

introduction is given in order to aid the understanding of the following sections in this Chapter. 

Readers can refer to a number of review articles for more details [5,7,11,12].  

11.3.1 Geometrical description of porous media  

Molecular transport networks can be ordered or disordered at different length scales. For 

example, at the macroscale, fixed bed reactors typically consist of random packings of catalyst 

particles, in between which the various species flow through a disordered void space. Other 

reactors employ structured packings, the most common type of which are monolithic structures 

with parallel channels; the catalytic converter to clean up car exhaust is an example of such a 

structured packing. In these monoliths, the walls of the channels are porous themselves, or are 

covered by a catalytic washcoat. At smaller scales, within porous catalysts and other porous 

materials, molecules diffuse through a network of macro-, meso- and/or micropores. In most 

amorphous catalyst supports and adsorbents, this pore network is disordered. However, pores can 

also form a regular network, such as in crystalline zeolites, metal-organic frameworks, and 

amorphous materials with ordered mesopores [13]. It is easier to model ordered systems and 

investigate the effects of the regular pore network properties on transport than to model 

disordered transport networks.  

To describe transport in disordered porous media, two types of models are used: continuum 

models, which treat the porous medium as an effective continuum of reduced permeability or 

diffusivity, and discrete models, which explicitly account for the pores. Both have been 

extensively reviewed by Sahimi et al. [14] and Keil [5]. One of the earliest pore models is the 

parallel pore model proposed by Wheeler [15]. In his model, the pore space is represented by 
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parallel pores with mean radius r  and length L . The sum of the surface areas of all the parallel 

pores is set equal to the BET surface area of the particle, and the sum of the pore volumes is set 

equal to the experimentally determined pore volume of the particle: 

( )g

g

2V
r 1

S
s e= -                                                     (11.1), 

p xL 2V S=                                                         (11.2) 

where: Vg and Vp are the specific pore volume and the total volume of the porous particle, 

respectively; Sg and Sx are the BET specific internal surface area and the external surface area of 

the porous particle, respectively; s is the pore wall roughness factor; e is the particle porosity. 

After that, numerous other pore models (including the cylindrical pore model [16], the tortuous 

pore model [17], the model of Wakao and Smith [18,19], the model of Foster and Butt [20], the 

grain model [21], and the micro/macropore model [22]) have been proposed to account for more 

features of real porous materials, such as the tortuosity of the pores or a bidisperse pore size 

distribution.  

Although these early models can describe certain morphological features and, in some cases, 

account for the pore size distribution, they do not account for the pore network connectivity 

(topology) and the spatial distribution of the pores. This becomes possible by using pore network 

models, in which equations for diffusion, adsorption and reaction are explicitly solved, kinetic 

Monte-Carlo simulations are employed, or various approximations based on statistical physics, 

like the effective medium approximation or renormalization group theory, are used [23–26]. 

However, even most pore network representations are still an abstraction of the real porous 

structure, based on macroscopic data, such as the measured pore size distribution, the porosity 
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and the BET surface area. Recently, with the advent of powerful computers and more 

sophisticated experimental tools, it is becoming possible to digitally reconstruct a real porous 

structure with increasing accuracy. Some computational methods, including statistical methods 

(e.g., Monte Carlo method) and process-based methods (e.g., discrete element method) [27,28], 

have been developed to digitally reconstruct porous materials with high accuracy, as shown in 

Fig. 11.3a. Cutting-edge experimental technologies, such as X-ray microtomography, directly 

provide us with three-dimensional (3D) images of porous materials, without even destroying the 

samples [29,30], as shown in Fig. 11.3b. X-ray nanotomography and electron tomography allow 

to push the boundaries even further, to unprecedented resolution, although sample sizes are still 

limited, and care needs to be taken for samples that are anisotropic or macroscopically 

heterogeneous. In each case, the digitally reconstructed porous structure can be represented by 

the phase function f(x), which takes the form of a 3D matrix, containing the information of the 

phase state in each voxel: 

( )
1 if x belongs to pore space

f x
0 otherwise
ì

= í
î

                           (11.3), 

where x is the position vector of a voxel from an arbitrary origin. The digitally reconstructed 

pore structures can be successfully used to represent rocks [31], membranes [32], fuel cell 

electrodes [33], porous catalysts [30], fixed beds [29], and many other porous media. 

Furthermore, these digitally reconstructed pore structures can be reduced to pore networks, using 

network extraction algorithms, such as the thinning algorithm [34], the medial axis based 

algorithm [35,36], and the maximal ball algorithm [37,38]. Such digital reconstruction 

techniques have become a powerful tool for investigating various processes in porous media, 

especially mass transport.  
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Fig. 11.3. Porous media generated by (a) virtual particle packing and (b) X-ray microtomography 

scans. From Ref. [30] and Ref. [29], with permission. 

 

11.3.2 Influence of the structure of porous media on transport properties 

Using the geometrical models briefly introduced in Section 11.3.1, we are able to describe 

transport in porous media, no matter whether they are ordered or disordered. As a prelude to the 

optimization studies discussed further on, it is important to understand how the structure of the 

pore network changes the transport properties. The effects of the geometry of a porous medium 

on viscous flow and diffusion are briefly recalled. Viscous flow of simple fluids through a single 

channel or, by extension, a porous medium can be described by Darcy’s law, which has been 

derived from the Navier-Stokes equations via homogenization. 

kv p
h

= - Ñ                                                    (11.4). 
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Here, v is the so-called Darcy velocity (the average velocity over a volume element containing 

both fluid and solid matrix), h  is the viscosity of the fluid, pÑ  is the pressure gradient, and k is 

the permeability of the (part of a) porous medium under consideration. The permeability for a 

cylindrical capillary can be calculated using Poiseuille’s law [39]: 

2k d 32=                                                          (11.5), 

where d is the diameter of the capillary. For a suspension of spheres with diameter d0, the 

permeability can be obtained from the Richardson-Zaki correlation [40]: 

( )2 2.7
0k d 18 e=                                                     (11.6). 

For an aggregated bed of spheres with diameter d0, the Carman-Kozeny relation can be used to 

calculate the permeability [6]: 

 
k = d0

2 180( ) ε 2 1− ε( )2⎡
⎣⎢

⎤
⎦⎥                                       (11.7) 

These are approximations; if more is known about the geometry of the porous medium, the 

permeability can be estimated more accurately. Structures in which viscous flow occurs, vary in 

morphology, topology, and randomness, resulting in different equations for the permeability. 

With advances in techniques to reconstruct the pore space, such as X-ray tomography, and to 

model flow in porous media, such as Lattice Boltzmann modelling, mesoscopic structural 

information can be employed to estimate macroscopic viscous flow, including that of complex 

fluids that can no longer be represented by Darcy’s law [29].  

Transport diffusion in porous materials, such as porous catalysts and adsorbents, is 

phenomenologically described by Fick’s first law: 

eJ D c= - Ñ                                                 (11.8) 

 e mD De t=                                                 (11.9) 
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where: J is the diffusion flux; cÑ  is the concentration gradient; De is the effective diffusivity in 

the porous medium; Dm is the bulk diffusivity; and t  is the tortuosity, lumping various 

geometrical (and, possibly, also non-geometrical) factors that affect diffusion in porous 

materials. Pore size affects the diffusivity through molecule-wall interactions. In micropores, this 

influence can be so significant that (11.9) is no longer valid and the diffusivity is typically 4-10 

orders of magnitude smaller than the one in the bulk phase. The statistical and spatial 

distributions of pore size also affect the effective diffusivity and tortuosity. Diffusion of 

molecules tends to be slower when the pore size distribution is wider [41,42]. Tortuosity values 

as high as 138 have been calculated for a pore network with a connectivity of 3 [43], when the 

wide and narrow pores of a bimodal pore-size distribution are spatially randomly distributed 

within the same network; however, this value would be much smaller if a connected network of 

wide pores surrounds particles with narrow pores, as is more typical in catalyst pellets [43]. The 

effective diffusivity decreases with decreasing connectivity, but is less dependent on the pore 

network topology when the connectivity is high enough [42]. The randomness of pore networks 

also affects the effective diffusivity, especially when the connectivity is low [43–45]. The 

effective diffusivity of a regular pore network is larger than the one of an irregular pore network, 

because the diffusion path in the irregular pore network is more tortuous [44].  

Amorphous porous materials have a disordered framework, so that their pore walls are not 

smooth, as is assumed in common cylindrical and spherical pore models, but rough. For many 

amorphous materials used as catalyst supports and adsorbents, the surface roughness can be 

described by fractal geometry, similar to natural coastlines [46–52]. Fractals possess scale 

invariance, that is, they look similar at multiple length scales: magnifying certain parts reveals a 

structure similar to the whole.  



 13 

Benoit Mandelbrot coined the word “fractal,” when he discovered that there is a common 

mathematical language describing such rugged objects, which are infinitely fragmented (like the 

Cantor set), are lines that are almost nowhere differentiable (like the Koch curve) or are nets with 

an infinite power law distribution of holes (like the Sierpinski gasket or the Menger sponge) [46]. 

Each of these objects is strictly self-similar, whatever the magnification. Most importantly, 

however, what seemed esoteric examples by mathematicians are, in fact, prototypes for similar 

shapes in nature, like those shown in Fig. 11.5 further on; examples of natural fractals are as 

diverse as ore distributions, broccoli, clouds, trees, bread, turbulent flow, mountains, or natural 

coastlines. These are statistically self-similar or self-affine, within a finite range of magnification 

(self-affine meaning that the similarity under magnification is different along perpendicular 

directions). Mandelbrot introduced the concept of fractal dimension, D; without going into detail, 

this number conveys, for example, for fractal lines (like the Koch curve or a coastline) the 

property that such lines have a length that depends on the resolution following a power law, 

because magnification of parts reveals similar features to the whole. Thus, in the limit of infinite 

magnification, fractal lines in a plane tend to become infinitely long, yet they still fill less than 

the plane; thus, they have a dimension that is generally larger than 1 but less than 2: a fractal 

dimension is usually a broken number. Some fractal lines, like the Peano curve or Brownian 

motion, are so twisted that they ultimately fill the plane, and have a dimension D = 2. Fractal 

surfaces have a dimension larger than 2, but always lower than 3, the dimension of the space the 

surface is contained in.  

Many amorphous porous materials have such a fractal, self-similar surface. Hence, the accessible 

surface area for a molecule depends on its molecular diameter, d (effectively, the resolution of 

observaton), following a power law, ~ 2 Dd - , where D is the fractal dimension of the surface, a 
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number between 2 (for a smooth surface – here the surface is seen to be independent of the size 𝛿 

of the molecules used as a measure) and 3 (for a space-filling surface). Clearly, for D > 2,	the 

surface area becomes larger for smaller probe molecules, indicating that smaller and smaller 

irregularities alongside the pore walls become accessible, like fjords upon fjords along the 

Norwegian coastline are accessible to a small boat. The fractal scaling range, within which self-

similarity holds, is too narrow to significantly affect molecular diffusion, but it has a 

considerable influence on Knudsen diffusion, because molecule-wall interactions dominate the 

diffusion behavior. The effect of surface roughness on the Knudsen diffusivity, DK, can be 

approximated by: 

D 2
K K0D D d -=                                                  (11.10) 

where DK0 is the Knudsen diffusivity when the pore wall is smooth; a more detailed expression is 

presented in  [51]. 

 

11.4 Nature-inspired engineering approach 

Some of the challenges faced by biological organisms are similar to those we seek to solve for 

manmade systems. This includes the problem of maintaining efficient operation across length 

scales, and the related need to efficiently transport molecules across a wide range of length scales. 

Through billions of years of evolution, biological organisms have developed traits that are 

particularly effective, especially where these are related to functions essential for survival. 

Unraveling the fundamental mechanisms underpinning these traits not only helps us to better 

understand life, and, in medicine, to discover ways to combat disease, but it can also serve as a 

source of inspiration to solve parallel challenges in technology.  
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To do the latter in the most effective manner, it is essential to appreciate both the context and the 

constraints of the biological model and the engineering application. Properties like remarkable 

efficiency, adaptability, scalability and resilience in nature may give us pause, when compared to 

the same properties of manmade systems. Blind imitation of natural features will, however, be 

highly ineffective. One reason is that the environment of living organisms is often not the same 

as that of engineering applications, whether it be temperature, pressure or chemical environment. 

Natural systems are immensely complicated, but not all biological components are necessary in a 

technical application, because the boundary conditions (available resources, ways to grow or 

build the system) differ. Also, most solutions need to satisfy multiple objectives simultaneously, 

while, again, these frequently differ between a biological and a manmade construct. The sources 

of complexity differ, where constraints of manufacturability, desired time scales, chemical 

building blocks and scale of operation are often vastly different. Therefore, while the remarkable 

efficiency of a cell membrane, the agility of a bird or the incredible selectivity of an enzyme may 

hold valuable information on improving the performance of artificial membranes, aircrafts or 

catalysts, respectively, purely imitating shape or other all-to-obvious features will rarely lead to a 

workable, let alone better solution than existing ones.  

It is this combination of learning lessons from nature, by seeking to understand the fundamental 

mechanisms behind desirable features, and applying these mechanisms within the context of a 

technical application, cognizant of differences in boundary conditions, that we call “nature-

inspired engineering” or, for chemical engineering applications, nature-inspired chemical 

engineering (NICE). It differs from biomimicry in its narrow sense, eschewing direct translation 

of biological features, seeking a deeper understanding of mechanisms and applying these to build 

a workable technical solution that is acceptable within the constraints that the product or process 
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demands (economics, safety, practical applicability, manufacturability, etc.). Thus, our NICE 

methodology is very much rooted in fundamental physics and chemistry, and combines a holistic 

approach looking at natural systems with the solution-oriented reductionism and pragmatism of 

engineering. Our NICE methodology is discussed in a few recent papers [12,53–56], and aims to 

be a resource for innovation, guiding solutions to challenging problems related to energy, water, 

health and sustainability in human society.  

The complexity of nature is daunting. Its diversity is a fascinating source of beauty, but can also 

be overwhelming to those seeking to build solutions inspired by nature. Biologists tend to 

embrace this complexity in all its forms, cataloguing and categorizing it with increasing detail, 

aiming to be comprehensive. There is value in seeking exceptional behavior that can help us 

understand evolution as well as reveal rare mechanisms, exceptions to the rule, pushing the 

boundaries of the biologically achievable – the miracle of the platypus or the bombardier beetle. 

Such outliers can also inspire out-of-the-box ideas for engineering solutions to technical 

problems. However, in our NICE approach, in first instance, we look for universal mechanisms 

that are highly common, and, while biological organisms and systems come in different forms 

and shapes, the abstraction of physics and mathematical modeling reveals striking similarities. 

One of those most striking, universal features in biology is hierarchically structuring, which is 

also crucial in technology, yet nature is vastly superior in how hierarchical structures are 

organized, bridging scales from atoms and molecules to organs and organisms, in a way that is 

essential to their functioning. For example, bone has a hierarchical structure containing seven 

levels of organization with distinct chemical properties. This allows bone to have unique 

mechanical properties and transport properties to sustain physiologically important cells, while 

keeping the overall weight of the bone low [57,58]. Fratzl and Weinkamer [59] illustrate the 
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structure-function relation of biological tissues, such as bone, tendon, and wood, at various 

hierarchical levels, and the importance of this adaptation to fracture healing. Such hierarchical 

biological structures are a great source of inspiration to materials scientists, seeking to emulate 

similar properties. 

Inspired by the hierarchical structure of the femur, Gustave Eiffel designed the eponymous tower 

with minimum iron, but strong enough to rise 324 meters into the air. It is important to 

emphasize that Eiffel, quite obviously, did not copy the entire structure of the bone, but 

understood that it is the multi-scale balancing of forces in its trabecular structure that holds the 

secret to combining high strength, flexibility and low weight, as illustrated in Fig. 11.4. The size, 

shape, and materials used in the construction of the Eiffel tower are different from those of a 

bone, but it is the hierarchical design with balanced forces at each scale that lends the tower its 

unique mechanical properties. Scores of similar architectural examples could be cited that are 

nature-inspired in their design, in the engineering sense, from the work of Gaudí to Buckminster-

Fuller and Calatrava. The most successful ones marry a nature-inspired design to other properties 

desired in their application, from functional in the technical sense, to esthetics. 
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Fig. 11.4. The hierarchical structure of the femur (left [60]) and its inspiration to design the 

Eiffel tower (right). 

 

Insights into hierarchical structures in biology provide us with a lot of ideas for the optimal 

design of hierarchically structured materials for processes that rely on efficient mass transport. A 

hierarchical network is widely adopted in biology to meet the challenge of transporting nutrients 

toward cells and products, including waste, away from cells through multiple length scales. At 

macroscopic scales, many of these networks have a fractal, self-similar branching structure, 

which interpolates between the scale of the organ or entire organism and a minimum length scale, 

the inner cutoff of the fractal scaling range. Examples are tree crowns (see Fig. 11.5a), the upper 

respiratory tract of the lungs (see Fig. 11.5b), and the vascular network (see Fig. 11.5c). 
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Crucially, the lower bound or inner cutoff of the fractal scaling range also defines a cross-over in 

the dominant transport mechanism, from flow at large (macroscopic) scales, to diffusion at small 

(mesoscopic to microscopic) scales. 

 

Fig. 11.5. Examples of fractal structures in the nature. (a) Tree crown; (b) lung [61]; (c) a 

vascular network of the human liver [62]; (d) Lena river delta [63]. 
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This is well illustrated by human and other mammalian lungs. The airway tree of a human adult 

lung repeatedly branches over approximately 23 generations. The upper airway tree is fractal; it 

consists of 14-16 levels of self-similar branching, counting from the trachea via the bronchi to 

the terminal bronchioles [64,65]. The walls of these upper generations of bronchi are 

impermeable, and air through the bronchial tree is mainly transported via convective flow. As air 

flows through the bronchial tree, it gradually slows down from the trachea to the terminal 

bronchioles. This is because the radius of each branch only gradually decreases from generation 

to generation. More specifically, at each generation, (rp)D = m(rd)D, where rp is the radius of the 

parent branch and rd is the radius of one of the m daughters; in many cases, m=2. The length of 

the branches decreases similarly from parent to daughter: (lp)D = m(ld)D. Thus, the upper airway 

tree is a space-filling, self-similar fractal with fractal dimension D = 3, which also has a diameter 

exponent D = 3 [46,66,67]. If this diameter exponent, D, had been 2, as it is in most botanical 

trees (something da Vinci already showed), the flux and the transport velocity would remain 

constant, because the total cross-sectional area of all daughters remains constant, throughout all 

branching generations of the tree. However, for the lung, this cross-sectional area progresses 

with a factor 24/3 from generation to generation, while the velocity decreases, correspondingly, 

by a factor 2-1/3. Ultimately, after about 14 generations, air has slowed down so much that 

diffusional transport, by the random motion of molecules, is as fast as convective transport; any 

further restriction in channel diameter would make diffusion more rapid than convection. At that 

point, the Péclet number, Pe, comparing convective with diffusive transport, crosses over from a 

value above 1 to one below 1. It is around this branching generation that the structure of the 

airway tree changes to one that is very compact, as shown in Fig. 11.5b: air enters the acinar 

airways, lined by alveoli, where exchange of oxygen and carbon dioxide with the bloodstream 
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occurs. Throughout these lower 7-9 space-filling generations of acini, the channel diameter no 

longer changes much; there would be no advantage to such change, given that, unlike convective 

flow, diffusive transport by Brownian motion is not affected by the local channel diameter.  

In summary, the airway tree acts as a fractal distributor and collector with a self-similar 

architecture between the macroscopic scale of the trachea to the mesoscopic scale of the 

bronchioles  [68], while the channel size within the acini remains almost constant and the alveoli 

are uniformly distributed at mesoscopic length scales. A transition in dominant transport 

mechanism from convection to diffusion, corresponding to Pe~1, occurs in parallel to this radical 

change in geometry, and the lower cutoff of the fractal scaling regime defines the cross-over 

between macroscopic and the mesoscopic length scales. This is a key insight that appears widely 

valid in biology, where characteristic length scales are tied to cross-overs in function, here 

exemplified by transport properties. Fractal interpolation between cross-over points bridging the 

mesoscopic and the macroscopic is common, because it enables preservation of function [56]. 

Trees show a similar cross-over in hierarchical structure to lungs (Fig. 11.1). The tree crown has 

a fractal, self-similar branching structure, which distributes water and nutrients, with leaves 

supported by its branch tips [46]. This self-similar structure is so advantageous in adaptability 

and scalability that it enables tree crowns to spread tall and wide, without change in structure at 

the micro- to mesoscale. The branches thicken and the number of branching generations 

advances with the age of the tree, while the size of the twigs and leaves does not change very 

much. In deciduous trees, the veinal architecture of leaves transitions from fractal to uniform, 

again corresponding to a change in dominant transport mechanism from flow to diffusion, where 

Pe ~ 1, similar to the case of lungs.  



 22 

Thus, a key nature-inspired design principle emerges for artificial hierarchical transport networks 

in chemical reaction engineering applications and separation processes involving porous 

materials, namely to combine a fractal geometry at macroscopic scales, and a uniform one at 

mesoscopic scales, with the reaction, adsorption or exchange process occurring at microscopic 

scales. This particular hierarchical structure leads to inherent scalability, as the operation is scale 

independent, but, in addition, the system is also particularly efficient, if not optimal, as we will 

now discuss. 

The ubiquity of transport networks that combine a fractal geometry at larger scales with 

uniformity at small scales, suggests the importance of understanding the physical reason behind a 

particular geometry before mimicking it to attempt optimization. Almost a century ago, it was 

already pointed out by Murray that there is, what he called a “physiological principle of 

minimum work” [69,70] He proposed to use the concept of “fitness” as a premise for 

physiological deductions, and hypothesized that physiological organization is such that the 

energetic cost of operation is minimized. More specifically, he showed that the hierarchical 

structure of the human vascular network is such that oxygen transport is most efficient. If the 

blood vessels are too narrow, too much work is needed for blood to flow through, due to high 

friction. If the vessels are too broad, however, the blood volume is similarly large, which is 

difficult to sustain as well. Efficiency is a compromise between the factors of work against 

friction, and the “cost” of upkeep of blood itself, which also requires metabolic energy. 

Minimizing the total amount of work (per unit of time and per unit of blood volume) as a 

function of the radius of the blood vessels led Murray to a similar value for the “cost” of blood 

(energy per unit time and per unit volume) for all arteries and capillaries. Although Murray does 
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not use this term, it is very interesting to note that this implies equipartition of energy over the 

entire system of the vascular network, which is a thermodynamic principle.  

We have shown a similar result for the architecture of the lung, and derived it in a different way, 

using irreversible thermodynamics, that is, second-law energy efficiency or minimization of 

entropy production [66]. In full agreement with physiological data for the respiratory network, 

the architecture of the lung is such that the pressure drop over each of the bronchi is the same, 

and the concentration drop over the acini is the same as well. This implies equipartition of 

thermodynamic forces over all constituting channels of the respiratory network. The space-filling 

architecture of the lung, D = 3, hence, (lp)3 = 2(ld)3, with also D = 3, hence (rp)3 = 2(rd)3, 

throughout the bronchial tree, leads to minimum power dissipation, given a desired membrane 

surface area in the acini for exchange with the blood stream. This is a very important principle, 

which we will use in Section 11.6, when discussing nature-inspired fuel cells. 

Underlying this analysis is the observation that we should be very cautious when learning from 

nature, and blind biomimetics should be avoided. Manmade designs that copy features of 

biological structures visually or intuitively to achieve similar properties are often referred to as 

biomimetics or biomimicry. The examples of the lung and the vascular network demonstrate that 

a physical analysis is necessary to understand the structural features leading to high efficiency 

and scalability. Straightforward biomimicry might, for example, assume that an infinitely self-

similar fractal network is best, while our study showed a marked cutoff corresponding to Pe~1. 

This adds to the different boundary conditions and context in technological applications, which 

must be accounted for when using the NICE approach to design and optimize artificial transport 

systems. We will now illustrate the NICE approach to optimizing transport in porous media, in 

the case of catalysts and fuel cells. 
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11.5 Nature-inspired optimization of porous catalysts 

Desired properties of porous catalysts include high activity, selectivity, and stability. The 

geometric and electronic structure of the active sites determines the intrinsic kinetics 

(microscale), but the pore network structure significantly affects the apparent, effective kinetics 

(mesoscale), which, in turn, affects overall reactor yields and product distributions (macroscale), 

via the multiscale hierarchy illustrated in Fig. 11.2. Rational design at the mesoscale has not 

nearly received as much attention as the microscale, where spectroscopy, quantum chemistry and 

statistical mechanics have allowed for significant progress. Nevertheless, in a catalyst pellet, the 

concentrations of certain components might not be uniform, due to their long diffusion path, 

leading to considerable diffusion resistance. This, in turn, leads to a decreased volume-averaged 

reaction rate, compared to if the concentrations were uniform throughout the pellet and, therefore, 

the same to those at the outer surface. The effectiveness factor is defined to quantify the 

utilization of active sites in a catalyst pellet: 

rate of reaction with diffusion limitation
rate of reaction at outer surface conditions

h =                          (11.11) 

( )
( )S t

r C dV

r C V
h = ò                                               (11.12) 

where r(C) is the reaction rate per unit volume at a (key) reactant concentration C at any position 

in the catalyst pellet, r(CS) is the reaction rate per unit volume at reactant concentration CS at the 

external surface of the catalyst pellet, and Vt is the total volume of the catalyst pellet. A method 

to determine effectiveness factors by direct experimental inspection via IR imaging was given in 

Section 10.6.  
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Rational design at the microscale must be complemented by similar attention at the mesoscale. 

Indeed, an important objective is to maximize the effectiveness factor of a desired reaction, 

without changing the active sites themselves, thus preserving the intrinsic properties. A 

straightforward method is to shrink the size of the pellet. However, this method is rarely feasible 

in the chemical industry, because pellet size is typically dictated by reactor engineering 

requirements, such as pressure drop for fixed-bed reactors (increased for smaller pellets) and the 

minimum fluidization velocity in fluidized beds (controlled by particle size). Optimal design of 

the pore network, without affecting the pellet size, is, therefore, necessary to boost the 

effectiveness factor [71,72].  

Here, we can turn to nature for guidance. As illustrated in Fig. 11.2, a leaf bears similarities to a 

catalyst pellet, catalyzing carbon dioxide and water to sugar and oxygen, for which it is crucial to 

efficiently transport reactants and products in the leaf. To achieve fast transport, leaves have 

developed a hierarchical channel system, which we can use as a source of inspiration for the 

design of hierarchical pore networks in catalysts, as illustrated in Fig. 11.6. A hierarchical pore 

network in a nanoporous catalyst, like a zeolite, is generated by introducing macro- and 

mesopores, which act as “highways” for fast transport (see also Section 10.7). However, 

important questions for the optimal design of these “highways” require an answer: Should they 

be distributed in a uniform or in a nonuniform way? Should they be of the same size or 

distributed in size according to an optimal distribution? What should the optimal macro- and 

mesoporosity be? How sensitive is the design to variations in these textural parameters? Should 

the optimal pore network be different if deactivation by fouling occurs at the same time? To 

address these questions, which guide the synthesis of improved catalysts, general features of the 

optimal pore network in porous catalysts were studied, using computational methods  [73–79]. In 
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a leaf, as in the lower airway of the lung, the transport network changes from fractal at large 

scale to uniform at small scales, where diffusion limits transport. The cells are strikingly 

uniformly distributed amongst the veins in a leaf. The theoretical and computational analysis that 

now follows does not prove that the leaf has an optimized structure, but we will see that similar 

features emerge from optimizing a hierarchical porous catalyst. 

 

Fig. 11.6. Applying the NICE approach to optimal catalyst pellet design. (a) A leaf has a 

hierarchical network of veins to quickly transport reactants and products. (b) Inspired by the 

hierarchical transport network, a ZSM-5 zeolite catalyst was transformed into a hierarchically 

structured composite with microporous ZSM-5 nanocrystals embedded in a well-connected 

mesoporous matrix, thus facilitating diffusion. The zeolite composite was synthesized using the 

route reported in [80,81].  

 

Gheorghiu and Coppens [73] used a two-dimensional model to computationally explore 

diffusion with first-order, isothermal reaction (AàB) in hierarchically structured catalysts, in 
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which a wide-pore network is introduced into a nanoporous catalyst. They found that the catalyst 

with a fractal-like wide-pore network and broad pore size distribution operates very near 

optimality, in the sense that the effectiveness factor is maximized. However, the optimum is 

shallow, and, in these simulations, a constant number of large pores was assumed. This also does 

not guarantee that the total yield in the pellet is maximized.  

Wang et al. [74] relaxed this constraint and compared monodisperse, bidisperse, and bimodal 

pore networks in a nanostructured catalyst for a first-order, isothermal reaction. For the 

bidisperse pore network, the large pores all have the same size; in the bimodal pore network, 

large pores vary in size throughout the pellet, as shown in Fig. 11.7. The computations showed 

that an optimized bidisperse catalyst could have a yield at least an order of magnitude higher 

than the one of the monodisperse catalyst (see Fig. 11.7), but also that local variations in pore 

diameter and porosity of the large pore network, as in general bimodal networks, do not 

appreciably increase the yield. Transport of molecules results from two diffusion processes, 

partly in series, partly parallel: (1) diffusion in the large pores penetrating the whole catalyst 

pellet, (2) local diffusion in the nanoporous “islands” surrounded by the large pores. In the 

optimal catalysts, the slowest, rate determining process is diffusion in the large pores, because 

the diffusion path in large pores is orders of magnitude longer than the one in narrow pores. 

Kärger and Vasenkov [82] reached a similar conclusion experimentally, based on PFG NMR, for 

catalysts used in fluidized bed catalytic cracking (FCC), namely that diffusion at the (high) 

reaction temperature in composite faujasite zeolite-containing particles is governed by diffusion 

in the large pores, rather than in the intracrystalline micropores, despite the intrinsically much 

smaller diffusivity in the latter. This is because the crystals are so small. Wang et al. [74] also 

found that the value of the total macro- and mesoporosity is essential, while the distribution of 
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the wide (macro-/meso-)pore size is of secondary importance in determining the yield for the 

optimized hierarchical catalyst. In other words, a spatially uniform, wide pore distribution with 

uniform pore size (schematically represented by the bidisperse structure in Fig. 11.7) is preferred 

if the number of wide pores is large enough, while a fractal-like wide pore network may lead to 

higher yield and effectiveness factor if the number of wide pores is limited. This conclusion is 

also valid for the optimization of porous adsorbents [83].  

 

Fig. 11.7. Monodisperse (left), bidisperse (center), and bimodal (right) structures (nanoporous 

catalytic material: black; large diffusion channels: white). The monodisperse structure has a pore 

network with only narrow pores. The bidisperse structure has a hierarchical pore network, with 

narrow nanopores only in the black “islands” of the same size and wide pores of the same size 

surrounding these “islands”. The bimodal structures are assemblies of N × N bidisperse 

substructures; in the illustration, N is 3. From [74], with permission. 

 

Introducing macroporosity facilitates molecular transport, on the one hand, and reduces the 

amount of active catalytic material per unit volume, on the other hand. Hence, there is an optimal 

macroporosity when the objective is to maximize yield. Johannessen et al. [77] optimized the 

macroporosity analytically for a periodic bimodal porous catalyst (see Fig. 11.8) using optimal 
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control theory and an effective one-dimensional model, with the assumptions of pure molecular 

diffusion in the large pore channels and first-order, isothermal reaction in the catalyst. For this 

model catalyst, the macroporosity ( macroe ) can be calculated by:  

macro
d
d w

e =
+

                                                   (11.13), 

where d is the diameter of large channels and w is the channel wall thickness, as shown in the 

right part of Fig. 11.8. The simulations show that the optimal macroporosity should always be 

less than 0.5. When channel diameter and channel wall thickness are optimized, concentration 

gradients are indistinguishable in the y (vertical) direction, which is consistent with the 

conclusion reached by Wang et al. [74]. Based on this result, a one-dimensional effective 

(continuum) model was developed; it was shown that this model is almost as accurate as the two-

dimensional pore network model when optimizing the macroporosity of a bimodal catalyst.  

 

Fig. 11.8. Illustration of the bimodal catalyst (left) and one of its subunits (right). This bimodal 

catalyst is formed by repeating the subunit in the y direction. The white parts are nanoporous 

catalytic material; the black parts are large diffusion channels. L is half of the thickness of the 

catalyst, w is the thickness of the channel wall (i.e., the catalytic material), d is the diameter of 

the large channels. From  [76], with permission. 
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The Thiele modulus method can be used to optimize the hierarchically structured porous 

catalysts. Wang and Coppens [76] defined a generalized distributor (i.e., macropore-based) 

Thiele modulus ( 0F ): 

( ) ( )0

c

1 2C0
0 mC

r CV D r C dC
S 2

F
-

é ù= ê úë ûò                               (11.14) 

and related 0F  with the optimal effectiveness factor ( opth ) of the catalyst for a single reaction 

with general kinetics. In (11.14), V is the volume (3D) or area (2D) of the catalyst pellet; S is the 

external surface area (3D) or perimeter (2D) of the catalyst pellet; r is the reaction rate; C0 is the 

concentration of a key reactant in the bulk phase; Cc is typically assumed to be zero for an 

irreversible reaction or the concentration in equilibrium for a reversible reaction; Dm is the 

diffusivity in macropores, rather than the effective diffusivity used in the conventional 

generalized Thiele modulus (F ). They found that the opt 0h F-  relationship (see Fig. 11.9a) is 

analogous to the classical, universal h F-  relationship (see Fig. 11.9b), that is, the effectiveness 

factor 𝜂 is seen to decrease from 1 for a small Thiele modulus (corresponding to high 

diffusivities and low intrinsic reaction rates) to an inverse proportionality to  at high Thiele 

modulus. This yields a back-of-envelope approach to design a bimodal catalyst, because opth  can 

be estimated solely from the value of 0F  without the need for case-by-case optimizations.  

This opt 0h F-  relation was applied to optimize a mesoporous deNOx catalyst for the pseudo-first-

order, isothermal reaction, 4NO + 4NH3 + O2 à 4N2 + 6H2O, which is used to reduce NOx 

pollutants from power plant emissions [76]. By introducing an optimal macropore network 

(occupying 20-40% of the total volume of the catalyst) into the washcoat consisting of the 

mesoporous deNOx catalyst, its overall activity can be increased by a factor of 1.8-2.8. Wang and 

F
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Coppens [75] also optimized a commercial, mesoporous Ni/Al2O3 catalyst for the autothermal 

reforming of methane by introducing a macropore network. This process produces syngas (a 

mixture of, mostly, CO and H2), which is the precursor to methanol, ammonia, artificial fuels and 

more, so it is one of the most important chemical processes. The computations show that the 

overall activity can be increased by a factor of 1.4-4 by only adjusting macroporosity and 

macropore size of the bimodal (or macro-mesoporous) catalyst. In addition, a larger 

macroporosity typically favors a lower CO/H2 ratio (or a higher selectivity toward hydrogen), 

which indicates that the macroporosity can be used as a handle to control the CO/H2 ratio.  

 

Fig. 11.9. (a) Effectiveness factor of a porous catalyst (h ) as a function of the generalized Thiele 

modulus (F ) for a single reaction with different reaction kinetics and in catalyst pellets of 

different shapes. (b) Optimal effectiveness factor of a porous catalyst ( opth ) as a function of the 

generalized distributor Thiele modulus ( 0F ) for a single reaction with different reaction kinetics 

and in catalyst pellets of different shapes. From refer. [76], with permission.  
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When optimizing porous catalysts, the sensitivity of the catalyst performance to the structural 

parameters matters, as this shows how tightly the pore structure should be controlled during 

synthesis. Wang et al. [74] found that the optimal value of the macroporosity matters the most, 

while the distribution of large pore size around the optimal large pore size is less important than 

the size itself. Coppens and Wang [12] investigated how the effectiveness factor reacts to 

changes in channel diameter d and channel wall thickness w around the optimal values; Fig. 

11.10 shows that the loss in effectiveness factor is less than about 5% within a rather broad 

region around the optimum. These results are important for the preparation of industrial catalysts, 

because it is much easier to precisely control the macroporosity, rather than the large pore size.  

 

Fig. 11.10. Sensitivity of the effectiveness factor to the variations of channel diameter d (0.5dopt -

1.5dopt) and channel wall thickness w (0.5wopt - 1.5wopt), as labeled in Fig. 11.8. The colors 

indicate the loss in the effectiveness factor (i.e., a percentage of the optimal effectiveness factor). 

From refer. [12], with permission. 
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The performance of a catalyst often changes with time on stream, due to the deactivation of the 

catalyst by fouling, which covers active sites and blocks pore channels. Deactivation can be 

mitigated by optimizing the pore network of the catalyst, as suggested by Keil and his 

colleagues [84,85]. Rao and Coppens [78,79] computationally optimized a mesoporous 

hydrodemetalation catalyst by introducing an optimal hierarchical pore network, to maximize 

overall catalytic activity and robustness to deactivation over a given time on stream. This 

hierarchical pore network structure is illustrated in Fig. 11.11. A random sphere model was used 

to describe diffusion and reaction in the catalyst pellet. The results show that the lifetime of the 

hierarchically structured catalyst could be extended by 40%, while using 29% less catalyst than a 

non-optimized, purely mesoporous catalyst. Local variations in macroporosity and large pore 

size only negligibly change the overall yields, which is consistent with the optimization results of 

the porous catalysts without deactivation [74,77]. Catalytic performance may also be affected by 

phase change, caused by capillary condensation in the pores. Ye et al. [86] proposed a pore 

network model to investigate diffusion, phase change, and reaction in a porous catalyst pellet. 

Hydrogenation of benzene to cyclohexane in the Pd/Al2O3 catalyst pellet was selected as a model 

reaction. Their results show that pore blocking by liquid can significantly affect the performance 

of the multiphase catalyst, indicating that pore blocking must be accounted for when modelling 

multiphase reactions. Ye et al. [87] also investigated the influence of pore network structure on 

the performance of the multiphase catalyst. These structural parameters include pore size 

distribution, connectivity, pellet size, spatial distribution of pores, and bimodal pore structure. 

The results show that the performance of the multiphase catalyst is very sensitive to these 

structural parameters, which indicates that the pore network structure should be well controlled 

to achieve a desired performance of the porous catalyst for multiphase reactions.  
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Fig. 11.11. Illustration of the pore structure of the catalyst before and after deactivation. (a) The 

hierarchically structured catalyst before deactivation is composed of overlapping mesoporous 

grains separated by a macropore network. Each grain consists of overlapping solid catalyst 

spheres separated by mesopores. (b) The catalyst after deactivation has a similar hierarchical 

structure as the one in Fig. 11.11a, but metal sulfide deposits (black spheres) cover the internal 

surface of the catalyst and can block pores. From [78], with permission. 

 

These studies demonstrate that an appropriate hierarchical catalyst pore network structure can 

substantially increase catalytic performance, whether it is in terms of activity, selectivity or 

stability. Within the context of NICE, our conclusions are in striking agreement with models in 

nature, such as leaves and the alveolar sacs of the lower airways of the lung: A uniform 

distribution and constant size of “cells” (translated to, e.g., zeolite crystal size) and wide pore 

channels (translated to macro-/mesopores) leads to maximum performance. The optimal porosity 

and pore channel size matters, as does the cell/crystal size, avoiding undesired further diffusion 

limitations within the crystals that would affect the (intrinsic) product distributions and prevent 

scalability, so important in nature and technology. The benefits are significant and should guide 
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synthesis efforts. From a practical viewpoint, the optimum is shallow enough to allow for robust 

results, as some distribution around the optimum size distribution can be tolerated. 

11.6 Nature-inspired optimization of PEM fuel cells 

Proton exchange membrane (PEM) fuel cells are devices that convert chemical energy into 

electricity by electro-catalytic oxidation, at the anode, of hydrogen to protons, which diffuse 

through a membrane and electro-catalytically reduce, at the cathode, oxygen to water. Electrons 

produced at the anode move through an external circuit (where they are used to power a device) 

to the cathode, where they are consumed. Rather than direct combustion of hydrogen, the 

electro-catalytic route avoids Carnot’s thermodynamic efficiency limit, thus, while more 

complicated, is potentially much more efficient, even at low temperatures. A PEM fuel cell 

consists of electrodes (anode and cathode), catalysts, proton exchange membrane, and gas 

diffusion layers for gas distribution on both sides of the electrodes. Since the average electric 

power from a single PEM fuel cell is limited to around 0.5 W/cm2 [88], several cells must be 

stacked and bipolar plates are used to connect these cells, in order to achieve the desired power 

output in applications. During discharge, hydrogen (oxygen) are distributed over the anode 

(cathode) of the PEM fuel cell through the flow channels on bipolar plates, and then diffuse 

through the anode (cathode) gas diffusion layer and porous catalyst layer (often, Pt/carbon) 

before reaching the Pt active sites, where the reactions occur. At the same time, the product, 

water, is transported through the cathode catalyst and gas diffusion layer, to be collected and 

removed through the flow channels on the bipolar plates. Severe mass transfer limitations can 

cause rapid loss of voltage under high loads and significantly reduce power output  [89]. 

Condensed water can clog the pores, but sufficient humidity of the membrane is necessary for 

the proton exchange to occur. Water management and alleviating, in particular, oxygen mass 
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transfer limitations at the cathode is of great importance in PEM fuel cell design. Such problems 

have persisted over many decades. Can we turn to nature for inspiration in tackling them and 

redesign PEM fuel cells? We will discuss one aspect of this problem, taking the lung as a source 

of inspiration. 

The required transport systems in PEM fuel cells and in lungs share some fundamental features: 

a hierarchy of transport channels is used, and dominant transport mechanisms include flow and 

diffusion. Hence, it is worthwhile to learn from lungs to guide the optimization of transport in 

PEM fuel cells, which is illustrated in Fig. 11.12. As mentioned in Section 11.4, the upper 

respiratory tract (from trachea to bronchioles) has a self-similar, fractal architecture in which 

flow dominates. This fractal architecture connects the microscopic elements (i.e., the acini of the 

lung) to a single macroscopic element (i.e., the trachea of the lung) via equal hydraulic path 

lengths, leading to equal transport rates and minimized entropy production while breathing. 

Besides, this fractal architecture can be extended by simply adding a branching generation, 

without changing the microscopic building units (i.e., the acini). In the acini of the lung, 

transport of molecules is dominated by diffusion via the cell walls. Cell size is remarkably 

constant across mammals, in spite of considerable differences in size between organisms. As 

discussed, these fundamental properties of the hierarchical structure of the lung are tied to 

scalability and efficiency of the lung as a gas distributor and collector [66], and so can be utilized 

to design PEM fuel cells. 

Inspired by the lung, a design was proposed to improve the energy efficiency and save the 

amount of expensive catalytic material in a PEM fuel cell [90]. In this design, the flow channels 

of a bipolar plate and the pore network architecture of a catalyst layer are optimized. The two 

parts can be decoupled and subsequently combined. To optimize the flow channel, criteria for 
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minimum entropy production should be satisfied; to optimize the pore network structure, an 

optimized macroporosity should be introduced; both parts are ideally matched when Pe~1 at the 

interface, as in the lung.  

In the rest of this Section, some examples of biomimetic and nature-inspired designs of flow 

channels of a bipolar channel are given and compared. An extension to electro-catalysis of the 

methodology discussed in Section 11.5 is used to optimize the design of the catalyst layer.  

 

Fig. 11.12. Applying the NICE approach to the optimal design of PEM fuel cells. The 

hierarchical transport network of the lung, transitioning from fractal to uniform (left) inspired the 

design of a fractal distributor as bipolar plate (right top) and hierarchically structured nanoporous 

catalyst with uniformly distributed macropores (right bottom). From [55], with permission. 
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Some biomimetic designs of the flow channel pattern have been proposed to improve the flow of 

reactants and water in a PEM fuel cell [91–93]. Some designs combine the typically used 

serpentine (snake-like) and interdigitated patterns to form a “leaf-inspired” or “lung-inspired” 

channel pattern [91,92], as shown in Fig. 11.13. The computations show that the leaf and lung 

flow channel patterns have a lower pressure drop and a more uniform pressure distribution, 

compared to the commercial serpentine and interdigitated designs. Experimental studies [91,92] 

of these biomimetic designs show that the overall fuel cell performance can be increased by 30%. 

These biomimetic designs are important contributions to the improved design of PEM fuel cells, 

however, they only mimic certain natural features, without using the rigorous criteria behind the 

effectiveness of transport in leaves and lungs. Hence, they are essentially empirical, similarities 

with biology are superficial, and there is no reason for them to be optimal.  

 

Fig. 11.13. (a) Leaf-inspired and (b) lung-inspired, biomimetic flow channel patterns. The inlet is 

at the top and the outlet is at the bottom. From [91], with permission. 

 

On the contrary, nature-inspired designs of the flow channels rely on fundamental properties of 

pulmonary architecture and theories, such as Murray’s law [69,70]. A first step is to build flow 
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channels into a fractal-like structure, just like the upper respiratory tract of the lung. Fig. 11.14 

shows a two-dimensional fractal distributor as bipolar plate, which can be built by rapid 

prototyping (Fig. 11.12). Reactants enter this distributor through a single inlet, flow through the 

branching channels, and eventually exit the distributor through a square array of outlets, which 

have the same hydraulic distance from the inlet. The diameter of the channels gradually changes, 

following a power law with exponent, D , as discussed in Section 11.4. In fractal distributor 

networks in nature, this exponent is different for botanical trees ( 2D = ) [46,94,95], arteries (

2.7D = ) [46,96] and lungs ( 3D = ) [46,96], because the function and transport mechanism in 

these natural distribution systems differ. Murray’s law, where 3D = , leads to the extraordinary 

efficiency of the lung. Ramos-Alvarado et al. [97] computationally compared the designs of 

fractal distributors with 16, 64, and 256 outlets. The fractal distributor with 256 outlets enhanced 

power generation by 200% and 50% over the ones with 16 and 64 outlets, respectively, because 

flow distribution was more uniform and the pressure drop was lower. Our own work has used 

3D =  in a design that includes a number of branching generations guided by the boundary 

condition, Pe ~ 1, thus convective transport out of the last generation matches diffusion in the 

gas diffusion layer and the catalyst layer adjoining the bipolar plates – similar to the lung (Fig 

11.12). 
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Fig. 11.14. Fractal flow distributors with single inlet and (a) 16 and (b) 64 outlets. (c) 

Polarization curves (that is, voltage as a function of current density) and power density (product 

of voltage and current density) of PEM fuel cells for three fractal (here, called constructal) 

distributors as bipolar plates. The legend “Constructal N” refers to a distributor with N outlets. 

From [97], with permission. 

 

The inefficient usage of expensive platinum catalyst caused by diffusion limitations not only 

adds to the total cost, but also decreases the power output. Marquis and Coppens [98] 

computationally optimized the microstructure by adjusting the platinum loading, platinum-to-

carbon ratio, and catalyst layer void fraction. The results show that the optimization of catalyst 

microstructure can increase platinum utilization 30-fold over existing catalyst layer designs 

while maintaining power densities over 0.35 W/cm2. An optimal large pore network should thus 

be introduced into the catalyst layer to further increase performance, similar to the results 

obtained in Section 11.5. 
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11.7 Conclusions 

This Chapter discussed a nature-inspired (chemical) engineering (NICE) approach to optimize 

mass transport, and illustrated it via a few examples relevant to chemical engineering, for 

catalytic systems employing porous media. In technology, as well as in nature, efficiently 

transporting molecules over multiple length scales, while maintaining scale-independent results, 

is of great importance. In each case, the performance of the transport systems is significantly 

affected by their structure over different length scales, which provides abundant room to 

optimize transport through manipulating the multiscale structure, such as transport channel size 

and distribution. Meanwhile, a fundamentally rooted methodology is still required to rationally 

design these transport systems for technological applications. Trees and mammalian lungs have 

evolved a hierarchical channel network for transport, which is efficient, robust, and scalable. At 

the macroscale, where flow dominates, the channel network is a self-similar fractal; at meso- to 

microscales, where diffusion dominates, the channel size becomes almost uniform. That these 

structural features are intertwined with functional optimality is a powerful basis for rational, 

nature-inspired design, beyond biomimicry by superficial imitation. We illustrated this for 

porous catalysts and PEM fuel cells.  

Inspired by hierarchical diffusion networks in biology, an optimal large pore network can be 

introduced into nanoporous catalysts to maximize the usage of the catalyst, as well as overall 

yield. Computational and analytical studies indicate that an optimal hierarchically structured 

catalyst contains uniformly distributed wide pores in between nanoporous catalyst grains; the 

optimal macro/mesoporosity matters more than the optimal macro/mesopore size, and some 

distribution around the optimum is allowed, hence the result is robust. The same conclusions 

hold, irrespective of the reaction kinetics, and such a structure mitigates effects of deactivation 
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by fouling. Learning from the fractal architecture of lungs and trees for fast transport across 

length scales where transport occurs by flow, bipolar plates with a fractal geometry and 

employing Murray’s law were designed to improve the performance of PEM fuel cells, boosting 

their power output. 

Rapid progress in synthesis and manufacturing technologies, from nanomaterials synthesis and 

microtemplating methods to additive manufacturing and micro-machining, increasingly allow to 

put theoretically optimized, three-dimensional, hierarchical architectures of porous materials and 

flow distribution networks into practice. Practical implementation of optimal transport networks, 

guided by the nature-inspired engineering, NICE, approach, is no longer a distant dream.  
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