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Abstract
Individuals with Down syndrome (DS) show high inter-subject variability in cognitive ability and have an ultra-high risk of
developing dementia (90% lifetime prevalence). Elucidating factors underlying variability in cognitive function can inform us
about intellectual disability (ID) and may improve our understanding of factors associated with later cognitive decline. Increased
neuronal inhibition has been posited to contribute to ID in DS. Combining electroencephalography (EEG) with dynamic causal
modeling (DCM) provides a non-invasive method for investigating excitatory/inhibitory mechanisms. Resting-state EEG recordings
were obtained from 36 adults with DS with no evidence of cognitive decline. Theta–alpha activity (4–13Hz) was characterized in
relation to general cognitive ability (raw Kaufmann’s Brief Intelligence Test second Edition (KBIT-2) score). Higher KBIT-2 was
associated with higher frontal alpha peak amplitude and higher theta–alpha band power across distributed regions. Modeling this
association with DCM revealed intrinsic self-inhibition was the key network parameter underlying observed differences in 4–13Hz
power in relation to KBIT-2 and age. In particular, intrinsic self-inhibition in right V1 was negatively correlated with KBIT-2.
Results suggest intrinsic self-inhibition within the alpha network is associated with individual differences in cognitive ability in
adults with DS, and may provide a potential therapeutic target for cognitive enhancement.
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Introduction
Down syndrome (DS) is caused by an extra copy of chromosome
21 and is the most common genetic cause of intellectual disability
(ID) worldwide, affecting 1 in 800 births (de Graaf et al. 2015).

While almost all individuals with DS have an ID (IQ < 70), there is
a high degree of variation in cognitive ability between individuals
(Startin et al. 2016). Mechanisms underlying differences in cogni-
tive ability in this population are as yet undetermined.
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Additionally, adults with DS are at an ultra-high risk of
Alzheimer’s disease (AD) (lifetime prevalence 90% (McCarron
et al. 2014; Zis and Strydom 2018)) attributed to triplication of
the APP gene which is located on chromosome 21. A more in-
depth understanding of how variability in brain function in this
group of individuals, who are genetically at risk of AD, is associ-
ated with cognitive ability may provide mechanistic insights
linking genetic dementia risk and cognitive impairment.

Electroencephalography (EEG) measurements reveal oscil-
latory brain activity across distinct frequency bands. These
bands are believed to represent different dynamic network
states and have been associated with a variety of different func-
tions. Alpha oscillations (8–13Hz) are one of the most promi-
nent and reliably measured signals (Gasser et al. 1985; Vázquez-
Marrufo et al. 2017). Alpha oscillations have been shown to
modulate perception and are associated with feedback control
of sensory information (Jensen et al. 2014; Popov et al. 2017).
Consequently, alpha activity may have utility as a marker of
intact distributed network activity, and may potentially be asso-
ciated with cognitive ability.

Consistent with this notion, previous research has sug-
gested adults with DS show atypical alpha-band features
compared to adults of the typically-developing (TD) popula-
tion, including a slower alpha peak frequency (APF), with the
APF within the theta range for some individuals (Gunnarson
1945; Ono et al. 1992; Soininen et al. 1993; Murata et al. 1994;
Locatelli et al. 1996; Velikova et al. 2011). Furthermore, within
adults with DS, individual differences in alpha power and
alpha frequency have somewhat inconsistently been associ-
ated with cognitive ability (Soininen et al. 1993; Locatelli
et al. 1996; Politoff et al. 1996; Medaglini et al. 1997; Velikova
et al. 2011), in addition to ageing and cognitive decline
(Johanson et al. 1991; Ono et al. 1992; Soininen et al. 1993;
Murata et al. 1994; Locatelli et al. 1996; Visser et al. 1996;
Medaglini et al. 1997; Katada et al. 2000; Salem et al. 2015).
Thus, EEG characteristics in the alpha band may prove useful
as biomarkers for whole-brain dysfunction in adults with DS,
though further investigation is warranted.

Functionally, alpha band activity may represent modula-
tions of excitatory/inhibitory (E/I) balance of ongoing cortical
activity (Peterson and Voytek 2017). Impairments in E/I balance
have also been purported as a mechanism contributing to cog-
nitive impairment in DS (Martínez-Cué et al. 2014). Bayesian
model inversion schemes, such as dynamic causal modeling
(DCM), allow non-invasive inference on parameters of neuronal
circuitry from EEG signals (Friston et al. 2003; Kiebel et al. 2009),
and have been used to infer E/I parameters from scalp-EEG sig-
nals in health and neuropsychiatric conditions (Brown and
Friston 2012; Fogelson et al. 2014; Pinotsis et al. 2014; Cooray
et al. 2015; Chellappa et al. 2016; Ranlund et al. 2016).

In this study, we quantified whole-scalp resting-state EEG
characteristics associated with cognitive ability in a sample of
adults with DS without a diagnosis of dementia or noticeable
cognitive decline. We used a standard statistical parametric
mapping (SPM) approach, a technique for statistically analyzing
maps of brain imaging data (Kiebel et al. 2005), to firstly spa-
tially delineate variations in cortical oscillatory activity across
theta–alpha frequency bands that were associated with cogni-
tive ability. We then applied DCM for cross-spectral densities
(Kiebel et al., 2009; Moran et al., 2009) to infer the cortical cir-
cuitry changes underlying these oscillatory correlates; thereby
offering insights—at the level of canonical microcircuits (CMCs)
—into the neuronal architectures of adults who present with
both ID and a genetic susceptibility for dementia.

Methods
Ethical Considerations

Ethical approval for the study was obtained from the North
Wales West Research Ethics Committee (13/WA/0194). Where
individuals had capacity to consent for themselves written
informed consent was obtained. Where individuals did not have
capacity to consent for themselves, a consultee was asked to
sign a form to indicate their decision regarding the individuals’
inclusion based on their knowledge of the individual and his/her
wishes, in accordance with the UK Mental Capacity Act 2005.

Participants

Participants were recruited from an existing pool of the UK
adults (aged 16 and over) with DS who had participated in an
initial cognitive assessment (see Startin et al., 2016 for further
details). All participants taking part in the EEG study detailed
here were aged 16 and over and had genetically confirmed tri-
somy 21 (two participants with non-trisomy 21 DS were
excluded). Participants with an acute physical or mental health
condition were excluded, as were participants with a clinical
diagnosis of dementia or the presence of noticeable cognitive
decline associated with dementia, and those who were non-
compliant with experimental instructions. The presence of
dementia was defined based on informant report of clinical
diagnosis. The presence of noticeable cognitive decline was
determined using information from the Cambridge
Examination of Mental Disorders of Older People with Down
Syndrome and Others with Intellectual Disabilities
(CAMDEX-DS (Ball et al. 2004)), which is considered a valid
and reliable tool for assessing cognitive decline in adults
with DS (Ball et al. 2004). All participants were required to
show no decline on this questionnaire.

In total, 36 participants aged 16–56 years (M = 30.92 years,
SD = 11.03; 19 female) meeting the above criteria were selected
from the databank.

Cognitive Assessment

The Kaufmann’s Brief Intelligence Test second Edition (KBIT-2)
raw test score was used to provide an estimate of general cogni-
tive ability (Kaufman and Kaufman 2004). The KBIT-2 comprises
three subtests, which assess general cognitive abilities through
questions relating to verbal knowledge, pattern completion and
riddle completion. It provides a raw composite score of verbal
and non-verbal abilities, which can then be converted to an age-
adjusted IQ score. In the literature, only two tests that measure
both verbal and non-verbal abilities have been used in more than
one study to assess general cognitive ability in adults with DS—
the Wechsler Intelligence Scale for Children Revised (WISC-R;
Wechsler 1974) and the KBIT-2 (see review Hamburg et al., sub-
mitted). As the WISC-R is designed for use in children, the KBIT-2
was chosen for this study to ensure items were age appropriate.
Raw KBIT-2 scores were used, as opposed to age-adjusted IQ
scores, due to the high number of participants scoring at floor
(i.e., the lowest score possible; IQ of 40) when raw scores were
converted to IQ scores. This is a common approach to this issue
in DS research (Edgin et al. 2010; Startin et al. 2016).

EEG Acquisition and Preprocessing Procedure

The initial eyes-closed resting-state EEG paradigm consisted of
continuous recording for 5.5min (i.e., whole-block recording).
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We use the term resting state to indicate that participants were
not asked to complete a specific task (other than closing their
eyes). Due to poor participant compliance (i.e., participants had
difficulty sitting still and maintaining eye-closure) an amend-
ment was made after 16 participants had been assessed. This
involved partitioning the 5.5-min recording into 30 s blocks
with a short break (of variable length according to each partici-
pant) between blocks, which enabled researchers to reiterate
the instruction to maintain eye-closure and ensure participants
were not asleep. This protocol is referred to as split-block
recording. All recordings were performed as part of a longer
testing session, involving additional EEG paradigms and were
counterbalanced within this.

Data was recorded using appropriately sized EGI hydrocel
high density sensor nets (containing 128 channel silver–silver
chloride electrodes). Electrodes above, below and beside the
outer canthus of each eye recorded vertical (VEOG) and hori-
zontal (HEOG) electro-occulogram, respectively. The EEG signal
was referenced to the vertex during recording, and signals were
recorded using a bandpass filter of 0.1–100 Hz, amplified using a
gain of 10 000, and sampled at a rate of 250Hz. Recordings were
made using NetStation (Electrical Geodesics, Inc., Eugene, OR).
Electrode impedances were maintained below 50 kΩ. Data is
available upon request.

All EEG preprocessing was performed using EEGLAB (Delorme
and Makeig 2004) for MATLAB (MathWorks, Natick, MA). The
continuous EEG signal was digitally filtered using a low pass filter
of 30 Hz. All data obtained from six channels situated around the
ears were removed due to poor fit of these channels during
recordings as a result of morphological differences in those with
DS. As there was a high degree of variability in blink artifacts
between participants, and as there is no clear validated algo-
rithm approach to artifact removal in DS, movement and/or blink
artifacts were removed manually (i.e., affected data excluded)
based on visual inspection. Bad channels were also identified
based on visual inspection and were replaced using spherical
spline interpolation (SSI; Perrin et al. 1989); a widely usedmethod
for estimating missing data values in arrays with more than 65
electrodes (Ferree 2006). It estimates missing data using spatially
weighted existing values that are approximated to positions on a
sphere (Ferree 2006; Kang et al. 2015). In this study, the mean
number of channels interpolated per participant was 1.82 (range
0–5). Remaining channels were re-referenced to the average elec-
trode (with the exception of VEOG and HEOG channels, which
were removed from analysis following manual removal of blink
artifacts). Datasets were segmented into 2-s epochs. Participants
with fewer than 12 such epochs were excluded from further EEG
analysis. This threshold was chosen as a pragmatic trade-off
between maximizing the availability of artifact free data, while
attempting to obtain stable power distributions in the frequency
band of interest. The average power spectral densities estimated
from this threshold were conserved at the subject level (see
Supplementary Figs S1 and S2).

Spectral Analysis Procedure

Spectral estimates were obtained using multitaper analysis for
each channel. Multitaper estimates of spectral power were cal-
culated across 2-s windows using a time resolution of 400ms
with steps of 50ms and a bandwidth of 3 dB. Estimates were
then averaged to within time windows and across time win-
dows for each subject, and average scalp maps were used to
estimate the SPM results. Scalp maps were generated using a
development version of SPM12 (12.3, updated 03/08/2018) for

MATLAB and were spatially smoothed to minimize the effects of
spatio-anatomical differences between participants (Gaussian
smoothing kernel 2*2px across the 64*64 pixel scalp map). SPMs
were thresholded with family-wise error correction at P = 0.05.

Mean scalp maps of theta (5 Hz) and alpha (8 Hz) power were
generated to assess their regional distribution and determine
the location of maximum power in each band. We then used
linear regression to examine the relationship between raw
KBIT-2 score and both alpha peak amplitude (i.e., the maximum
power within the 8–13Hz range) and APF (i.e., the frequency
within the 8–13Hz range at which peak amplitude occurs) in the
spectra derived from regional electrode averages (occipital E70,
E71, E74, E75, E76, E82, E83; frontal E4, E5, E10, E11, E12, E16, E18,
E19). Finally, a scalp-wide SPM of power in the combined theta–
alpha (4–13Hz) range was generated, and regression was used
to identify significant associations between raw KBIT-2 score
and theta–alpha power across the scalp (P < 0.05, with family-
wise error correction). This analysis was conducted using a gen-
eral linear model (Kiebel et al. 2005).

Dynamic Causal Modeling Procedure

The results from the above analyses of scalp (sensor space) data
motivated a DCM of a distributed bilateral alpha network (in
source space). This analysis followed a hierarchical model inver-
sion: (1) for each subject, a network model of coupled neural-
masses (i.e., the CMC model (Moran et al. 2013)) was inverted to
explain the complex cross-spectra of oscillatory activity across
the scalp; that is both power distribution within different fre-
quency bands, and the phase relationship between them; (2)
between-subject effects at the level of the subject-specific net-
work connectivity (DCM) parameters were estimated using a
parametric empirical Bayesian (PEB) approach (Friston et al.
2016). At this between-subject level, we used KBIT-2 raw score,
age, and their interaction as regressors of interest, in addition to
two noise regressors (counterbalancing order and whether the
paradigm was split block or whole block). DCM for cross-spectral
density—as applied here—enables the inference and estimation,
within a Bayesian framework, of directed coupling (effective
connectivity) among key sources in this network, as well as the
parameters (time constants, intrinsic connection strengths) that
define local circuitry. This particular form of DCM and has been
validated in a range of studies of distributed networks in EEG
(Boly et al. 2012; Legon et al. 2016; Symmonds et al. 2018).

Nodes of interest were chosen a priori based on imaging liter-
ature analyzing EEG activity in combination with functional
magnetic resonance imaging (fMRI) and included bilateral
occipital, parietal, and frontal sources as a putative alpha net-
work. Specifically, Laufs et al. (2003) examined correlations
between BOLD signal and alpha power. Associations were found
in the primary visual cortex (V1), superior parietal lobule (SPL),
and middle frontal gyrus (MFG). These nodes were selected for
the current study. Although further nodes in the alpha network
have also been identified (e.g., subcortical structures (Omata
et al. 2013)), the influence of these sources are accounted for
within the DCM.

Age was orthogonalized to examine variance not explained
by KBIT-2 score in order to increase statistical efficiency (a linear
model between raw KBIT-2 score and age was fit and the resi-
duals of this linear fit were retained). Age was chosen as the var-
iable to be orthogonalized because general cognitive ability was
the main outcome of interest in this study.

To optimize prior expectations for the use of the CMC model
generating alpha oscillations, we took a two-step approach: (1)
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based on the simulated spectra of a single CMC, we optimized
several time constants (T1, 2, 3) and decreased population vari-
ance (S parameter) in order to allow for power spectra that con-
tain a frequency peak in the alpha range. (2) Using those prior
parameter values, we then inverted all subjects—effectively
scanning the parameter space around the above priors by
inverting different subjects. From this pool of inverted subjects,
we selected the posterior parameter estimates of a representa-
tive subject for whom the inversion provided good model fits.
Finally, these values were used as priors for each subject during
a second inversion that was the basis for further analysis. The
ensuing prior used for the model inversion of each subject are
shown in Table 1.

We compared a subset of models with variations in a subset
of the parameters explaining the between-subject model regres-
sors. This model comparison can be done efficiently by applying
Bayesian Model Reduction estimates (Penny et al. 2004; Friston
et al. 2015). Although Bayesianmodel reduction can be employed
to search themodel space exhaustively (i.e., compare all possible
combinations of model parameters), we chose here to focus on a
selection of models that were informed by our neurobiological
questions. These models focused on the type of connectivity
(i.e., intrinsic, forward, and backward connections), as these con-
nections are mediated by distinct neurotransmitters (AMPA,
NMDAR, and GABA transmission, respectively, for Forward,
Backward, and Intrinsic connections) in our model. For inference
on this more restricted model space, we are harnessing Bayesian
model reduction for its computational efficiency.

Overall candidate models differed in terms of whether
forward, backward, and intrinsic self-inhibitory connections
showed cognitive and age-related effects. The model with the
greatest log-evidence (as approximated by negative free-energy)
was considered the winning model. Connectivity changes asso-
ciated with KBIT-2 score in the winning model were then exam-
ined to quantify the microcircuit correlates of cognitive ability
and thereby explain the observed differences in theta–alpha
power in terms of neuronal excitation–inhibition balance.

We tested the construct validity of using this approach by sim-
ulating data from in silico six-node networks, where a between-
subject regressor modulated specific model parameters (Fig. 1).
We generated a baseline model, and a random between-subject
regressor. Using these, we then generated 36 single-subject
models, where intrinsic inhibitory connections were modulated
according to the weight given by the between-subject regressor
and simulated output cross-spectral densities that would be
observed from the particular model specifications. Using hierar-
chical PEB inversion of dynamic causal models described above,
we then inverted models based on these data, and assessed the

evidence that the data were generated from different “reduced”
models—that is, models that only allow between-subject varia-
tion to be caused by specific subsets of model parameters. In this
(group-level) model comparison, we can successfully identify the
known generative parameter variations. These simulation results
further support the use of computationally efficient estimation of
log-model evidence using Bayesian model reduction, which has
been successfully employed across multiple complex network
analyses in EEG (Friston et al. 2016; Rosch et al. 2018; Symmonds
et al. 2018).

Results
Spectral Analysis Results

Mean raw KBIT-2 score was 54.84 (19.64 SD; 10–102 range).
Average scalp maps and mean power spectra by region for all
participants (n = 36) showed frontal dominance of theta activity
as well as the expected posterior alpha distribution (Fig. 2A,C).
Linear regression revealed peak alpha amplitude at the frontal
region to be significantly associated with raw KBIT-2 score (t(34)
= 2.93, P = 0.006; Fig. 2B). The relationship between peak alpha
amplitude at the occipital region and raw KBIT-2 score did not
reach significance (t(34) = 1.77, P = 0.085; Fig. 2B). In our sample,
no significant association between peak alpha frequency and
KBIT-2 was found for frontal (t(34) = 0.04, P = 0.96), or occipital
electrodes (t(34) = 1.03, P = 0.31) (results not shown).

Whole-scalp SPM analysis of EC spectral estimates revealed
clusters of significant positive correlations between estimated
general cognitive ability (raw KBIT-2 score) and power in the
4–13Hz range. Clusters were located over left occipital and right
temporal scalp regions (Fig. 2D).

Dynamic Causal Modeling Results

We identified cortical sources that are associated with increased
alpha power from the literature. Specifically, we used Montreal
Neurological Institute (MNI) coordinates of fMRI clusters report-
edly associated with EEG alpha power derived from EEG/fMRI
experiments (Laufs et al. 2003) as priors for the DCM analysis
(Fig. 3B). Based on this literature, we identified three bilateral
sources: primary visual cortex (V1, MNI coordinates [x,y,z] left:
[−16,−92,0]; right: [12,−92,21]), SPL (MNI coordinates left: [−48,
−56,52]; right: [34,−51,39]), and MFG (MNI coordinates left:
[−46,37,16]; right: [46,18,21]). Coordinates that were reported as
Talairach coordinates in the original report were converted
to MNI coordinates using an online conversion tool (http://
sprout022.sprout.yale.edu/mni2tal/mni2tal.html, accessed 03/07/

Table 1: T1—superficial pyramidal cell time constant; T2—inhibitory interneuron time constant; T3—spiny stellate cell time constant; T4—deep
pyramidal cell time constant; g1—superficial pyramidal cell modulatory self-connection; g2—superficial pyramidal cell to spiny stellate cell
inhibition; g3—inhibitory interneuron to spiny stellate cell inhibition. Note that T and s parameters only have one value that is applied to all
regions.

Parameter Left V1 Right V1 Left SPL Right SPL Left MFG Right MFG

τ1 2.17 = = = = =
τ2 2.94 = = = = =
τ3 3.81 = = = = =
τ4 0.66 = = = = =
g1 −0.39 −0.05 −0.33 0.18 −0.14 −0.03
g2 −0.33 0.22 0.84 0.73 0.42 −0.08
g3 −0.05 −0.05 −0.23 −0.54 −0.31 −1.67
s −0.63 = = = = =
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2018), which itself is based on a previously published conversion
(Lacadie et al. 2008).

Each node was modeled as an EEG dipolar source, with
activity being generated by a CMC neural mass model (Fig. 3A).

This model was fitted to complex cross-spectral density sum-
maries of ongoing EEG oscillations that preserved both ampli-
tude and phase relationships. The priors of the CMC were
tuned to generate alpha oscillations and were identical for each

V1

SPL

MFG

A B C D E

Testing modelling validity with simulated data

Between subject effects:

Subset of parameters:

Self-inhibition
Simulated Networks:

Subject-specific 
parameter mixture

Data simulation:

Subject-specific 
cross-spectral densities

Model in version:

Hierarchical parametric
empirical Bayes

Model comparison:

Identifying modulated
parameters

F

...

B

...

i

...

F B FB i Fi

ΔF = 38
700

0

ΔF
re

e
 e

n
e

rg
y

Bi FBi

Figure 1. Assessing construct validity of the parametric empirical Bayesian (PEB) approach. (A) A baseline model parameterization is combined with a between-

subject random effects regressor by allowing modulation of specific subsets of parameter (here, intrinsic self-inhibitory connections) by the weight given in the

between-subject effect regressor. (B) This produces 36 different DCM models, that differ in their intrinsic connectivity in a way that is affected by the between-subject

regressor. (C) These models are used to generate synthetic cross-spectral densities (of which the first three eigenmodes are shown here) that vary systematically with

the regressor. (D) These data are used as input for DCM model inversion. This approach compares subsets of models where between-subject effects are expressed

only in a subset of parameters. (E) Using the free-energy measure of model likelihood for each of these models, we can then compare how good an explanation these

models offer for the data, and successfully identify the model with changes in intrinsic self-inhibition as the winning model.

0 600

p
e
a
k
 a

lp
h
a
 p

o
w

e
r 

[l
o
g
 µ

V
2
]

p
e
a
k
 a

lp
h
a
 p

o
w

e
r 

[l
o
g
 µ

V
2
]

m
e
a
n
 p

o
w

e
r

[1
0

3
 µ

V
2
]

frequency [Hz]

KBIT raw score

KBIT raw score

0 302010

10
0 100

0 100

16

10

1.0

1.5

15

Statistic parametric map of raw KBIT-2 score

Scalp-frequency maps

Scalp power distribution Regional power spectra Raw KBIT-2 and alpha power

Theta frequency (5Hz) Frontal electrodes

Occipital electrodesLow alpha frequency (8Hz)

frequency [Hz]

4813

fr
e
q
u
e
n
c
y
 [

H
z
]

scalp location

T
-v

a
lu

e

left right

p
o
s
te

ri
o
r

a
n
te

ri
o
r

s
c
a
lp

 l
o
c
a
ti
o
n

4

3.45

3.80

8

13

a 

b

power [µV2]

power [µV2]

0 600

A B C

D

frontal

p < 0.01
occipital

Figure 2. A. Mean scalp map of power distribution for theta (5 Hz, top) and low-alpha (8 Hz, bottom) activity. The frequencies shown here are exemplary and chosen

for their complementary distribution across the scalp (all statistical inference is made across the whole theta–alpha spectrum). B. Linear relationship between peak

alpha amplitude at frontal and occipital regions (eight channel average frontal; seven channel average occipital) and raw KBIT-2 score. C. Mean regional power spectra

at frontal and occipital regions (regional channel average). D. T-statistic scalp map showing voxels with a significant relationship between raw KBIT-2 score and

power in theta–alpha (4–13Hz) range; voxels were located over left occipital (a) and right temporal (b) scalp regions.

DCM of EEG Activity in Adults with Down Syndrome Hamburg et al. | 5
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhz043/5382204 by U
niversity C

ollege London user on 20 M
arch 2019



participant. The model fits for individual DCMs inverted to
subject-specific spectra are shown in Figure 3C; specifically, the
DCM principal eigenmode summary of the whole-scalp data
from each participant (here, with eight eigenmodes—this is
standard practice in DCM and provides a well-tested balance
between the richness of the dataset (preserving components
for analysis) and allowing model inversion (reducing the
dimensionality of multi-channel recordings)). This figure shows
the top three eigenmodes of the empirical recordings versus
those generated by the DCMs (Fig. 3C), illustrating an almost
universally excellent fit in the <15Hz spectra (faster frequen-
cies have not been captured as accurately because the model
was optimized to generate <15 Hz activity).

We then compared seven candidate models (Fig. 4A), where
between-subject effects were only allowed to affect a subset of
possible model parameters (combinations of extrinsic and
intrinsic connectivity parameters). Bayesian model selection
identified the model allowing for intrinsic self-inhibition alone
as having the greatest model evidence. This model had a nega-
tive free-energy difference to the next highest model of 9.1 (cor-
responding to a Bayes Factor of over 100) (Fig. 4B), which is

considered very strong evidence for the model compared to its
alternatives (Kass and Raftery 1995).

The variation of connectivity parameters best explained by
KBIT-2 scores in the winning model architecture (i.e., restricting
between-subject effects to intrinsic self-inhibition) is shown in
Figure 5A. The biggest effect (which was also estimated with
the greatest certainty) was seen in right V1, where a higher raw
KBIT-2 score was associated with less intrinsic-inhibition (i.e.,
disinhibition). This negative linear relationship between (mean
bilateral) V1 self-inhibition and KBIT-2 raw score is further
illustrated in Figure 5B, showing mean V1 intrinsic inhibition
versus raw KBIT-2 score plotted for each subject. Note the
Bayesian confidence intervals delimit the certainty with which
each parameter is estimated. This shows that individually
some parameters are more identifiable during the model inver-
sion (i.e., their exact value can be estimated more precisely
than others). However, the statistical test of our hypotheses
was performed during the Bayesian model selection (i.e., by
comparing models where different sets of parameters were
included to explain the variation between subjects, we identi-
fied an optimum model that balances complexity and model
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accuracy). This means that there is strong statistical evidence
for the inclusion of all the parameters shown, even where the
individual parameter values cannot be estimated with high cer-
tainty (as indicated by larger Bayesian confidence intervals).

There were no effects of age or the interaction between KBIT-
2 raw score and age that survived Bayesian Model Reduction.

Discussion
We show that general cognitive ability in adults with Down syn-
drome (DS) is associated with particular, distributed signatures in

scalp activity across theta–alpha frequency ranges. Furthermore,
DCM indicates that across our model space, between-subject dif-
ferences in intrinsic self-inhibition producing the differing EEG
spectra are associated with individual differences in general cog-
nitive ability. In particular, we demonstrated that higher cognitive
ability was associated with higher alpha peak amplitude at fron-
tal electrodes and higher theta–alpha band power in distributed
regions across the scalp. Within a generative model of a distrib-
uted alpha generating network, these changes were associated
with lower intrinsic self-inhibition in bilateral V1 and an implicit
loss of E/I balance maintained by inhibitory interneurons.
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The importance of alpha activity in cognition is highlighted
by work in the TD population relating alpha oscillations to
attention and memory processes (Klimesch 1999; Richard Clark
et al. 2004; Palva and Palva 2007; Samaha and Postle 2015;
Foster et al. 2016; Oswald et al. 2017; Voytek et al. 2017). Within
the DS population, a limited number of studies have reported
associations between alpha power and cognitive ability. Similar
to findings of the present study, Medaglini et al. (1997; 45 adults
with DS) reported a significant positive correlation between
alpha power (8–12 Hz) and cognitive ability (attention and
memory test performance, as measured by the Cancellation
Task and the Rivermead Behavioural Memory Task, respec-
tively). In contrast, a smaller study by Politoff et al. (1996; 13
adults with DS) reported a significant negative correlation
between low-alpha power (8.8 Hz) and cognitive ability (as mea-
sured by the Picture Absurdities Test). This study, however,
was restricted to higher functioning participants and may
therefore not be comparable to the present study. Interestingly
Velikova et al. (2011; 25 individuals with DS) reported cognitive
ability (as measured by the Wechsler Adult Intelligence Scale
and the Rivermead Behavioural Memory Task) was positively
associated with power at the high-alpha range (11–12Hz) and
negatively associated with power at the low-alpha range
(7–8 Hz). Individuals with cognitive decline were not excluded
from this study, however, which may be a potential source of
inconsistency between the low-alpha findings reported here. A
particular strength of our study is the exclusion of adults with
noticeable cognitive decline, which allows pre-decline relation-
ships between oscillatory correlates and cognitive ability to be
determined. Cognitive decline and dementia represent disease
processes that warrant future specific investigation.

The association between higher general cognitive ability and
lower intrinsic self-inhibition demonstrated here is in keeping
with animal model literature demonstrating markers of over-
inhibition in the Ts65Dn mouse (a commonly used mouse
model of DS) compared to wildtype mice (see Contestabile et al.
(2017) for review). This has included an increased number of
GABAergic interneurons, enhancement of interneuron excitabil-
ity, and reduced glutamatergic transmission (Chakrabarti et al.
2007; Hernández et al. 2012; Tyler and Haydar 2013; Hernández-
González et al. 2015; Contestabile et al. 2017). Treatment of
Ts65Dnmouse models with pharmacological agents that reduce
inhibition has also been shown to improve memory deficits in
these animals (Braudeau et al. 2011). Based on findings from the
mouse model literature, over-inhibition has also been the target
of recent human drug trials aimed at improving cognition in
individuals with DS. Thus, far these trials have either been
unsuccessful (Roche; ClinicalTrials.gov Identifier: NCT02024789)
or are ongoing (Balance Therapeutics). The unsuccessful study
by Roche was a phase II placebo-controlled trial of an inverse
agonist of α5 subunit-containing GABAA receptors (basmisanil).
No improvement in cognitive function was observed over 26
weeks in participants (aged 12–30). Importantly, different inhibi-
tory pathways across the brain express different GABAA recep-
tor subunits—α5 containing receptors are highly expressed in
the adult hippocampus but have low expression in other brain
areas (Vargas-Caballero et al. 2010). As atypicalities in the brains
of individuals with DS are not localized to the hippocampus,
alternative targets of over-inhibition require investigation. The
findings of our study—indicating a relationship between local-
ized cortical over-inhibition and cognitive ability—further sup-
port this.

It is of further interest that human studies using postmor-
tem tissue, magnetic resonance spectroscopy (MRS), and neural

progenitor cells have failed to find evidence of over-inhibition
in DS and have instead indicated under-inhibition may be pres-
ent. The indication in frontal regions of a positive relationship
between inhibition and cognitive ability in this study, as
opposed to the negative relationship in V1, is suggestive of
potential regional differences in E/I. It is possible such differ-
ences contribute to inconsistencies in the literature and sug-
gest the over-inhibition narrative in DS may in fact be more
complex, with regional differences also being important to con-
sider. It follows that MRS studies may prove useful for examin-
ing E/I mechanisms in DS further, with studies focusing on
different brain regions. The nodes identified in this study may
inform targets for this.

Mechanistically, the parameter of intrinsic inhibition identi-
fied here describes recurrent self-connections that dampen the
excitability of the large projection neurons in the circuitry of
the CMC (Fig. 3A). This is a population level summary of intra-
laminar local inhibitory populations that connect pyramidal
cells within the supragranular, or infragranular cortical layers.
Less intrinsic inhibition, as seen in V1 with higher KBIT-2
scores, therefore releases the self-suppression of ongoing activ-
ity, and results in more excitable cortical sources. It could be
hypothesized that reduced inhibition at a cellular level would
lead to increased electrophysiological activity in this region;
manifesting as release of synchronous alpha activity across the
network as measured by EEG (a desirable outcome during eye-
closure and indicative of efficient network-level control).
Conversely, increased V1 intrinsic inhibition (as seen in indivi-
duals with lower KBIT-2 scores) may therefore attenuate the
alpha that can be measured in the EEG across the whole scalp.

It is noteworthy that adults with DS show reduced alpha
power when compared to age-matched TD controls (Ono et al.
1992; Murata et al. 1994; Locatelli et al. 1996; Babiloni et al.
2009). The relationship between alpha and general cognitive
ability in adults with DS reported here therefore indicates that
within individuals with DS, those with an EEG spectrum closer
to that of individuals from the TD population (i.e., higher alpha
peak amplitude) are also closer to individuals from the TD pop-
ulation in terms of general cognitive ability.

This is the first study to examine parameters of E/I in
humans with DS. Our results suggest regionally specific modu-
lation of intrinsic self-inhibition as a potential therapeutic tar-
get for cognitive enhancement in DS. Recent research has
demonstrated the utility of transcranial direct current stimula-
tion in modulating local E/I balance in order to enhance mem-
ory through reducing local GABA levels in the TD population
(Barron et al. 2016). The localized nature of these findings,
although problematic for pharmacological manipulation, lends
itself to such targeted approaches. A further potential practical
implication of this study is the use of non-invasively measured
V1 intrinsic-inhibition as a biomarker of general cognitive abil-
ity, which drug trials in DS may find useful.

It is important to note, however, that the differences in
intrinsic inhibition between adults with DS reported here may
be compensatory responses to a backdrop of altered neurobiol-
ogy, rather than a direct consequence of trisomy 21. For some
individuals, it may be the case that excess inhibition provides
an advantage of some form (for example, reducing seizure-like
activity, which is more common in DS (Pueschel et al. 1991)).
Caution should therefore be taken when considering intrinsic
inhibition as a potential therapeutic target in this population.

In the current study, age was not identified as an important
factor associated with theta–alpha activity. Despite this, age-
related changes in alpha activity are commonly reported in DS
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literature (e.g., Johanson et al. 1991; Soininen et al. 1993; Katada
et al. 2000). It is possible that age was not an important factor
in the current study because of the relatively young mean age
of adult participants (30.92 years), before substantial AD-
associated pathology in adults with DS is likely to occur (AD
pathology is present in the brains of almost all adults with
DS over the age of 30 (Wisniewski et al. 1985; Mann 1988)).
Orthogonalizing age with respect to KBIT-2 score may have
also reduced a possible relationship. Alternatively, it is possible
that when cognitive decline is controlled for (as in the present
study), age is not an important factor associated with theta–
alpha activity.

Other studies using neural mass computational models to
investigate resting-state alpha activity have highlighted the
importance of inhibitory interneurons within the Lateral
Geniculate Nucleus of the thalamus (Bhattacharya et al. 2016).
Research suggests these neurons play a role in maintaining
homeostatic balance within the network by suppressing any
instability that may arise from anomalous synaptic activity
(e.g., dysrhythmia or slowing) (Bhattacharya et al. 2016). It is
therefore possible that the parameter of intrinsic self-inhibition
in this study may play a similar role in maintaining homeo-
static balance within the alpha network. It could be argued that
maintaining excitation–inhibition balance within this network
may be a greater challenge for the DS brain, where numerous
sources (from biochemical to a gross anatomical) may contrib-
ute to anomalous syntactic activity.

In order to achieve good model fits, we adjusted CMC para-
meters so that individual CMC sources would provide a fre-
quency peak in the alpha range. This approach means that we
may have already “explained away” some of the whole-scalp
observations through adjustment of local parameters, meaning
that long-range connectivity may be less likely to emerge as a
true experimental effect in the results. However, the DCM for
cross-spectral densities largely relies on the complex component
of the cross-spectra and thus the phase relationship between
sources to infer underlying long-range effective connectivity
between sources. As this was not included in the optimization of
the priors, we would not have biased against the main data fea-
tures that allows inference on long-range connections.

It remains unclear why alpha peak amplitude was signifi-
cantly associated with KBIT-2 score in frontal regions, yet for
DCM analysis both the effect size of—and the confidence in—
the association of KBIT-2 score and intrinsic inhibition were
highest in the occipital regions. Because there is a non-linear
mapping between model parameters and EEG spectral features,
whilst non-intuitive, this does nevertheless reflect the evidence
in the data. The dynamics of the network of sources—as mod-
eled here—depends not only on the dynamics of isolated
microcircuits, but also of the integrated and distributed dynam-
ics of all coupled sources. Thus, a source level change in intrin-
sic connectivity in the occipital nodes may have little effects on
the observable node dynamics (because of the nonlinear map-
ping); yet, a slight change in the input from occipital sources to
frontal sources may yield larger observable effects in sensor
space.

This highlights the fact that it is difficult to interpret sensor
space (scalp) effects in terms of the underlying causes in source
(brain) space. It is possible that our findings were influenced by the
large extent of inter-individual variability in EEG measures and
network parameters reported here; however, the PEB approach

used here specifically accommodates random between-subject
effects. Larger studies may therefore help interpret this further.
Future studies would also benefit from using participant MRIs to
localize nodes at an individual level.

A general aspect of Bayesianmodel inversion is the reliance on
a set of prior assumptions (i.e., the activity generated by themodel
arises from CMC optimized to generate activity of interest within
predefined nodes of interest). Despite optimizing the model with
Bayesian model reduction, other factors not accounted for by the
structure of the models entertained may also be important—and
potentially result in models with greater evidence.

Oscillatory correlates of individual differences in cognitive
ability in other forms of ID do not appear to have been studied;
however, atypical connectivity in theta and alpha bands have
been demonstrated in adults with fragile X syndrome (van der
Molen et al. 2014). It therefore remains to be seen whether the
findings reported here are unique to individuals with DS or are
related to ID in general. Future research with non-DS ID popu-
lations are necessary to clarify this.

Future studies would benefit from recruiting older indivi-
duals in order for relationships between ageing and model
parameters to be fully examined. During this study, we found
practical difficulties related to traveling to our testing location
were common in older individuals with DS. The use of portable
EEG equipment may therefore increase participation of older
adults. Furthermore, larger or targeted studies will enable asso-
ciations between Apolipoprotein E (APOE) genotype and EEG
activity to be explored, with associations with APOE genotype
being of particular interest due to the known increased risk of
AD in those possessing the APOE ε4 allele. As these findings are
based on a single EEG paradigm, modeling EEG activity using
DCM for other paradigms (e.g., the auditory oddball) would help
improve the validity of conclusions. Finally, DCM can also be
used to model the effects of specific pharmacological com-
pounds on the network and parameters identified here. Such
an approach may aid in drug discovery.
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Supplementary material is available at Cerebral Cortex online.

Funding
This work was supported by the Baily Thomas Charitable Fund
(TRUST/RNA/AC/KW/3111/5776) and a Wellcome Trust Strategic
Award (grant number: 098330/Z/12/Z) conferred upon The
London Down Syndrome (LonDownS) Consortium. RER is funded
by a Wellcome Trust Clinical Research Fellowship (106556/Z/14/
Z) from the Wellcome Trust, UK. KJF is funded by a Wellcome
Trust Principal Research Fellowship (088130/Z/09/Z) from the
Wellcome Trust, UK. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation
of the manuscript.

Notes
The authors would like to thank all the participants in this
study for their time. This research was supported by the
National Institute for Health Research networks (mental health,
dementias, and neurology) and participating NHS trusts. We
would like to thank our NHS network of sites that helped to
identify participants.

DCM of EEG Activity in Adults with Down Syndrome Hamburg et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhz043/5382204 by U
niversity C

ollege London user on 20 M
arch 2019



Appendix
Glossary

Adult: used in this study to refer to individuals aged 16 and
over (i.e., not a child).

Age-adjusted IQ score: when a raw score on a general cogni-
tive ability test is converted to a standardized score (using pop-
ulation norms) according to participant age to provide an
estimate of intelligence quotient (IQ).

Bayesian model selection (BMS): a method for determining
the most likely hypothesis (among a set of competing hypothe-
ses) about the mechanisms that generated observed data.

Dynamic causal modeling (DCM): a framework for fitting dif-
ferential equation models of neuronal activity to brain imaging
data using Bayesian methods.

Eigenmode: a frequency component of a signal. Principal
eigenmodes represent the main components of the signal and
can be used to summarize data.

Free-energy: the function that is optimized during model
inversion in DCM. Log-evidence (as approximated by negative
free-energy) is used to determine the winning model.

KBIT-2 score: Kaufmann’s Brief Intelligence Test second
Edition (KBIT-2) raw test score (Kaufman and Kaufman 2004).
Used to provide an estimate of general cognitive ability.

Model inversion: method for fitting the data to the model to
estimate model parameters. The method involves minimizing
free-energy/maximizing negative free-energy in order to maxi-
mize the model evidence or marginal likelihood.

Posterior probability: within Bayesian statistics, posterior
probability is the statistical probability that a hypothesis is
true, given the relevant evidence.

Typically developing (TD): used in this study to refer to indi-
viduals who do not have a neurodevelopmental disorder.
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