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Abstract. Binary Constraint Problems have traditionally been considered

as Network Satisfaction Problems over some relation algebra. A constraint
network is satisfiable if its nodes can be mapped into some representation

of the relation algebra in such a way that the constraints are preserved. A

qualitative representation φ is like an ordinary representation, but instead of
requiring that (a;b)φ is the composition aφ◦bφ of the relations aφ and bφ, as we

do for ordinary representations, we only require that cφ ⊇ aφ◦bφ ⇐⇒ c ≥ a;b,

for each c in the algebra. A constraint network is qualitatively satisfiable if its
nodes can be mapped to elements of a qualitative representation, preserving the

constraints. If a constraint network is satisfiable then it is clearly qualitatively

satisfiable, but the converse can fail, as we show. However, for a wide range
of relation algebras including the point algebra, the Allen Interval Algebra,

RCC8 and many others, a network is satisfiable if and only if it is qualitatively

satisfiable.
Unlike ordinary composition, the weak composition arising from qualita-

tive representations need not be associative, so we can generalise by consid-
ering network satisfaction problems over non-associative algebras. We prove

that computationally, qualitative representations have many advantages over

ordinary representations: whereas many finite relation algebras have only in-
finite representations, every finite qualitatively representable algebra has a

finite qualitative representation; the representability problem for (the atom

structures of) finite non-associative algebras is NP-complete; the network
satisfaction problem over a finite qualitatively representable algebra is always

in NP; the validity of equations over qualitative representations is co-NP-

complete. On the other hand we prove that there is no finite axiomatisation
of the class of qualitatively representable algebras.

1. Introduction

Computer scientists have been solving systems of binary constraints for a long
time. Temporal reasoning, for example, is often dealt with by solving a set of
temporal constraints between events, represented in a network : a finite complete
graph whose edges are labelled by a choice of alternative temporal relations. The
network is satisfiable if it is possible to map the nodes to temporal events in such
a way that each pair of nodes is mapped to a pair of events satisfying one of the
alternative temporal relations labelling that edge. An algebra of these relations,
in one of the simplest cases, is the point algebra, where the primitive alternative
relations are =, <,> and the events are points on a linear flow of time. Relational
compositions of these basic relations are recorded in the table in the upper left
corner of Figure 1, where ◦ denotes composition of binary relations.
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Figure 1. The point algebra: composition table, a constraint net-
work, a solution, a strong representation. Here 1 denotes {=, <,>}
(all three relations are permitted).

Consider the network over the point algebra given in Figure 1. It is satisfiable in
a linear order of just four distinct points, but a representation of the point algebra
has to be infinite, because <◦< is identical to <, which entails not just transitivity
(<◦< is contained in <) but also density (< is contained in <◦<). This discrepancy
between an infinitely representable algebra and finitely satisfiable networks over it,
is not too serious in this case because every finite linear order embeds into the
rational numbers. Hence, if a network has a solution in some linear order then it
can be embedded into a representation of the point algebra.

To deal with temporal intervals rather than point-events, the Allen Interval
Algebra [All83] is very commonly used. Here, we have thirteen alternative primitive
relations between intervals on a linear flow of time. For the Allen Interval Algebra,
a solution to a constraint network would be a finite set of intervals in a linear order
with an appropriate relation holding between each pair, but a representation of this
algebra is again infinite: it consists of ordered pairs taken from a dense linear order
without endpoints [LM94]. And again, there is no real discrepancy here because
every finite arrangement of intervals in a linear order embeds into a set of intervals
of rational numbers.

But when one tries to generalise the above examples to apply relational reasoning
in other domains, the discrepancy becomes a real issue. A very clear example of this
occurs in spatial reasoning, where an analogue of the Allen Interval Algebra with
relations between spatial regions is used. This algebra is called RCC8. One of the
basic relations considered in RCC8 is external connectedness (EC), whose intended
interpretation is that xECy if regions x and y touch at the borders but only at
the borders, for example as in the left-hand side of Figure 2. Now, RCC8 requires
that EC ◦ EC ⊇ EC, which is reasonable if we think of regions topologically as
open balls (open disks in R2; more generally, open sets with boundaries of genus
0), because then for any xECy we can find a z with xECzECy, as in the left-
hand side of Figure 2. However, in real-life applications, this assumption is not
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Figure 2. Some relations between spatial regions

always warranted. For it happens that one region can be completely surrounded by
another. This is the spatial relation San Marino bears to Italy, the Vatican City to
Rome, and Lesotho to South Africa. When this happens, as in the right-hand side
of Figure 2, where region y is the annulus surrounding region x, we have xECy,
but (x, y) /∈ EC ◦ EC.

The problem was identified, and rightly diagnosed to be an anomaly. The rem-
edy was to consider an algebra of binary relations where relational composition is
replaced by another binary operation, called weak composition, approximating real
composition from above (see, for example [LR04]). Weak composition is defined in
such a way that when (x, y) is in the weak composition of EC with EC it is not
mandatory that there is a z with xECzECy, it is merely permitted that such a z
should exist. (Note, below we distinguish two different meanings of weak composi-
tion from the literature: either it is merely permitted that such a z should exist, or
it is permitted and additionally there must be x′, y′, z′ such that x′ECz′ECy′ i.e.
the composition has to be realised at least once. The two corresponding types of
representations we consider are feeble and qualitative respectively, see below.) Since
then, an impressive body of research has been conducted in qualitative reasoning
based on these notions of weak composition (see [CCL+15] for a survey).

REMARK 1. Another way of dealing with the annulus problem would be to re-
strict the allowed shape of spatial regions. For example, allowing only open balls
in R2 as regions gives an interpretation of RCC8 with the usual relational compo-
sition. However, there exist practically motivated qualitative calculi for which no
interpretation using standard relational composition is possible: such is for example
the interval and duration calculus INDU, whose twenty-five primitive relations are
similar to Allen’s thirteen primitive interval relations, but also determine whether
the duration of the first interval is smaller, equal or greater in duration than the
second interval [PKS99]. The composition operation in INDU is not associative.

One restriction to this framework of qualitative reasoning is that the identity
relation is assumed to be an indivisible primitive relation (an atom of the algebra),
so that unary properties of states cannot be expressed directly. So, for example,
suppose we want to assert that a certain time interval occurs during an interval
where the printer is working. In the Allen Interval Algebra we can express that one
interval i occurs during another interval j but we cannot assert properties of the
interval j. In our framework we may introduce a subidentity atom w with intended
semantics jwj if and only if the printer is working on the interval j. A similar
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extension was required for Kleene Algebra, where it was necessary to introduce the
test operator in order to express properties of states, rather than relations [Koz97].
Here, we make no assumption that the identity is atomic.

A further restriction is that the definition of weak composition only applies in
the setting of finitely many primitive relations. However, there are applications in
Artificial Intelligence where infinitely many different relations are needed. A num-
ber of different researchers who wished to add quantitative reasoning to qualitative
constraint systems, adopted languages containing infinitely many constraints (e.g.
[KL91, Mei96, Hir96] or see [OW08] for a survey of metric temporal logic, also see
Example 7.8 below). In the study of topological relations between convex plane
regions [LL:10] infinitely many binary constraints are needed.

In this article we define the weak composition of two binary relations in general;
our definition coincides with the original one where it applies, but covers a wider
range of algebras of binary relations. We also define a corresponding notion of qual-
itative representation. In a classical representation of a relation algebra (referred
to henceforth as a strong representation), given two points x, y for which it is con-
sistent for there to be a z with (x, z) ∈ a, (z, y) ∈ b it is then mandatory that such
a point z exists. This requirement is relaxed in a qualitative representation, see
Definition 3 below. A constraint network is qualitatively satisfiable if it embeds into
a qualitative representation. We will see that this corresponds much more closely
to the intuitive approach to binary constraint problems, such as those illustrated
in Figure 1. There, the four element chain is in fact a qualitative representation of
the point algebra.

1.1. Fixed vs. arbitrary representations. When considering the constraint
satisfaction problem in its general setting one typically has a fixed domain for each
variable and the interpretation of any relation symbols used in the constraints is
also fixed. In keeping with that, a great deal of the research into qualitative rea-
soning focusses on a fixed set of relations on a fixed base set and considers the
satisfiability of constraints in that setting, in other words the issue is the satisfi-
ability of constraints in a single, fixed representation. To illustrate the value of
this approach, suppose we wish to schedule a series of meetings in a discrete flow
of time where there are exactly four time points, as in Figure 1. A set of binary
constraints on the scheduling of events could be represented as a network over the
point algebra, but the question to consider is not whether the network is satisfiable
in some qualitative representation, it is whether the network can be satisfied in
the qualitative representation of the point algebra consisting of a linear order of
four points. For this kind of problem it is the satisfiability of a network in a fixed
representation that should be considered. (The complexity of this problem can
be fairly high, for example in [Lee14] a single model based on dipoles in the real
plane, (i.e. elements of R4) is adopted and it is shown that the network satisfaction
problem is ∃R-complete for various algebras of relative directional constraints over
this model. For a more extreme case, consider a graph algebra with three primitive
constraints: equals, adjacent and non-adjacent. Let S be an undecidable set of
finite connected graphs and let G be the disjoint union of all graphs in S. Given
any finite connected graph F we can define a network on the same set of nodes,
edges are labelled ‘adjacent’ and irreflexive non-edges are labelled ‘non-adjacent’.
Since this network is qualitatively satisfiable in G if and only if F ∈ S, the problem
of determining whether a network is satisfiable in G is undecidable.)
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However, there are applications where the representation is not fixed, for example
in spatial reasoning using RCC8 the exact topography of the relations between
regions may not be known. Many of the theorems proved in the previously cited
papers establish properties that hold over a whole class of representations, e.g.
results in [Ren02] refer to the solvability of RCC8 constraints over non-empty,
regular, closed regions, regardless of the particular topology under consideration.
The main decision problem considered in the current paper is to decide if a given
network is satisfiable in an arbitrary qualitative representation.

Results obtained in this paper indicate that qualitative representations have
computational advantages over strong representations. All the algebras of relations
mentioned above have strong representations, but only on infinite base sets. In
contrast, we show that if a finite algebra of relations (formally, a non-associative
algebra) has a qualitative representation then it has one on a finite base set. A
consequence is that the problem of determining whether a finite non-associative
algebra is qualitatively representable is in NP (indeed it is NP-complete) whereas
the strong representation problem is known to be undecidable [HH01b].

Furthermore, although it happens to be the case that a consistent, atomic net-
work of constraints (a consistent network with only a single primitive relation on
each edge) is always satisfiable for the algebras of relations previously mentioned,
and hence a polynomial time, non-deterministic algorithm can solve the network
satisfaction problem for these algebras by guessing a primitive label for each edge
and then checking their consistency, this does not work for other algebras of spa-
tial relations. For example, there are known, consistent, atomic networks over the
algebra INDU, which cannot be satisfied by intervals [Lig11, Figure 8.11]. Thus
consistency of a network does not suffice to prove that the network is satisfiable,
even if the network is atomic. Although the network satisfaction problem remains
in NP for INDU-networks, there are known relation algebras where the problem
has much worse complexity [Hir99]. On the other hand, for any finite algebra of
relations the network satisfaction problem over qualitative representations always
belongs to NP.

Similarly, although the validity of equations valid over strong representations was
shown to be undecidable by Tarski, the validity of equations valid over all qualitative
representations is decidable (indeed it is co-NP-complete). Our conclusion is
that qualitative representations are not only more appropriate to express the kind
of contraints that arise from many applications, but they are more amenable to
algorithmic reasoning.

1.2. Historical remarks. The structures we called algebras above, were conceived
as calculi : formal rules for manipulating relations, invented and developed ad hoc,
to suit the purpose at hand. This is evident in the naming: for example, RCC8
is so called because it was originally developed in [RCC92] as Region Connection
Calculus, with 8 basic relations, hence the acronym RCC8 (although the names
of the three authors might also have something to do with it). Later, mathe-
maticians observed that such calculi, including the point algebra, Allen Interval
Algebra and RCC8, were examples of Tarski’s Relation Algebras. As far as we
know, this observation was first made in [LM88, LM94]. In this setting, the ba-
sic relations are boolean atoms in a relation algebra, the edges of a network are
labelled by arbitrary elements of the relation algebra and the network is satisfi-
able if its nodes can be mapped into some representation of the relation algebra
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in such a way that the label of an edge of the network holds at the correspond-
ing two points in the representation. However, as we outlined above, there were
difficulties in restricting to strong representations, particularly for relation alge-
bras such as RCC8, and this led to the weaker notion of qualitative representa-
tion, now very widely studied in knowledge representation and its applications, see
[DWM01, LR04, LW06, MSW06, CCL+15, RL05], for example.

1.3. Notation. We deal with abstract algebras and concrete representations as
binary relations and separate the notation, to some extent. Working abstractly
we use +,− as the basic boolean operators and introduce standard abbreviations,
such as x · y = −(−x + −y) and x ≤ y ↔ x + y = y. The identity constant is 1′,
the converse operator is ˘ and any algebraic multiplication-like operator (including
weak composition, below) will be denoted by ;. Working with concrete binary
relations we write ∪, \ for the operators corresponding to +,− and we write IdD =
{(x, x) : x ∈ D} for the identity relation over a domain D, corresponding to the
abstract 1′, though we may drop the subscript D if it is clear from the context.
The converse of a binary relation r will be written as r˘ = {(y, x) : (x, y) ∈ r}. We
write r◦s = {(x, y) ∈ D ×D : ∃z ∈ D (x, z) ∈ r ∧ (z, y) ∈ s} for the composition of
two binary relations r, s. Our convention is that converse has highest precedence,
followed by composition which takes precedence over other operators, for example
a · b ; c̆ denotes a · (b ; (c̆ )). For any set S we write P(S) for the power set of S.

2. Background

A qualitative calculus has traditionally been defined (see, for example, [LR04])
by specifying a finite partition Π = (R0, . . . , Rn) of the set D ×D, for some fixed
(usually infinite) domain D, with the following properties:

(1) The identity relation IdD is an element of the partition,
(2) Π is closed under relational converses, that is, R˘∈ Π for every R ∈ Π.

The set {R0, . . . , Rn} generates a boolean subalgebra B of P(D × D) under the
usual set-theoretical operations. Clearly, R0, . . . , Rn are atoms of B; these include
the identity relation. Moreover, B is closed under relational converses. However, B
is not in general closed under relational composition, as the example of Figure 2
indicates. This is remedied by considering weak composition instead: an operation
defined by

S ; T =
⋃
{R ∈ Π: R ∩ (S ◦ T ) 6= ∅}

where S ◦ T stands for the true composition of S and T . So defined, S ; T is the
smallest element of B containing S ◦ T .

Thus, a qualitative calculus carries a natural algebraic structure of the type of
a relation algebra. Viewed from an abstract algebraic perspective, a qualitative
calculus is a hybrid object: an abstract algebra together with a concrete interpre-
tation, or a representation. As in [WHW14], one of our aims in this article is to
separate the two sides of a qualitative calculus, into syntax (algebra) and seman-
tics (representation), and so investigate the foundations of qualitative calculi in a
manner similar to model theoretical analysis of classical mathematics.

Before we state the basic definitions, let us recall the two generalisations that
we adopt from the outset. Firstly, we will lift the finiteness assumption. It is not
necessary for a definition of weak composition, and from a universal algebraic point
of view admitting infinite algebras is more natural, furthermore, as we have seen,



ALGEBRAIC FOUNDATIONS FOR QUALITATIVE CALCULI AND NETWORKS 7

there are applications where it is desirable to include infinite relation algebras, for
example when we wish to express metric constraints. Secondly, we do not require
that the identity is an atom, as subidentity relations provide a natural way of
modelling properties, that is, subsets of the domain, by representing a set Z ⊆ D
by the relation {(z, z) : z ∈ Z}.

DEFINITION 2. Let D be a set and let S be a set of binary relations over D,
that is, S ⊆ P(D ×D). S is a herd if

(1) S forms a boolean set algebra with top element D×D, so S is closed under
finite intersections and complement relative to D ×D,

(2) IdD ∈ S,
(3) If A ∈ S then the converse relation A˘ is in S.

In a herd S given any two elements A,B ∈ S if there is a minimal C ∈ S
containing A ◦ B then we say that the weak composition of A and B is C. If S is
finite, then such a minimal element is sure to exist, since S is closed under finite
intersections.

For herds with infinitely many relations, the weak composition of two elements
is not always defined (a minimal element containing A ◦B may not exist), however
the case we are interested in is the case where the weak composition of A and
B is defined, and for the abstract algebraic structure corresponding to herds we
include a binary composition operator ;, so the signature is the same as that of
a relation algebra: it is a boolean algebra with an extra nullary operation 1′ for
identity, a unary operation ˘ for converse, and a binary operation ; to denote weak
composition and it obeys all the axioms defining a relation algebra except perhaps
associativity (see below). Maddux calls such an algebra a non-associative relation
algebra [Mad82, Definition 1.2], or non-associative algebra for short. [LR04] already
observed that their qualitative calculi are non-associative algebras and it is easily
verified that the herds considered here are non-associative algebras too, in the cases
where weak composition is defined.

An algebra A = (A, 0, 1,+,−, 1′, ,̆ ;) of the type of relation algebras belongs to
the variety NA of non-associative algebras, if

(1) (A, 0, 1,+,−) is a boolean algebra,
(2) (A, 1′, ,̆ ;) is an involuted monoid, i.e. it satisfies

(a) 1′ ; x = x = x ; 1′

(b) x˘̆ = x
(c) (x ; y)̆ = y˘ ; x˘

(3) ˘ and ; are normal additive operators, that is
(a) 0̆ = x ; 0 = 0,
(b) (x+ y)̆ = x˘ + y ,̆ x ; (y + z) = (x ; y) + (x ; z)

(4) x ; y · z˘ = 0 if and only if y ; z · x˘ = 0 (Peircean law)

By additivity, the operators are monotone, e.g. y ≤ z → x; y ≤ x; z, etc. Since
the operators ,̆ ; are conjugated it turns out that every non-associative algebra is
completely additive, i.e. if S is a subset of the elements of A with a supremum ΣS
then (ΣS)̆ is the supremum of {s̆ : s ∈ S} and for any a ∈ A the element a; ΣS is
the supremum of {a; s : s ∈ S} [JT51, Theorem 1.14].

In the following we define a qualitative representation as an isomorphism from
an non-associative algebra to a herd. In [LR04, Definition 3] the corresponding
definition is only required to be a homomorphism, injectivity is not required. One
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difficulty with this weaker notion of representation is that trivial map from an
arbitrary non-associative algebra to the herd on an empty domain is a non-injective
homomorphism, which suggests that it is more natural to require injectivity.

DEFINITION 3. Let A = (A, 0, 1,+,−, 1′, ,̆ ;) be a non-associative algebra. A
qualitative representation φ of an algebra A is an injection to a herd S of binary
relations over base D, such that

(1) 0φ = ∅, 1φ = D ×D, (1′)φ = IdD,
(2) (a+ b)φ = aφ ∪ bφ, (−a)φ = (D ×D) \ aφ,
(3) (a )̆φ = (aφ)̆ ,
(4) cφ ⊇ aφ ◦ bφ ↔ c ≥ a ; b

for all a, b, c ∈ A. If A has a qualitative representation, then we say that A is
a qualitatively representable algebra. The class of all qualitatively representable
algebras we will denote by QRA.

If (a ; b)φ = aφ ◦ bφ for all a, b ∈ A then the qualitative representation φ is a
strong representation.

If φ is a qualitative representation of a non-associative algebra A, observe that
a; b is always defined (for a, b,∈ A) and Definition 3.4 requires that it is the minimal
solution of c ∈ A, cφ ⊇ aφ ◦ bφ.

The class of strongly representable relation algebras, which generates the variety
RRA of representable relation algebras, is already known to be extremely compli-
cated: without finite axiomatisation in first order logic, with undecidable equational
theory and with undecidable membership problem for finite algebras [HH01b]. The
class QRA is known to be a proper subclass of NA [LR04, WHW14], or see Ex-
ample 7.4 below. We show below that the class QRA has intermediate difficulty:
it is also without a finite axiomatisation (Theorem 20) but it is NP-complete to
decide membership for finite algebras (Theorem 15).

The definition of qualitative representation (Definition 3) is based on the def-
inition of weak composition for partition schemes given in [LR04, §2.3], however
our definition applies not just to finite partition schemes, it works even for infi-
nite herds. Moreover, Ligozat and Renz appear to include two distinct notions
of weak composition. In [RL05, abstract] they require that weak composition is
“the strongest relation containing the real composition”, in agreement with much
of the relevant literature and in agreement with Definition 3 above. However, in
[LR04, Definition 3] and in [Lig05, Definition 2] only the right to left implication of
Definition 3(4) is required, that is, they only require (a ; b)φ ⊇ aφ ◦ bφ and do not
insist that c = a; b is the minimal solution of cφ ⊇ aφ ◦ bφ as c ranges over elements
of the algebra. We call this looser definition of a qualitative representation a feeble
representation and investigate it separately in Section 6. Example 7.1 and 7.4 be-
low show that there is a real discrepancy between qualitative representations and
feeble representations. ([WHW14, Proposition 2] dispute a quite separate point in
[RL05], concerning the notion of “closure under constraints”.)

LEMMA 4. Let φ : A → P(D × D) respect the boolean operators, the identity
and the converse operator, i.e. 1φ = D × D, (−a)φ = (D × D) \ aφ, (a + b)φ =
aφ∪bφ, (1′)φ = IdD and (a )̆φ = {(y, x) : (x, y) ∈ aφ}. The following are equivalent

(1) φ is a qualitative representation
(2) for all a, b, c ∈ A

(a; b · c 6= 0) ↔ ∃x, y, z ∈ D((x, y) ∈ aφ ∧ (y, z) ∈ bφ ∧ (x, z) ∈ cφ).
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Proof. For (1)⇒ (2), suppose φ is a qualitative representation. If there are x, y, z ∈
D such that (x, y) ∈ aφ, (y, z) ∈ bφ, (x, z) ∈ cφ then (a; b · c)φ = (a; b)φ ∩ cφ ⊇
aφ ◦ bφ ∩ cφ 6= ∅, so a; b · c 6= 0. If no such x, y, z exist then aφ ◦ bφ ⊆ (−c)φ and
since (a; b)φ is smallest such that (a; b)φ ⊇ aφ ◦ bφ it follows that (a; b)φ ⊆ (−c)φ,
(a; b)φ ∩ cφ = ∅, so a; b · c = 0.

Conversely assume (2). If (a; b)φ 6⊇ aφ ◦ bφ then there are x, y, z with (x, y) ∈
aφ, (y, z) ∈ bφ and (x, z) ∈ (−(a; b))φ, hence by (2) a; b · (−(a; b)) 6= 0, a contradic-
tion. We conclude (a; b)φ ⊇ aφ ◦ bφ. If cφ ⊇ aφ ◦ bφ then there do not exist x, y, z
such that (x, y) ∈ aφ, (y, z) ∈ bφ and (x, z) ∈ (−c)φ so by (2), a; b · (−c) = 0 and
c ≥ a; b, thus c = a; b is the minimal solution in A of cφ ⊇ aφ ◦ bφ, this proves that
; is correctly represented as weak composition. �

3. Atom Structures and Examples

In the case of an atomic algebra, a convenient way of specifying the operators is
by defining its atom structure.

DEFINITION 5. Let X be the set of atoms (minimal, non-zero elements) of a
non-associative algebra A. The atom structure At(A) is defined as

At(A) = (X,E, ,̆ C)

where E is the set of atoms below the identity, ˘ is the converse function restricted
to atoms, and C is the set of consistent triples of atoms, that is, those triples of
atoms (a, b, c) such that a ; b ≥ c. We write |At(A)| for |X, the cardinality of the
set of atoms.

Conversely, given (X,E, ,̆ C), where E ⊆ X, ˘ is a unary function on X and C ⊆
X3 we may define the complex algebra Cm(X,E, ,̆ C) = (P(X),∅, X,∪, \, E, ,̆ ;)
where E is the identity element, ˘ is extended to sets of atoms by taking unions,
and multiplication is defined by S ; T = {x ∈ X : ∃s ∈ S, t ∈ T (s, t, x) ∈ X}.

For any atomic non-associative algebra A with atoms X, the map defined by
a 7→ {x ∈ X : x ≤ a} is an embedding of A into Cm(At(A)) and in the case where
A is complete and atomic, this map is surjective, i.e. an isomorphism. Observe,
for finite algebras, that the number of atoms is the logarithm (base two) of the
number of elements of the algebra. It is clear, by additivity, that the constant
1′ and the operators ,̆ ; are determined by the atom structure, when the atom
structure is finite and in fact, as we noted earlier, every non-associative algebra is
completely additive so the operators of an arbitrary atomic, non-associative algebra
are determined by its atom structure.

The next lemma is proved in [Mad82, Theorem 2.2(2)].

LEMMA 6. Let (S,E, ,̆ C) consist of a set S, a subset E ⊆ S, a unary function
˘: S → S satisfying s̆ ˘ = s, and subset C ⊆ S×S×S. The following are equivalent

• (S,E, ,̆ C) is the atom structure of some non-associative algebra,
• For all a, b, c ∈ S we have a = b iff there is e ∈ E such that (e, a, b) ∈ C,

and if (a, b, c) ∈ C then (b̆ , a ,̆ c̆ ) ∈ C and (c̆ , a, b̆ ) ∈ C.

The six triples (a, b, c), (b, c̆ , ă ), (c, b̆ , a), (ă , c, b), (b̆ , ă , c̆ ), (c̆ , a, b̆ ) are called
the Peircean transforms of (a, b, c). In practice, the triples are given in composition
tables such as the one used in Figure 1 to define the point algebra. The entry for
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a ; b is the join of the set {c : (a, b, c) ∈ C}, so if (a, b, c1), (a, b, c2), (a, b, c3) ∈ C, the
entry for a ; b will be c1 + c2 + c3.

In the following examples we define some finite non-associative algebras by giving
their atom structures, except for the final example which is defined directly. The
examples are not intended to be useful, or even usable, as qualitative calculi; we
only wish to illustrate the definitions.

EXAMPLES 7. (1) The first of our non-associative algebras has three atoms,
{e, e′, a}, hence eight elements. The identity is e+ e′, each element is self-
converse, multiplication is defined in the table on the left below

; e e′ a
e e 0 a
e′ 0 e′ a
a a a 1

0

1

2

e

e′

e′

a

a

a

Multiplication is not associative, for example (e ;e′) ;a = 0;a = 0 but e ; (e′ ;
a) = e ;a = a. This non-associative algebra has a qualitative representation
φ over a base of three points {0, 1, 2}, shown on the right, above: eφ =
Id{0}, (e′)φ = Id{1,2} and aφ = {(x, y) : x 6= y < 3}, φ is defined on sums
of atoms by additivity.

Now let θ be obtained by restricting the qualitative representation φ to
the base {0, 1}, illustrated below.

0 1

a

a

e e′

Since (b; c)θ ⊇ bθ ◦cθ for any b, c in the algebra and all atoms are witnessed,
θ is a feeble representation over the base {0, 1}. However, aθ ◦ aθ = Id{0,1}
and a; a = 1 is not minimal subject to containing aθ ◦ aθ (the minimal
solution is e+ e′ < 1), so θ is not a qualitative representation.

(2) This non-associative algebra has atoms {1′, a, a′,×} (so sixteen elements).
All elements are self-converse, this time the identity 1′ is an atom, multi-
plication is defined by

; 1′ a a′ ×
1′ 1′ a a′ ×
a a 1′ + a 0 ×
a′ a′ 0 1′ + a′ ×
× × × × 1′ + a+ a′

Again, associativity fails because (a;a′);a′ = 0;a′ = 0 but a;(a′ ;a′) = a;(1′+
a′) = a. A qualitative representation θ on base {0, 1, 2} ∪ {0′, 1′, 2′}, shown
below, is defined by (1′)θ = Id{x,x′:x<3}, a

θ = {(m,n) : m 6= n, m, n < 3},
(a′)θ = {(m′, n′) : m 6= n, m, n < 3}, ×θ = {(m,n′), (m′, n) : m,n < 3}.
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Here and below, reflexive identity loops have been omitted.

0 1

2

a

a a

0′ 1′

2′

a′
a′ a′

×

×

×

×

(3) The next algebra has atoms {1′, a, b, c} where the identity is 1′, all atoms
are self-converse and multiplication is defined by the table below, known to
Maddux as relation algebra 2565, [Mad06]. A strong representation of it is
illustrated on the right.

; 1′ a b c
1′ 1′ a b c
a a 1′ c b
b b c 1′ a
c c b a 1′

1 2

3

0

a

c

b

a

c

b

This algebra happens to be associative (hence a relation algebra). The only
consistent triples of non-identity atoms are the permutations of (a, b, c). If
we restrict the base to a set of three elements, say {1, 2, 3}, we obtain a dif-
ferent qualitative representation, no longer a strong representation because
although 1′ = c; c and (2, 2) is in the representation of 1′, there is no point
v in the base {1, 2, 3} such that (2, v) and (v, 2) are in the representation
of c. This relation algebra can have no qualitative representation, nor even
a feeble representation, on a base of more than four points, because it is
impossible to colour the edges of the complete graph K5 using three colours,
a, b, c, while avoiding triangles with two edges of the same colour. In fact
the two qualitative representations just mentioned are the only qualitative
representations of this relation algebra, up to base isomorphism.

(4) Our next example is a non-associative algebra which does not have a quali-
tative representation, though it has a feeble one. Its atoms are {e, e′, a, a˘},
1′ = e+ e′ and composition is given by

; e e′ a a˘
e e 0 a 0
e′ 0 e′ 0 a˘
a 0 a a a+ a˘ + e
a˘ a˘ 0 a+ a˘ + e′ a˘
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By Lemma 6 this is the atom structure of a non-associative algebra (not
associative because a = a; a = (a; e′); a 6= a; (e′; a) = a; 0 = 0). A feeble
representation θ on the points 0, 1 is shown below

0 1

a˘

a

e e′

If φ were a qualitative representation then since a; a · a 6= 0 there would
be x, y, z in the base such that (x, y), (y, z), (x, z) ∈ aφ and (y, y) ∈ (1′)φ.
Since 1′ = e + e′ either (y, y) ∈ eφ or (y, y) ∈ (e′)φ, in the former case
(x, y) ∈ aφ ◦ eφ ⊆ (a; e)φ = 0φ and in the latter case (y, z) ∈ (e′; a)φ = 0φ,
in each case we get a contradiction.

(5) Examples of relation algebras not even possessing feeble representations are
provided in the proof of Theorem 20 below.

(6) This example shows that associativity does not suffice to ensure a qualita-
tively representable algebra has a strong representation. Let K be McKen-
zie’s non-representable algebra (see [McK70]). It is defined by the following
multiplication table for the atoms

; 1′ a a˘ b
1′ 1′ a a˘ b
a a a 1 a+ b
a˘ a˘ 1 a˘ a˘ + b
b b a+ b a˘ + b −b

•

•

88

•

^^

•

OO

•

ff

@@

where b̆ = b. As McKenzie showed, it is associative but has no strong
representation. Let N5 be the pentagon lattice considered as an ordered set,
illustrated in the right above. It is easy to show that boolean combinations
of the relations Id, <, >, # (where # stands for incomparability), form
a herd over N5 × N5, and the map 1′ 7→ Id, a 7→ <, a˘ 7→ >, b 7→ #,
extends naturally to a qualitative representation of K. We leave it as an
instructive exercise to prove that no qualitative representation can exist
over a set with 4 or fewer elements. (Hint: you have to be able to compose
incomparability with itself and get < and >.)

(7) Consider the successor relation ≺ on the integers Z, the “much less than”
relation� denoting strict inequality of distance at least two, their respective
converse relations � and � and equality =. The underlying algebra can be
obtained from the point algebra (see Figure 1) by splitting the atom < as
≺ +� and > as � +�, but is nonassociative as �; (≺;≺) =≺ +�, while
(�;≺);≺ =≺. The qualitative representations of this successor algebra are
precisely those over chains in which there are sufficiently many consecutive
successors. A digraph is balanced (or levelled) if it admits a homomor-
phism into the digraph (Z,≺); every fixed template constraint satisfaction
problem in a finite relational language (but not necessarily finite domain)
is logspace equivalent to one over a single balanced digraph [BDJN15]. The
meta-problem of deciding if a finite digraph is balanced, which is solvable in
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nondeterministic logspace, can be taken as constraint problem over qualita-
tive representations of this algebra, in which the input digraph is interpreted
as ≺.

(8) Our final example is an infinite relation algebra, for expressing metric con-
straints on a linearly ordered metric space. Its elements are finite unions of
real intervals, e.g. (2, 5) ∪ [6, 8]. There is one identity atom, namely [0, 0],
converse is defined by (m,n)̆ = (−n,−m), and composition is defined by
(m,n); (m′, n′) = (m + m′, n + n′) for m > n, m′ > n′, with similar defi-
nitions for closed and semi-open intervals. A strong representation θ over
the real numbers may be obtained by letting (x, y) ∈ (m,n)θ ⇐⇒ m <
y−x < n, with similar definitions for closed and semi-open intervals. This
provides a useful way of expressing metric constraints between points, e.g.
the constraint (x, y) ∈ ([−3,−2] ∪ [2, 3])θ means that the distance between
x and y is at least two and not more than three.

4. Semi-associativity and associativity

In order to axiomatise the class of qualitatively representable algebras we might
start by taking the axioms of non-associative relation algebra and add some weak-
ening of the associativity law. Maddux defines two such weakenings: the semi-
associative law x ; (1 ; 1) = (x ; 1) ; 1 and the weak-asociativity law [Mad82]
(x · 1′) ; (1 ; 1) = ((x · 1′) ; 1) ; 1. In the definition of the qualitative calculus
given by [LR04] the identity 1′ is required to be an atom and for this case the
weak associativity law is sure to hold (since x · 1′ is either 0 or 1′) as shown in
[WHW14, Section 3]. However, when we consider cases where the identity is not
an atom, we see that the algebra of Example 7(1) above fails the weak associa-
tivity law (and consequently also fails the stronger semi-associativity law) because
(e ; 1) ; 1 = (e+ d) ; 1 = 1 but e ; (1 ; 1) = e ; 1 = e+ d, so weak associativity is not
valid over qualitative representations. On the other hand, since (a; b)θ ⊇ aθ ◦ bθ,
for any qualitative (or feeble) representation θ over domain D, it follows that the
equation

(1 ; x) ; 1 = 1 ; (x ; 1)

is an example of a validity over qualitative (respectively, feeble) representations (in
any herd on base D, both sides equal 1 = D×D if x 6= 0 and both sides equal 0 if
x = 0).

An algebra is integral if x ; y = 0 → x = 0 or y = 0. It is known for semi-
associative algebras that an algebra is integral iff the identity is an atom [Mad90,
Theorem 4]. However, in the algebra of Example 7.2 above, the identity is an atom
but the algebra is not integral. It follows that this algebra is not semi-associative,
indeed d ; 1 = 1′ + d+ f but (d ; 1) ; 1 = 1.

Semi-associativity for weak composition was touched upon in [LR04] where it was
shown that if relations are serial (have total domains) then the weak composition
is semi-associative. In fact, in our more general setting where the identity need not
be an atom, it suffices to assume that nonempty relations have pairwise overlapping
domains.

LEMMA 8. Let φ be a qualitative representation of a non-associative algebra A
to a herd S. Then, the following are equivalent :
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(1) If a, b ∈ A \ {0} then (aφ)̆ ◦ bφ 6= ∅ (nonempty relations have overlapping
domains),

(2) A is integral,
(3) A is semi-associative and the identity is an atom.

Proof. As we noted, in semi-associative algebras integrality is equivalent to the
identity being an atom so we get (3) ⇒ (2). To prove (2) ⇒ (3) we will show that
integrality implies semi-associativity in non-associative algebras. Working back-
wards, suppose semi-associativity fails in A. By monotonicity of composition in
non-associative algebras, since 1′ ≤ 1, we have x ; (1 ; 1) = x ; 1 ≤ (x ; 1) ; 1, for any
x ∈ A. Thus, the failure of semi-associativity is witnessed by some 0 6= a ∈ A such
that a ; 1 < (a; 1); 1. So, there is (a; 1); 1 ≥ b 6= 0 such that a ; 1 · b = 0. But then,
ă ; b · 1 = 0 by the Peircean law, and so ă ; b = 0 where ă , b 6= 0 and the algebra
is not integral. Thus the equivalence of (2) and (3) is true in any non-associative
algebra.

To prove the equivalence of (2) and (1), observe that a = 0 ⇐⇒ ă = 0 and
(ă )φ ◦ bφ = ∅ ⇐⇒ (ă ; b)φ = ∅ ⇐⇒ ă ; b = 0, using the fact that c = ă ; b is the
minimal solution of cφ ⊇ (ă )φ ◦ bφ. �

Let A be a non-associative algebra, and φ be a qualitative representation, i.e. a
map from A to P(D ×D) for some set D satisfying the conditions of Definition 3.
Consider the following condition on φ:

(*) (aφ ◦ bφ) ∩ (cφ ◦ dφ) = ∅ ⇐⇒ (a ; b) · (c ; d) = 0.

Intuitively, (*) says that two consistent triangles share a label (the right-hand side)
if and only if a quadrangle witnessing this fact can be found in the representa-
tion (the left-hand side). Observe that the right-to-left implication holds for any
qualitative representation φ, since (x; y)φ ⊇ xφ ◦ yφ.

THEOREM 9. If there exists a qualitative representation of A satisfying (*),
then A is associative.

Proof. To prove associativity, let a, b, c, d ∈ A be arbitrary. Then

((a ; b) ; c) · d = 0 ⇐⇒ (a ; b) · (d ; c̆ ) = 0 by Peircean law for ;

⇐⇒ (aφ ◦ bφ) ∩ (dφ ◦ c̆ φ) = ∅ (*)

⇐⇒ ((aφ ◦ bφ) ◦ cφ) ∩ dφ = ∅ Peircean law for ◦

⇐⇒ (aφ ◦ (bφ ◦ cφ)) ∩ dφ = ∅ associativity of ◦

⇐⇒ (bφ ◦ cφ) ∩ (ă φ ◦ dφ) = ∅ Peircean law for ◦
⇐⇒ (b; c) · (ă ; d) = 0 (*)

⇐⇒ (a ; (b ; c)) · d = 0 Peircean law for ;

Since d is arbitrary it follows that (a; b); c = a; (b; c). �

Observe that the McKenzie algebra K is associative, but its qualitative represen-
tation of over the base N5 does not satisfy (*), because we have (#◦<)∩(#◦>) = ∅
whereas (b ; a) · (b ; ă ) = b. However, there is a qualitative representation of K
satisfying (*), for example over the base D = {⊥, a1, b1, c1, a2, b2, c2,>} with <
defined as the transitive closure of ⊥ < a1 < b1 < c1 < >, ⊥ < a2 < b2 < c2 < >.

The following conjecture remains open: if A is associative and has a qualitative
representation then it has a qualitative representation satisfying (*).
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5. Network Satisfaction Problem

DEFINITION 10. Let A be a non-associative algebra. A network (N,λ) over A
consists of a finite set N of nodes and a function λ : (N × N) → A. A network
(N,λ) is consistent if

(a) λ(x, x) ≤ 1′,
(b) λ(x, y) ; λ(y, z) · λ(x, z) 6= 0, for all nodes x, y, z ∈ N ,
(c) λ(x, y) · λ(y, x)̆ 6= 0,
(d) λ(x, y) 6= 0, for all nodes x, y ∈ N .

A network (N,λ) is path-consistent (or algebraically closed) if it is consistent and
additionally λ(x, y);λ(y, z) ≥ λ(x, z), for all x, y, z ∈ N . An atomic network (N,λ)
is a network where λ(x, y) is always an atom of A. Every consistent atomic network
is path-consistent.

A network (N,λ) embeds into a strong representation φ if there is a map ′
from N to the base of φ such that for all x, y ∈ N we have (x′, y′) ∈ λ(x, y)φ,
similarly (N,λ) embeds into a qualitative representation θ if there is a map ′ from
N to the base of a qualitative representation θ such that for all x, y ∈ N we have
(x′, y′) ∈ λ(x, y)θ. A network over A is strongly satisfiable if it embeds into some
strong representation of A and it is qualitatively satisfiable if it embeds into some
qualitative representation of A. Clearly, if (N,λ) is strongly satisfiable then it is
qualitatively satisfiable.

A strong representation φ of the finite relation algebra A is fully universal if
every consistent atomic network embeds into φ (sometimes these representaitons
are known as canonical).

Note that the conditions (c) and (d) for a consistent network follow from (a) and
(b) (see [HH02, Lemma 7.2]), so we could have left them out of the definition, but
since they are naturally expected nonetheless, we decided to keep them in. Our
definition of a consistent network coincides with what Hirsch and Hodkinson [HH02]
call a network. We believe this less restrictive definition of a network (essentially,
just as a labelled complete directed graph) to be more convenient in the present
context as it is closer to the standard terminology used in the area of qualitative
calculi as well as in constraint satisfaction.

REMARK 11. Consider the non-associative algebra of Example 7.1. It has a
qualitative representation, but since it is not associative it can have no strong rep-
resentation. The network shown in Example 7.1 is qualitatively satisfiable but not
strongly satisfiable.

Let A be an atomic relation algebra. If A has a fully universal representation then
any network is qualitatively satisfiable iff it is strongly satisfiable. It is known that
the point and interval algebras have fully universal representations [LM94] and it
follows from results in [BW11] that RCC8 has a fully universal representation, hence
for these three relation algebras a network is strongly satisfiable iff it is qualitatively
satisfiable. (Moreover, [BW11] shows that every ω-categorical relation algebra has
a fully universal representation, hence for these algebras strong satisfiablity agrees
with qualitative satisfiability.)

LEMMA 12. Let A be a finite non-associative algebra. A has a qualitative rep-
resentation if and only if there is a consistent atomic network (N,λ) over A such
that for each consistent triple of atoms (a, b, c) of A there are nodes x, y, z ∈ N
such that λ(x, y) = a, λ(y, z) = b and λ(x, z) = c.
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Proof. Let φ be a qualitative representation over base D. For each x, y ∈ D let
λ(x, y) be the (unique) atom a such that (x, y) ∈ aφ, such an atom must exist since
A is finite. Clearly (D,λ) is consistent and atomic, though it might be infinite.
Furthermore, if a, b, c are atoms such that a ; b ≥ c then there must be x, y, z with
λ(x, y) = a, λ(y, z) = b and λ(x, z) = c, by Lemma 4. Hence there is a finite subset
D0 ⊆ D such that the restriction of λ to D0 is atomic, consistent and therefore an
atomic network, and still witnesses all triples of atoms,

Conversely, if (N,λ) is a consistent atomic network witnessing all consistent
triples of atoms then the binary relation ∼ over the nodes of N defined by x ∼
y ⇐⇒ N(x, y) ≤ 1′ is easily seen to be an equivalence relation, indeed a congru-
ence. The equivalence class of a node x is denoted [x]. We may define a qualitative
representation φ whose base is the set of all ∼-equivalence classes, by

aφ = {([x], [y]) : N(x, y) ≤ a}

for a ∈ A. Since ∼ is a congruence φ is well-defined, since edges are labelled by
atoms φ respects the boolean operators, since the network is consistent it is clear
that φ respects the converse operator, and since N(x, y) ≤ 1′ ⇐⇒ [x] = [y] the
identity is correctly represented. By Lemma 4, φ is a qualitative representation. �

LEMMA 13. If A is a finite, qualitatively representable, atomic non-associative
algebra then A has a qualitative representation with at most 3|At(A)|3 points in its
base.

Proof. By the previous lemma, if A is qualitatively representable then there is a
consistent atomic network witnessing all consistent triples of atoms. There are at
most |At(A)|3 such triples, so 3|At(A)|3 points suffice to witness them all. The
atomic network defined by restricting to this set of up to 3|At(A)|3 points is consis-
tent and still witnesses all consistent triples of atoms, hence it defines a qualitative
representation of the required size, by the proof of the right to left implication of
Lemma 12. �

The upper bound of Lemma 13 seems to overestimate the necessary size of a
qualitative representation rather largely. Although we will not try to provide a
sharper bound here, we will present an illustrative example. Consider RCC5: a
version of RCC8 with no distinction between “tangential” and “non-tangential”
connectedness. Its composition table is

; 1′ ε ε̆ π δ
1′ 1′ ε ε̆ π δ
ε ε ε 1 ε+ π + δ δ
ε̆ ε̆ 1′ + ε+ ε̆ + π ε̆ ε̆ + π ε̆ + π + δ
π π ε+ π ε̆ + π + δ 1 ε̆ + π + δ
δ δ ε+ π + δ δ ε+ π + δ 1

with ε, π and δ interpreted intuitively as proper part, proper overlap, and disjoint-
ness relations, respectively. This algebra has a qualitative representation over a
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base consisting of just eleven “regions”, namely, the following subsets of {1, . . . , 7}:

A = {1, 6} B = {1, 2, 3, 5, 6} C = {1, 2, 6}
D = {1, 2, 3, 5, 6, 7} E = {1} F = {1, 2, 3, 5}
G = {2, 3} H = {1, 4, 6} I = {1, 3}
J = {1, 2, 3, 4, 5} K = {4, 5, 6}

with the relations ε, π and δ mapped, respectively, to proper subset relation,
nonempty symmetric difference relation, and empty intersection relation. Our rep-
resentation on the 11 regions A, . . . ,K was obtained with the help of the model-
finder mace4; we conjecture that it is the smallest number of regions possible for
a qualitative representation of RCC5. Incidentally, it also shows that standard
off-the-shelf tools can be used to find qualitative representations.

REMARK 14. The study of syllogistics [Aristotle, Prior Analytics] can be de-
scribed using RCC5. Namely, setting:

Every S is P iff (S, P ) ∈ 1′ + ε

Some S is P iff (S, P ) ∈ 1′ + ε+ ε̆ + π

No S is P iff (S, P ) ∈ δ
Some S is not P iff (S, P ) ∈ ε̆ + π + δ

we obtain a faithful interpretation of traditional logic of categorical propositions.

We turn to questions of computational complexity. We say that a finite atom
structure has a qualitative representation if its complex algebra has one. We begin
with a result that contrasts with the corresponding question for strong representa-
tions which is known to be undecidable [HH01b].

THEOREM 15. The problem of determining whether a finite atom structure has
a qualitative representation is NP-complete.

Proof. If a finite atom structure with n atoms has a qualitative representation
then, by Lemma 13, it has a qualitative representation of size at most 3n3. Hence
a non-deterministic algorithm may simply construct a base with up to 3n3 points
and guess an atom between each pair of points, then check to see if the resulting
network is consistent and that every consistent triple of atoms is witnessed (see
Lemma 12). Since the run-time of this non-deterministic algorithm is bounded by
a polynomial function, we conclude that the qualitative representation problem is
in NP.

For NP-hardness, we reduce the 3-colour graph vertex problem for finite graphs.
Let G = (V,E) be a finite graph with vertices V and directed edges E, where this
edge set is symmetric and irreflexive. Cases where E = ∅ are trivially 1-colourable,
so we assume E 6= ∅. If we extend G by adding some isolated vertices to V it will
not affect the 3-colourability of the graph, so we assume that G has an independent
set of size 5 (formally, there are v0, v1, . . . , v4 ∈ V such that (vi, vj) 6∈ E, for i, j < 5)
and a triangle containing one edge and two non-edges (there are u, v, w ∈ V such
that (u, v) ∈ E but (u,w), (v, w) 6∈ E). Next, we extend G to G∞ = (V∞,E∞), by
adding a single node connected to all the nodes of V , i.e. V∞ = V ∪ {∞}, E∞ =
E ∪ {(∞, u), (u,∞) : u ∈ V }, where ∞ 6∈ V . It is clear that G∞ is 4-colourable if
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Figure 3. A schematic diagram of the intended qualitative rep-
resentation for (S,E, ,̆ C), when G is 3-colourable. The graph G∞

is on the left, with vertex set {0, 1, 2, 3, 4, 5,∞} and edges shown
in black. An independent set can be found on the five vertices
{0, 1, 2, 3, 4} and a triple of vertices with one edge can be found at
{0, 1, 5}. The vertex∞ is adjacent to all vertices and nonedges are
shown in grey (and would be labeled by g). On the right, there is
a second tetrahedral graph on 4 vertices (with names γ1, γ2, γ3, γ4
omitted) and with undirected edges a, b, c as in Example 7.3. Edges
connecting the graph G∞ to these vertices are labelled y or n, ac-
cording to the colour of the vertex of G∞.

and only if G is 3-colourable. Because G has an independent set of size 5, any 4-
colouring of G∞ must include non-adjacent nodes of the same colour, and because
of the triangle with one edge and two non-edges any colouring must include non-
adjacent nodes of different colours.

We define a non-associative atom structure (S,E, ,̆ C) as follows. The set of
atoms is

S = {1′} ∪ SGG ∪ SCC ∪ SGC ∪ SCG
where SGG = {suv : (u, v) ∈ E∞}∪{g} (graph atoms, here g is a symbol not appear-
ing in V∞, used for non-edges), SCC = {a, b, c} (colouring atoms), SGC = {y, n}
(used to map graph nodes to colours) and SCG = {y̆ , n̆ } (the converses of SGC).
The identity is an atom E = {1′}, and all atoms are self-converse except suv˘ = svu
and the converses of y, n are y̆ , n̆ respectively. [The intention here is that atoms suv
will be used to encode the edges (u, v) of the graph G∞, g (“gap”) corresponds to
non-edges and the atoms a, b, c ∈ SCC will encode the undirected edges of a graph
with no more than four nodes (see Examples 7.3) and these nodes will represent
distinct colours. y, y̆ (“yes”) and n, n̆ (“no”) will be used to connect this set of
up to four nodes to the nodes of G∞ while encoding a legitimate 4-colouring. A
schematic of the desired qualitative representation is shown in Figure 3.]

All Peircean transforms of the following triples of atoms are forbidden.

(I) (1′, x, y) where x 6= y, (identity law)
(II) (α, β, γ), where α ∈ SIJ , β ∈ SJ′K′ and γ ∈ SI∗K∗ , unless I = I∗, J =

J ′, K ′ = K∗ (∈ {G,C}) (types must match),
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(III) (α, α, β) where α, β ∈ SCC , (see Examples 7.3, only permutations of the
triple (a, b, c) are consistent for SCC atoms),

(IV) (suv, sv′w′ , α) where (u, v), (v′, w′) ∈ E∞, unless v = v′ (node indices must
match),

(V) (suv, svw, g) where (u, v), (v, w) ∈ E∞ and either (u,w) ∈ E∞ or u = w, (g
only allowed on non-edges),

(VI) (s∞u, α, g) where u ∈ V, α ∈ SGG (∞ adjacent to all other nodes),
(VII) (y, α, y) where α ∈ SCC (only one colour per node)

(VIII) (suv, y, y) where (u, v) ∈ E∞ (adjacent nodes have different colours)

The set C of consistent triples of atoms consists of all triples not forbidden by
(I)–(VIII), above.

The reduction maps (V,E) to the atom structure (S,E, ,̆ C) just defined. We
check that this reduction is correct. Suppose ρ is a 4-colouring of the vertices of
G∞ such that adjacent nodes have different colours, there are non-adjacent nodes
of the same colour and non-adjacent nodes of different colours. Let the colours be
γ1, γ2, γ3, γ4. We define an atomic network (N,λ) where N = V∞ ∪{γ1, γ2, γ3, γ4}.
For the labelling λ we let λ(x, x) = 1′ (all x ∈ N), λ(u, v) = suv for (u, v) ∈ E∞,
λ(u, v) = g if u 6= v ∈ V∞, (u, v) /∈ E. As in the strong representation for
Examples 7.3, let λ(γ1, γ2) = λ(γ3, γ4) = a, λ(γ1, γ3) = λ(γ2, γ4) = b, λ(γ1, γ4) =
λ(γ2, γ3) = c and λ(γj , γi) = λ(γi, γj) for 1 ≤ i < j ≤ 4. Finally, for each u ∈ V∞
and for 1 ≤ i ≤ 4, let λ(v, γi) = y if ρ(v) = γi else (if ρ(v) 6= γi) λ(v, γi) = n.
The atoms y̆ and n̆ are used to label the converse edges for edges labelled y, n
respectively. It is a routine check that this defines a consistent atomic network.
Since there are non-adjacent nodes of the same colour the triple (g, y, y) is witnessed
and since there are non-adjacent nodes of different colours (g, y, n) and (g, n, y) are
also witnessed. It is easily checked that every other consistent triples of atoms
are also witnessed hence, by Lemma 12, the complex algebra over (S,E, ,̆ C) is
qualitatively representable.

For the converse, let (N,λ) be any complete, consistent atomic network witness-
ing each consistent triple and containing no forbidden triples for the atom struc-
ture (S,E, ,̆ C): in other words, (N,λ) provides a qualitative representation of
(S,E, ,̆ C). We show that G∞ is 4-colourable, hence G is 3-colourable. By forbid-
den triple II, a triple (α, β, γ) is forbidden if exactly one or all three of α, β, γ belongs
to SGC ∪ SCG. Hence the edges labelled by atoms in SGC ∪ SCG = {y, y̆ , n, n̆ }
form a complete bipartite graph on N , say N is the disjoint union of N1 and N2.
By forbidden triple II again, every edge with source in N1 (say) and target in N2

has a label in SGC , every edge with source in N2 and target in N1 has a label in
SCG, edges with source and target within N1 have label in {1′} ∪ SGG and edges
with source and target in N2 have label in {1′} ∪ SCC .

Now we show that |N1| = |V∞| and that the labels suv define a graph on N1

isomorphic to G∞. Let u ∈ V and let ∞′, u′ ∈ N1 denote the source and target
of some edge labelled by s∞u. For each x ∈ N1 \ {∞′} the edge (∞′, x) must be
labelled by s∞v for some v ∈ V by forbidden triples II, IV and VI, and if (∞′, y) is
also labelled by s∞′v then x = y by forbidden triple V. Hence there is a bijection
′ : V∞ → N1 mapping ∞ to ∞′ and mapping v ∈ V to the unique v′ ∈ N1 such
that (∞′, v′) is labelled s∞v. So we may assume that N1 is identical to the set V∞,
and that the label of each edge (∞, w) (for w ∈ V ) is s∞w. By forbidden triples IV
and V we see that the label of the edge (u, v) is suv if (u, v) ∈ E, 1′ if u = v and g
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otherwise. By forbidden triple III, N2 cannot have more than four points, (we saw
in Examples 7.3 that N2 has either three or four points).

Let u ∈ N1. As (y, y, α) is always forbidden by VII, there is at most one edge
labelled y leaving u and because (svu, y, n) is consistent and the edge labelled svu
is unique (where (u, v) ∈ E), there is exactly one edge labelled y leaving u. Thus,
we may define a map ρ : V∞ → N2 by letting ρ(u) be the unique element of N2

such λ(u, ρ(u)) = y, for each u ∈ V∞ = N1. Since (suv, y, y) is forbidden by VIII
whenever (u, v) ∈ E∞, ρ is a valid 4-colouring of G∞. �

THEOREM 16. Let A be a finite non-associative algebra. The network qualitative
satisfaction problem over A is in NP.

Proof. For each consistent triple of atoms t, let (Tt, λt) be a partially labelled atomic
network with three nodes, witnessing the consistent triple of atoms. Assume for
distinct consistent triples t, s that Tt ∩ Ts = ∅. Given a network (N,λ), take
the disjoint union of (N,λ) and the disjoint partial triangles (Tt, λt) as t ranges
over consistent triples of atoms. Then, non-deterministically guess all unlabelled
edges and for each edge (x, y) of N , guess an atom below λ(x, y). Finally check
that the resulting atomic network is consistent. By Lemma 12, this correctly tests
qualitative satisfiability and runs non-deterministically in polynomial time. �

A traditional approach to solving the network satisfaction problem (for strong
representations) is to refine a given network to a path consistent network on the
same nodes. This path-consistent refinement may be computed deterministically in
cubic time. If the refined network is inconsistent (has a zero label) then the original
network is unsatisfiable. There are some algebras where the converse also holds — if
the refined network is consistent then the original network must be satisfiable — for
example, path-consistency entails satisfiability for networks over the Point Algebra
[VKvB89, Theorem 5]. However, for many relation algebras the converse fails,
for example, there are known path-consistent but unsatisfiable networks over the
Allen Interval Algebra [All83, Figure 5]. The Allen Interval algebra possesses a fully
universal representation (see Definition 10), so the satisfiability of a network may be
tested along the lines of the proof of the preceding theorem, by non-deterministically
picking an atom below the label of each edge of the network and checking the
consistency of the resulting atomic refinement. Such satisfiability checkers may
run faster if a network is first refined to a path-consistent network, before the
non-deterministic choice of atoms is made. For algebras which do not have fully
universal representations however, it is not sufficient to find a consistent atomic
refinement of a network, for example, there are consistent atomic networks over the
interval-with-duration calculus INDU, not satisfiable in any strong representation
(see our remarks in Section 1.1). Indeed there are finite relation algebras for which
the network satisfaction problem is undecidable [Hir99].

Nevertheless, for qualitative representations the non-deterministic algorithm given
in the preceding theorem is necessary and sufficient for qualitative representability.
Hence in general the network qualitative satisfaction problem can have much lower
complexity than the network satisfaction problem.

THEOREM 17. The problem of determining whether an equation is valid over
qualitative representations is co-NP-complete.
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Proof. Let t(x̄) = s(x̄) be an equation that fails in some herd S, where x̄ =
(x0, . . . , xk−1) is a finite tuple of variables. Then t(ā)S 6= s(ā)S holds for some
tuple ā = (a0, . . . , ak−1) of relations in the herd S and there is a pair of points
x, y from the base of S such that (x, y) belongs to one but not the other of t(ā)S

and s(ā)S . Let X be a finite subset of the base of S including x and y and also
including, for each subterm p; q occuring in either s or t, three points u, v, w such
that (u, v) ∈ p and (v, w) ∈ q, provided such points exist in the base of S. The
size of X is at most three times the length of the equation t(x̄) = s(x̄). Let
S�X be the herd on the base X consisting of the relations {r ∩ (X ×X) : r ∈ S}.
Lemma 4 and a simple induction shows that (u, v) ∈ p(a0, . . . , ak−1)S ⇐⇒ (u, v) ∈
p(a0 ∩ (X × X), . . . , ak−1 ∩ (X × X))S�X , for any u, v ∈ X and any subterm
p(x̄) of either t(x̄) or s(x̄). Hence (x, y) belongs to one but not the other of
t(a0 ∩ (X ×X), . . . , ak−1 ∩ (X ×X))S�X , s(a0 ∩ (X ×X), . . . , ak−1 ∩ (X ×X))S�X

and the equations t(x̄) = s(x̄) fails in a herd on a base of size at most three times
the length of the equation. Thus, the failure of the equation may be tested non-
deterministically by choosing a base of size at most three times the length of the
equation, guessing which pairs of points belong to each of the relations x0, . . . , xk−1
and verifying that the equation fails. This proves that the validity of equations
problem is co-NP.

Validity is co-NP-hard because the validity problem for propositional formulas
reduces to it. �

The reader has probably guessed, or knows already, that the corresponding prob-
lem for strongly representable relation algebras is much harder: the equational
theory of strongly representable relation algebras is undecidable [Tar41].

6. Feeble representations

We mentioned earlier that [LR04, Definition 3] only requires (a; b)φ ⊇ aφ ◦ bφ in
their definition of weak composition, and do not insist on minimality subject to that
(although elsewhere in their paper they imply a definition which accords with our
definition of qualitative representation, see Definition 3.4). In this section we inves-
tigate this weaker type of representability. Although qualitative representations are
of greater relevance to much of the literature in qualitative calculi, feeble represen-
tations are more directly related to research on the binary constraint satisfaction
problem, where for any constraints a, b and a solution for variables x, y, z, we may
infer from a(x, y), b(y, z) that (a◦ b)(x, z) holds, but there is no requirement, given
(a ◦ b)(x, z), that there should be three variables x′, y′, z′ such that a(x′, y′) and
b(y′, z′).

Let A be a non-associative algebra and let φ : A → P(D × D) (some base D)
respect the boolean operators, represent 1′ as the identity and respect the converse
operator. If (a; b)φ ⊇ aφ ◦ bφ (for all a, b ∈ A) then φ is called a feeble qualitative
representation, or simply a feeble representation, of A. The proof of the following
lemma is very similar to the proof of Lemma 12.

LEMMA 18. Let A be a finite non-associative algebra. A has a feeble represen-
tation if and only if there is a consistent atomic network (N,λ) over A such that
for every atom a of A there are x, y ∈ N with λ(x, y) = a.
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In a feeble representation of a finite algebra, instead of requiring a witness for
each consistent triple of atoms, we only require a witness for each each single atom,
while avoiding any forbidden triple of atoms.

One obvious shortcoming of this notion is that a feeble representation of an
algebra A does not determine A, because some consistent triples may be absent in
the representation. Indeed, we saw that the herd on a base of two points shown
in the second part of Example 7.1 provides a feeble representation of two non-
isomorphic non-associative algebras: the algebra of Example 7.1 and the algebra of
Example 7.4. Unfortunately, the complexity of the feeble representation problem
remains the same as that of the qualitative representation problem.

THEOREM 19. The problem of determining whether a finite atom structure has
a feeble representation is NP-complete.

Proof. If a finite atom structure with n atoms has a feeble representation then we
may restrict the base to a set of at most 2n points so that all atoms are still witnessed
in the restriction, hence the atom structure has a feeble representation of size at
most 2n. Thus, a non-deterministic algorithm may guess an atomic labelling over
a set of at most 2n points and check if the labelling defines a feeble representation.
So the feeble representation problem is in NP.

For NP-hardness, we reduce the Monochromatic Triangle problem for finite
graphs. Let G = (V,E) be a finite graph with vertices V and directed, irreflexive,
symmetric edges E (i.e. (u, v) ∈ E ⇐⇒ (v, u) ∈ E). The Monochromatic Triangle
problem asks if there is a 2-colouring of the edges, that is, a symmetric function
ρ : E → {r, b} such that ρ is not constant over the three edges of any triangle of
the graph. This problem is known to be NP-complete, see [GJ79, p. 191]. Any
complete graph with six or more nodes is a no instance, hence we will only consider
instances of this problem containing at least one non-edge.

Given a symmetric, irreflexive graph G = (V,E), we define a non-associative
atom structure (S,E, ,̆ C) as follows.

S = {1′} ∪ {×} ∪ SGG ∪ S∞G ∪ SG∞
where SGG = {cuv : c ∈ {r, b}, (u, v) ∈ E} ∪ {g}, S∞G = {pu, qu : u ∈ V } and
SG∞ = {p̆ u, q̆ u : u ∈ V }. The identity is an atom E = {1′} and converse is
defined by cuv˘ = cvu (for any c ∈ {r, b} and (u, v) ∈ E) , the converses of pu, qu are
p̆ u, q̆ u and 1′,×, g are self-converse. Let C consist of all triples of atoms except
for Peircean transforms of the following forbidden triples of atoms.

(I) (1′, x, y), where x 6= y,
(II) (×,×,×) and (×, α, β), where × 6∈ {α, β},

(III) (α, β, γ) where α ∈ SIJ , β ∈ SJ′K and any atom γ, unless J = J ′,
(IV) (pu, cu1v, pv1), (qu, cu1v, qv), any c ∈ {r, b} any u, u1, v, v1 ∈ V , unless

u = u1 and v = v1,
(V) (pu, g, pv), (qu, g, qv), where (u, v) ∈ E or u = v,

(VI) (pu, α, qv), for any atom α and any u, v ∈ V ,
(VII) (cuv, cvw, cuw), any c ∈ {r, b} and any u, v, w ∈ V .

Note that the set of atoms does not include a subset S∞∞, so triples III and II
forbid all triples of non-identity atoms of the form (α, β, γ) where α ∈ S∞G and
β ∈ SG∞, thus pu; p̆ v equals 1′ if u = v else it is zero, for all u, v ∈ V . Also, there
are no atoms cuu for c ∈ {r, b} since (u, u) 6∈ E, so by forbidden triples II, III IV, V
we have p̆ u; pu = 1′. Similarly qu; q̆ v ≤ 1′ and q̆ u; qu = 1′.
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Figure 4. A 2-colouring of the edges (u, v), (v, w) of a graph with
nodes u, v, w (above) and a consistent atomic network witnessing
all atoms in (S,E, ,̆ C), obtained from it (below). The atomic
network determines a feeble representation.

The reduction maps (V,E) to the complex algebra of the atom structure (S,E, ,̆ C)
just defined. Before we prove the correctness of this reduction, we mention the in-
tended roles of the atoms. Given any consistent, atomic network witnessing all
atoms, the atom × will define a bipartite edge relation over the set of nodes of the
network (as in Examples 7.2). Each part of the network contains a copy of the
graph together with a single auxiliary node and will encode a valid colouring of the
graph, with atoms ruv and buv encoding edges coloured red and blue, respectively,
while g (“gap”) corresponds to non-edges. The atom pu labels the edge from the
auxiliary node to u in one part of the network while the atom qu is used in the
other part. They are used to ensure that the encoding describes the way edges fit
together correctly. Conversely, given an arbitrary edge colouring of G there is dual
colouring obtained by swapping red and blue edge labels. By using the colouring
on one copy of G and the dual colouring on another copy of G we may construct a
consistent, atomic network in which each atom ruv and buv is witnessed. Such an
atomic network is illustrated in Figure 4, based on a two colouring of a three node
graph.

Now we make this more precise by checking that the reduction is correct. Sup-
pose ρ : E → {r, b} is a symmetric colouring avoiding monochrome triangles.
Let V+ consist of the nodes of V together with a single extra point ∞ and let
V ′+ = {x′ : x ∈ V+} be a set of the same size as V+ disjoint from it. We will define
an atomic network (V+ ∪ V ′+, λ) avoiding all forbidden triples (so consistent) and
witnessing every atom, thereby showing that the complex algebra over (S,E, ,̆ C)
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has a feeble representation. To define λ:

λ(x, x) = 1′ x ∈ V+ ∪ V ′+
λ(x, y′) = × x ∈ V+, y′ ∈ V ′+
λ(∞, u) = pu u ∈ V
λ(∞′, u′) = qu u ∈ V
λ(u, v) = cuv (u, v) ∈ E, ρ(u, v) = c ∈ {r, b}
λ(u′, v′) = c̄uv (u, v) ∈ E, ρ(u, v) = c

λ(u, v) = λ(u′, v′) = g (u, v) 6∈ E, u 6= v

where c̄ denotes ‘the other colour’, for c ∈ {r, b}, and each converse edge is labelled
by the converse atom, e.g. λ(u,∞) = p̆ u. It is a routine check that this defines
a consistent atomic network and that every atom labels at least one edge. By
Lemma 18, (S,E, ,̆ C) has a feeble representation.

For the converse, suppose the complex algebra over (S,E, ,̆ C) has a feeble rep-
resentation, by Lemma 18 there is a consistent, atomic network (N,λ) witnessing
all atoms. We must show that G is a yes instance of the monochromatic triangle
problem.

By forbidden triple II we have that for any x, y, z ∈ N either none or ex-
actly two of {λ(x, y), λ(x, z), λ(y, z)} equal ×. It follows that the set of pairs
{(x, y) : x, y ∈ N, λ(x, y) = ×} forms a complete bipartite graph with nodes N .
So N is the disjoint union N1 ∪N2, say, and λ(x, y) = × iff either x ∈ N1, y ∈ N2

or x ∈ N2, y ∈ N1.
Since all atoms are witnessed there are nodes z, x ∈ N such that λ(z, x) = pu,

without loss z, x ∈ N1. By forbidden triple III, for every y ∈ N1 \ {z} the label
λ(z, y) belongs to S∞G, so it is pv or qv for some v ∈ V , but it cannot be qv by
forbidden triple VI. By forbidden triples IV and V,

λ(x, y) =

 1′ if u = v
cuv if (u, v) ∈ E, for some c ∈ {r, b}
g otherwise

Hence the map ∗ : N1 \ {z} → V which maps y ∈ N1 \ {z} to v ∈ V iff λ(z, y) = pv
is a well-defined injection. Since each atom pv is witnessed in the network ∗ is
surjective, hence a bijection from N1 onto V . Define a function ρ : E → {r, b} by
letting ρ(u∗, v∗) = c if λ(u, v) = cuv, for c ∈ {r, b}. Since ruv˘ = rvu and buv˘ = bvu
this colouring function is symmetric. By forbidden triple VII, ρ is a valid colouring
of the graph. �

7. Axiomatisability

THEOREM 20. If K is a class of algebras containing all strongly representable
relation algebras and contained in the class of all feebly representable non-associative
algebras, then K has no finite axiomatisation in first order logic.

Proof. An edge of a set S is an unordered pair of distinct elements of S, for finite

S there are |S|×(|S|−1)2 edges. An n-colouring of a set S is a function ρ mapping
edges of S to a set of n colours, avoiding monochromatic triangles. Let n ≥ 3, let
k(n) be the smallest integer such that there is no n-colouring on a set with k(n) or
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more edges and let αn be the atom structure with atoms

{1′} ∪
{
ak0 : k < k(n)

}
∪ {ai : 0 < i < n}

Atoms disjoint from the identity are called diversity atoms. We regard the subscript
i of any diversity atom as the colour of the atom, so all atoms ak0 have colour 0. All
atoms are self-converse. All triples of atoms are consistent except those of the form
(1′, x, y) for x 6= y (and Peircean transforms of these) and triples of atoms of the

same colour, i.e. (ai, ai, ai) for 0 < i < n or (ak0 , a
k′

0 , a
k∗

0 ), for k, k′, k∗ < k(n). Let
An be the complex algebra of αn (sometimes called a Monk Algebra, see [HH02,
Definition 15.2]). Then An has no feeble representation because any atomic network
witnessing all atoms has at least k(n) distinct edges (one for each atom ak0), but
no such network can be consistent since there is no n-colouring of a set with this
many edges.

Now consider a non-principal ultraproduct A =
∏
n∈ω An/U of the An, where

U is a non-principal ultrafilter over ω. Let 0′ = −1′ ∈ A be the sum of all the
diversity atoms. The following first-order properties are true in each An.

1: each algebra is atomic, integral and all elements are self-converse
2: there is z0 disjoint from the identity such that z0; z0 = −z0 (consider the

element a0 =
∑
k<k(n) a

k
0 ∈ An) and for any non-zero x, y disjoint from

the identity

(x; y ≥ 0′) ∨ (x = y ∧ x; y = −x) ∨ (x, y ≤ z0 ∧ −z0 · 0′ ≤ x; y ≤ −z0)

3k: (k < n)

∀x0, . . . , xk−1 (
∑
i<k

xi ≥ 0′ →
∨
i<k

∀y (y 6≤ 1′ → xi; y ≥ 0′)).

To see why (2) is true in An observe that for any two non-zero elements x, y disjoint
from the identity, either x, y contain atoms of different colours (so their product is
≥ 0′), x = y = ai (some i with 1 ≤ i < n) or x, y ≤ a0, so at least one of the three
disjuncts must hold. Similarly for (3k), where k < n, by the pigeon-hole principal,
if
∑
i<k xi ≥ 0′ then there must be at least one i < k such that xi contains atoms of

more than one colour, hence xi; y ≥ 0′ for all y 6≤ 1′. Since the first two properties
are true in every An (n ∈ ω) and (3k) holds in cofinitely many An, all of these
properties hold in the ultraproduct A, by  Loś’ theorem.

We claim that A is a strongly representable relation algebra. Since RRA is a
variety, it suffices to prove that every finitely generated subalgebra of A is strongly
representable. For this, let F ⊆ A be any finite set. By adding if necessary, we
may assume that F includes the element z0 ∈ A required to exist by (2) and the
identity 1′ ∈ A. The boolean algebra 〈F 〉 generated in A by F has at most 2|F |

atoms and consists of arbitrary sums of them. Clearly 〈F 〉 includes the identity
and is closed under conversion, since we assume 1′ ∈ F and all elements of A are
self-converse. And by (2), 〈F 〉 is also closed under composition, hence it is a finite
sub-relation algebra of A. By (3k) where k = 2|F |, one of the atoms f of 〈F 〉 is
flexible, i.e. for any diversity atom g of 〈F 〉 we have f ; g ≥ 0′. It is known that every
integral relation algebra with a flexible atom is strongly representable [Com84] or
[Mad82, Theorem 5.19], so 〈F 〉 is a strongly representable relation algebra. Since
every finitely generated subalgebra of A is strongly representable, A is also strongly
representable, as claimed.
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Thus, none of the algebras An has a feeble representation so An 6∈ K (for n < ω)
but an ultraproduct A of them has a strong representation and is in K. By  Loś’
Theorem, K cannot be defined by finitely many axioms. �

By this theorem, the following classes cannot be defined by finitely many axioms:
the class of non-associative algebras with feeble representations; with qualitative
representations; with strong representations.

8. Conclusion

Let us review some of the advantages of qualitative representations. For many
applications in knowledge representation, it is natural to express that a certain
relation may be decomposed in a certain way without insisting that such a decom-
position must always exist, for example if one asserts that y occurs strictly later
than x, it might be the case that there is a z occurring in between, but not necessar-
ily. In order to model real world applications using relation-like algebras, it is often
necessary to consider a type of representation for our algebras that would be ruled
out if we were to restrict ourselves to strong representations. For relation algebras
such as RCC8 where we may wish to consider disconnected regions and regions with
holes it has been known for some time that strong relation algebra representations
are problematic. So the fact that qualitative representations include along with
strong representations a very wide class of different representations, significantly
extends our ability to model various situations.

Moreover, if a finite algebra has a qualitative representation then it has a qual-
itative representation on a finite base. This means, in general, that the network
satisfaction problem is much easier for qualitative representations than the corre-
sponding problem for strong representations, although for certain well-known rela-
tion algebras the two versions of the problem turn out to be equivalent. We have
seen that several representation problems become computationally much easier in
the context of qualitative representations compared to the corresponding strong
representation problem.

In a subsequent paper we intend to investigate the fully universal algebra of QRA
in more depth, by providing a recursive (but necessariliy infinite) axiomatisation
of it, by considering complete qualitative representations (strengthening Defini-
tion 3(2) to (ΣX)φ =

⋃
x∈X x

φ), and by showing that QRA generates a variety
with very strong structural properties (technically, a discriminator variety).
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