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Summary/Abstract 

HS populations allow for fine-resolution genetic mapping of a variety of complex traits.  HS 

mice and rats were created from breeding together eight inbred strains, followed by 

maintaining the colony in a manner that minimizes inbreeding.  After 50 or more generations 

of breeding, the resulting animals’ chromosomes represent a genetic mosaics of the founders’ 

haplotypes, with the average distance between recombination events in the centiMorgan 

range.  This allows for genetic mapping to only a few Mb, a much smaller region than what 

can be identified using traditional F2 intercross or backcross mapping strategies.  HS animals 

have been used to fine-map a variety of complex traits including anxiety and fear behaviors, 

diabetes, asthma and heart disease, among others.  Once a quantitative trait locus (QTL) has 

been identified, founder sequence and expression analysis can be used to identify underlying 

causal genes.  In the following review, we provide an overview of how HS rats and mice 

have been used to identify genetic loci, and in some cases the causal genes, underlying 

complex traits.  We discuss the creation and breeding strategies for both HS rats and mice.  

We then discuss the statistical analyses used to identify genetic loci, as well as strategies to 

identify causal genes underlying these loci.  We end the Chapter by discussing limitations 

faced when using HS populations, including several statistical challenges that have not been 

fully resolved.    
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Introduction:   

HS populations of mice and rats are created from breeding together eight inbred strains, 

followed by maintaining the colony in a manner that minimizes inbreeding (see figure 1).  

After 50 or more generations of breeding, the resulting animals’ chromosomes are a genetic 

mosaic of the founders’ haplotypes, with the average distance between recombination events 

in the centiMorgan range allowing genetic mapping to only a few Mb [1, 2].  HS animals 

exhibit a high degree of both genetic and phenotypic diversity, allowing high-resolution 

genetic mapping for a wide variety of traits.  While both HS rats and mice were originally 

created to be a resource population for experimental and selection studies [3, 4], Flint and 

colleagues demonstrated in 1999 that these populations can be used to narrow a previously 

identified quantitative trait locus (QTL) for anxiety [5] to only 0.8 cM [6], a large 

improvement over mapping studies using traditional F2 intercross or backcross approaches 

which generally map to 30 cM or more.  Since that time, multiple studies have used HS rats 

and mice for genetic mapping of complex traits.  Whilst this chapter focuses on mouse and 

rat HS, similar inbred types of populations - in which each individual’s genome is a mosaic 

of the founders - have been made in these and other species [7-10].  Other outbred 

populations, such as advanced intercross lines [11, 12] the mouse Diversity Outcross (also 

created from eight inbred founder strains; [13]) and commercially available outbreds [14, 15], 

are also available and have been reviewed previously [16]. 

 

Upon demonstrating success of the HS strategy for fine-mapping a single locus for a 

behavioral trait, the Flint lab went on to use HS mice to conduct a large multi-phenotype 

study, including traits involved in fear and anxiety behaviors, diabetes and asthma, and 

others.  The study included the largest cohort of mice at that time (1904 mice) and resulted in 



the identification of 843 QTL at 25% false discovery rate (FDR) with an average confidence 

interval of only 2.8 Mb [17].  In separate studies, HS mice have also been used to fine-map 

traits such as fear [18, 19], ethanol-induced locomotor activity [20] and arthritis [21].  Two 

HS mouse colonies have been created: the Boulder HS [4] and the Northport HS [20].  Six of 

the inbred founder strains are shared between these stocks, namely A/J, AKR/J, BALB/cJ, 

C3H/HeJ, C57BL/6J, DBA/2J.  The additional founders of the Boulder HS are the strains 

Is/Bi and R111, while those of the Northport HS are CBA/2J and LP/J.  Colonies were 

created and maintained with 24-40 breeder pairs using either a circular or random mating 

scheme.     

 

With the success of HS mice, investigators began to also use HS rats for genetic fine-

mapping.  The HS rat colony (N:NIH-HS) was first established by the NIH in 1984 using the 

following inbred strains: ACI/N,BN/SsN,BUF/N, F344/N, M520/N, MR/N, WKY/N, WN/N 

[3].  The colony was maintained using 60 breeder pairs using a random mating strategy.  

Upon the retirement of the colony’s originator, Dr. Carl Hansen, in 2006 the colony was 

transferred to the laboratory of Dr. Eva Redei at Northwestern University where it was 

maintained for two years.  In 2006, Dr. Redei transferred breeder pairs to the Medical 

College of Wisconsin in the United States and the Autonomous University of Barcelona in 

Spain.   The Medical College of Wisconsin currently maintains 60 breeder pairs and is using 

a random breeding strategy.  A smaller colony is also currently being maintained at 

Barcelona (Fernandez Teruel, personal communication).  The first genetic mapping study in 

HS rats fine-mapped a single locus for glucose tolerance from 60 Mb to only 2.4 Mb [22].  

Using expression QTL analysis and founder sequence data, Tpcn2, was identified as the 

likely causal gene within this region within only a few years [23].  Since that time, Flint and 

colleagues again conducted a large multi-phenotype study, including traits involved in 



anxiety, heart disease, multiple sclerosis among others [24]. They were able to fine-map 355 

QTL for 122 traits at 10% FDR.  An example of a scan for platelet aggregation is shown in 

Figure 2.  Using a merge analysis (described below) and protein modeling, they were able to 

identify 35 probable causative genes within these loci.   These data are described in detail and 

publicly available at [25].  We note that different analysis methodologies were used in the 

mouse and rat HS experiments, reflecting methodological improvements (principally the 

development of mixed models, described below) in the interim. A recent study has also fine-

mapped bone structure and strength in HS rats [26] and additional studies have demonstrated 

phenotypic variability, and thus suitability for future genetic studies, for additional 

phenotypic traits including kidney traits [27], drug abuse behaviors [28, 29] and behavioral 

and physiological responses to stress [30-32] and to ethanol [33-35].  Because of the rich 

history of the rat in behavioral studies, the HS rat will likely prove a useful model for genetic 

dissection of behaviors that are not easily modeled in the mouse (see [36].  The utility of the 

HS rat will also be enhanced by the recent availability of gene knock-outs and other genetic 

manipulations now available in the rat [37, 38].  

 

Statistical analysis and systems genetics in HS populations  

In order to perform genetic mapping in HS populations, the underlying ancestral haplotype 

mosaics must first be determined.  In this way, one can compute the probability that a 

particular locus in a given individual descended from which of the eight founder strains, thus 

providing increased information over simply analyzing genotype data (often based on bi-

allelic single nucleotide polymorphisms or SNPs).  HAPPY, a program developed by Mott 

and colleagues [2], uses a hidden Markov Model to determine the ancestral probabilities and 

has been shown to significantly improve genetic mapping results.  Other programs, such as 



DOQTL which was more recently developed for use in the Diversity Outbred (DO) mouse 

population, a population of mice created from eight founder strains, very similar to the HS, 

[39] can also be used to determine ancestral probabilities in the HS.  Once probabilities are 

determined, regression modeling is conducted on the underlying mosaic structure to identify 

QTL.   

 

Several programs are available for identifying QTL including Bagpipe [40], QTLRel [41] and 

DOQTL [39].  As with other highly recombinant populations, it is important to account for 

the complex family relationships within the HS population when conducting the analysis [24, 

40, 42].  Most colonies are maintained using either a random or circular breeding strategy 

with anywhere from 40-60 breeding pairs, generally sufficient to minimize inbreeding and 

control genetic drift.  Random mating strategies have the advantage of also avoiding reduced 

map expansion and therefor may be preferable to circular mating strategies [43].  As a result 

of the closed nature of the breeding strategy, animals within a colony are all related to each 

other but to differing degrees.  If not accounted for, false positive QTL will be identified 

simply on the basis of relatedness, as opposed to actually pertaining to the phenotype.  

Moreover, in HS studies, in order to generate a large sample of animals for phenotyping, it is 

necessary to expand the colony size resulting in a large number of families. Thus the analysis 

of the phenotyped individuals acquires a mixture of linkage (due to family structure) and 

association (because all individuals are ultimately descended from eight founders). If the 

parents of the phenotyped generation are genotyped along with the phenotyped mice, then it 

is also possible to infer the maternal and paternal origin of the alleles, allowing the study of 

parent-of-origin effects [44]. 

 



There are several ways to account for unequal degrees of relatedness in outbred populations.  

These include mixed modeling approaches such as EMMA [45] or by resample model 

averaging [40].  When genome-wide genotype information is unavailable, and/or when the 

full pedigree is unknown, family can also be accounted for by including this as a random 

term in the model, as previously demonstrated for a single locus on rat chromosome 1 [22, 

46].  When full pedigree information is known, QTLRel can be used to account for family 

relationships in highly recombinant animal populations such as the HS [41].  Resample 

model averaging approaches make use of genome-wide genotypes to determine genetic 

relatedness directly, and may prove advantageous under certain circumstances, particularly 

when pedigree information is unknown [40].  For mixed models, a kinship matrix is used to 

determine the genetic relatedness of each pair of individuals. This can be simply computed 

from SNP data (in the same way that is it computed in human studies) or from the ancestral 

haplotype mosaics [44].  Baud et al [24] used a mixed model to control for differences in 

relatedness, whilst Valdar et al 2006 [17] used resample model averaging (developed further 

in [40]).  Each method has advantages and disadvantages. The mixed-model methodology is 

essentially equivalent to transforming both phenotypes and genotypes by multiplication by 

the square root of the inverse of the variance-covarinace matrix, to create an uncorrelated 

dataset that can be analysed by ordinary least squares.  The method is well-established and 

works well on phenotypes that are approximately normally distributed.  Resampling methods, 

on the other hand, work well on phenotypes that are strongly skewed in distribution, but are 

slower than mixed models. 

 

Once QTL are identified, there are several methods that can be used to identify the 

underlying causal gene(s) within the locus.  These include a statistical merge analysis [47] (a 

form of genotype imputation), expression QTL mapping and protein modeling.  To date, 



complete genomes have been sequenced in the founder strains of the HS mice [48] and rats 

[24].  Relative to the respective reference genomes, more than 4 million SNPs per strain have 

been identified in the mouse [48] and more than 2 million SNPs per strain have been 

identified in the rat [24], in addition to structural variants and insertion/deletions.  Because a 

repetitive portion of the genome (~15% in mouse and ~12% in rat) could not be reliably 

mapped to the reference strains, the number of variants identified is likely much larger than 

reported [24, 48].  The available sequence information can be used in several ways to identify 

candidate genes and/or variants within a fine-mapped QTL.  By coupling founder sequence 

with relatively dense genotyping of the outbred population, it is possible to impute HS 

genotypes at all possible SNPs within a QTL.  This can be followed by a merge analysis to 

narrow the potential causative variants within the QTL [47].  Briefly, a merge analysis uses 

probabilistically inferred descent to impute genotype dosages at unobserved loci, and then 

surveys those multiple imputed SNPs for their association with the phenotype.  Using this 

method, two statistical models are compared: the haplotype model and the allelic model.  In 

the haplotype model, the underlying ancestral probabilities at each SNP are used to model the 

QTL; with each founder haplotype permitted to carry a different phenotypic effect.  This 

haplotype model is compared with one in which only the alleles for that SNP are used (allelic 

model).  In the allelic model, the founder strain alleles are “merged” into two groups for each 

diallelic SNP: those containing allele “a” at a locus of interest and those containing allele “b” 

at this locus [47]; with each group having a single phenotypic effect.  Potentially causative 

variants are those in which the allelic model provides a better fit, that is, explaining the same 

amount but with far fewer parameters, than the haplotype model (see [21, 47].  This method 

has proven useful in narrowing the number of causative variants within QTL mapped in HS 

mice [48] and rats [24].  A single causal variant, however, is rarely identified and follow-up 

studies are often needed to identify the causal variant.  In addition, the method works less 



well when multiple causal variants underlie a single QTL [24], but can be used to show that a 

QTL cannot be explained by a single biallelic variant (as was the case for about half the 

QTLs detected by Baud et al). Merge analysis is also useful for excluding genetic variants 

that cannot be causal. 

 

Transcript abundance levels, based on RNAseq or microarray data, can also be used to 

identify causal genes underlying a QTL, as well as identification of gene networks that play a 

role in a given trait.  Expression QTL (eQTL) analysis in HS populations allows investigators 

to map both cis and trans-eQTL to within only a few Mb of the transcript itself [49].  Overlap 

of cis-eQTL with physiological QTL can then be used to identify candidate genes within an 

interval, as demonstrated in HS rats by Tsaih et al., [23].  Our group identified Tpcn2 as a cis-

eQTL within a physiological QTL for fasting glucose and insulin levels and demonstrated 

that glucose levels strongly correlated with Tpcn2 expression levels in the HS rats.  We then 

demonstrated that fasting glucose and insulin in response to a glucose challenge were altered 

in Tpcn2 knock-out mice, and Tpcn2 was nominally correlated with fasting insulin levels in 

humans, providing evidence that Tpcn2 is the likely causal gene within this region.  

Transcript abundance levels can also be used to identify gene networks (groups of correlated 

transcripts) that may play a role in disease [50-53].  Although this strategy has not been 

applied specifically to HS populations to-date, it offers a promising avenue of research for the 

future. Similarly, regions of the genome associated with open chromatin, such as DNAse-1 

hypersensitive sites, identified in the mouse reference genome by the mouse ENCODE 

project [54] and across the HS founder strains [55] may be used to help identify causal 

variants and genes. 

 



Further Considerations and Limitations  

Using outbred HS populations offers several advantages over traditional F2 intercross or 

backcross strategies.  The first is the ability to fine-map to only a few Mb, greatly decreasing 

the number of potential candidate genes within a given locus.  Once loci are identified, full 

genome sequence is available for founder strains of the HS mouse [48] and HS rat [24] and 

this information has proven to be invaluable for identifying causative genes and variants 

within fine-mapped QTL.   Despite these advantages, there are also several disadvantages 

that should be considered prior to embarking on a study with HS populations.  Each rat is 

genetically and phenotypically distinct, so once a QTL, or even a gene, has been identified, 

there is no inbred model to go back to for functional testing, although the inbred founders 

might be used for this purpose.  In addition, large numbers of animals are needed to have 

sufficient power for each mapping study and high density genotyping platforms (generally 

10K or greater) are required.  Because each animal is unique, all animals need to be 

genotyped and phenotyped with each new study, as opposed to  recombinant inbred lines 

where genotypes need be collected only once.  As a result, it is beneficial to gather as much 

phenotype information as possible from the same group of animals, so that genotyping only 

needs to be done once and this information can be used to map multiple traits (e.g., [17, 24]).  

A further disadvantage is that these populations have been created through a single funnel 

(i.e., combining founder genomes only once), leading to loss of certain alleles and potentially 

unbalanced representation of the founder genomes.  There are further considerations 

regarding confirmation of a potentially causal gene, and several statistical challenges that 

have not been resolved when using highly recombinant populations such as the HS.   

 



Once a candidate gene is identified, follow-up studies are needed to confirm or disprove the 

role of that candidate in the trait.  In addition to replication in a separate cohort, conducting a 

cross-species comparison can help provide support for the gene of interest.   Of particular 

interest is human genome-wide association data which is often publicly available and can be 

mined to determine if a gene of interest falls just below the genome-wide significance 

threshold in humans.  Once there is sufficient evidence to suspect a causal role for a specific 

gene, one of the most popular methods used to verify this gene is to study it in a knock-out 

model.  Such methods have been available in the mouse since 1990 [56] and have recently 

become available in the rat [57].  Although popular because of their relative ease of 

constructing a knock-out, it is important to recognize that showing a change in phenotype in a 

knock-out model neither proves nor disproves a causative role of this gene at the QTL [58], 

particularly because there is no way to create a knock-out on the same background in which 

the QTL was identified.  Methods such as quantitative complementation offer an alternative 

approach to test a causal role of the gene or variant [59, 60].  More importantly, new gene 

targeting approaches which allow for changes in single base pairs are now being used and 

offer a more realistic approach than a full gene knock-out (see [61].  The revolution in gene 

editing due to CRISPR/Cas9 technology (recently applied to rats in [38]) suggests that gene 

confirmation will become more straightforward in the future, at least for isolated coding 

variants.  However, cases where multiple causal variants, carried on a single haplotype, are 

implicated, will likely remain a challenge to prove causality, particularly if their effect is 

regulatory.  It is therefore important for investigators to assess all available information, 

including expression, sequence, cross-species comparisons, results from a knock-out, allelic 

changes using CRISPR/Cas9 modifications, as well as possible in vitro studies to assess the 

potential causative role of a particular gene and/or variant.    

 



In addition to the above considerations, there are several statistical concerns that need to be 

taken into consideration when analyzing outbred HS populations.  One of these is how best to 

determine significance thresholds.  Cheng and Palmer [62] recently compared four different 

methods used in an advanced intercross population.  They found that as long as an 

appropriate statistical model (i.e., one that takes into account the complex family 

relationships) is used, all methods worked relatively well, with gene-dropping (a simulation 

technique used in pedigree analysis) decreasing false QTL even when family is not taken into 

account.  The best way to determine QTL confidence intervals is another challenge.  Many 

studies use the 1.5 LOD drop method, (e.g., [46, 63, 64], which was initially developed for 

use in F2 intercross populations.  An alternative approach is to use non-parametric 

bootstrapping [65], in which the QTL is re-estimated under alternative datasets based on the 

original, with each alternative data-set created by resampling the individuals with 

replacement [66].  Although this method has been shown to be overly conservative [67], it 

does provide a complementary estimate of how sensitive the localization of the top QTL peak 

is to resampling, thus providing insight into whether more than one locus may underlie the 

QTL (see [46].   

 

Accurate determination of the joint effects of diplotypes (i.e., combinations of founder 

haplotypes – effectively any departure from the assumption of additivity in the haplotype 

effects) is also an on-going statistical challenge in outbred populations.  Using the DO mouse 

population, investigators have looked at the effects of just the founder allele effects within the 

QTL [13, 63].  This has been useful in conducting haplotype analysis and narrowing the 

region of the QTL.  However, within the HS or DO populations, there are in effect 36 

possible diplotype combinations, and founder effects account for only eight of these.  We 



[46] have recently published methods that accounts for all 36 possible diplotype effects and 

work in this area is on-going (see [68]).   

 

A final statistical concern is that of statistical power.  Although previous power calculations 

have been run in multi-founder populations and suggest that 1,000-1,500 animals provide 

sufficient power for mapping QTL explaining 5% of the variance [2, 69, 70],  these 

simulations do not account for the confounding effects of relatedness (eg, [40, 42]), or marker 

ascertainment (eg, [71]), and are therefore likely overstated.  Previous studies in the diversity 

outbred mouse population have used as few as 150 mice, however this study provided 

sufficient power to map only 11 of 113 traits that were measured [13].  Studies in HS 

populations have used over 1000 animals, successfully mapping most traits analyzed [17, 24], 

and demonstrating the increased power of these studies.  In order to have more accurate 

power estimates for future studies in these populations, power calculations will need to 

account for both family structure and polygenes.  That said, increasing sample size has many 

benefits: there is greater power to detect QTLs of small effect, QTL effect sizes are less likely 

to be over-estimated due to Winner’s Curse, and confidence intervals are likely to be smaller 

and more accurate. 

 

Conclusion 

HS populations have proven useful for fine-mapping complex traits to only a few Mb, rapidly 

narrowing the number of potential candidate genes within the locus.  Several strategies, 

including use of full founder sequence and expression QTL mapping have been used to 

identify the underlying causal genes within these loci.  It is important, however, to consider 

the cost and labor intensive challenges of working with HS populations, as well as the many 



unanswered statistical challenges that still remain.  Despite these challenges, use of outbred 

models such as the HS has and will continue to enhance of knowledge of the genetic 

architecture of complex traits. 
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Figures

     Heterogeneous Stocks 

Figure 1. Breeding scheme for heterogeneous stock (HS) populations.  HS are 
created by breeding together eight inbred strains.  Once all eight genomes are 
combined, the animals are bred using either a circular strategy or random 
breeding.  Existing HS mouse and rat colonies have been bred for over 50 
generations.  Figure adapted from Solberg Woods, 2014. 



 

Figure 2.  Genome scan for platelet aggregation as shown in Baud et al., 
2013.  The scan shows the results of a haplotype-based mixed model.  The 
y-axis shows the negative log P values for association with variation in 
platelet aggregation.  The association peak on chromosome 4 harbors the 
von Willebrand factor gene that was identified through sequence analysis 
as the causative gene.    


