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Abstract. We study the family of compact operators Bα =
V AαV , α > 0 in L2(Rd), d ≥ 1, whereAα is the pseudo-differential
operator with symbol a(α)(ξ) = a(αξ), and both functions a and
V are real-valued and decay at infinity. We assume that a and V
attain their maximal values A0 > 0, V0 > 0 only at ξ = 0 and
x = 0. We also assume that

a(ξ) = A0 −Ψγ(ξ) + o(|ξ|γ), |ξ| → 0,

V (x) = V0 − Φβ(x) + o(|x|β), |x| → 0,

with some functions Ψγ(ξ) > 0, ξ 6= 0 and Φβ(x) > 0, x 6= 0 that
are homogeneous of degree γ > 0 and β > 0 respectively. The
main result is the following asymptotic formula for the eigenvalues

λ
(n)
α of the operator Bα (arranged in descending order counting

multiplicity) for fixed n and α→ 0:

λ(n)α = A0V
2
0 − µ(n)ασ + o(ασ), α→ 0,

where σ−1 = γ−1 + β−1, and µ(n) are the eigenvalues (arranged
in ascending order counting multiplicity) of the model operator T
with symbol V 2

0 Ψγ(ξ) + 2A0V0Φβ(x).

1. Introduction and main result

Let a = a(ξ), ξ ∈ Rd, V = V (x),x ∈ Rd, d ≥ 1, be bounded real-
valued functions such that a(ξ)→ 0, V (x)→ 0 as |ξ| → ∞, |x| → ∞.
Consider the self-adjoint operator on L2(Rd) defined by

(1.1) Bα = V F∗a(α)FV, a(α)(ξ) = a(αξ), α > 0,

where F is the unitary Fourier transform

(Fu)(ξ) = û(ξ) =
1

(2π)
d
2

∫
e−iξ·xu(x)dx.
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Here and further on the integral without indication of the domain
means integration over the entire space Rd. The operator F∗a(α)F is
also described as a pseudo-differential operator with symbol a(α). This
description however is not helpful for us as we do not use calculus of
pseudo-differential operators. It is useful to point out the following
scaling invariance of the operator Bα: a straightforward change of
variables x → rx, ξ → r−1ξ with an arbitrary r > 0, reduces the
operator Bα to the unitarily equivalent operator

V (rx)F∗a(αr−1ξ)FV (rx).(1.2)

In particular, the choice r = α transfers the scaling onto the function
V . We use operator (1.2) further on with a specific choice of the
parameter r.

It is clear that Bα is compact for all α > 0. We are interested in
the asymptotics of the extreme top eigenvalues of the operator Bα

as α → 0. More precisely, denote by λ
(1)
α , λ

(2)
α , . . . the eigenvalues

of Bα arranged in descending order counting multiplicity. The asso-
ciated normalized pair-wise orthogonal eigenfunctions are denoted by

ψ
(1)
α , ψ

(2)
α , . . . . We study the asymptotics of λ

(n)
α as α→ 0 for a fixed n.

This problem has been addressed in the literature in different contexts
under different conditions on the functions a and V . For example, if
a and V are indicator functions of bounded intervals in R, the be-
haviour of the eigenvalues was studied by D. Slepian and H.O. Pollak
in [11]. For d ≥ 2 this problem was analyzed by D. Slepian in [12]
with a, V being indicator functions of balls. In both cases (one- and

multi-dimensional) the eigenvalues λ
(n)
α are exponentially close to 1 as

α→ 0.
In [13] H. Widom considered the function V which was the indicator

of an interval I, and symbol a = a(ξ), ξ ∈ R, having one global
maximum at ξ = 0, and satisfying the condition

a(ξ) = A0 −Ψ|ξ|γ + o(|ξ|γ), |ξ| → 0,(1.3)

with A0 = a(0) = max a(ξ) > 0, and some Ψ > 0, γ > 0. It was
proved that

λ(n)α = A0 − αγΨµ(n) + o(αγ), α→ 0,(1.4)

where µ(n), n = 1, 2, . . . are eigenvalues of the fractional Dirichlet
Laplacian (−∆)

γ
2 on I, arranged in ascending order counting mul-

tiplicity. A multi-dimensional analogue of this result was obtained by
H. Widom in [14]. We omit its formulation for the sake of brevity. A
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result of the type (1.4) also holds if V is not assumed to be a sim-
ple indicator function, but attains its (positive) maximum on a set of
positive measure, see [7].

For applications to transport problems (see [2] and [5]) it is also use-
ful to investigate the case where both functions a and V have unique
power-like maxima. This is exactly the case that we study in the
present paper. Note that this problem is very close to the quasi-
classical study of low-lying eigenvalues for the Schrödinger operator,
see e.g. [3], [9]. The latter are usually analysed for smooth symbols,
which in some cases allows one to obtain a complete expansion in
powers of the parameter (as in [3]).

Our assumptions on a and V are described below. By C, c (with or
without indices) we denote various positive constants whose precise
value is of no importance.

Condition 1.1. (1) a and V are real-valued continuous functions
such that a(ξ)→ 0 as |ξ| → ∞, and V (x)→ 0 as |x| → ∞.

(2) The functions a and V attain their global maxima only at ξ = 0
and x = 0 respectively:

A0 := max a(ξ) > 0, V0 := maxV (x) > 0.

The function V satisfies the condition −V0 + c ≤ V (x) ≤ V0,
x a.e., with a positive constant c.

(3) Let Φβ,Ψγ ∈ C∞(Rd \ {0}) be some real-valued functions, ho-
mogeneous of degree β > 0 and γ > 0 respectively, positive at
x 6= 0. The functions V and a satisfy the properties

(1.5) V (x) = V0 − Φβ(x) + o(|x|β), |x| → 0,

and

(1.6) a(ξ) = A0 −Ψγ(ξ) + o(|ξ|γ), |ξ| → 0.

With appropriate modifications, the assumption of continuity of a
and V can be relaxed, but we have chosen to avoid more complicated
formulations.

The results of the paper are described with the help of the following
model pseudo-differential operator T defined formally by its symbol

(1.7) t(x, ξ) = V 2
0 Ψγ(ξ) + 2A0V0Φβ(x).

The operator T is essentially self-adjoint on C∞0 (Rd), and has a purely
discrete spectrum (see e.g. [8, Theorems 26.2, 26.3]). The same op-
erator can be also defined (see [1, p. 229, Theorem 1]) as the unique
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self-adjoint operator associated with the quadratic form

T [u, v] = V 2
0

∫
Ψγ(ξ)û(ξ)v̂(ξ)dξ + 2A0V0

∫
Φβ(x)u(x)v(x)dx,

(1.8)

which is closed on D[T ] = H
γ
2 (Rd)∩L2(Rd, |x|β), where Hs(Rd), s > 0,

is the standard Sobolev space notation, whereas L2(Rd, |x|β) is the

weighted L2-space with the norm
√∫
|u|2|x|βdx. We use the notation

T [u] = T [u, u]. Recall that in view of the polarization identity, the
form T [w], w ∈ D[T ], determines T [u, v] for all u, v ∈ D[T ]. Denote
by µ(n) > 0, n = 1, 2, . . . the eigenvalues of T arranged in ascending
order counting multiplicity, and by φ(n) – an orthonormal basis of
corresponding normalized eigenfunctions.

Let σ be the number found from the equation

1

σ
=

1

β
+

1

γ
.

The next theorem constitutes the main result of the paper.

Theorem 1.2. Suppose that the functions a and V satisfy Condition
1.1. Then for any n = 1, 2, . . . , the asymptotics hold:

(1.9) lim
α→0

α−σ(A0V
2
0 − λ(n)α ) = µ(n).

A few remarks are in order.

Remark 1.3. (1) Note that formally, the asymptotics (1.9) imply
(1.4) if one takes d = 1 and β =∞.

(2) A model operator of the form (1.7) was featured in [6] where the
norm of a special self-adjoint integral operator with properties
similar to Bα, was studied.

(3) The spectrum of the operator Bα is symmetric in functions
V and a in the following sense. Suppose that a = p2 with
some real-valued function p. Then Bα = X∗αXα, where Xα =
p(α)FV . It is well known (see e.g. [1, p. 95, Theorem 5]) that
the non-zero spectra of X∗αXα and XαX

∗
α coincide. As a conse-

quence, instead of Bα one can study the operator p(α)FY F∗p(α),
Y = V 2, which has the same non-zero eigenvalues. In view of
the scaling invariance mentioned at the beginning of the In-
troduction, this operator is unitarily equivalent to pFY (α)F∗p.
This conclusion reverses the roles of the functions a and V in
the initial operator Bα. If one replaces the condition (1.6) with
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an appropriate asymptotic condition on the function p, then it
is easy to see that formula (1.9) reflects this symmetry as well.

(4) One could also examine the case when one or both of the func-
tions a, V attain their respective maximal values at several
points, and have there the asymptotics of the type (1.5) and
(1.6). The author believes that this problem can be tackled by
standard methods via decoupling distinct maximum points,
thereby reducing the issue to the case of a single maximum.

The case of multiple extremal points was extensively studied
in the literature for low-lying values of the Schrödinger oper-
ators, see e.g. [4], [10] and references therein. In particular,
in [4], the potential is assumed to attain its extremum on a
collection of surfaces instead of that of points. We do not go
into details.

(5) Conceptually, the proof of Theorem 1.2 follows the paper [13],
but the technical details are quite different: for instance, the
model operator T replaces the fractional Laplacian used in [13].

2. Preliminary estimates. Lower bounds for the top
eigenvalues

Throughout the paper we assume that Condition 1.1 is satisfied.
Without loss of generality we may assume that A0 = V0 = 1. Instead
of the operator Bα defined in (1.1), we use the operator (1.2) with

r = α
γ

γ+β ,

so that (1.1) is unitarily equivalent to

Bα = WαF
∗bαFWα,

where Wα and bα are defined in the following way:

Wα(x) = V
(
α

γ
γ+βx

)
, bα(ξ) = a

(
α

β
γ+β ξ

)
.

Note that slightly abusing the notation we use for the unitarily equiva-
lent operator the same notation Bα. This will not cause any confusion.
For thus defined functions Wα and bα the conditions (1.5) and (1.6)
imply that

lim
α→0

α−σ
(
1− bα(ξ)

)
= Ψγ(ξ), ∀ξ ∈ Rd,(2.1)

and

lim
α→0

α−σ
(
1−Wα(x)2

)
= 2Φβ(x), ∀x ∈ Rd.(2.2)
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Both convergences are uniform in x and ξ varying over compact sets.
Here is another useful property of the family Wα:

Lemma 2.1. For any u ∈ D[T ], we have

(2.3) α−σ
∫
|Wα(x)− 1|2|u(x)|2dx→ 0, α→ 0.

Proof. The function Wα− 1 is bounded uniformly in x and α, so that

|Wα(x)− 1|2 ≤ C|Wα(x)− 1|, x ∈ Rd.

On the other hand,

|Wα(x)− 1| ≤ Cασ|x|β, x ∈ Rd.

Therefore, for any R > 0, we can estimate as follows:

α−σ
∫
|Wα(x)− 1|2|u(x)|2dξ

≤ α−σ
∫
|x|<R

|Wα(x)− 1|2|u(x)|2dx

+ Cα−σ
∫
|x|≥R

|Wα(x)− 1||u(x)|2dx

≤ Cασ
∫
|x|<R

|x|2β|u(x)|2dx + C

∫
|ξ|>R

|x|β|u(x)|2dx

≤ CασRβ

∫
|x|<R

|x|β|u(x)|2dx + C

∫
|x|>R

|x|β|u(x)|2dx.

Both integrals on the right-hand side are finite, since u ∈ D[T ], and
the second one tends to zero as R → ∞. Thus, passing first to the
limit α→ 0, and then taking R→∞, we conclude that the right-hand
side tends to zero as α→ 0, as claimed. �

Now we show that in some suitable sense the operator Bα can be
approximated by the operator I − ασT as α→ 0. Define the form

(2.4) Rα[u] = (Bαu, u)− ‖u‖2 + ασT [u],
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which is closed on the domain D[T ], and two more forms

Kα[u, v] = α−σ
∫

(1− bα(ξ))û(ξ)v̂(ξ)dξ,(2.5)

Sα[u, v] = α−σ
∫ (

1−Wα(x)2
)
u(x)v(x)dx,(2.6)

that are defined for all u, v ∈ L2(Rd). It is easily checked that with
wα = Wαu, yα = Wαv, we have

α−σ
(
(u, v)− (Bαu, v)

)
= Kα[wα, yα] + Sα[u, v],(2.7)

and

Rα[u, v] = ασ
(
T [u, v]−Kα[wα, yα]− Sα[u, v]

)
.(2.8)

Note that Kα[u] ≥ 0 and Sα[u] ≥ 0 for all α > 0. Also, due to (2.1)
and (2.2), for any u ∈ D[T ] we have

Kα[u] ≤ C

∫
|ξ|γ|û(ξ)|2dξ, Sα[u] ≤ C

∫
|x|β|u(x)|2dx,(2.9)

with a constant C independent of u. Moreover, for any u ∈ D[T ] we
also have

lim
α→0

Kα[u] =

∫
Ψγ(ξ)|û(ξ)|2dξ,(2.10)

and

lim
α→0

Sα[u] = 2

∫
Φβ(x)|u(x)|2dx,(2.11)

by the Dominated Convergence Theorem.

Lemma 2.2. For any u ∈ D[T ] and wα = Wαu, we have

Kα[wα − u]→ 0, α→ 0.(2.12)

Also, for any u, v ∈ D[T ] we have

α−σ|Rα[u, v]| → 0, α→ 0.(2.13)

Proof. Proof of (2.12). Estimate:

Kα[wα − u] ≤ Cα−σ
∫
|wα(x)− u(x)|2dx

= Cα−σ
∫ (

1−Wα(x)
)2|u(x)|2dx.

Here we used the fact that 0 ≤ 1 − bα ≤ C with some constant C.
The right-hand side tends to zero by (2.3).
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It suffices to prove (2.13) for u = v. Consider separately the terms
in the representation (2.8). Write:

Kα[wα] = Kα[u] + 2 ReKα[u,wα − u] +Kα[wα − u].

The last term tends to zero by (2.12). Now estimate the second term:

|Kα[u,wα − u]|2 ≤ Kα[u]Kα[wα − u].

In view of (2.9), the first factor is uniformly bounded, and the second
one tends to zero. Thus

Kα[wα]−Kα[u]→ 0, α→ 0.

Together with (2.10) and (2.11) this implies that

lim
α→0

(
Kα[wα] + Sα[u]

)
= T [u],

see (1.8). Due to (2.8) this implies (2.13). �

The lower bound for the eigenvalues λ
(n)
α , i.e. the upper bound for

the left-hand side of (1.9), is rather straightforward.

Lemma 2.3. For all n = 1, 2, . . . , we have

(2.14) lim sup
α→∞

α−σ(1− λ(n)α ) ≤ µ(n).

Proof. Let Kn ⊂ L2(Rd), n ≥ 1, be the span of the eigenfunctions
φ(1), φ(2), . . . , φ(n), so dimKn = n. By the max-min principle (see e.g.
[1, p. 212, Theorem 5]),

λ(n)α ≥ min(Bαu, u),

where the minimum is taken over all functions u ∈ Kn such that
‖u‖ = 1. Thus by definition (2.4)

λ(n)α ≥ 1− ασ max
u∈Kn,‖u‖=1

T [u]− n max
1≤j,k≤n

|Rα[φ(j), φ(k)]|.

Since {φ(j)} are eigenfunctions of T ,

max
u∈Kn,‖u‖=1

T [u] = µ(n),

and the required result now follows from (2.13). �

Now we can establish the uniform localization of the eigenfunctions

ψ
(n)
α , n = 1, 2, . . . . Denote

θ(n)α (x) = Wα(x)ψ(n)
α (x).
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Below we use the notation χR = χR(t) for the indicator function of
the ball {t ∈ Rd : |t| < R}.

Lemma 2.4. For all n = 1, 2, . . . , the forms Kα[θ
(n)
α ] and Sα[ψ

(n)
α ] are

bounded uniformly in α:

lim sup
α→0

(
Kα[θ(n)α ] + Sα[ψ(n)

α ]
)
≤ µ(n),(2.15)

and

‖θ(n)α − ψ(n)
α ‖ → 0, α→ 0.(2.16)

Moreover, for all R > 0 we have

(2.17) lim inf
α→0

‖ψ̂(n)
α χR‖2 ≥ 1− Cµ(n)R−γ,

and

(2.18) lim inf
α→0

‖ψ(n)
α χR‖2 ≥ 1− Cµ(n)R−β.

with some constant C, independent of n and R.

Proof. We drop the superscript “n” for brevity. According to (2.7),

α−σ(1− λα) = Kα[θα] + Sα[ψα].

Now (2.15) follows from (2.14). Now write

‖θα − ψα‖2 =

∫ (
1−Wα(x)

)2|ψα(x)|2dx.

The straightforward estimate

1

2
(1−Wα)2 ≤ 1−Wα =

1−W 2
α

1 +Wα

≤ C(1−W 2
α),

by the definition (2.6), implies that

‖θα − ψα‖2 ≤ CασSα[ψα],

which leads to the convergence ‖θα − ψα‖ → 0, α → 0, in view of
(2.15).

Proof of (2.17). By Condition 1.1(2), the point ξ = 0 is the global
maximum of bα(ξ), so in view of (1.6), for all |ξ| > R,R > 0 and all
sufficiently small α we have

bα(ξ) = a
(
α

β
γ+β ξ

)
≤ 1− CRγασ,
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with some constant C. Thus α−σ(1− bα(ξ)) ≥ CRγ, and hence

Kα[θα] ≥ CRγ

∫
|ξ|>R

|θ̂α(ξ)|2dξ,

so that, by (2.15), ‖θ̂α(1−χR)‖2 ≤ CµR−γ. Together with (2.16) this
leads to (2.17).

Proof of (2.18) is similar. By Condition 1.1(2) and by (1.5), for all
|x| > R, R > 0, we have |Wα(x)|2 ≤ 1− CRβασ, and hence

Sα[ψα] ≥ CRβ

∫
|x|>R

|ψα(x)|2dx,

so that by (2.15) again, ‖ψα(1 − χR)‖2 ≤ CµR−β. This leads to
(2.18). �

With the help of Lemma 2.4, in the proof of Theorem 1.2 we show

that any weakly convergent sequence of the eigenfunctions ψ
(n)
α in fact

converges in norm. For this we rely on the following result:

Proposition 2.5. (See [6, Lemma 12]) Let fj ∈ L2(Rd) be a sequence
such that ‖fj‖ ≤ C uniformly in j = 1, 2, . . . , and fj(x) = 0 for all
|x| ≥ ρ > 0 and all j = 1, 2, . . . . Suppose that fj converges weakly
to f ∈ L2(Rd) as j → ∞, and that for some constant A > 0, and all
R ≥ R0 > 0,

(2.19) lim inf
j→∞

‖f̂jχR‖ ≥ A− CR−κ, κ > 0,

with some constant C independent of j, R. Then ‖f‖ ≥ A.

3. Proof of Theorem 1.2

As before, we assume that a and V satisfy Condition 1.1, and that
A0 = V0 = 1.

The next lemma is the last step towards the proof of Theorem 1.2.

Lemma 3.1. Suppose that for some sequence αk > 0, convergent to

zero as k → ∞, the sequence of eigenfunctions ψ
(n)
αk converges weakly

to ψ(n). Then

(1) The sequence ψ
(n)
αk converges to ψ(n) in norm as k →∞,

(2) The norm limit ψ(n) belongs to D[T ], and

(3.1) lim
k→∞

αk
−σ((ψ(n)

αk
, g)−Bαk [ψ

(n)
αk
, g]
)

= T [ψ(n), g],
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for any g ∈ D[T ].

Proof. As before, we omit the superscript “n”. Also for brevity we
write α instead of αk.

Proof of (1). Due to the formula

‖ψ − ψα‖2 = 1 + ‖ψ‖2 − 2 Re(ψα, ψ)→ 1− ‖ψ‖2, α→ 0,

it suffices to show that ‖ψ‖ = 1.
For a number ρ ≥ 1 denote wα,ρ = ψαχρ, yα,ρ = ψα(1− χρ). Thus,

by (2.17) and (2.18), for any R ≥ 1 we have

‖ŵα,ρχR‖ ≥ ‖ψ̂αχR‖ − ‖yα,ρ‖ ≥ 1− CµR−γ − C(µρ−β)
1
2 .

Since ψα → ψ weakly, then for any ρ > 0 the family wα,ρ converges to
ψχρ weakly. Using Proposition 2.5 for the sequence wα,ρ we conclude
that

‖ψχρ‖ ≥ 1− C(µρ−β)
1
2 .

Since ρ is arbitrary, this means that ‖ψ‖ = 1, which implies the norm
convergence ψα → ψ, α→ 0, as claimed.

Proof of (2). By Part (1) above, and by (2.16), we have

‖θ̂α − ψ̂‖ ≤ ‖θα − ψα‖+ ‖ψα − ψ‖ → 0, α→ 0.

Thus for a subsequence θ̂α, there is a pointwise convergence θ̂α → ψ̂,
α → 0. By (2.1), the integrand in Kα[θα] converges pointwise to

Ψγ(ξ)|ψ̂(ξ)|2. By (2.15), Kα[θα] is uniformly bounded, so by Fatou’s

Lemma, |ξ|γ/2ψ̂ ∈ L2(Rd).
By (2.2), the integrand in Sα[ψα] converges pointwise to 2Φβ(x)|ψ(x)|2.

By (2.15), Sα[ψα] is uniformly bounded, so by Fatou’s Lemma again,
|x|β/2ψ ∈ L2(Rd). Together with the previously obtained property

|ξ|γ/2ψ̂ ∈ L2(Rd), this means that ψ ∈ D[T ].
Proof of (3.1) is similar to that of (2.13), but is somewhat more

complicated since it involves functions ψα depending on the parameter
α. By (2.7),

α−σ
(
(ψα, g)−Bα[ψα, g]

)
= Kα[θα, yα] + Sα[ψα, g],

where yα = Wαg. We prove that

lim
α→0

Kα[θα, yα] =

∫
Ψγ(ξ)ψ̂(ξ)ĝ(ξ)dξ,(3.2)
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and

lim
α→0

Sα[ψα, g] = 2

∫
Φβ(x)ψ(x)g(x)dx.(3.3)

Estimate: ∣∣Kα[θα, yα]−Kα[θα, g]
∣∣2 ≤ Kα[θα]Kα[yα − g].

The first factor is bounded uniformly in α by (2.15), and the second
one tends to zero due to (2.12). This shows that

(3.4) Kα[θα, yα]−Kα[θα, g]→ 0, α→ 0.

Because of this property, and because of (2.9), in the proof of (3.2) we
may assume that ĝ is compactly supported, i.e. ĝ(ξ) = 0 for all |ξ| > R
with some R > 0. The convergence (2.1) is uniform in ξ : |ξ| ≤ R for

any R. At the same time, as shown earlier, ‖θ̂α − ψ̂‖ → 0, α → 0, so
that

Kα[θα, g]→
∫

Ψγ(ξ)ψ̂(ξ)ĝ(ξ)dξ, α→ 0.

Together with (3.4) this gives (3.2).
Proof of (3.3) is simpler. Because of (2.9), we may assume that g is

compactly supported. The convergence (2.2) is uniform in x : |x| ≤ R
for any R > 0. Using the property ‖ψα − ψ‖ → 0, α→ 0, established
in Part 1, we obtain

Sα[ψα, g]→
∫

2Φβ(x)ψ(x)g(x)dx, α→ 0,

so that (3.3) holds.
Put together (3.2) and (3.3) to conclude that

α−σ
(
(ψα, g)−Bα[ψα, g]

)
→ T [ψ, g], α→ 0,

as required. �

Proof of Theorem 1.2. The proof essentially follows the plan of [13].
It suffices to show that for any sequence αk → 0, k →∞, one can find
a subsequence αkl → 0, l→∞, such that

(3.5) lim
l→∞

α−σkl (1− λ(n)αkl
) = µ(n).

Since ‖ψ(n)
αk ‖ = 1, one can extract a subsequence αkl → 0 such that

ψ
(n)
αkl

converges weekly as l → ∞. By Lemma 3.1 ψ
(n)
αkl

converges in

norm as l → ∞. Denote by ψ(n) its limit, so ‖ψ(n)‖ = 1. Further

for simplicity we write ψ
(n)
α and λ

(n)
α instead of ψ

(n)
αkl

and λ
(n)
αkl

. As
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ψ
(n)
α , n = 1, 2, . . . , are pair-wise orthogonal, so are their limits ψ(n),

n = 1, 2, . . . .
Fix a number n = 1, 2, . . . . For an arbitrary function f ∈ D[T ]

write

α−σ(1− λ(n)α )(ψ(n)
α , f) = α−σ

(
(ψ(n)

α , f)−Bα[ψ(n)
α , f ]

)
.

Suppose that f is such that (ψ(n), f) 6= 0. Then, in view of (3.1),

lim
α→0

α−σ(1− λ(n)α ) =
T [ψ(n), f ]

(ψ(n), f)
.

Let f = φ(j), where φ(j) is chosen in such a way that (φ(j), ψ(n)) 6= 0.
This is possible due to the completeness of the family φ(k), k = 1, 2, . . . .
Thus

lim
α→0

α−σ(1− λ(n)α ) = µ(j).

By the uniqueness of the above limit, (ψ(j), φ(s)) = 0 for all s’s such
that µ(s) 6= µ(j). Thus, by completeness of the system {φ(k)}, the
function ψ(n) is an eigenfunction of T with the eigenvalue µ(j), i.e.
T [ψ(n)] = µ(j).

Further proof is by induction. Let n = 1, so that by (2.14), µ(j) ≤
µ(1), and hence j = 1, and ψ(1) is the eigenfunction of T with eigenvalue
µ(1). Suppose that for some n, the collection ψ(1), ψ(2), . . . , ψ(n−1) are
eigenfunctions of T with eigenvalues µ(1), µ(2), . . . , µ(n−1). Since ψ(n) is
orthogonal to each ψ(k), k = 1, 2, . . . , n− 1, by the standard min-max
(or, more precisely, max-min) principle for operators semi-bounded
from below, we have T [ψ(n)] ≥ µ(n), which means that µ(j) ≥ µ(n). On
the other hand, by (2.14),

lim
α→0

α−σ(1− λ(n)α ) ≤ µ(n),

and hence µ(j) ≤ µ(n). Therefore µ(j) = µ(n), and ψ(n) is the eigen-
function of T with eigenvalue µ(n). By induction, the formula (3.5)
is proved for all n, which entails (1.9), and hence proves Theorem
1.2. �
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