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Abstract: The hydrodynamic problem of a floating body moving downwards into water with 

prescribed velocity or in free fall motion is solved based on the incompressible velocity potential 

theory through the boundary element method in the time domain. In particular, the focus is on the 

whole process of flow detachment, the formation of an open cavity, closure of the cavity or 

formation of entrapped air bubble, collision of the inner jet with the body surface and jet impact 

with free surface. The whole problem is divided into several stages and methodology is introduced 

to resolve the numerical challenge at each stage. In particular the dual coordinate system method is 

adopted to resolve the local sharp spatial and temporal variation in the impact zone, and the domain 

decomposition method with Riemann second sheet is adopted to resolve domain overlapping. An 

auxiliary function method is used to decouple the nonlinear mutual dependence of fluid loading, 

body motion and bubble deformation. Simulations are undertaken for a floating body moving into 

water at constant velocity or constant acceleration, and in free motion, respectively. Detailed results 

for pressure, free surface profile, bubble deformation and body motion are provided, and their 

physical implications are discussed.  

Keywords: Floating body sinking into water; open cavity and closed bubble; fluid/fluid and 

fluid/structure impact; domain decomposition method; boundary element method. 

1. Introduction 

The study on the air bubble formed during water entry or a floating body moving into water has 

a long history. Gilbarg and Anderson [1] undertook experimental study on the bubble formed during 

a solid body striking a liquid surface. The major factors, the velocity of the body and the atmospheric 

density or pressure, which affected cavity formation and development, were investigated. 

Richardson [2] did a similar experiment through shooting a solid sphere into a liquid inside a tank, 

and the acoustic wave generated during water entry was studied. It was found that the major 

contribution to the sound came from the pulsations of the air bubble formed behind the body. Duez 

et al. [3] took the visual and audio recordings for two spheres entering water separately, which had 

different wettability through a nanometric coating on their surfaces. The results revealed that the 

condition for an air bubble to be formed was that the impact velocity should be above a critical value 

which was dependent on the wettability of the sphere.  

Much of earlier work on water entry is for an infinite wedge [4-6]. When the gravity is ignored, 

the flow is self-similar and will be also attached on the body surface. The first requirement for an 

air bubble to be formed behind a body during water entry is that the liquid has to detach from the 

body. A typical example is well illustrated in the work of Bao et al. [7, 8]. They considered the 

problem of a finite wedge entering into water vertically or obliquely. The flow first moved along 

the wedge surface in the form of a jet, then detached from the knuckle, and an open cavity would 

be formed as a result. The boundary element method with fully nonlinear dynamic and kinetic 

boundary conditions was used for the free surface flow, and a continuity condition at the knuckle 

was incorporated into boundary integral equations to guarantee that the liquid could leave the body 
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surface smoothly. Other important work on open cavity with boundary element method includes 

Zhao et al. [9] and Wang and Faltinsen [10]. The latter also considered the contraction or collapse 

of open cavity. However the simulation was terminated before the closure of air bubble. In the above 

work the body was initially above the water surface and then entered water. Korobkin and Wu [11] 

considered the case of a semi-circular cylinder which already floated on water surface and then 

subsequently moved downwards. The problem was solved in the Lagrangian framework and flow 

detachment was modelled. The functions were expanded in terms of time and the solution was valid 

for the initial stage. In addition to the velocity potential theory, there have been also studies using 

Reynolds averaged Navier-Stokes equations and the volume of fluid method (VOF) for the free 

surface tracking. The typical work includes those by Do-Quang and Amberg [12] for a falling sphere 

to investigate the effect of wettability and by Iranmanesh and Passandideh-Fard [13] for a truncated 

horizontal circular cylinder where the flow along the longitudinal direction was studied.  

The above work is mainly about an open cavity. In practice, an open cavity will always close as 

time progresses, when the gravity effect becomes more and more important. One of the earliest 

experimental studies was undertaken by Gilbarg and Anderson [1]. The open cavity behind the body 

contracted and closed at some point. At the closure of the open cavity, jets would form due to the 

collision between cavity surfaces. The volume oscillations of a closed bubble and ripples on the 

bubble surface during the water entry of a projectile were observed in the experimental work by 

Grumstrup et al. [14]. It was found that the dominant frequency of oscillation was close to the 

Minnaert frequency [15] based on the diameter. Moreover, the product of wavelength for the ripple 

and the frequency of oscillation was approximately equal to the projectile speed. The latter was 

explained through an analytical solution for a long bubble moving in the irrotational flow of a 

compressible liquid. Aristoff and Bush [16] undertook both theoretical and experimental 

investigation for the water entry of a small hydrophobic sphere. They found that at a small bond 

number where the surface tension was important, the depth at which cavity closure occurred would 

become increasingly large when the falling speed of body increased, and shallow closure would 

gradually become deep closure. The above studies have significantly advanced our understanding 

regarding the characteristics of cavity on water entry. However, while they may be good for some 

global results, it is still a challenge to have detailed results with high accuracy and resolution.  

For a finite body entering water, it is expected that fluid can depart from the body surface, as 

shown in the experiment for a curved body [3], or a truncated wedge [17]. The departed flow may 

move towards the centre, cause liquid/liquid collision and a closed cavity can be found [12, 14]. 

This collision is similar to breaking wave hitting on a wall [18], and two jets would be formed. One 

of these jets would move inside the cavity towards truncated body surface and further collision is 

expected. This is very similar to the collapse of a symmetric bubble [1], in which the symmetry line 

can be treated as a wall. At the final stage, the cavity may depart from the body surface, which is 

common in some deep closure problems [19]. The present work aims to investigate the entire 

process of water entry of a body in free fall, including cavity initiation, development and collapse 

(the inward motion of cavity surface), closure or bubble formation, bubble motion and deformation 

and its effects. We shall adopt the incompressible velocity potential theory for the fluid flow, while 

surface tension is ignored. Fully nonlinear boundary conditions are adopted on the deforming free 

surface and bubble surface, which are tracked by the time stepping method. At each time step, the 

velocity potential problem is solved by the boundary element method (BEM) which can capture the 

evolution of the free surface with high resolution. As this is a highly complex process, many 



different numerical challenges will arise. A particular difficulty is that the process involves the 

several collisions occurred at different stages. The first one is when the body starts moving down 

suddenly and the fluid departs from the body surface, and second one is when cavity surfaces merge, 

which leads to a liquid to liquid collision. When the bubble is formed, its inner jet will further collide 

with the body surface. The jet will turn to move along the body surface and then hit the bubble 

surface again. To account all these collisions, we shall adopt and refine the various methods 

developed previously. In particular, the numerical condition for flow detachment [7] will be used 

for initial stage of water entry. The dual system method [20] based on the stretched system method 

[6] will be used for cavity surface collision and inner jet collision with the body surface. The jet 

collision with the bubble will be treated using Riemann second sheet [21].   

In the following sections, the mathematical model based on incompressible potential flow theory 

for the body moving downwards into water is first outlined in Sec. 2. Solution procedure is provided 

in Sec. 3. Specifically, the boundary element method, together with several special schemes for 

resolving numerical difficulties, are first presented, and the procedure for pressure and the motion 

of body are then given. Numerical results and discussions are provided in Sec .4, which is followed 

by Conclusions. 

2. Mathematical model 
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Fig. 1. The sketch of the problem.  

The problem which we consider is a body with a horizontal top floating on the calm water surface 

moving downwards suddenly with an initial velocity 0W . A Cartesian coordinate system O xy  

fixed in space is defined, in which x -axis coincides with the horizontal top of the body, and is at 

the still water level, and y -axis points upwards and passes through the centre of body. The water 

density  , the acceleration due to gravity g  and the typical length dimension r  of the body, 

are used for non-dimensionalization. For the body of symmetry, y   axis passes through its 

symmetry line. The inner free surfaces formed after the departure of the fluid from both sides of the 

body may move inwardly and meet at the later stage on the y  axis. Consequently, an air bubble 

will be formed between the inner free surface NS   and the top of the body surface. The body 

surface, outer free surface, far field boundary and fluid bottom are respectively denoted as BS , 

FS , CS  and DS , as shown in Figure 1. 0 0( , )x y  is the centre of the horizontal top of the body, 

which is (0,0)  at 0t  , and whose movement is used to measure the displacement of the falling 



body. After the formation of the bubble, an inner jet can be developed along the symmetry line. It 

will move towards the body and may hit the body at the later stage. After that it will then make a 

turn and move along the horizontal top of the body, and eventually hit the inner free surface on the 

other side.  

The fluid is assumed to be inviscid and incompressible, and the flow to be irrotational. The 

potential   can then be introduced. Within the fluid domain, it satisfies the Laplace equation.  
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As we focus on the symmetric problems, only half of the domain with 0x   is considered and the 

symmetry boundary is denoted by 0S  . Neglecting the surface tension, the dynamic boundary 

condition on the outer free surface FS  with the constant atmospheric pressure 0P  can be written 

as  
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in the Lagrangian form. Based on the assumption that the entrapped bubble undergoes an adiabatic 

process, the pressure inside the bubble can be expressed as  

 0
0

V
P P

V


 

  
 

 (3) 

where 0V  is the volume of the air bubble when it is first entrapped, V  is its subsequent volume 

which varies with time, and   is the heat ratio of air. Substituting Eq. (3) into the Bernoulli’s 

equation, the dynamic boundary condition on inner free surface NS  can be written as 
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The kinematic boundary conditions on both FS  and NS  in the Lagrangian form can be written as 
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The impermeable boundary condition for the body takes the form  
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in which W  is the nondimensional vertical velocity of the body and 0W W  at 0t  , n  is 

the normal of body surface pointing out of the fluid domain. Due to symmetry, on 0S  we have  
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x


 


  (7) 

The impermeable boundary condition at the seabed can be written as  
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At the far field, it is assumed that the disturbance to the fluid by the motion of the body has 

sufficiently decayed, and thus the boundary condition takes the form of 
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As the water surface is assumed to be flat and the fluid is stationary before the motion of the body, 

the initial condition at time 0t   can be written as 

 ( , 0) 0, ( ,0, 0) 0x r t x r t         (10) 

where   is the elevation of free surface. Based on the Laplace equation and the above boundary 

conditions together with the initial condition, the fluid/structure interaction problem can then be 

solved through the boundary element method (BEM) combined with a time matching scheme.  

3. Solution procedure  
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Fig. 2. Different stages of a floating body moving into water. (Stage 1: prior bubble formation, stage 

2(a): bubble formation, stage 2(b): development and movement of the inner jet, stage 3(a): collision 

of the inner jet with the body top, stage 3(b): movement of the horizontal jet, stage 3(c): horizontal 

jet moving into Riemann second sheet. Solid line: Physical domain; Dash line: Stretched domain) 

The whole process of a floating body moving down into water is a complex one. It involves 

significant amount of domain and boundary changes, jet formation and movement, as well as 

liquid/liquid and liquid/body collisions. To develop a numerical scheme to meet all these challenges, 

the overall problem is divided into 3 stages, as shown in Fig. 2. In Stage 1, the water departs from 

the side of the body and the free surface moves towards the symmetry line, which is similar to an 

overturning wave moving towards a wall [20]. Stage 2 is between the moment when the inward free 

surface hits the symmetry line and the inner jet arrives at the top of the body. Stage 2(a) corresponds 

to the initial period of bubble formation. This is similar to the case of an overturning wave hitting 

the vertical wall. Two jets will be subsequently developed [20], corresponding to the inner and outer 

free surfaces respectively. Stage 2(b) is from the moment when the wetted surface on the symmetry 

line is no longer small, and it covers the period of the inner jet development and movement. Stage 

3 is from the moment when the inner vertical jet hits the top of the body. Similar to stage 2, stage 

3(a) corresponds to the initial period of vertical jet impact on the body top, and 3(b) is from the 

moment when the wetted surface on the top of body is no longer small, to the moment when the 

horizontal jet arrives the inner free surface, and 3(c) starts when the horizontal jet meets the inner 



free surface.  

3.1. The boundary element method 

BEM is used to solve the above boundary value problem for the velocity potential. Through 

Green’s identity, the Laplace equation in the fluid domain can be converted into an integral equation 

over its whole boundary.  
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in which 
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and ( )A p  is the solid angle at point p  on the boundary, while the integration is performed with 

respect to point q . Straight line elements, with variables varying linearly within each element, are 

distributed along the boundary. The integrations within each element can be obtained explicitly as 

in Lu et al. [22], and Eq. (11) can be written in matrix form  
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where dN  is the total number of nodes over the whole boundary, and the matrices of  H  and 

 G  have the coefficients obtained from the integrations of 
n

ln pq



 r
 and pqln r  over the 

elements, respectively. In Eq. (13), on each node either   is known on the free surface or n  is 

known on the solid surface, while at the intersection of the solid surface and the free surface, both 

of them are known. The number of the unknowns is the same as that of equations. This is similar to 

those related problems in Lu et al. [22] and Sun et al. [21, 23]  

3.2. Numerical schemes for each stage 

3.2.1 Water departing from the side of the body  

The free surface is assumed to leave the body tangentially, and the sharp angle between the free 

surface and the body can lead the velocity change its direction suddenly, leading to an infinite 

acceleration and pressure gradient. Without loss of generality, here we may assume that at the point 

of the detachment, the tangential direction of body is vertical. In Eq. (5), x  and y  can then be 

obtained respectively from the normal and tangential velocities at the intersection. In particular, the 

former can be obtained from the body surface boundary condition in Eq. (6), in which 0xn   at 

the intersection. The potential at the point just departed from the body can be obtained from Eq. (2), 

which will be replaced by Eq. (4) at the later stages. After the fluid particle at the intersection point 

leaves from the body, a new fluid particle from the body surface will arrive at the intersection point. 

The velocity potential at the intersection point then becomes unknown. Together with the normal 

velocity of the free surface at the intersection point, there are now two unknowns at this point. As a 

result, there will be one more unknown than the number of equations. To resolve this, an additional 

equation based on interpolation is used, through the intersection point and two neighbouring points 

on the body surface and free surface respectively. Since the flow is assumed to leave the body 



tangentially, the continuity condition of velocity in the tangential direction can be imposed at the 

intersection point. Thus we have [7]  

 N N-1 N-1 N N N-1 N+1( ) 0l l l l        (14) 

Here N-1 , N  and N+1  denote the velocity potentials respectively at the points on the free 

surface, at the intersection and on the body surface, respectively. 1Nl   is the distance between the 

former two points, and Nl  is the distance between the latter two points. 

3.2.2 The dual systems for stages 2(a) and 3(a)  
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Fig. 3. The sketch for the inward free surface hitting symmetry line at stage 2(a). (a) The free surface 

in physical system at the moment of bubble formation (b) the initial wave profile in stretched system 

(c) matching between the inner and outer domains 

S
N

S
F

S
0

S
B

Vertical jet

(a)

(x
s
,y

s
)

 



O



1

L

(b)

 

S
N

S
0

Outer domain

Inner domainsL

s

(c)

 

Fig. 4. The sketch for the inner vertical jet hitting the top of body at stage 3. (a) The free surface in 

physical system at the moment of impact (b) the initial wave profile in stretched system (c) matching 

between the inner and outer domains  

At the moment of the free surface hitting the symmetry line in stage 2(a) or the vertical jet hitting 

the top of body in stage 3(a), the contact area normally starts from a single point and then increases 

rapidly, which leads to a major challenge in the computation as highlighted in the related work [24, 

25]. To avoid numerical difficulties due to the extremely small contact area at the initial stage, the 

dual system method used in [20] is adopted at these two stages. In particular the stretched system 

O   [6, 23] is used within a small zone near the initial contact point ( , ) ( , )s sx y x y , and the 

physical system O xy  is adopted to the whole domain as if the inward free surface had passed 

through an invisible wall without collision, as adopted in Sun et al. [20]. The origin of the stretched 



system O   is set at ( , ) ( , )s sx y x y . At stage 2(a), the stretching ratio s  is taken as the 

half width of intersection line between the unaffected free surface by the impact and symmetry line 

(Fig. 3). At stage 3(a), the stretched system moves with the body, and the stretching ratio s  is 

taken as the length of intersection line between the vertical jet and the top of body (Fig. 4). With 

such a definition, we can write  

 s x    (15) 

 ss y y     (16) 

 s    (17) 

where 0sx   has been used in both stages 2(a) and 3(a). sy  at stage 2(a) remains fixed while it 

moves with the body at stage 3(a). In the stretched system, the kinematic boundary conditions can 

be written as  

 
Ds

Dt



   (18) 

 
Ds

Dt



 , for stage 2(a) (19) 

 
Ds

W
Dt




  , for stage 3(a)  (20) 

The dynamic boundary conditions on the inner and outer free surfaces can be respectively 

transformed as  
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At the interface of local domain with ( , )   and the result of domain with ( , )x y , we impose  
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where the spatial derivatives on two hand sides of Eq. (23) are taken in the stretched and physical 

systems respectively. The normal derivative on the right hand side can be obtained through the 

interpolation from the values on the adjacent free surfaces, based on the assumption that the inward 

free surface would propagate forward without collision, as in Sun et al. [20].  

3.2.3 Water jet in stages 2(b) and 3(b)  

When the path of the liquid motion is blocked by a solid surface, its flow direction has to change 

suddenly to move along the surface. A thin jet is usually developed. Unless the sizes of the elements 

on both sides of the jet are much smaller than the jet thickness, numerical error can become 

significant. To ensure accuracy in such a way would lead to a large number of very small elements, 

which can be practically impossible. To solve this problem, the treatment for the thin layer 

introduced by Wu [6] is used here. Near each element, the velocity potential   is assumed to vary 

linearly across the thin layer. Thus we have  

 A Bx Cy      (24) 

Substituting Eq. (24) into Eqs. (6) or (7), we have  
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The remaining two coefficients in Eq. (24) can be obtained through the known potentials on two 

points on the free surface. This leads to that both   and n  are known on the both sides of jet 

surface, and they can be moved to the right hand side of Eq. (13). In this way, the existence of the 

jet will not increase any computational effort.   

3.2.4 Domain decomposition scheme with Riemann second sheet method for stage 3(c)   
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Fig. 5. The sketch of domain decomposition. (a) The horizontal jet hits the inner free surface on the 

top of the body, (b) the domain with the horizontal jet and (c) the rest of the domain 

When the horizontal jet on the body hits the inner free surface, the entrapped air bubble may 

become detached from the body surface. Treatments similar to those at previous stages could be 

used. Alternatively, we could adopt the method of Sun et at. [21], in which the incoming jet will 

pass into the free surface through Riemann second sheet, as shown in Fig. 5. We notice that there is 

an overlapping domain in Fig. 5(a), while the boundary integral equation in Eq. (11) is for a non-

overlapping domain and it cannot be used directly in such a case. To resolve this, the domain is then 

decomposed into two sub-domains. One of these domains, subdomain  , covers the area near the 

symmetry line, and the other, subdomain  , covers the rest of the fluid, and I  denotes the interface 

between two sub-domains, as shown in Fig. 5. The boundary integral equation is used in each of the 

two domains separately. Continuity conditions of velocity and pressure are imposed on the interface 

I  through applying + -I I
   and +I In n

    , where I  and I  mean that the interface is 

approached from B  and B  respectively, with opposite normal directions, and the subscripts 

B  and B  imply the values on the original boundaries of these domains. Consequently Eq. (13) 

can be written as [21]  
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  (26) 

Through this equation the difficulty of the overlapping domain can be resolved. As discussed by 

Sun et al. [21], this method has ignored the impact force of the jet on the inner free surface by 

assuming that the jet moves into Riemann second sheet. Such an approximation may not truly reflect 

the local behaviour of the jet impact on the free surface, but it is expected not to have major effect 

on the global results, similar to that in Sun et al. [21]. 

3.3. The pressure  

The pressure in the flow field can be obtained through the Bernoulli equation 
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The velocity potential   can be solved at each time step through the numerical scheme in the 

previous section, from which its gradient   can be obtained. However the temporal derivative 

of potential t  is still unknown explicitly. To deal with this problem, the auxiliary function method 

is adopted [26]. We notice that t  also satisfies the Laplace equation in the fluid domain. The 

normal derivative of t  on the body surface can be written as [27]  
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. Special attention should be paid to the acceleration in Eq. (28), 

which is unknown before the force is found. To decouple their nonlinear mutual dependence, we 

define   

 
0 1t yW W        (29) 

Here ( 0,1)i i    satisfy the Laplace equation. The body surface boundary conditions for the 

auxiliary functions can respectively be written as  

 0 0
n





  (30) 

 1
yn

n


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
  (31) 

On the symmetry line 0x  ,  

 0 0
n





 (32) 

 1 0
n





  (33) 

Considering the dynamic boundary conditions for t  on the free surface, we have  
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and 

 1=0 , on FS  and NS  (36) 

At the bottom of the fluid, the boundary conditions for these two functions become 
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At the far field, the boundary conditions can be written as  

 0,( 1,2)i i
n


 


  (39) 

When the air cavity has been formed, the pressure along the top of body will change with the 

compression and expansion of air bubble, based on Eq. (3). When the vertical jet hits the top of 

body, the dual system method can be used for the potential. The pressure on the wetted part of the 

body top is calculated in the stretched system [20], while that on the part in touch with air is obtained 

through Eq. (3). 

3.4. The motion of body  

Based on Newton’s law, the equation for motion of the body can be written as 

 mW f m    (40) 

where m   is the mass of body, and f   is the fluid force, which can be obtained through the 

integration of pressure 0P P  along the body surface including its top. Thus we have  
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in which WS   and AS   correspond to the body surface contacting water and air respectively. 

Substituting Eqs. (29) and (41) into Eq. (40), it gives [6]  

 ( )m c W q m     (42) 

where c  is the added mass defined as 
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and q  can be obtained through  
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4. Numerical results and discussions 

4.1. Convergence study 

In order to verify the reliability and accuracy of the methodology and numerical procedure in the 

paper, the convergence study is made through a semi-floating circle moving into deep water, with 

its radius being taken as the length scale for nondimensionalisation. Simulations are first undertaken 



with respect to the half width CL  and depth DL  of the rectangular computational domain. It is 

found that when they are set as C 20L    and D 30L    respectively, the results no longer 

change graphically when they further increase. In the mesh convergence study, the elements of equal 

size ml  are distributed along the body surface, symmetry line and inner free surface, while on the 

outer free surface, the size of element increases gradually at a fixed ratio  , with an upper limit of 

0.5 or half of the radius of the cylinder. Special attention should be paid to the local stretched systems 

in stages 2(a) and 3(a), in which the truncated boundary L  is set as 4 in stage 2(a) and 100 in stage 

3(a) respectively. The symmetry line and the top of body are discretized with elements of equal 

length ml . Away from the symmetry line and the body top, the size of element increases gradually 

at the ratio  , and the largest element size is not allowed to be bigger than 0.3.  

We set the element length ml  as 0.02, 0.03 and 0.04 respectively, and element size increase ratio 

  as 1.02. The time histories of vertical velocity and the formed air bubble volume are provided 

for the body moving into water in free fall motion after being given an initial velocity 0W . Results 

are shown in Fig. 6, with the initial velocity 0W  and half mass m  of the body being set as -1 and 

3.0 respectively, and the initial buoyancy of half of the body is equal to /4 . The time step is set 

as max/ ( )ml V , where maxV  is the maximum of the velocity magnitude on both inner and outer 

free surfaces at each time step and   is a coefficient and is taken as 10. The simulation covers all 

three stages, the results from three sets of meshes are in good agreement, and the average relative 

errors are only 0.25% in Fig. 6(a) and 0.12% in Fig. 6(b) respectively. This confirms mesh 

convergence. To test the time step convergence, Fig. 7 provides the comparison of results from 

5  , 10   and 20   respectively with 0.03ml  . It can be seen that the three curves 

coincide well. The average relative errors are only 0.4% in Fig. 7(a) and 0.15% in Fig. 7(b) 

respectively. Thus in the following simulations, unless it is specified, the element length ml  is set 

as 0.03, and the coefficient   as 10. 
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Fig. 6. Mesh convergence study through a semi-circular body falling into water freely with 

0 1W   . (a) Vertical velocity, (b) air bubble volume 
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Fig. 7. Time step convergence study through a semi-circular body falling into water freely with 

0 1W   . (a) Vertical velocity, (b) air bubble volume  

4.2. The influence of the body motion 

The shape of free surface and the location of bubble closure very much depend on the motion of 

body. To study such an effect, the body is forced to move into water with the prescribed constant 

velocity or constant non-zero acceleration. As the body moves into water, the free surface first 

moves up in the form of splash, and the inner free surface moves inwards due to the push of water 

outside. After that, the gravity takes its effect, and the tip of inward free surface goes down. The 

root, or the detachment zone, of the free surface has an upward tendency as the body moves down 

further. Eventually, the inward free surface would touch the symmetry line, and an air bubble would 

be formed behind the body. Fig. 8 gives the free surface profile for the body arriving at the same 

location 0y  with different velocities W , which are -3, -5 and -7 respectively. It is evident that after 

nondimensionalisation, the magnitude of W  is the Froude number. From the Fig. 8(a), it can be 

seen that the free surface for 3W    tends to move inwards, while curves for 5W    and -7 

are close to each other. This is because at a higher W , the gravity effect is smaller for the body 

arriving at the same location. Mathematically, this can be clearly seen if   is replaced by W  

and t  is replaced by 0 /y W  in Eqs. (1~6). At large W  , the result will depend only on 0y , 

or at the same 0y , the result will be same. For any finite W , when 0y  is not large and W  is 

very large, the gravity can be neglected. The gravity effect will increase as the body moves further 

down. The difference between the free surface profiles at different velocities therefore becomes 

increasingly significant. In Fig. 8(c), for the case of 3W   , the bubble is already well developed 

and the inner jet along the symmetry line has hit the body surface, and the generated horizontal jet 

has moved into the Riemann second sheet. For 5W    the open cavity surface has significantly 

moved towards the symmetry line. For 7W    on the other hand, no significant inward motion 

of the cavity surface has occurred. 

Fig.9 provides the pressure distribution along the body surface. The horizontal axis xl  is the arc 



length along the body surface, starting from the middle point of its horizontal top. Similar to the 

free surface distribution, at a given 0y  the gravity effect is more important at smaller W  and the 

result will not significantly be affected by W  when it is sufficiently large. This is clearly reflected 

in the figure. In Figs. 9(a) and 9(b), the bubble has not formed. The pressure on the top of the body 

remains to be atmospheric. Bubble has been well developed in Fig. 9(c) for the case of 3W   . A 

particular attention should be paid to the region of 0.1xl  , where a large peak can be observed. 

This is caused by the collision of the inner jet on the symmetry line with the top of body. Outside 

this region, the body top is in contact with the air bubble and the pressure is constant. Because of 

the compression of the air bubble from its initial volume, the pressure P  is larger than 0P . The 

pressure remains constant until 1xl  . We notice that just after the detached point 1xl  , the 

pressure becomes negative, or P  is lower than the atmospheric pressure 0P . Based on Eq. (27), 

the pressure contains unsteady part t , velocity square part 
21

2
   and hydrostatic part y . 

Because the second term is always negative, it is not possible to always rule out the negative pressure. 

In reality, the air could be sucked into that part and the flow detachment point may move downwards 

as a result. Here, we shall fix the detachment point to investigate the subsequent bubble formation 

and its effect.  
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Fig. 8. The free surface profile for the body moving into water at different constant velocities. (a) 

0 3y    (b) 0 6y    (c) 0 10y    
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Fig. 9. Pressure distribution along the body surface, arc length xl  is measured from the middle of 

the horizontal top of the body until its lowest point. (a) 0 3y    (b) 0 6y    (c) 0 10y    

The case considered above corresponds to 0W  . We now consider the case of a body starting 

with an initial falling velocity 0W  and a constant acceleration W . When the body reaches 0y , we 

have 
2 2

0 02y a W W  , in which a  denotes the acceleration W . Substituting this equation into 

Eqs. (2) and (4) after replacing   with W  and t

  with 

0

W
y


 , we can find that there 

is an extra term 
2

a

W


. For a given 0W , the solution depends on a  and 0y  explicitly. If we 

ignore the last term in Eq. (2) due to gravity, we can find that when 0 0W  , the solution will 

depend on 0y , but not a  explicitly. This is similar to what has been observed by Sun et al. [21] 

on the slamming of a rotating flap. For the general cases with 0 0W  , when 0y  is small or at the 

initial stage, the term a  is small as 0   at 0t  . Thus all results at different a  will be 

close to each other. Fig. 10 gives the free surface profiles for the body with 0 3W    at different 

accelerations. At 0 3y   , the free surface profiles with different accelerations are very close and 

the air bubble has not formed yet, even though the velocity of body is different, as seen in Fig. 10(a). 

When 0y  is not small, the acceleration will start to take effect, while the larger a  will make the 

gravity effect less prominent. This is why at 0 6y    the inward tendency is most prominent for 

the case 0a  , as shown in Fig. 10(b). The gravity effect will further increase as the body moves 

down further. Thus the difference of free surface profiles will become more prominent, as can be 

seen in Fig. 10(c). Specifically, the air bubble for 0.8a    with smallest gravity effect is in the 

middle of formation, while the free surface has hit the symmetric line for 0.4a   , and for 0a   

the air bubble has already formed and the horizontal jet has already moved into Riemann second 

sheet. If we make a comparison between the curves for 0.8a    in Fig. 10(a) and 0.4a    in 

Fig. 10(b), it can be found that the inward tendency for the latter is more prominent, which further 

shows that the larger acceleration can make the gravity effect become smaller. 

Fig. 11 gives the pressure distribution along the body surface, similar to Fig. 9. Before the 

formation of the air bubble, see Figs. 11(a) and (b), the pressure 0P P  on the top of the body 

( 1xl  ) in contact with air is zero. Along the side of the body to its bottom ( 1xl  ) in contact with 

water, the fluid pressure first decreases, and then increases to a peak at the bottom. For larger a , 



the pressure experiences a larger drop and reaches a higher peak. At 0 10y    , air bubble has 

formed for the cases of 0a   and -0.4, as can be seen in Fig. 10(c). In the former, the inner jet has 

hit the top of the body, leading to a peak pressure at 0xl  . In the latter, the inner jet has not 

reached the top of the body and the pressure near 0xl    is still the bubble pressure which is 

slightly higher than 0P . 
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Fig. 10. The free surface for the body moving into water with 0 3W     at different constant 

accelerations. (a) 0 3y    (b) 0 6y    (c) 0 10y     

0.0 0.5 1.0 1.5 2.0 2.5

-6

-4

-2

0

2

4

6

8

10

12

14

P
-P

0

l
x

 a=0

 a=-0.4

 a=-0.8

(a)

0.0 0.5 1.0 1.5 2.0 2.5
-10

-5

0

5

10

15

20

P
-P

0

l
x

 a=0

 a=0.4

 a=0.8

(b)

0.0 0.5 1.0 1.5 2.0 2.5

-10

0

10

20

30

40

50

60

P
-P

0

l
x

 a=0

 a=-0.4

 a=-0.8

(c)

 

Fig. 11. Pressure distribution along the body surface, arc length xl  is measured from the middle 

of the horizontal top of the body until its lowest point. (a) 0 3y    (b) 0 6y    (c) 0 10y    

4.3. The effect of initial velocity in free motion 

We then consider the case of a semi-circular body falling into water freely at different initial 

velocities 0W . The half of the body mass m  is set as 3, and half of the initial buoyancy is / 4 . 

The acceleration is now part of the solution and will depend on 0W  for a given m . Thus the result 

at a given 0y  will be a function of 0W . Fig. 12 provides the variations of the velocity of body 

before bubble closure with 0y , and those of the velocity, as well as the volume and pressure of air 



bubble with 0 0sy y , after closure. The subscript s  denotes the moment when the air bubble 

has formed. At the initial stage, the acceleration of the body depends on the difference between body 

weight and the fluid force. The former is fixed while the latter varies with 0W . For 0 0W  , the 

acceleration can be obtained easily from Eq. (42) as all the terms in Eq. (44) are zero apart from the 

term of y , which is the static upwards buoyancy and is smaller than the body weight. As a result 

the body acceleration will be smaller than that due to gravity. For a small non-zero 0W , the upward 

forward force will increase and the initial acceleration will further decrease. As the magnitude of 

0W  increases, the upward forward force will become larger than the weight, and the acceleration 

will become deceleration. In Fig. 12(a), the latter cases could be seen by the initial slopes of W . As 

the deceleration increases with the initial velocity, the difference between the velocities becomes 

smaller as 0y  increases. As the body moves down, an air bubble is formed behind the body. Its 

volume and pressure oscillate with 0y . We can expect that after a sufficiently long period of time, 

W  may become a constant when the fluid force is in balance with the body weight, especially if 

the air bubble has become detached from the body and moved away. W  may also continue to be 

an oscillatory function of 0y , especially if the bubble remains to be attached or close to the body. 

However these are physical phenomena which are beyond the scope of the present work and are not 

part of the focus of this study.  

0 2 4 6 8 10 12 14 16

-7

-6

-5

-4

-3

-2

W

|y
0
|

 W
0
=-3

 W
0
=-5

 W
0
=-7

(a)

  

0 1 2 3 4 5
-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

W

|y
0
-y

0s
|

 W
0
=-3

 W
0
=-5

 W
0
=-7

(b)

 

0 1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

3.5

|y
0
-y

0s
|

V

 W
0
=-3

 W
0
=-5

 W
0
=-7

(c)

  

0 1 2 3 4 5

0

5

10

15

20

25

30

|y
0
-y

0s
|

P
-P

0

 W
0
=-3

 W
0
=-5

 W
0
=-7

(d)

 



Fig. 12. Free fall of a semi-circular body with different initial velocities. (a) & (b) The velocity of 

the body before and after bubble closure, respectively, (c) & (d) volume and pressure of the air 

bubble, respectively  

The free surface profiles at different 0y   are provided in Fig. 13. When the body arrives at

0 3y    , the magnitudes of the velocity for these cases have decreased to 2.87, 4.48 and 6.14 

respectively, as shown in Fig. 13(a). However, all the free surface profiles are very similar to those 

from Fig. 8(a). The principal reason for this is that the decrease of velocity is relatively small, or 

W  is still relatively close to 0W . When the body has arrived at 0 6y    in Fig. 13(b), a more 

obvious difference can be found between the free surfaces in Figs. 8(b) and 13(b). Specifically, the 

inward tendency becomes more prominent in Fig. 13(b) due to the decrease of velocity. Such a 

tendency continues as the body arrives at 0 10y    in Fig. 13(c). The deceleration begins to take 

more evident effect, the velocity has decreased significantly. Thus in Fig. 13(c), the inward tendency 

for 0 5W    is noticeably more prominent than its corresponding free surface shape in Fig. 8(c). 
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Fig. 13. The free surface for the body moving into water freely at different initial velocities. (a) 

0 3y    (b) 0 6y    (c) 0 10y    

4.4. The effect of body mass in free motion  

We then consider the case of a semi-circular body falling into water freely with different half 

body masses, which are set as 3m  , 6 and 9 respectively, and half of the initial buoyancy is 

/ 4 . The initial velocity of the body is taken as 0 =-3W , and the acceleration and subsequent 

velocity will be part of the solution. Fig. 14 provides the variations of the velocity of the body before 

bubble closure with 0y  and those for the velocity, as well as the volume and pressure of air bubble 

after closure with 0 0- sy y . At 0 0y  , the fluid force does not depend on m  and is obviously 

upward when 0 0W  . For a body with a smaller mass, it will start with the deceleration because 

its mass will be smaller than the fluid force, which can be seen from the initial slope of the W  



curve of 3m   in Fig. 14(a). On the other hand, as the body weight increases, it will accelerate 

as can also be seen in the figure. Thus the difference of velocities will increase continually for a 

while. After bubble formation, as the air bubble volume first decreases with the inner free surface 

moving down, and its internal pressure therefore increases, as seen in Fig. 14(d). The increased air 

bubble pressure will slow the inner free surface moving downwards and speed up the falling body, 

and therefore its volume will bounce back or increase. The pressure in the bubble will then decrease, 

but it is still above the atmospheric one, which means the bubble is still in compression. In Fig. 

14(b), it can be seen that the motion of the body is noticeably affected by the oscillation of the air 

bubble pressure. 
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Fig. 14. Free fall of semi-circular bodies with different half body masses. (a) & (b) The velocity of 

the body before and after bubble closure, respectively, (c) & (d) volume and pressure of the air 

bubble, respectively 

The free surface profiles at different 0y   are provided in Fig. 15. When the body arrives at 

0 3y   , the magnitude of velocity for 3.0 has decreased to 2.87, while those for 6m   and 9 

have increased to 3.31 and 3.48 respectively. The free surface profiles are very close, as shown in 

Fig. 15(a), as the difference between the velocities are still not big enough and the falling time is 

not sufficiently long. As 0y   reaches -6 in Fig. 15(b), the velocity magnitude for 3m    has 

decreased to 2.41, which is much smaller than the other two cases. This leads to a more noticeable 

gravity effect, which makes the inner free surface move inwards. As the body moves down further 

to 0 10y   , the difference between velocities continues to increase. The velocity magnitude for 



9m    is about the twice as that for 3m   . The difference in free surface profiles therefore 

becomes evident. In Fig. 15(c), the horizontal jet on the top of the body for 3m   has already 

travelled into Riemann second sheet, and the vertical jet has formed for 6m   and the inner free 

surface for 9m   has just touched the symmetric line. 
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Fig. 15. The free surface for the body moving into water freely at different half body masses. (a) 

0 3y    (b) 0 6y    (c) 0 10y    

5. Conclusions 

The problem of a floating body sinking into water in either forced motion or in free fall with 

entrapped air bubble effect has been modelled using velocity potential theory with fully nonlinear 

boundary conditions on the free surface. It is solved through the boundary element method. The 

problem is divided into several stages, and specific methods, through dual coordinate systems, 

domain decomposition with Riemann second sheet and auxiliary functions, have been adopted to 

resolve the numerical difficulty at each stage. Extensive simulations have been undertaken for the 

dynamic features of the air bubble formed behind the body at different motion modes, from which 

the following conclusions can be drawn.  

(1) The gravity effect is unimportant when the distance that the body has travelled is small. It 

becomes increasingly important for deformation of the open cavity, the formation of the air bubble 

and pressure distribution as the body moves downwards.  

(2) When the air bubble is formed, its internal pressure is initially equal to the atmospheric one. 

Subsequently, the air pressure remains to be larger than the atmospheric one, or the bubble is always 

in compression in the whole period of simulation, although it may oscillate when the body moves 

down. The bubble therefore generally contributes to a downward force on the body.  

(3) When the body enters water at constant velocity or constant acceleration, the gravity effect 

will become less prominent and the formation of the air bubble will be delayed, when their 

magnitudes increase. When they become very large, the result will mainly depend on the distance 

that the body has travelled.  

(4) In free fall motion, for the body with a given mass, a larger initial velocity leads to a larger 

upward forward force, which will create a larger deceleration. As a result the body will slow down 

more quickly. In such a case, initially different entry velocities will become closer as the body moves 

down. On the other hand, if the initial entry velocity is the same, different body masses will lead to 

different velocities subsequently.  
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