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Abstract 

The interplay between an evolving cancer and the dynamic immune-microenvironment 

remains unclear. Here, we analyze 258 regions from 88 early-stage untreated non-small cell 

lung cancers (NSCLCs) using RNAseq and pathology tumor infiltrating lymphocyte estimates. 

The immune-microenvironment was variable both between and within patients’ tumors. 

Diverse immune selection pressures were associated with different mechanisms of 

neoantigen presentation dysfunction restricted to distinct microenvironments. Sparsely 

infiltrated tumors exhibited evidence for historical immunoediting, with a waning of neoantigen-

editing during tumor evolution, or copy number loss of historically clonal neoantigens. 

Immune-infiltrated tumor regions exhibited ongoing immunoediting, with either HLA LOH or 

depletion of expressed neoantigens. Promoter hypermethylation of genes harboring 

neoantigens was identified as an epigenetic mechanism of immunoediting. Our results 

suggest the immune-microenvironment exerts a strong selection pressure in early stage, 

untreated NSCLCs, producing multiple routes to immune evasion, which are clinically relevant, 

forecasting poor disease-free survival in multivariate analysis.  

 

Introduction 

Anti-tumor immune responses require the functional presentation of tumor antigens and a 

microenvironment replete with competent immune effectors 1,2. However, the extent to which 

an active immune system sculpts tumor genome evolution has not been well characterized. 

Although associations between immune infiltration and tumor clonal diversity have been 

observed in certain contexts 3,4, whether the immune system acts as a dominant selective 

force in early stage untreated cancer is unclear. Furthermore, transcriptomic heterogeneity 

might confound conclusions drawn from sampling a single tumor sample, leading to inaccurate 

interpretations of mechanisms of immune evasion.  

To determine immune infiltration in untreated NSCLC, assess how it varies between and within 

tumors, and characterize immune evasion mechanisms and their associations with clinical 
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outcome, we integrated 164 RNAseq samples from 64 tumors and 234 tumor infiltrating 

lymphocyte (TIL) pathological estimates from 83 tumors for a combined cohort of 258 tumor 

regions from 88 prospectively acquired tumors within the TRACERx 100 cohort 5. We explore 

how selection pressures from a diverse tumor microenvironment impact upon neoantigen 

presentation, as well as the tumor-specific mechanisms leading to immune escape, and their 

clinical impact. 

Results 

Heterogeneity of immune infiltration 

To estimate immune infiltration in the multi-region NSCLC TRACERx RNAseq cohort, we 

benchmarked published in silico immune deconvolution tools (Methods). Compared to other 

transcriptomic approaches 6-11, the Danaher immune signature optimally estimated immune 

infiltrates in NSCLC (Extended Data Fig. 1). 

Using this approach, RNAseq-derived infiltrating immune cell populations were estimated for 

the 164 tumor regions from 64 TRACERx 100 cohort patients 5, for which there was RNA of 

sufficient quality (Extended Data Fig. 2A-B, Table S1).  

A wide range of immune-infiltration was observed between and within histologies (Extended 

Data Fig. 3), as well as between separate regions from the same tumor. Unsupervised 

hierarchical clustering revealed two distinct immune clusters, corresponding to high and low 

levels of immune infiltration, for each histology. Individual tumor regions were stratified as 

either having high or low immune infiltrate (Figure 1).  

Validating our clustering approach, immune-high tumor regions contained greater pathology 

estimates of TIL infiltrate compared to immune-low regions (p=3e-05) (Extended Data Fig. 

4A). Due to the strong correlation observed with pathology TIL estimates (Extended Data Fig. 

1E), we also used pathology estimated TILs to group tumor regions without RNAseq 

(Extended Data Fig. 4B-C, Methods). The predicted abundance of myeloid-derived 
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suppressor cells and tumor associated M2 macrophages 12 negatively correlated with the 

immune activating cell subsets (Extended Data Fig. 4D-E), indicating that immunosuppressive 

cells may influence the immune microenvironment. A small number (11%) of mostly lung 

adenocarcinoma cases had pathology TIL estimates that were not reflected by the assigned 

immune cluster potentially reflecting heterogeneity of sampling due to variation from the 

mirrored tissue samples used to score TILs and extract RNA.  

Overall, while 63 patients had tumors with consistently low (38 tumors, 43%) or high (25 

tumors, 31%) immune infiltration, 25 patients had tumors with disparate immune infiltration 

between regions (31%) (Extended Data Fig. 4C). Intratumor heterogeneity was also found to 

confound genomic and transcriptomic biomarkers for the prediction of response to immune 

checkpoint blockade. For example, the classifier “TIDE” 12 was heterogeneous in 17/42 tumors 

(Extended Data Fig. 5A) and heterogeneously infiltrated tumors from our analysis tended to 

exhibit a heterogeneous TIDE signature (p=0.05) (Extended Data Fig. 5A). Likewise, a 

transcriptomic signature predicting innate resistance to PD-1 immune checkpoint blockade 

(IPRES) 13 and an IFN-signaling score 14 were also heterogeneous (Extended Data Fig. 5B-

D). 

In a recent prospective study, high tumor mutation burden (TMB) (>10 mutations/megabase) 

associated with improved immunotherapy response 15. 12/57 NSCLC tumors with high TMB 

had at least one tumor region containing a low TMB (Extended Data Fig. 5E). Heterogeneously 

infiltrated tumors were also more likely to exhibit heterogeneous TMB (p=7e-04) (Extended 

Data Fig. 5F). Among tumors with heterogeneous TMB, the regions with low TMB had 

significantly lower tumor purity than regions with high TMB, indicating the importance of 

considering tumor stromal content as a confounding factor (paired t-test p=0.04) (Extended 

Data Fig. 4F).  
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Interaction between immune infiltration and tumor evolution 

To explore the relationship between tumor genomic features and the immune 

microenvironment, a distance measure in both genomic and immune space was calculated 

for all pairwise combinations of tumor regions from the same tumor (Methods). We observed 

a significant correlation between the two pairwise distance measures (Figure 2A; lung adeno.: 

p=3.5e-04, lung squam.: p=2e-03). A similar relationship was observed when the pairwise 

immune and copy number alteration distance was compared, reaching statistical significance 

among the lung adenocarcinoma cohort (Extended Data Fig. 6A). These results support an 

interplay between the immune and cancer genomic landscape. 

To further explore this interplay, we considered the relationship between the clonal structure 

of each tumor region and its immune infiltrate. RNAseq-estimated CD8+ T-cell infiltration was 

compared to the within region subclonal diversity (Shannon entropy; Methods). A significant 

negative correlation was observed in lung adenocarcinoma but not squamous cell carcinoma; 

regions with high CD8+ T-cell infiltration had lower subclonal diversity (lung adeno.: p=0.035, 

rho=-0.22; lung squam.: p=0.91, rho=-0.02) (Extended Data Fig. 6B-C). Lung adenocarcinoma 

regions from tumors with consistently low levels of immune infiltration exhibited greater 

subclonal diversity compared to those from tumors with high or heterogeneous immune 

infiltration (Figure 2B-C; lung adeno.: p=0.01). When pathology estimated TILs (which did not 

correlate with tumor purity; Extended Data Fig. 6D) were used to stratify patients, a reduction 

in tumor diversity was again observed in regions with high/heterogeneous TIL (Extended Data 

Fig. 6E; p=0.02). 

Immune editing in response to an active immune microenvironment 

If T-cell mediated immune surveillance of neoantigens influences cancer genome evolution, 

one would predict to observe evidence for neoantigen depletion in tumors and/or disruption to 

antigen presenting machinery 16. Conceivably, neoantigen depletion may occur at the DNA 

level through events such as copy number loss, at the RNA level through suppression of 
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transcripts harboring neoantigens, at the epigenetic level through silencing of the genomic 

segments encoding neoantigens, or through post-translational mechanisms. Alternatively, 

tumor subclones expressing neoantigens may be preferentially eliminated by the immune 

system resulting in purifying selection of subclones harboring them. 

To investigate neoantigen depletion, we predicted neoantigens and their clonal status. 

Neoantigens were peptides with a predicted binding affinity <500nM or rank percentage score 

<2% and strong neoantigens had a predicted binding affinity <50nM or rank percentage score 

<0.5% 17 (Methods). We used a published method to quantify the extent of immunoediting in 

each tumor sample 16. This method compares the observed to expected number of 

neoantigens present in a tumor, such that a score <1 suggests immunoediting has occurred. 

While no significant difference in observed/expected neoantigen occurred between lung 

adenocarcinomas and lung squamous cell carcinomas (Extended Data Fig. 6F), we noted this 

score depends on the number of patient germline heterozygous HLA alleles (p=2.1e-05, 

rho=0.43) (Extended Data Fig. 6G) since fewer unique HLA types will decrease the number 

of observed neoantigens. To mitigate this, we investigated whether this measure changed 

during tumor evolution, from clonal to subclonal events within each tumor. Among low infiltrate 

tumors, a decrease in immunoediting (increase in observed/expected neoantigens) was noted 

from clonal to subclonal mutations (p=8.8e-03, paired t-test) (Figure 2D), possibly reflecting 

an ancestral immune-active microenvironment which has subsequently become cold.  

Neoantigen depletion may also occur at the DNA level through copy number loss (Figure 2E) 

18. Across this cohort, 43/88 tumors showed evidence for >1 historically clonal neoantigen 

being subclonally lost due to subclonal copy number events (Figure 2F; range 0-42% clonal 

neoantigens).  

To determine if the elimination of historically clonal neoantigens through copy number loss 

occurred more frequently than expected by chance, we compared neoantigens with non-

neoantigenic non-synonymous mutations. In tumor regions with low immune infiltration non-
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synonymous mutations predicted to be neoantigens, were more likely to occur on genomic 

segments subject to subclonal copy number loss as compared to their non-neoantigenic 

counterparts (p=1.2e-04) (Figure 2G). In low infiltration tumors, reduced immunoediting of 

subclones was observed more frequently in tumors without evidence of neoantigen copy-

number loss, supporting its role in subclonal immunoediting (p=0.88 vs. p=2.2e-04) (Figure 

2H). 

Repression of neoantigenic transcripts 

To investigate alternative neoantigen depletion mechanisms, we determined whether each 

neoantigen was identified at the transcript-level. Overall only 33% of clonal neoantigens were 

expressed in every tumor region and a significantly lower proportion of ubiquitously expressed 

clonal neoantigens among immune high (median: 29%) or heterogeneous (median: 35%) 

tumors as compared to immune low (median: 41%) tumors was observed (Figure 3A-B) (p=1e-

02). To further investigate if down-regulation of neoantigenic transcripts reflects selection 

pressure, we considered whether neoantigens were preferentially subject to reduction in 

expression compared to non-neoantigens, an approach not confounded by the influence of 

tumor purity.  

Among tumors with intact HLA alleles, significant reduction of expressed neoantigens 

compared to non-neoantigenic non-synonymous mutations was observed (Figure 3C; 

p=0.01). Moreover, when tumors were divided by immune classification, only immune high 

and heterogeneous tumors with intact HLA alleles showed depletion of expressed 

neoantigens, suggesting that subclones in immune infiltrated tumors may be selected for, by 

virtue of immune evasion through either HLA LOH or through repression of neoantigen 

expression (Figure 3C). Diminished neoantigen expression among immune-high tumors 

without HLA LOH was more pronounced when the more stringent definition of strongly binding 

neoantigens was used (Extended Data Fig. 6H).  
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We explored two potential mechanisms for neoantigen expression downregulation: negative 

selection of clones harboring the expressed neoantigens, and epigenetic downregulation 

through promoter hypermethylation. We observed an enrichment of neoantigens in genes that 

were lowly expressed in the tumor sample (<= 1TPM) as compared to non-synonymous non-

neoantigens (p=5.5e-10, OR=1.3) (Extended Data Fig. 6I). This enrichment was stronger 

when we only considered strong neoantigens (p=6.8e-13, OR=1.4) (Extended Data Fig. 6I). 

Neoantigens identified in TRACERx were also less likely to occur in genes that were 

consistently expressed across 1019 NSCLC samples from TCGA (Figure 3D) compared to 

non-synonymous predicted non-neoantigens. While the generation of neoantigenic mutations 

in genes consistently expressed in TCGA was most reduced among tumors with high immune 

infiltration (p=2.1e-04, OR=0.77), we also observed this reduction among heterogeneous and 

low infiltrated tumors (p=1.8e-03, OR=0.82 & p=4.4e-02, OR=0.88, respectively). This is 

consistent with low-immune tumors once being subject to the selective pressures of an active 

immune microenvironment (Figure 3D). 

To investigate methylation status of neoantigens, we performed multi-region reduced-

representation bisulfite sequencing on 79 out of the 164 samples (28/64 patients) in the 

TRACERx RNAseq cohort in addition to the adjacent normal (Figure 3E, Table S2). Among 

genes harboring neoantigens, an 11.4-fold increase in promoter hypermethylation was 

observed for genes that were not expressed compared to those genes that were expressed 

(χ2-test, p=1.6e-04) (Figure 3F). To determine if the observed down-regulation was 

neoantigen-specific, promoter hypermethylation was further compared between all 

neoantigens and the same genes which did not carry the neoantigen in purity/ploidy-matched 

samples. Overall, non-expressed neoantigens were more likely to exhibit promoter 

hypermethylation than the same genes without a neoantigen (χ2-test, p=4.5e-02, OR=2.3) 

(Figure 3G, Table S3). Among expressed neoantigens, no difference in promoter 

hypermethylation state was observed when compared to purity/ploidy-matched samples (χ2-

test, p=6.7e-01, OR=0.48) (Figure 3H, Table S4). These findings suggest that immune 
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pressures may select for promoter hypermethylation and neoantigen silencing in evolving 

subclones. 

Pervasive disruption to antigen presentation  

Defects in antigen presentation that interrupt tumor antigen recognition 19,20 may provide 

another immune evasion mechanism. To understand the importance of these avenues of 

immune escape in the treatment-naive setting, we mapped their occurrence, region by region 

(Figure 4A-B, Extended Data Fig. 7A; Methods). 

Disruption to antigen presentation, through HLA LOH or through mutations affecting MHC 

stability, the HLA enhanceosome, and peptide generation were frequently observed in both 

lung histologies (56% of lung adenocarcinomas and 78% of lung squamous cell carcinomas). 

HLA LOH and alterations affecting other components of the antigen presentation machinery, 

including B2M mutations, had a tendency for mutually exclusivity (lung adeno.: p=9.3e-04; 

lung squam.: p=1.5e-02), supporting antigen presentation dysfunction as a potent immune 

escape mechanism. Moreover, consistent with prior findings 20, highly infiltrated lung 

adenocarcinoma tumor regions were prone to exhibit HLA LOH (OR=2.4, p=3e-03).  

Loss of HLA-C in particular may result in loss of the killer-cell immunoglobulin-like receptor 

(KIR) signal that inhibits elimination through NK cell activity 21. There are two groups of HLA-

C alleles, HLA-C1 and HLA-C2, each with different KIR specificity 22. Thus, tumor cells from 

heterozygous patients (HLA-C1 and HLA-C2) would be expected to be targeted for NK cell-

mediated elimination following loss of either HLA-C allele (Extended Data Fig. 7B). 

Conversely, patients with homozygous HLA-C alleles may avoid NK cell-mediated elimination. 

Consistent with this, NK cell infiltration was increased among heterozygous HLA-C1/C2 tumor 

regions with HLA-C LOH (p=6.2e-07) (Extended Data Fig. 7C). Increased NK cell infiltration 

was not observed among tumors without HLA-C LOH (p=0.12), suggesting that this change 

in the tumor microenvironment results from loss of the HLA-C inhibitory “self” signal. 
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Immune evasion capacity is prognostic in NSCLC 

Finally, we examined whether combining estimates of immune infiltration and tumor immune 

evasion potential could provide prognostic power. Tumors were classified as exhibiting low 

evasion capacity (homogeneously high immune infiltration or no evidence of immune evasion 

[DNA immunoediting score > 1 and no antigen presentation disruption]) or high evasion 

capacity (at least one region with low immune infiltration as well as defective antigen 

presentation or DNA immunoediting score < 1). Patients whose tumors had a low immune 

evasion capacity, had significantly longer disease-free survival times (p=9.0e-04) (Figure 4C). 

To explore these results in the context of our prior findings relating to the importance of clonal 

neoantigens 23, we also grouped patients into those harboring high or low clonal neoantigen 

burden using the previously defined threshold (upper quartile of the cohort) 23.  Validating 

previous results, high clonal neoantigen burden was associated with improved disease-free 

survival among both lung adenocarcinoma and lung squamous cell carcinoma (lung adeno.: 

p=2.2e-02; lung squam.: p=2.5e-02) (Extended Data Fig. 8A). The association observed 

between clonal neoantigens and disease-free survival was not dependent on the specific 

threshold used (Extended Data Fig. 8B) and clonal neoantigen burden remained significant in 

a multivariate model with stage, histology, age, gender, pack years, and adjuvant therapy 

(p=0.02). Conversely, no significant relationship between subclonal neoantigen burden, nor 

total neoantigen burden, and disease-free survival was observed (Extended Data Fig. 8C-E).  

However, intriguingly, when we focused on tumors with a low clonal neoantigen load, the 

immune evasion capacity of a tumor was still prognostic (p=5.3e-03), indicating that in the 

absence of immune evasion, even a low clonal neoantigen burden may be sufficient to elicit 

an effective immune response (Figure 4D).  

Furthermore, we observed that tumors with either a high clonal neoantigen load or low immune 

evasion capacity exhibited significantly improved disease-free survival times (p=4.9e-06) 

(Figure 4E). This association remained significant in a multivariate model with stage, histology, 
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age, gender, pack years, and adjuvant therapy (p<0.001) (Extended Data Fig. 8F). These data 

suggest that considering the many facets of the interaction between the tumor and immune 

microenvironment is important for predicting clinical outcome.  

Discussion 

To capture the complex interplay between cancer genomic evolution and anti-tumor immunity 

in lung cancer, we integrated genomic, transcriptomic, epigenomic, and pathologic data to 

define how tumors are sculpted by the immune microenvironment, what mechanisms of 

immune escape influence tumor evolution, and the clinical impact of active tumor-immune 

interaction. Our results suggest the immune microenvironment is highly variable between 

patients but also markedly different between distinct regions of the same tumor, with nearly a 

third of tumors exhibiting diverse immune infiltration. 

Our results show evidence of tumor evolution shaped through different immunoediting 

mechanisms, either affecting antigen presentation or neoantigenic mutations themselves at 

both the DNA and RNA-level.  

Consistent with disruption to antigen presentation machinery being subject to strong positive 

selection 24, we found HLA LOH tended towards mutually exclusivity with other forms of 

antigen presentation disruption, such as mutations affecting MHC stability, the HLA 

enhanceosome, or peptide generation. At the DNA level, sparsely infiltrated tumors showed 

enrichment for the elimination of clonal neoantigens, indicating the importance of 

chromosomal instability driving neoantigen loss.  

As a whole, tumors exhibited fewer neoantigens in expressed genes than expected, potentially 

reflecting historical purifying selection of neoantigens. High-immune tumors with intact HLA 

alleles also displayed transcriptomic neoantigen depletion, suggesting that these tumors may 

evade immune predation either through HLA LOH or by suppressing neoantigen expression, 

but seldom both. Promoter hypermethylation was identified as a potential mechanism of 
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transcriptomic neoantigen depletion, leading to the preferential repression of genes harboring 

neoantigenic mutations. Promoter hypermethylation affected neoantigen expression level in 

~23% of the neoantigens studied, indicating that additional mechanisms of neoantigen 

transcription repression require elucidation.  

Through the combination of immune microenvironment and tumor immune escape factors we 

defined an estimate of each tumor’s immune evasion capacity, which associated with poorer 

outcome. As TRACERx is a prospective study of early stage untreated NSCLC, it will be 

important to validate these findings in the extended longitudinal cohort as the study matures. 

The observation that clonal neoantigens can be subject to copy number loss and transcript 

repression, even in untreated early stage disease, may have important implications for 

predicting response and resistance to immune checkpoint blockade. Relapse samples 

following checkpoint blockade therapy have been shown to eliminate clonal neoantigens, 

reshaping the TCR repertoire of those samples 18. Clonal neoantigens occurring in expressed 

genes which are required for lung cancer cell fitness may make ideal targets for vaccine or 

adoptive cell therapies. 

The extent to which neoantigen transcript depletion is dynamic in response to therapy and 

tumor dissemination and whether such phenomena may be harnessed to improve 

immunotherapy response is unknown. Epigenetic immune evasion supports the potential for 

epigenetic modulatory agents, in combination with immunotherapy, to restore or improve 

tumor immunogenicity 25. One possibility is that epigenetic repression of a neoantigen in a 

lung cancer expressed gene may result at a fitness cost. This may shed light on recent 

phenomenon observed in some patients with acquired resistance to checkpoint inhibitor 

therapy, who are subsequently re-challenged with the same drug and respond a second time 

26. 

Taken together, our results suggest early stage, untreated NSCLCs are frequently 

characterized by multiple independent mechanisms of immune evasion within individual 
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tumors, emphasizing the strong selection pressures that the immune system imposes upon 

tumor evolution. Our results suggest that the beneficial role of successful immune 

surveillance, and the diversity of immune evasion mechanisms should be considered and 

harnessed in therapeutic interventions. 
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Main Figure Legends 

Figure 1: Heterogeneity of immune infiltration in NSCLC. (A-B) TRACERx regions from 

lung adenocarcinoma (A) and lung squamous cell carcinoma (B) are shown, clustered by the 

level of estimated immune infiltrate. Each row represents an immune cell population, as 

estimated by the Danaher method. Immune populations are: B cells, CD4+ T-cells, CD8+ T-

cells, exhausted CD8+ T-cells, helper T-cells, regulatory T-cells, CD45+ cells, NK cells, NK 

CD56- cells, dendritic cells, mast cells, macrophages, neutrophils, cytotoxic cells, total T-cells, 

and total TIL score. Each column represents a tumor region. Regions classified as having low 

immune infiltration are shown in blue, whereas regions classified as having high immune 

infiltration are shown in red. If all regions from a patient’s tumor are classified as low immune, 

that patient is indicated in blue. If all regions from a patient’s tumor are classified as high 

immune, that patient is indicated in red. Patients with tumors containing heterogeneous 

immune infiltration are indicated in orange. Below each heatmap, example pathology images 

from heterogeneous tumors are shown to display a region of high immune infiltration and a 

region of low immune infiltration from the same tumor.  

Figure 2: Immune editing at the DNA level. (A) Pairwise genomic and immune distances 

between every two tumor regions from the same patient are compared (lung adeno: p=3.5e-

04, n=217 lung squam: p=0.002, n=186). (B-C) The Shannon diversity index for each tumor 

region is shown grouped by immune classification. Lung adenocarcinomas (n=159) (B) and 

lung squamous cell carcinomas (n=103) (C) are shown. Minima and maxima indicated by 

extreme points of boxplot. Median indicated by thick horizontal line. First and third quartiles 

indicated by box edges. A two-sided Wilcoxon rank-sum test is used. (D) The change in the 

observed/expected immunoediting score from clonal (C) to subclonal (S) is shown for each 

immune classification (high, n=24; hetero., n=25; low, n=33). A two-sided paired t-test is used. 

(E) Example of historically clonal neoantigens loss by subclonal copy number event. 

Neoantigens present in CRUK0071:R3 on one copy are shown in one panel (black). These 

neoantigens are lost in CRUK0071:R6 (red). (F) The number of historically clonal neoantigens 
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on a region of copy number loss are shown per tumor. Below shows the proportion of clonal 

neoantigens lost subclonally through a copy number event. (G) The odds ratio and 95% CI of 

copy number neoantigen depletion is shown, calculated with Fisher’s exact test. Values >1 

indicate neoantigens are more likely to be in regions of subclonal copy number loss as 

compared to non-synonymous mutations that are not neoantigens. Tumor regions are 

classified by immune cluster. (H) The change in immunoediting score is shown for immune 

low tumors by whether any neoantigens are subclonally lost through copy number events (CN-

loss, n=17; no-CN-loss, n=16). A two-sided paired t-test is used. No corrections were made 

for multiple comparisons.  

Figure 3: Transcriptional neoantigen depletion. (A) The patient-level number of clonal and 

subclonal expressed neoantigens is shown. The fraction of clonal neoantigens that are 

ubiquitously detected is plotted below. The immune class is provided as high (red), low (blue), 

or heterogeneous (orange). (B) The fraction of clonal neoantigens that are ubiquitously 

detected in every region is plotted by immune classification of the tumor (n=63). Minima and 

maxima indicated by extreme points of boxplot. Median indicated by thick horizontal line. First 

and third quartiles indicated by box edges. A two-sided Wilcoxon rank-sum test is used. (C) 

The odds ratio and 95% CI of transcriptional neoantigen depletion is shown, calculated with 

Fisher’s exact test. Values <1 indicate that putative neoantigens are less likely to be expressed 

as compared to non-synonymous mutations that are not putative neoantigens. Tumors are 

plotted by HLA LOH status and immune classification. (D) The odds ratio and 95% CI of a 

neoantigen occurring in a gene that is consistently expressed among TCGA NSCLC tumors 

is shown, calculated with Fisher’s exact test. (E) CpG-methylation patterns across the LAMB1 

promoter in tumor samples CRUK0057:R1 and CRUK0002:R1 and their matched normals. 

The locus encodes two non-expressed neoantigens and exhibits hypermethylation in 

CRUK0057:R1. The purity/ploidy-matched unmutated control sample CRUK0002:R1 shows 

no differential methylation. (F-H) Numbers of (non)-hypermethylated gene promoters for (F) 

expressed vs. non-expressed neoantigens, (G) non-expressed neoantigens vs. the same 
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genes in purity/ploidy-matched controls and (H) non-expressed neoantigens vs. the same 

genes in purity/ploidy-matched controls. Odds ratios (OR) and p-values (χ2-test) are shown 

for each comparison. No corrections were made for multiple comparisons. 

Figure 4: Immune evasion capacity in early-stage non-treated NSCLC. (A-B) The number 

of clonal and subclonal neoantigens found in the tumor region, immune cluster, patient 

prognosis, immunoediting classification, HLA LOH status, and antigen presentation defects 

are plotted for every tumor region for each tumor. Patients are split according to their immune 

evasion capacity. (C) Immune evasion capacity is determined by the level of immune 

infiltration and presence of immune escape mechanisms. Patients whose tumors have low 

immune evasion capacity have prolonged disease-free survival times. (D) A Kaplan Meier 

curve is shown for tumors with low clonal neoantigen burden (lowest three quartiles) split by 

their immune evasion capacity. (E) A Kaplan Meier curve is shown that combines clonal 

neoantigen load (upper quartile) and immune evasion capacity. For all survival curves, the 

number of patients in each group for every time point is indicated below the time point and 

significance is determined using a two-sided log-rank test. 

  



 

22 

Methods 

Patients and samples 

The cohort evaluated within this study comes from the first 100 patients prospectively 

analyzed by the lung TRACERx study (https://clinicaltrials.gov/ct2/show/NCT01888601, 

approved by an independent Research Ethics Committee, 13/LO/1546) and mirrors the 

prospective 100 patient cohort described in 5.  

Informed consent for entry into the TRACERx study was mandatory and obtained from every 

patient. There were 68 male and 32 female non-small cell lung cancer patients in the 

TRACERx study, with a median age of 68. The cohort is predominantly early-stage: Ia(26),  

Ib(36), IIa(13), IIb(11), IIIa(13), IIIb(1).  Seventy-two had no adjuvant treatment and 28 had 

adjuvant therapy. All patients were assigned a study ID that was known to the patient. These 

were subsequently converted to linked study Ids such that the patients could not identify 

themselves in study publications. All human samples, tissue and blood, were linked to the 

study ID and barcoded such that they were anonymized and tracked on a centralized database 

overseen by the study sponsor only.  

TRACERx 100 RNA-sequencing    

RNA was extracted from the TRACERx 100 cohort using a modification of the AllPrep kit 

(Qiagen) as described in Jamal-Hanjani et al. 5. RNA integrity was assessed by TapeStation 

(Agilent Technologies). Samples that had a RIN score >=5 were sent to the Oxford Genomics 

Centre for whole RNA (RiboZero depleted) paired end sequencing. The ribodepleted fraction 

was selected from the total RNA provided before conversion to cDNA. Second strand cDNA 

synthesis incorporated dUTP. The cDNA was end-repaired, A-tailed and adapter-ligated. Prior 

to amplification samples underwent uridine digestion. The prepared libraries were size 

selected, multiplexed and QC’ed before paired end sequencing. Reads were 75 base pairs in 
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length. FASTQ data was quality controlled and aligned to the hg19 genome using STAR 27. 

Transcript quantification was performed using RSEM with default parameters 28. 

TRACERx 100 RRBS 

Reduced representation bisulfite sequencing (RRBS) was obtained for roughly half of the 

NSCLC cohort with RNA-Seq data (79/164 tumor regions from 28/64 patients, each with 

matched normal). The NuGEN Ovation RRBS Methyl-Seq System, adapted by the 

manufacturer for automation on an Agilent Bravo liquid handling robot, was used to generate 

sequencing libraries by enzymatically digesting 100 ng of gDNA using MspI, followed by 

adaptor ligation and the final repair step. Generated libraries were bisulfite converted using 

Qiagen’s EpiTect Fast DNA Bisulfte Kit purchased separately from the kit, PCR amplified for 

12 cycles and purified using Agencourt® RNAClean® XP magnetic beads. Purified libraries 

were quantified by Qubit dsDNA HS Assay (Invitrogen) and quality controlled using Agilent 

Bioanalyzer HighSensitivity DNA Assay (Agilent Technologies). Eight samples were 

multiplexed per flow cell and sequenced on an Illumina HiSeq2500 system using HiSeq SBS 

Kit v4 in paired-end 100bp runs for CRUK0062 and single end 100bp runs for the others 

yielding on average 150M raw sequencing reads per sample. Sequencing results were 

checked with FastQC v0.11.2 (Babraham Institute, https://www.babraham.ac.uk/), adapter 

sequences were trimmed with Trim Galore! v0.3.7, which is a wrapper around Cutadapt 

(doi:10.14806/ej.17.1.200), and NuGEN v1.0 diversity trimming script 

(https://github.com/nugentechnologies/NuMetRRBS) and reads aligned to the UCSC hg19 

reference assembly using Bismark v0.14.430. Read deduplication was carried out using 

NuDup (pre-release version dated March 2015, 

https://github.com/nugentechnologies/nudup/), leveraging NuGEN’s molecular tagging 

technology producing on average 100M unique reads per sample.  

Statistical information 

https://github.com/nugentechnologies/NuMetRRBS
https://github.com/nugentechnologies/nudup/
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All statistical tests were performed in R. No statistical methods were used to predetermine 

sample size. Tests involving correlations were done using “cor.test” with the Spearman’s 

method. Tests involving comparisons of distributions were done using “wilcox.test” or “t.test” 

using the unpaired option, unless otherwise stated. Hazard ratios and p-values were 

calculated with the “survival” package. For all statistical tests, the number of data points 

included are plotted or annotated in the corresponding figure.  

Selection of immune infiltration approach 

Previously defined measures of immune infiltration and activity were used to classify the 

immune microenvironment of all tumors (and tumor regions) with RNAseq data available 6-

8,11,29. The genes used in each one of the immune estimation approaches were tested to see 

if they fit two criteria: 1) have a negative relationship with tumor purity, as genes defining 

immune subtypes are expressed in infiltrating immune cells 8 and 2) not show a positive 

correlation with tumor copy number at the gene locus, a positive correlation may indicate that 

the gene is expressed by the tumor cell, thereby confounding immune estimates. The 

proportion of genes in each immune estimation method that passed these two criteria was 

compared. Finally, for each method, the immune estimates themselves were compared 

against independent ground truth measures (pathology TIL estimation, flow cytometry 

quantification, and TCR abundance). The immune estimation that performed best in the 

TRACERx cohort was chosen. 

Estimating immune cell populations 

RNAseq-based estimations 

The Danaher method 29 was used to estimate immune cell populations for every tumor region 

with RNAseq data available. The immune cell populations were: CD8+ T-cells (cd8), 

exhausted CD8+ T-cells (cd8.exhausted), CD4+ T-cells (cd4), regulatory T-cells (treg), helper 

T-cells (th1), dendritic cells (dend), B cells (bcell), mast cells (mast), NK cells (nk), NK 
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CD56dim cells (nkcd56dim), neutrophils, macrophages, CD45+ cells (cd45), and measures 

for total T-cells (tcells), total TILs (total.til), and cytotoxic cells (cyto). Because the original 

Danaher paper did not identify any suitable genes for CD4+ T-cell population estimation and 

a poor relationship with ground truth measures was observed in the TRACERx cohort using 

the Danaher CD4+ T-cell estimates, the Davoli CD4+ T-cell estimates were used instead. The 

Davoli estimate was chosen as overall, they matched the Danaher estimates closely and 

performed nearly as well for the selection criteria. 

The Jiang immune measures were calculated using the TIDE web interface 

(http://tide.dfci.harvard.edu/) 

Pathology TIL estimation 

TILs were estimated from pathology slides using international established guidelines 

developed by the International Immuno-Oncology Biomarker Working Group the Salgado 

method 10. Briefly, from the pathology slide of a given tumor region, the relative proportion 

stromal area to tumor area was determined. TILs were reported for the stromal compartment 

(=% stromal TILs). The denominator used to determine the % stromal TILs is the area of 

stromal tissue (i.e. area occupied by mononuclear inflammatory cells over total intratumoral 

stromal area), not the number of stromal cells (i.e. fraction of total stromal nuclei that represent 

mononuclear inflammatory cell nuclei). This method has been demonstrated to be 

reproducible among trained pathologists 30. An intra-personal concordance was performed 

and this demonstrates high reproducibility. The International Immuno-Oncology Biomarker 

Working Group has developed a freely available training tool to train pathologists for optimal 

TIL-assessment on hematoxylin eosin slides (www.tilsincancer.org).  

Flow measurements 

Tissue samples were collected and transported in RPMI-1640 (Sigma, cat# R0883-500ML). 

Single cell suspensions were produced by enzymatic digestion using liberase with subsequent 
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cellular disaggregation using a Miltenyi gentleMACS Octo Dissociator. Lymphocytes were 

isolated from single cell suspension by gradient centrifugation on Ficoll Paque Plus (GE 

Healthcare, cat# 17-1440-03) and stored in liquid nitrogen. Blood samples were collected in 

BD Vacutainer EDTA blood collection tubes (BD cat# 367525), PBMC’s were then isolated by 

gradient centrifugation on Ficoll Paque (GE Healthcare, cat# 17-1440-03) and stored in liquid 

nitrogen. 

FC receptors were blocked with Human Fc Receptor Binding Inhibitor (Thermo) before 

staining. Non-viable cells were stained using the eBioscience Fixable Viability Dye eFluor 780 

(Thermo). Cells were stained in BD Brilliant stain buffer (BD cat# 563794) with the following 

monoclonal antibodies: anti-human CD3 (clone SK7, BD cat# 565511), anti-human CD4 

(clone SK3, BD cat# 566003), anti-human CD8 (clone RPA-T8, BD cat# 564804). Data was 

acquired on a BD Symphony flow cytometer and analyzed in FlowJo. Cells were gated for 

size, single cells, live cells, CD3+CD8+ T cells. 

TCR abundance 

A previously developed quantitative experimental and computational TCR sequencing 

pipeline 31 was used for the high throughput sequencing of α and β TCR chains. TCR 

sequencing was performed on whole RNA extracted from multi-region tumor specimens. A 

distinct feature of this TCR sequencing protocol is the utilization of a unique molecular 

identifier (UMI) that enables correction for PCR and sequencing errors, thereby providing a 

quantitative and reproducible method of library preparation 31,32. 

Classifying tumor regions as immune high/low 

Tumors were split into either lung adenocarcinoma or lung squamous cell carcinoma. The 

Danaher estimates for all tumor regions from each histological type were clustered together 

using “ward.D2”. The dendrogram was cut into two, and the samples which fell in the portion 

with higher levels of immune infiltrate estimation were considered immune high tumor regions. 
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Conversely, the samples which portion with lower levels of immune infiltrate estimation were 

considered immune low tumor regions. If all tumor regions from a given sample were classified 

as immune low, that tumor was designated as consistently immune low; if all tumor regions 

from a given sample were classified as immune high, that tumor was designated as 

consistently immune high. If some tumor regions from the same tumor were immune high and 

others were immune low, the tumor overall was classified as heterogeneous. 

If a tumor region had no RNAseq available, it could be rescued using the pathology TIL 

estimations. A tumor region was classified based on pathology TILs by determining if the 

pathology TIL estimate for the tumor region in question was closer to the median of the 

pathology TILs from the immune high or immune low tumor regions with RNAseq that had 

been clustered. The RNAseq cohort (164 tumor regions from 64 TRACERx patients) was 

expanded by rescuing tumor regions without RNAseq data (Extended Data Fig. 2A) with 

pathology estimated TILs (234 tumor regions from 83 TRACERx patients) (Extended Data Fig. 

4E). 

Calculation of IPRES score 

The calculation of the IPRES score was done according to Hugo et al. 13.  

Distance measures 

Immune distance 

The immune distance was determined by taking the Euclidean distance of immune infiltrate 

estimates between tumor regions. 

Genomic distance 

The genomic distance was calculated by taking the Euclidean distance of the mutations 

present between tumor regions. All mutations present in any region from a tumor were turned 
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into a binary matrix, where the rows were mutations and columns tumor regions. This matrix 

was clustered and the pairwise distance between any two tumor regions was determined. 

Calculation of Shannon entropy 

For each tumor region, the Shannon entropy was estimated using the command 

“entropy.empirical” from the “entropy” R package. This was calculated based on the number 

and prevalence of different tumor subclones found in that region, such that a tumor region 

containing only one subclone was assigned a value of 0.  

The Shannon entropy score, H, followed the formula: H = -Σpi log (pi), where pi is the 

probability of the ith clone appearing in the tumor cell population. 

Predicted neoantigen binders 

Novel 9-11mer peptides that could arise from identified non-silent mutations present in the 

sample 5 were determined. The predicted IC50 binding affinities and rank percentage scores, 

representing the rank of the predicted affinity compared to a set of 400,000 random natural 

peptides, were calculated for all peptides binding to each of the patient’s HLA alleles using 

netMHCpan-2.8 17,33 and netMHC-4.0 33. Using established thresholds, predicted binders were 

considered those peptides that had a predicted binding affinity <500nM or rank percentage 

score <2% by either tool. Strong predicted binders were those peptides that had a predicted 

binding affinity <50nM or rank percentage score <0.5%. Of the 28,489 non-synonymous 

mutations in this cohort, 24,494 were predicted to encode peptides capable of binding to at 

least one of the patient’s HLA class I alleles (binding affinity < 500nM or rank% < 2) and 13,884 

were predicted to strongly bind (binding affinity < 50nM or rank% < 0.5) 17.  

When RNAseq data was available, a neoantigen was considered to be expressed if at least 

five RNAseq reads mapped to the mutation position, and at least three contained the mutated 

base. 
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Neoantigen depletion 

Transcriptional 

Transcriptional neoantigen depletion was identified by first dividing tumors into immune 

classifications and HLA LOH categories (loss/no loss). All non-synonymous mutations were 

annotated as expressed in the RNAseq or not using the definitions above. Then a test for 

enrichment was performed to determine if non-synonymous mutations that were neoantigens 

were less likely to be expressed as compared to the non-synonymous mutations which were 

not predicted to be neoantigens. 

Copy number 

Copy number neoantigen depletion was identified by first dividing tumors into immune 

classifications. All non-synonymous mutations were annotated as either in a region of 

subclonal copy number loss or not as identified in Jamal-Hanjani et al. 5. Then a test for 

enrichment was performed to determine if non-synonymous mutations that were neoantigens 

were more likely to be in regions of subclonal copy number loss as compared to the non-

synonymous mutations which were not predicted to be neoantigens. 

Methylation 

Neoantigens in genes that are consistently expressed across the TCGA NSCLC cohort were 

classified in two groups: expressed, where the mutant is detected in at least 30 reads, and 

non-expressed, where no mutant transcript is observed. Of the 375 non-expressed and 883 

expressed neoantigens with matched RRBS data, 77 and 406 were unique, respectively 

(others were duplicates from different regions of the same patient). We down-sampled the 

expressed neoantigens list to match as closely as possible the gene expression and the 

variant allele frequency distributions observed for the non-expressed neoantigens. We then 

assessed differential methylation as follows: bulk and normal per-CpG methylation rates in 

promoters (2kb up- and downstream of TSS) modelled as beta distributions, B(α+1,β+1), 
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where α represents the observed methylated read counts and β the unmethylated read counts, 

and we compute 𝑃(𝐵(𝛼, 𝛽)𝑡𝑢𝑚 > 𝐵(𝛼, 𝛽)𝑛𝑜𝑟𝑚) exactly via: 

𝑃𝑟 𝑃𝑟 (𝑝𝑡𝑢𝑚 > 𝑝𝑛𝑜𝑟𝑚)  =  ∑

𝛼𝑡𝑢𝑚−1

𝑖=0

𝐵(𝛼𝑛𝑜𝑟𝑚 + 𝑖, 𝛽𝑛𝑜𝑟𝑚 + 𝛽𝑡𝑢𝑚)

(𝛽𝑡𝑢𝑚 + 𝑖)𝐵(1 + 𝑖, 𝛽𝑡𝑢𝑚)𝐵(𝛼𝑛𝑜𝑟𝑚, 𝛽𝑛𝑜𝑟𝑚)
 

Hochberg family-wise error rate (FWER) correction is then applied and promoters are flagged 

as hypermethylated when ≥3 CpGs are significantly hypermethylated (q<0.05). Promoter 

counts are tested in a 2x2 contingency table (methylation status vs expression status or 

mutation status) using a χ^2-test.  

Identifying tumor regions with HLA LOH 

Tumor regions harboring an HLA LOH event were identified using the LOHHLA method, 

described in 20. 

Immune evasion alterations 

Antigen presentation pathway genes were compiled from 34 and affected the HLA 

enhanceosome, peptide generation, chaperones, or the MHC complex itself. They included 

disruptive events (non-synonymous mutations or copy number loss defined relative to ploidy 

5) of the following genes: CIITA, IRF1, PSME1, PSME2, PSME3, ERAP1, ERAP2, HSPA, 

HSPC, TAP1, TAP2, TAPBP, CALR, CNX, PDIA3, B2M.  

TCGA data 

RNA-sequencing data was downloaded from the TCGA data portal. For each LUAD and LUSC 

sample, all available ‘Level_3’ gene-level data was obtained. TCGA genes were considered 

consistently expressed if they were expressed at >= 1TPM in 95% of the samples for each 

histology. 
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Data Availability 

Sequence data used during the study will be deposited at the European Genome-phenome 

Archive (EGA), which is hosted by The European Bioinformatics Institute (EBI) and the Centre 

for Genomic Regulation (CRG) under the accession code: EGAS00001003458. Further 

information about EGA can be found at https://ega-archive.org.   

Code Availability 

All code used for analyses was written in R version 3.3.1 and is available at:  

https://bitbucket.org/snippets/raerose01/EeLrLB  
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Extended Data Figure Legends 

Extended Data Fig. 1: Determination of robust immune infiltration approach. (A-D) The 

expression of the genes used in the each of the immune signature definitions is correlated 

against tumor purity (A-B) and tumor copy number (C-D). Plotted are random genes (n=1000), 

TIMER genes (n=575), EPIC genes (n=98), Danaher genes (n=60), Rooney genes (n=100), 

and Davoli genes (n=75). The Spearman’s rho value of the correlation is plotted for the 

immune genes comprising each signature definition, colored by the p-value of the association. 

The comparisons are performed separately for lung adenocarcinoma and lung squamous cell 

carcinoma. The median rho value for the immune signature set is indicated by the red line. 

The fraction of genes whose expression value is significantly correlated with purity or tumor 

copy number is shown and compared to a set of random genes. For every immune signature 

considered, there was significant enrichment of genes whose expression negatively correlated 

with tumor purity as compared to the random selection of genes and a significant enrichment 

of genes whose expression positively correlated with tumor copy number as compared to the 

random selection of genes. (E) Scatterplots show the Spearman correlation between TIL 

scores and CD8+ T-cells as measured by the Danaher approach (n=140), between flow CD8+ 

T-cell estimates and Danaher CD8+ T-cells (n=36), TCRseq abundance and Danaher CD8+ 

T-cells (n=72), normalized live flow CD8+ T-cell estimates and Danaher CD8+ T-cells (n=39), 

and normalized live flow CD8+ T-cell/Treg and Danaher CD8+/Treg estimates (n=38). Blue 

dots indicate regions from a lung adenocarcinoma tumor, red dots indicate regions from a lung 

squamous cell carcinoma tumor. Spearman rho values, p-values, and 95% CI (shaded area) 

are given for all tumor regions (black), lung adenocarcinoma tumor regions (blue), and lung 

squamous cell carcinoma tumor regions (red). (F) A scatterplot showing the correlation 

between pathology TIL estimates and CD8+ estimates from each of the immune infiltration 

methods is shown (n=140). Lung adenocarcinoma tumor regions are shown in blue; lung 

squamous cell carcinoma tumor regions are shown in red. Below, the top six correlations 

between pathology TIL estimates and an immune cell subset is shown for each method. Blue 
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boxes indicate positive correlation, whereas red boxes indicate negative correlation. P-values 

were FDR corrected. (G) Example of CD8 T-cell quantification in a representative TRACERx 

TIL sample. TILs were isolated from tumor regions of surgical resections as previously 

described and cryopreserved. Thawed samples were stained with a custom-designed 20-

marker antibody panel to measure T cell activation, dysfunction and differentiation by flow 

cytometry.  

Extended Data Fig. 2: TRACERx 100 sample selection and patient characteristics. (A) 

CONSORT diagram showing the selection of TRACERx 100 patients for RNAseq and/or 

pathology TIL analysis. (B) Patient characteristics for the TRACERx 100 cohort are shown. 

Patient characteristics can be found in tabular form in Table S1.  

Extended Data Fig. 3: Difference in immune infiltration by histology. The distribution of 

Danaher estimated CD8+ T-cell infiltrate is displayed for lung adenocarcinomas (adeno.) and 

lung squamous cell carcinomas (squam.) (n=145). Minima and maxima indicated by extreme 

points of boxplot. Median indicated by thick horizontal line. First and third quartiles indicated 

by box edges. A two-sided Wilcoxon rank-sum test is used. 

Extended Data Fig. 4: Rescuing regions without RNAseq using pathology TILs. (A) The 

difference in pathology TIL estimates is shown by RNAseq-derived immune cluster (n=139). 

(B) All regional pathology estimated TILs are plotted for each tumor sample (lung 

adenocarcinoma n=121; lung squamous cell carcinoma n=90). If a region also had RNAseq 

information available, the immune cluster that region belonged to is also shown as immune 

high (red) or immune low (blue). Immune clusters for tumor regions without RNAseq are 

annotated as grey. The immune class for the patients is also provided as high (red), low (blue), 

heterogeneous (orange), or unknown (grey). For all boxplots, minima and maxima indicated 

by extreme points of the plot. Medians are indicated by thick horizontal line. First and third 

quartiles are indicated by box edges. A two-sided Wilcoxon rank-sum test is used for 

comparisons. (C) The number of patients in each immune classification is plotted as inferred 
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from using RNAseq data alone or by also incorporating pathology TIL estimates. (D) A 

correlation matrix of the Danaher immune cell estimates with the Jiang immunosuppressive 

cell subsets is shown (Spearman’s test). Positive correlations are indicated in blue and 

negative correlations are indicated in red. Correlations are significant unless marked with a 

black X. (E) The Jiang immune infiltration estimates are shown for TAM M2 (tumor associated 

macrophage M2) and MDSC (myeloid-derived suppressor cells) cells split by immune cluster 

(n=163). (F) The tumor purity is shown for the low tumor mutational burden (TMB) and high 

TMB regions of every tumor with heterogeneous TMB (n=12) Two-sided paired t-test is used 

for comparison. No corrections were made for multiple comparisons. 

Extended Data Fig. 5: Heterogeneity of biomarkers predicting checkpoint blockade 

response. (A) The TIDE gene signature score of each tumor region is shown per patient for 

patients with >1 region available (n=39). Using threshold defined by (dashed line), patients 

are classified as having low TIDE (light blue), high TIDE (dark blue), or heterogeneous TIDE 

(orange). (B) The IPRES gene signature score of each tumor region is shown per patient for 

patients with >1 region available (n=39). Using threshold defined by Hugo et al.  13 (dashed 

line), patients are classified as having low IPRES (light blue), high IPRES (dark blue), or 

heterogeneous IPRES (orange). (C) The expanded Ayers IFN signature is shown for each 

tumor region per patient for patients with >1 region available (n=38). For (A-C) the immune 

classification of the patient is also given. (D) The greatest difference in expanded Ayers IFN 

signature between tumor regions from the same tumor is plotted according to whether the 

tumor has heterogeneous immune infiltration or not (n=38). A two-sided Wilcoxon rank-sum 

test is used for comparison. (E) Tumor mutational burden (TMB) of each tumor region is shown 

per patient (n=93). Using a 10 mutations/mB threshold (dashed line), patients are classified 

as having low TMB (light blue), high TMB (dark blue), or heterogeneous TMB (orange). For 

all boxplots, minima and maxima indicated by extreme points of the plot. Medians are indicated 

by thick horizontal line. First and third quartiles are indicated by box edges. (F) A summary of 

the tumor histology, immune classification, TMB status, TIDE category, and IPRES category 
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is shown for each tumor (n=93). There is an enrichment for heterogeneously immune infiltrated 

tumors to have heterogeneous TMB status and heterogeneous TIDE scores (Fisher’s exact 

test). No corrections were made for multiple comparisons. 

Extended Data Fig. 6: Relationship between immune infiltration and tumor region 

diversity. (A) The pairwise copy number (cn) and immune distances between every two tumor 

regions from the same patient are compared for lung adenocarcinoma (n=91) and lung 

squamous cell carcinoma (n=60). (B-C) For each tumor region, the CD8+ T-cell score is 

plotted against the Shannon diversity score. Lung adenocarcinomas (n=89) (B) and lung 

squamous cell carcinomas (n=50) (C) are shown. (D) The correlation between pathology TIL 

estimates and tumor purity is shown for lung adenocarcinoma (n=120) (blue) and lung 

squamous cell carcinoma (n=90) (red) regions. No relationship for either histology is observed. 

Spearman’s test is used to determine relationship. (E) The Shannon diversity score per lung 

adenocarcinoma tumor region (n=137) is plotted by immune classification as determined 

solely by pathology TIL estimates. A two-sided Wilcoxon rank-sum test is used for comparison. 

(F) A comparison of observed/expected immunoediting score between lung adenocarcinoma 

and lung squamous cell carcinoma tumors (n=92) is shown. A two-sided Wilcoxon rank-sum 

test is used for comparison. (G) The observed/expected immunoediting score is shown by 

number of unique HLAs present in the tumor (patients heterozygous at HLA-A, -B, and -C will 

have six unique HLA alleles) (n=90). For all boxplots, minima and maxima indicated by 

extreme points of the plot. Medians are indicated by thick horizontal line. First and third 

quartiles are indicated by box edges. (H) The odds ratio and 95% CI of transcriptional 

neoantigen depletion is shown for strongly binding neoantigens, calculated with Fisher’s exact 

test. Values <1 indicate that putative neoantigens are less likely to be expressed as compared 

to non-synonymous mutations that are not putative neoantigens. Tumors are broken down by 

HLA LOH status and their immune classification. (I) The enrichment for neoantigens and 

strongly binding neoantigens to occur in non-expressed genes as compared to non-
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synonymous non-neoantigens is shown, calculated with Fisher’s exact test. No corrections 

were made for multiple comparisons. 

Extended Data Fig. 7: Components of immune evasion mechanisms in NSCLC. (A) Each 

of the potential immune evasion mechanisms explored in Figure 4 are shown broken down by 

their component genes. Patients are split according to their immune evasion capacity status. 

Copy number losses are shown in blue and mutations are shown in green. (B) A schematic of 

how LOH of the HLA-C locus in HLA-C1/C2 heterozygous tumors may lead to NK cell-

mediated destruction is shown. (C) The level of Danaher estimated NK cell infiltration / Total 

TIL estimate is shown for tumor regions with (n=45) and without (n=90) HLA-C LOH according 

to their HLA-C1/C2 heterozygosity status.  A two-sided Wilcoxon rank-sum test is used for 

comparison.  

Extended Data Fig. 8: Relationship between clonal neoantigen burden, immune 

infiltration, and patient prognosis. (A, C, E) Kaplan-Meier curves are shown for lung 

adenocarcinoma and lung squamous cell carcinoma. The curves are split based on the upper 

quartile of clonal neoantigen burden (A), on the upper quartile of subclonal neoantigen burden 

(C), and on the upper quartile of total neoantigen burden (E). For all survival curves, the 

number of patients in each group for every time point is indicated below the time point and 

significance is determined using a log-rank test. (B, D) The hazard ratio is shown for each 

threshold value of clonal neoantigen (B) and subclonal neoantigen (D) load, indicating that a 

high clonal neoantigen burden remains significantly prognostic across a wide range of 

thresholds. Significant associations are indicated in red, whereas non-significant associations 

are plotted in black. (F) Both clonal neoantigen load and immune infiltration classification are 

incorporated in a multivariate analysis, becoming more significant when the variables are 

combined as compared to either metric individually. Other tumor and clinical characteristics 

are also controlled for in the multivariate analysis. Hazard ratios of each variable with a 95% 

CI are shown on the horizontal axis. Significance is calculated using a Cox proportional 

hazards model. All statistical tests were two-sided. 
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TRACERx exome cohort (n=100 patients; 327 regions)
(2017, Jamal-Hanjani)
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Figure S5
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Figure S6
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