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Abstract 

 

Electrophysiological recordings in rodents and humans show that the contents of 

spatial and episodic memories are encoded in patterns of activity across neural populations. 

Here, I applied a mixture of univariate and multivariate techniques to functional magnetic 

resonance imaging (fMRI) data to investigate memory processes as well as look at how activity 

across voxels relates to the way memories are represented in the brain. 

In the first part of the thesis, I applied the Representational Similarity Analysis (RSA) 

to investigate the brain representations underlying spatial memories. I examined fMRI data 

from participants during actual or imagined navigation in virtual environments. Evidence for 

grid cells, one of the principal types of spatial cells, has been reported in single-cell recordings 

and in univariate approaches to fMRI data. I found evidence for viewing direction within 

occipital areas in both modalities, suggesting involvement of the same system in both tasks, 

but not for the six-fold symmetry characteristic of the grid cell signal. I discuss the potential 

reasons for this null result. 

In the second part I looked at episodic memories, in particular whether similar 

information undergoes ‘pattern separation’ during encoding to minimise future interference. 

I designed tasks using face morphing stimuli and multi-element events with overlapping 

elements to look for behavioural evidence for pattern separation and interference. The 

overlapping events showed increased independence in performance across multiple 

retrievals, suggesting the formation of more independent representations compared to 

unrelated events. I then looked for neural signatures of this effect using fMRI RSA. I found 

evidence for a decreased similarity of patterns of overlapping events at retrieval but not at 

encoding, possibly due to larger influence of perceptual similarity at encoding. Increased 

pattern separation was not related to decreased interference (improved performance). Lastly, 

I found evidence of non-target reinstatement, consistently with holistic representation of 

memory episodes. 

Overall, this thesis presents new findings as well as replications of previously observed 

effects using a range of novel behavioural and analysis techniques to investigate how spatial 

and episodic memories are represented in the human brain. 
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Impact statement 

 

Adaptive behaviour in a complex world requires that we are capable of remembering 

essential details from our lives: what has happened, where and when. Memory for 

experienced events is not only crucial to our ability to act appropriately and plan the future, 

but is also fundamental to our sense of identity. Just how important memory is can be seen 

when it goes awry in old age or disease. Understanding of the processes underlying our ability 

to encode, store and retrieve information is therefore of great importance at a time when 

increasing lifespan means that more and more people will develop dementia or other memory 

impairments at some point in their life.  

This thesis investigated some of the mechanisms proposed to support spatial and 

episodic (autobiographical) memory. I used a novel technique for analysis of brain imaging 

data, the Representational Similarity Analysis, to look at how memories are encoded in the 

patterns of brain activity. The findings presented here add to the growing literature on how 

the distribution of signal (and not only its magnitude, as used in standard approaches to 

imaging data analysis) can help to understand the characteristics of information processing in 

different brain areas. I looked at how the brain represents the features of the spatial 

environment, and how it represents memories for experienced events. I show that by looking 

at activity patterns we can answer more detailed hypotheses about the internal 'syntax' of the 

brain than would be available through traditional approaches. I also extensively discuss the 

constraints of this method and the ways to capitalise on its strengths while avoiding its 

drawbacks. The findings and issues discussed in this thesis can inform future studies looking 

to use this method of analysis in cognitive neuroscience as well as other fields.  

Finally, as a part of this thesis I adapted a previously used memory task, which allowed 

for looking at a different memory mechanism in addition to the one measured in the original 

paradigm (pattern separation of memory representations in addition to pattern completion; 

both these processes are essential for memory encoding and retrieval). The need for a design 

of a novel task was brought about by the limitations of the currently used methods which are 

suboptimal for looking at this memory process. This task presents an alternative (and arguably 

more suitable) measure which could replace the existing paradigm in the continuously 

growing field of episodic memory research and potentially within clinical setting.  
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Chapter 1    

Episodic and spatial memory, and the hippocampus 

 

 

Memories form an essential part of an individual’s life. Knowing facts about the world, 

acquiring skills and remembering things that have happened to us are some of the most 

important aspects of our existence. In particular, the memory for events from our own life 

constitutes a basis for the formation of our self and understanding of our conscious 

experience, allowing us to adapt and function within the world. Just how important this ability 

is can be seen when it suddenly fails. For example, patient N.N., after an accident resulting in 

closed head injury, was reported to exhibit preserved semantic (memory for facts about the 

world) and working memory while being unable to recall any events from his life (apart from 

very few remote memories) or envisage future events. When asked about his past or future, 

he described a "blankness" which felt "like being asleep" (Tulving, 1985). As a result, he lived 

in "permanent present", unable to relate past experiences to the present or use them to plan 

the future. 

The ability to store and recall the details of our past experiences is therefore extremely 

important. In everyday life, we often rely on our memory being correct and informative. When 

remembering our way to work, where we parked our car or what we spoke about at a meeting, 

we need to be able to retrieve and reconstruct in detail what exactly happened, when and 

where. This type of memory is referred to as episodic memory as it is related to remembering 

of specific events or episodes from one's own life. Episodic memory is characterized by our 

ability to re-experience past events in great detail, allowing us to retrieve the features of an 

event, such as the people and objects we interacted with, in its rich spatiotemporal context 
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(Tulving, 1972). This vivid recollective process in which all event elements are retrieved is a 

hallmark quality of episodic memory. Research over numerous decades has reliably pointed 

to the hippocampus and surrounding medial temporal lobe structures (MTL) as essential 

structures in supporting episodic memory.  Early investigations of patient H.M. were 

influential in showing that bilateral resection of the hippocampus, due to intractable epilepsy, 

resulted in severe amnesia (Scoville & Milner, 1957). Patients with damage to the 

hippocampus are unable to form new episodic memories despite being able to hold digits in 

immediate memory, acquire new vocabulary and learn new skills (Cohen & Eichenbaum, 1993; 

Hassabis, Kumaran, Vann, & Maguire, 2007; Milner, Corkin, & Teuber, 1968; Squire, 1986; 

Vargha-Khadem et al., 1997). This led to the view that the hippocampus was essential in 

supporting episodic memory: memory for events from one's life. 

Across a broad range of studies and techniques, the hippocampus has consistently been 

identified in imaging studies that assess encoding of information that is later remembered 

(Horner, Bisby, Bush, Lin, & Burgess, 2015; Schacter & Wagner, 1999; Wheeler & Buckner, 

2004; Woodruff, Johnson, Uncapher, & Rugg, 2005), when making decisions based on past 

experiences (Barron, Dolan, & Behrens, 2013; Bornstein & Norman, 2017; Gluth, Sommer, 

Rieskamp, & Büchel, 2015; Wimmer & Shohamy, 2012), remembering the temporal order of 

experienced events (Deuker, Bellmund, Schröder, & Doeller, 2016; Heusser, Poeppel, Ezzyat, 

& Davachi, 2016; Kyle, Smuda, Hassan, & Ekstrom, 2015), imagining hypothetical events 

(Benoit & Schacter, 2015; Schacter et al., 2012), mental simulation of the future (Hassabis & 

Maguire, 2007; Schacter & Addis, 2007; Thakral, Benoit, & Schacter, 2017), and a multitude of 

other tasks involved in retrieval of episodic memories (Hassabis & Maguire, 2007; Tulving, 

2002).  The role of the hippocampus therefore encompasses a wide range of cognitive 

functions which extend beyond encoding and retrieval of experienced events. 
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In addition to its function in episodic memory, studies have reliably shown that the 

hippocampus plays a fundamental role in spatial memory (e.g., Morris, Garrud, Rawlins, & 

O’Keefe, 1982; O’Keefe, Nadel, Keightley, & Kill, 1975). Stemming from early rodent work 

showing that single cells in the hippocampus increase their firing rate to a specific location in 

the environment (O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978), a vast amount of work 

has shown how cells in the hippocampus and surrounding areas can support spatial memory. 

Others have gone a step further in proposing that the neural machinery that is involved in 

providing a spatial representation of an experience can also support the provision of a 

spatiotemporal context that is a crucial requirement of episodic memory (Byrne, Becker, & 

Burgess, 2007; Schiller et al., 2015; Tulving, 1985a). The spatial memory system can encode 

and integrate discrete experiences within a context, which is essential to both representations 

of space required for navigation as well as episodic memory. For instance, a Byrne, Becker and 

Burgess (BBB) model, which will be described in greater detail below, proposes that the same 

mechanisms that guide navigation also support construction of spatially coherent mental 

images of events, as is necessary for episodic memory recall and imagination (Byrne et al., 

2007).  

This account of spatial context as a framework for formation of memories is consistent with 

the idea of 'cognitive map' envisioned by Tolman in 1948, before the modern era of study of 

the neural mechanisms underlying spatial navigation even began. The map was proposed to 

be an internal representation of the environment, which can be used to flexibly navigate 

around it without the constraints of the limited number of learnt stimulus-response 

sequences. The concept of a cognitive map as an internal representation of space has evolved 

but the general idea that the hippocampus supports the formation of associations among 

elements and binding them to a common context has persisted in the models of both spatial 

and episodic memory (Ekstrom & Ranganath, 2017; Epstein, Patai, Julian, & Spiers, 2017; 

McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Schiller et al., 2015).  
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In the spirit of the role of the hippocampus in supporting episodic and spatial memory, the 

main aims of this thesis are to investigate some of the underlying mechanisms that are 

proposed to support memory and particularly how they can flexibly support encoding, recall 

and imagination. In brief, I will use a mixture of behavioural and neuroimaging techniques to 

look at some of the properties of the human memory system, in particular whether we can 

examine the patterns of activity in the human brain to provide evidence for the predictions 

about how the hippocampus underpins episodic memory. Given the evidence of spatial coding 

in humans, I will look at whether the same mechanisms can support higher cognitive functions 

such as imagination (e.g. Byrne, Becker, & Burgess, 2007; Kesner & Rolls, 2015). In particular, 

I will look at whether we can detect pattern of activity consistent with the presence of grid 

cells in the human entorhinal cortex (EC) in both navigation in virtual reality (VR) and during 

imagination of the same routes. I will then investigate the mechanisms involved in storage and 

retrieval of memories, focusing on how the memory system encodes similar memories as 

distinct representations in order to prevent their interference, a process called pattern 

separation (O’Reilly & McClelland, 1994). I will present two behavioural tasks designed to 

measure the extent to which similar memories are represented as more distinct. Lastly, I will 

investigate the mechanism of pattern separation in episodic memory using functional 

magnetic resonance imaging (fMRI) to look for neural correlates of the pattern separation 

observed in behaviour.  

 

1.1 The role of the hippocampus in episodic memory  

Episodic memory is characterized by its associative nature in which different elements from 

an event, such as the people or objects we interact with or the spatial scene in which it took 

place, are bound together as a single representation. Whilst regions surrounding the 

hippocampus such as the perirhinal and parahippocampal areas are thought to store domain 
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specific representations of items and scenes respectively (Aggleton & Brown, 1999; Barense, 

Henson, Lee, & Graham, 2010; Staresina & Davachi, 2009), the hippocampus is thought to be 

crucial in binding these elements into a single coherent representation (Cohen & Eichenbaum, 

1993; Davachi, 2006; Eichenbaum, Yonelinas, & Ranganath, 2007; O’Keefe & Nadel, 1978). 

Evidence for this role has been shown in numerous patient studies, demonstrating that 

hippocampal damage results in impairments in forming associations (Borders, Aly, Parks, & 

Yonelinas, 2017; Pajkert et al., 2017). More evidence from neurosurgical patients shows that 

individual neurons represent arbitrary associations between a person and spatial scene after 

learning (Ison, Quian Quiroga, & Fried, 2015) and that hippocampal activity is observed 

specifically during contextually-mediated retrieval but not intrusions or deliberations (Long et 

al., 2017). Additionally, neuroimaging work highlights the hippocampus in storing associations 

between pairs of items (Kirwan & Stark, 2004) and remembering the context (Ranganath et 

al., 2004), which suggests the specific involvement in tasks which rely on storing relations 

between individual elements.  

In a similar view of dissociating associative and item-based memory processes, the 

hippocampus has been shown to support recollection as opposed to familiarity (Uncapher & 

Rugg, 2005). The recollective experience of remembering is characterised by the retrieval of 

contextual details (e.g. where and when a given episode was encoded), whereas familiarity is 

a general sense of knowing that something has been encountered but without any associated 

detail. Neuropsychological findings (Aggleton et al., 2005; Jeneson, Kirwan, Hopkins, Wixted, 

& Squire, 2010) and neuroimaging studies support this distinction (Davachi, Mitchell, & 

Wagner, 2003; Henson, Hornberger, & Rugg, 2005; Yonelinas, Otten, Shaw, & Rugg, 2005).  

There is therefore plenty of evidence suggesting the role of the hippocampus in binding 

elements together to a common context, which can be defined in terms of space but also 

temporal features (Ezzyat & Davachi, 2014; Howard, 2017; Kragel, Morton, & Polyn, 2015) as 
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well as other behaviourally-relevant dimension such as social hierarchy or stimulus 

characteristics (Aly & Turk-Browne, 2015; Tavares et al., 2015).  

This ability to bind information together and retrieve these important associations has been 

proposed to also underlie our ability to think about the future (Schacter, Benoit, & Szpunar, 

2017) and to construct hypothetical scenarios (Hassabis & Maguire, 2007; Schacter & Addis, 

2007, 2009). It has been proposed that the same mechanisms involved in memory recall may 

be engaged in the simulation of episodic narratives when engaged in imagination, by recalling 

elements and flexibly manipulating them to form coherent but novel representations which 

share many commonalities with actual memories for experienced events (Schacter & Addis, 

2007). The role of the hippocampus therefore extends beyond simple associative learning and 

rather it can support more complex, flexible constructive processes (see section 1.3.6 for 

further detail).  

In addition to forming associations that bind elements together into coherent narratives, there 

is a need for episodic memories to be stored as distinct representations. In particular, similar 

memories can interfere with each other, causing forgetting, and so need to be distinguished. 

Meeting these two opposing requirements - to differentiate between memories of different 

events while preserving the associations that form the representations of each event – is one 

of the main challenges of the memory system. These two complementary functions, called 

patter separation and pattern completion, are also thought to rely on the hippocampus and 

will be outlined in in the next section. 

 

1.2 Mechanisms supporting episodic memory encoding and retrieval 

What are the specific mechanisms in which the hippocampus functions to support episodic 

memory formation and retrieval? Computational models have long proposed that the 

anatomical characteristics of the hippocampal circuit make it particularly suitable for rapid 
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associative learning whilst reducing interference from similar experiences through the process 

of pattern separation (Kesner & Rolls, 2015; Marr, 1971; McClelland, McNaughton, & O’Reilly, 

1995; Yassa & Stark, 2011). This process is thought to occur in the hippocampus and relies on 

its ability to decorrelate input signals, creating orthogonalized memory representations. In 

addition to storing these orthogonalized input patterns, the hippocampus is thought to 

support memory retrieval via pattern completion by which a subset of cues from a previous 

experience can re-activate the stored pattern representing that experience (Hopfield, 1982; 

Marr, 1971; McClelland et al., 1995; Rolls, 2015). These processes therefore give rise to two 

crucial characteristics of memory in that episodes are stored as independent non-overlapping 

representations and that all elements of an event memory are retrieved in a holistic manner. 

These mechanisms and their complementary roles in long-term memory are now described in 

detail below. 

1.2.1 Pattern Separation 

As I have described, a major feature of episodic memory is the ability for similar experiences 

to be stored as separate independent memories thus reducing interference when retrieved.  

The encoding of new memories, and in particular similar memories, is thought to involve the 

process of pattern separation. This process is performed by the dentate gyrus (DG) which 

relays input from the EC to the CA3 subfield of the hippocampus via mossy fibers (Rolls, 2015) 

(see Figure 1.1). Initially overlapping representations from the EC are decorrelated or 

orthogonalized, reducing their overlap and interference. The mossy fiber connections are 

sparse but very powerful and referred to as 'detonator' synapses, capable of producing 

postsynaptic firings with a single presynaptic spike (Rebola, Carta, & Mulle, 2017). Importantly, 

they are proposed to be necessary for encoding of new memories but not for their subsequent 

retrieval. In support of this encoding and retrieval dissociation, Lassalle, Bataille and Halley 

(2000) found that damage to the mossy fibers in rats selectively impaired storage of spatial 

memories.  
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This separation of patterns can be achieved if the number of neurons is large and the pattern 

of firing is drawn at random (Hopfield, 1982). In the hippocampus, the sparseness of neural 

activity increases as the signal travels from the EC to the DG and then to CA3, resulting in very 

low contact probability. In other words, the dilution of connectivity at each stage of processing 

decreases the probability that a different input pattern will activate the same population of 

CA3 neurons and lead to incorrect recall (Hunsaker & Kesner, 2013). 
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Figure 1.1. Schematic representation of the hippocampal circuitry. (a) Diagram of the 

hippocampal formation in a rat. (b) Diagram of the hippocampal neural network.  

The information from the neocortex reaches the hippocampus mainly through the superficial 

layers of the EC, as well as the parahippocampal gyrus and the perirhinal cortex. From the EC 

it reaches the CA3 directly through the perforant path and indirectly through the DG via mossy 

fibres. The DG is proposed to decorrelate similar inputs from the EC (O’Reilly & McClelland, 

1994). The pyramidal cells of the CA3 project to other CA3 neurons (recurrent collaterals - this 

autoassociative network is proposed to underlie pattern completion; Marr, 1971) and to CA1 

through Schaffer collaterals. The output back to the neocortex originates in the CA1 and is 

relayed mainly through the deep layers of the EC and the subiculum. Reprinted from Deng, 

Aimone, and Gage (2010). 
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Consistent with its role in pattern separation, DG-lesioned rats show impaired performance 

on a task where the location of a target object and a lure object is similar (Gilbert, Kesner, & 

Lee, 2001). Additionally, lesions to dorsal DG impair spatial discrimination of adjacent but not 

distal locations (McDonald & White, 1995). This is in line with the role of DG in separation of 

spatial information in order to reduce the interference between proximal spatial locations.  

A distinction is often drawn between a neural pattern separation, which can only be inferred 

when using non-invasive methods, and behavioural pattern separation which is believed to 

reflect this DG function (e.g. Stark, Yassa, Lacy, & Stark, 2013). In spatial memory, evidence 

from fMRI studies suggests that different environments are represented as dissimilar patterns 

in the hippocampus, and correct performance is achieved through the reinstatement of the 

appropriate pattern (Kyle, Stokes, Lieberman, Hassan, & Ekstrom, 2015; Stokes, Kyle, & 

Ekstrom, 2013). Consistently, learning of overlapping routes leads to a reduction in similarity 

in their hippocampal representations (Chanales, Oza, Favila, & Kuhl, 2017). 

In episodic memory, pattern separation in humans has mainly been investigated using 

paradigms in which similar lures need to be distinguished from previously seen items. In the 

most common version of this task, often referred to as Mnemonic Similarity Task (MST), 

participants are shown images of everyday objects and are asked to classify them as old 

(previously seen) or new. Some of the items (the lures) resemble previously seen items in 

appearance. The correct identification of the lures as novel items is assumed to reflect pattern 

separation. 

Although in humans pattern separation at the level of neurons has not yet been observed, 

impairment in lure-discrimination has been observed in a rare case of selective DG lesion 

(Baker et al., 2016). Patient B.L. was impaired at correctly distinguishing similar items in a 

recognition test while showing normal recognition of non-similar items. This selective 
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impairment suggests inability to form non-overlapping representations of similar items, which 

is consistent with the role of DG in pattern separation.  

Imaging studies using the same task also support the role of the hippocampus, and particularly 

the CA3/DG subfields (it has not yet been possible to separate them using non-invasive 

imaging), in pattern separation in that the hippocampus shows increased activity to novel 

lures (Bakker, Kirwan, Miller, & Stark, 2008; De Shetler & Rissman, 2016; Duncan, Sadanand, 

& Davachi, 2012; Lacy, Yassa, Stark, Muftuler, & Stark, 2011; Yassa et al., 2010).  

However, the novelty signal detected in the imaging studies may reflect a match-mismatch (or 

recall-to-reject) signal rather than pattern separation (see Chapter 4.1 for a more in-depth 

discussion of this and other issues). One study provided more direct evidence by showing that 

the lure-related signal in the DG can be detected for even highly familiar scene stimuli, thus 

minimizing the need for recall-to-reject (Berron et al., 2016). However, so far most of the tasks 

used to study pattern separation cannot be considered truly episodic in that they do not rely 

on the main property of this type of memory to bind information together into coherent 

episodes. Given the described role of the hippocampus in recollection but not recognition 

(Uncapher & Rugg, 2005; Yonelinas et al., 2005), continuous recognition tasks might not 

capture the contextual detail which should accompany recollection.  

Being able to measure pattern separation behaviourally in a reliable way would allow for 

assessment of the functioning of the DG/CA3 which contributes to memory impairment in 

aging (Stark et al., 2013; Stark, Yassa, & Stark, 2010; Yassa et al., 2011), amnesic Mild Cognitive 

Impairment (Yassa et al., 2010) and schizophrenia (Das, Ivleva, Wagner, Stark, & Tamminga, 

2014). There is therefore a need for a more suitable method which could address these issues. 

I will present two alternative tasks in Chapters 4 and 5.  
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1.2.2 Pattern Completion 

One of the most crucial features of the hippocampal circuit is the extensive projections 

between cells within the CA3 subfield (Rebola et al., 2017). Although CA3 receives input from 

both the EC and the DG, the highest number of connections onto the CA3 neurons are from 

the CA3 axons themselves (Rolls, 2015). The CA3-CA3 projections, known as recurrent 

collaterals or associative/commissural (A/C) loop, are proposed to act as an attractor network 

in which associative memories are stored and recalled (McNaughton & Morris, 1987) (Figure 

1.1).  

An attractor is a stable state within a system which 'attracts' the incoming signal to move 

towards that state (Knierim & Zhang, 2012). Because of self-connections that are modified 

through learning, firing of only a subset of original population can re-activate the entire set of 

cells associated at encoding (Kesner & Rolls, 2015). This process, called pattern completion, 

reinstates all associated representations when presented with a partial cue, e.g. with a single 

element of the original memory (Marr, 1971). This mechanism underlies the ability to store 

complex associations, which may play a role in connecting events or items to related 

information in their spatiotemporal context.  

The recurrent connections in the CA3 ensure that the recall is symmetric, i.e. any part of the 

memory can be reactivated by another part (e.g. Day, Langston, & Morris, 2003). This is in 

contrast to pattern association where the recall is unidirectional; for example, when visual 

percept is associated with taste, at a later point the visual cue will bring up the taste but not 

the other way around (Kesner & Rolls, 2015). Pattern completion allows the entire multi-

element representation to be recalled from any part of it.  

The autoassociative function could have been present immediately in the EC; the fact that it 

is not may be underlined by the need of pattern-separating circuitry (O’Reilly & McClelland, 

1994). However, for the memory reinstatement to take place, the new representation in the 
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CA3 has to be translated back into the original EC pattern. It has been suggested that this is 

performed by invertible associations in the CA1 subfield, which allow to both reproduce EC 

representations to associate with corresponding CA3 representations, and to reinstate them 

during recall (O’Reilly & McClelland, 1994). Consistently, studies have found that activity 

patterns in the CA3/DG subfieldss differentiate between similar objects while the CA1 show 

increased pattern similarity for such objects (Dimsdale-Zucker, Ritchey, Ekstrom, Yonelinas, & 

Ranganath, 2018; Lacy et al., 2011; Stokes et al., 2013). 

One of the main indicators of pattern completion in spatial memory is remapping. Remapping 

refers to a switching to a different neural representation by activating a different population 

of cells or changing their firing rates (Colgin, Moser, & Moser, 2008), which allows for 

simultaneously storing in memory multiple representations which can be recalled when 

needed (also see section 1.3.2.1). When encountering a previously learnt environment, the 

currently held representation of space remaps to the previously stored pattern of activity in 

the CA3 (Wills, Lever, Cacucci, Burgess, & Keefe, 2005). The attractor properties can explain 

the all-or-nothing response of the hippocampus when exposed to incrementally changing 

environments; sufficiently dissimilar input leads to remapping, which results in output 

consistent with one environment or the other, but not a combination of the two (Wills et al., 

2005). All cells in the CA3 remap at the same time (Fyhn, Hafting, Treves, Moser, & Moser, 

2007; Zugaro, Arleo, Berthoz, & Wiener, 2003), again indicating its role in pattern completion 

via recurrent connections. Once in the attractor state associated with the recalled 

environment, the recurrent connections can reinstate the entire internal representation, 

including the spatial relationships between environmental cues such as boundaries or 

landmarks as well as any information about the objects encountered in them.  

Remapping has been observed in humans in an fMRI study in which participants learnt maps 

of two distinct environments (Steemers et al., 2016). At retrieval, they were additionally 
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exposed to four intermediate 'morphed' environments. In response to linear alteration of the 

environment, the activity pattern in the hippocampus showed an abrupt change in 

representation which was related to the mnemonic decision about the current environment, 

supporting the presence of attractor dynamics in the human hippocampus and their 

involvement in rapid remapping.  

In a similar way, this network can support storage and retrieval of episodic memories. A 

continuous attractor, as described above, can store both continuous and discrete 

representations, making it suitable for representing associations between continuous 

variables such as space or time with discrete variables such as object identity (Rolls, Stringer, 

& Trappenberg, 2002). The associative loop of the CA3 is therefore particularly suited for 

binding multimodal elements into coherent episodes and reinstatement of all elements of an 

event from any of its parts. Evidence for event reinstatement in the hippocampus has been 

shown in studies using fMRI (Bosch, Jehee, Fernández, & Doeller, 2014; Horner et al., 2015; 

Mack & Preston, 2016). There is also evidence that in the human hippocampus, 

representations of different narratives become progressively more distinct through learning, 

which is akin to place cell remapping in different environments (Milivojevic et al., 2016).  

1.2.3 Complementary roles of pattern separation and completion  

The properties of the autoassociative network in the CA3 require that for novel pattern of 

activity to emerge, the input to the network must be at least as strong as the sum of all the 

recurrent inputs (Treves, Tashiro, Witter, & Moser, 2008). This is possible through the 

powerful 'detonator' connections from the DG, as described above (Rebola et al., 2017). 

During retrieval, on the other hand, the recurrent connections should dominate as this allows 

for the reinstatement of all associated elements. The two opposing needs – to overcome the 

recurrent inputs at encoding and to maintain them at retrieval – necessitates that the two 

processes, encoding and retrieval, are separated in time and potentially also anatomically. It 
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has been proposed that the indirect path through the DG may achieve just that (Treves et al., 

2008).  

When the differences in the input are very similar, their output representations are also very 

similar as a result of the strong 'pull' of the attractor state in the CA3. As the inputs become 

less similar, at some point the two representations fall into two separate and mutually 

inhibitory attractor basins. The DG is sensitive to even small differences in input, producing 

difference in output that is bigger than the difference in input, whereas CA3 shows correlated 

activity in similar environments (consistently with pattern completion) (Neunuebel & Knierim, 

2014). Sufficiently distinct input from the EC, on the other hand, results in orthogonalized 

(independent) representations in the CA3, suggesting that for large enough input there may 

not be a need for active separations of representations (Leutgeb, Leutgeb, Moser, & Moser, 

2007; Vazdarjanova & Guzowski, 2004). 

Consistently with this view, the already mentioned patient B.L. with selective damage to the 

DG showed impaired behavioural discrimination, suggesting the role of the DG in pattern 

separation of similar inputs (Baker et al., 2016). Additionally, B.L. had a strong bias toward 

pattern completion on a Memory Image Completion task where an image needs to be 

recognised as old or new based on partial (degraded) input. When a non-degraded novel 

image was presented, B.L. performed like controls, while stimuli at even lowest levels of 

degradation were categorised as 'old' at much higher rates than in control participants. This 

tendency towards pattern completion is consistent with the preserved EC-CA3 path and its 

role in the reinstatement of complete memory from partial input.  

Moreover, the hippocampus has been found to bind relational information within a context, 

consistently with pattern completion, whereas it decorrelated representations of contexts 

that are associated with a different object-reward mapping, suggesting pattern separation of 

representations that are meaningfully distinct (McKenzie et al., 2015). 
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The EC-DG-CA3 network therefore supports memory by encoding uncorrelated (pattern-

separated) inputs from the indirect path through the DG, and pattern completing direct inputs 

from the EC at recall. The novelty detection in the DG prevents the system from assuming that 

the new memories are simply 'bad' copies of the already stored ones and so prevents 

interference, while the recurrent network of the CA3 allows for even a partial cue to reinstate 

the entire pattern of associated information. 

 

1.3 A spatial framework for episodic memory  

Although spatial and episodic memories seem to substantially differ in kind, both rely on the 

formation of an abstract representation of the external world and so may be supported by the 

same mechanisms (Bird & Burgess, 2008; Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila, 

1999; Eichenbaum & Lipton, 2008). It has been suggested that a map-like structure may act 

as a universal code for creating memories, and the term 'event map' has been used to describe 

the representation of the interrelationships between the elements of an event (Deuker et al., 

2016). A cognitive map of space may simply be a special example of a relational map that 

characterises episodic memories.  

The map-like property is less obvious in episodic than in spatial memory. However, placing the 

experience in the spatial (or spatiotemporal) context supports the holistic way in which 

memory episodes are stored and their individual elements bound together. Additionally, 

access to events experienced in the past does require a type of mental time travel and 

reinstatement of time, place and other information associated with those events (Tulving, 

2002). Recall of specific episodes and their relationships to space and time may require a 

similar kind of mental navigation as, for example, planning a route to a reward.  

Both recall of episodic and spatial memories involves creating a mental image of the 

environment or events encountered in the past, and the ability to replay through them in a 
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structured way. This reconstructive process may also underlie our ability to imagine novel 

scenes.  According to the BBB model of spatial memory, the mechanisms used in formation of 

spatial maps of the environment may support the episodic recall and imagination (Byrne et 

al., 2007). During navigation, this system creates a representation of the environment and its 

features, which later on can be recalled and flexibly manipulated to, for example, plan a novel 

route or imagine a new viewpoint. The same may apply to episodic memory; events 

reconstructed from memory or created anew can be dynamically updated by simulating 

changes in space and time via the same mechanisms that support encoding and retrieval. This 

would allow for the dynamic, flexible nature of episodic imagination and thinking about the 

future. The spatial memory system can additionally provide the spatial context that binds the 

event elements together.  

1.3.1 How to create an internal representation of space? 

To understand how the spatial memory system can support both memory and imagination, it 

is first necessary to describe the features that enable this flexibility in storing and constructing 

the internal representations of space and events. The next section will outline how the specific 

characteristics of the hippocampal-entorhinal circuit support spatial navigation and formation 

of cognitive maps or representations of spatial environments (Tolman, 1948). I will also 

provide a brief overview of the different spatial cells as their specific properties play an 

important role in the mechanisms underlying both spatial and episodic memory as well as 

imagination (Bird & Burgess, 2008; Byrne et al., 2007; Eichenbaum & Lipton, 2008).  

The precise mechanisms of the spatial system are still a subject of debate; however, over the 

last few decades a number of different functionally specialised cells have been discovered 

whose attributes help to understand how the brain constructs the maps of the environment. 

These are the place cells which fire at particular locations in space, grid cells which fire in a 

hexagonal lattice spanning the entire floor of the environment, head direction cells which 
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code for the direction the animal is facing, as well as boundary vector cells (BVC) which fire in 

proximity to navigational boundaries (Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000; O’ 

Keefe & Burgess, 1996), which will be described in more detail below.  

In order to build an internal map of the environment, the egocentric information has to be 

translated into allocentric coordinates that can then be associated with, for example, a reward 

or an important object. One evidence for the use of such map is the ability to take shortcuts 

and plan detours (Tolman, 1948). This is achieved by combining information from several 

functionally specialized parts of the memory system. The internal coordinate system seems to 

be largely dependent on the environmental landmarks. Regions particularly involved in the 

processing of landmarks are the parahippocampal place area (PPA), the retrosplenial cortex 

(RSC) and the occipital place area (OPA) (Epstein & Kanwisher, 1998; Nasr et al., 2011). The 

RSC, in particular, seems to be used to orient oneself within the environment (Epstein, 2008; 

Epstein, Parker, & Feiler, 2007). Boundaries are a special type of landmarks that have a large 

influence on the orientation of the cognitive map (Bird, Capponi, King, Doeller, & Burgess, 

2010; Byrne et al., 2007). Once oriented, the animal can use the information about its heading 

direction and speed to infer where it is in the environment (Hasselmo, 2009). 

1.3.2 Place cells 

The precise location of the animal is provided by the place cells in the hippocampus 

(Neunuebel & Knierim, 2012). Place cells show an increased firing rate at a particular location 

in a given environment - the cell’s place field (O’Keefe & Dostrovsky, 1971), providing the most 

basic information of the current location in space. Different cells fire at different locations, so 

that the whole environment is covered by the place fields, and only a small subset of the cells 

fires strongly at any particular location.  
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This allows for building of an internal map of the environment, in a form of a Euclidean 

coordinate system, where different place cells can be associated with objects or other 

information present at each location.  

1.3.1 Remapping 

As already briefly introduced, the process of switching to a different representation of space 

is called ‘remapping’ (Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; Muller & Kubie, 1987). 

The firing pattern of place cells tends to stay stable in the same environment across exposures, 

and it changes completely in a different environment. Different populations of place cells may 

form representations of different environments (global remapping), or the same cells may be 

active but at different firing rates (rate remapping) (Colgin et al., 2008). Remapping therefore 

enables the animal to hold multiple maps of different environments in memory and to recall 

the correct spatial representation when needed.  

Performance on spatial tasks depends on the accurate reinstatement of the place fields 

present at learning (O’Keefe & Speakman, 1987). In humans, fMRI studies suggest that 

different neural patterns are associated with different environments, and reinstatement of a 

pattern associated with an incorrect environment leads to errors (Kyle, Stokes, et al., 2015; 

Stokes et al., 2013). 

1.3.3 Grid cells 

Another class of spatial cells that seem to play a crucial role in spatial behaviour are the grid 

cells. The grid cells are unique in that their receptive fields are located regularly on the vertices 

of a hexagonal lattice which spans the entire environment (Hafting, Fyhn, Molden, Moser, & 

Moser, 2005)(Figure 1.2). Originally observed in the medial entorhinal cortex (MEC), they have 

also been found in pre- and parasubiculum (Boccara et al., 2010).  
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Figure 1.2. Firing fields of three grid cells recorder in the EC of a rat moving in a circular 

enclosure. Left: trajectory of the rat with superimposed spike location. Middle: rate maps of 

the cells, where blue is minimum and red is maximum. Right: spatial autocorrelation for each 

rate map. Reprinted from Hafting et al. (2005).  

 

 

Although grid cells, like place or head-direction cells, are anchored to distal landmarks, the 

regularity of their firing in terms of spacing and field sizes is context-independent and 

consistently emerges in every new environment (Hafting et al., 2005).  

Grid cells have been reported in primates (Killian, Jutras, & Buffalo, 2012b), bats (Yartsev, 

Witter, & Ulanovsky, 2011) and rodents (Fyhn, Hafting, Witter, Moser, & Moser, 2008). 

Recordings from neurosurgical patients during navigation in virtual reality environment 

confirmed the presence of place cells in the hippocampus and the grid cell activity in the 

human EC (Ekstrom et al., 2003; Jacobs et al., 2013; Miller, Fried, Suthana, & Jacobs, 2015), 

suggesting that the spatial navigation may be largely preserved across species. Imaging 

evidence also suggests presence of grid-like signal in the human EC during navigation (Doeller, 

Barry, & Burgess, 2010) as well as during visual search, with the grid spanning the visual space 

(Julian, Keinath, Frazzetta, & Epstein, 2018; Nau, Navarro Schröder, Bellmund, & Doeller, 

2018). This suggests that the same mechanism may support updating of the allocentric 

representations of both the body and the gaze position based on self-motion and eye-motion 

signal.   
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The grid cells are arranged in subsets which share the same (or very similar) scale and 

orientation, while the cells within each subset vary in their phase or offset (Barry, Hayman, 

Burgess, & Jeffery, 2007; Stensola et al., 2012; Towse, Barry, Bush, & Burgess, 2014). Using 

the combination of information from multiple scales, it is possible to estimate the precise 

location of the animal in an abstract space of any spatial resolution. It is also this property that 

allows the detection of grid-like signal in humans with fMRI (Doeller, Barry, & Burgess, 2012; 

also see Chapter 3).  

1.3.4 Head-direction and boundary vector cells 

Additionally, the head-direction (HD) cells provide the allocentric representation of heading 

orientation (Taube, Muller, & Ranck, 1990). HD cells are found in the presubiculum (Taube et 

al., 1990), subiculum (Olson, Tongprasearth, & Nitz, 2016) and the EC (Sargolini et al., 2006) 

as well as outside of the hippocampal formation (e.g. thalamic nucleus and retrosplenial 

cortex; (Jacob et al., 2016)). Different cells are tuned to different allocentric directions. Finally, 

the boundary vector cells (BVCs) fire at a specific distance in relation to a barrier (e.g. a wall 

or an edge) in a consistent allocentric direction, regardless of the shape of the environment 

(Lever et al., 2002; O’Keefe & Burgess, 1996). BVCs were found in the subiculum (Barry et al., 

2006), MEC (Solstad et al., 2008) and presubiculum and parasubiculum (Boccara et al., 2010) 

– but not in the hippocampus. 

1.3.5 Internal representations and imagination 

The already briefly mentioned BBB model proposes that the same mechanism involved in 

spatial navigation, as described above, are used to retrieve maps of the environment from 

memory and to flexibly manipulate them (Byrne et al., 2007). During recall or imagination, the 

hippocampus reactivates the relevant representations from across the cortex, re-creating the 

learnt cognitive map using the information about boundaries from the parahippocampal 

cortex/dorsal stream (Epstein & Kanwisher, 1998) and information about objects and their 
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features from the perirhinal cortex/ventral stream (Buckley & Gaffan, 1997). The egocentric 

representation is created in the precuneous; it can be based on perception or reconstruction 

from memory (Byrne et al., 2007; Lambrey, Doeller, Berthoz, & Burgess, 2012). In order to 

imagine how a remembered scene looks from a certain viewpoint, the allocentric 

representation from the parahippocampal cortex is combined with information from the head 

direction cells and translated into an egocentric view in the parietal lobes and retrosplenial 

cortex (Lambrey et al., 2012).  To 'move' within the imagined scene in order to, for example, 

imagine it from a different perspective, actual movement is simulated in the prefrontal cortex 

and used to update the scene. Consistently, the patterns of activity in the human 

entorhinal/subicular region are the same when thinking about a goal direction and facing the 

same direction, which suggests a shared mechanism for simulation of and actual navigation 

(Chadwick, Jolly, Amos, Hassabis, & Spiers, 2015). Additionally, the same mechanisms for 

navigation and formation of spatial representation of the environment are found in humans 

when navigating in VR (Doeller et al., 2010; Wolbers, Wiener, Mallot, & Buchel, 2007) as well 

as in rats in VR (Harvey, Collman, Dombeck, & Tank, 2009), suggesting that no actual 

movement in space is needed in order to engage the same processes.  

The main message here is that the spatial representation can be created and manipulated by 

both real or imagined perception of scene and updated by a real or 'mock' idiothetic signal. 

The same system is therefore capable of supporting real-time spatial navigation, the recall of 

this information, and flexible manipulation of this information to plan a route or imagine a 

novel viewpoint. Additionally, this may support the ability to recall episodic memories and 

construct novel episodic scenes. 

1.3.6 Recall and imagination in episodic memory 

Neuropsychological evidence suggests that the ability to use our internal representations to 

reconstruct and manipulate a recalled scene may be involved in the simulation of non-
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experienced events. Patient N.N. described at the beginning of this chapter experienced the 

same difficulty when asked to either think about his past or about hypothetical future (Tulving, 

1985), which may suggest that his ability to construct the type of representation needed for 

both recall and simulation of events was impaired. Without being able to create a mental 

image, it is impossible to recall or simulate episodes. 

The relationship between encoding, recall and construction of novel representations in 

episodic memory may be akin to the spatial memory account as described in the BBB model 

of spatial memory (Byrne et al., 2007) in that the same mechanisms may be utilized during 

encoding and during reconstruction from memory or from imagination. The constructive 

episodic simulation hypothesis (Schacter & Addis, 2007, 2009) proposes that both episodic 

recall and future thinking rely on the same constructive process, where different elements are 

combined to form a coherent narrative. This theory treats memory as a simulation rather than 

direct replay and states that the ability to flexibly manipulate and recombine information to 

simulate possible futures is the crucial function of the memory system. Similarly, the concept 

of self-projection proposed by Buckner and Carroll (2007) refers to projections of oneself to 

another time, place or perspective, and this can refer to both past, future or hypothetical 

scenarios.  

Similar activity during remembering and imagining has been observed in the MTL and other 

areas including frontal lobes, cingulate cortex, retrosplenial cortex and parietal areas (Addis, 

Wong, & Schacter, 2007; Szpunar, Watson, & McDermott, 2007), which overlap with the 

default network (Raichle et al., 2001). It has been speculated that the activity in the default 

network (defined as increase in activity during passive rest as compared to task) may in fact 

reflect engagement in some form of mental simulation while the participants 'rest' (Schacter 

et al., 2012). Overall, there is high consensus that similar processes are engaged in many forms 
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of mental simulations of episodic events, whether they have been experienced or not (Addis 

et al., 2007; Bar, 2007; Hassabis & Maguire, 2007; Schacter, Addis, & Buckner, 2007). 

 

1.4 Organisation of the thesis 

A major theme within this thesis is to examine the patterns of activity supporting spatial and 

episodic memory using fMRI. I will investigate whether some of the mechanisms outlined 

above can be observed in the human brain by looking at how different aspects of memory are 

represented in the hippocampus and other memory structures using a Representational 

Similarity Analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008).  

In Chapter 2, I provide a technical introduction to the RSA and explain how looking at the 

patterns of activity can inform our understanding of the structure of memory.  

The four experimental chapters represent two sub-themes. In the first part (Chapter 3), I will 

focus on the spatial memory. Using a VR setup, I will look at whether we can use patterns of 

activity in the fMRI signal to detect representations of space during both navigation and 

imagination. In particular, I will investigate whether the same mechanisms are used in both. 

In the second part (Chapters 4-6), I will investigate mechanisms underlying episodic memory, 

specifically the process of pattern separation of similar memories (see Section 1.2.1). I will first 

present two tasks I designed to provide a behavioural measure of pattern separation. The first 

task (Chapter 4) failed to show any evidence for the investigated mechanism; I will discuss 

potential explanations of the lack of predicted results. The second behavioural study (Chapter 

5) provides evidence that similar memories are represented as more distinct, which is 

consistent with the pattern separation account. Finally, in Chapter 6 I will use this paradigm 

to look for evidence of pattern separation in the brain using fMRI. 
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2  Chapter 2       

 Methods: Representational Similarity Analysis 

 

 

Recent years have seen a move away from the univariate approaches to imaging data, which 

look at the differences in the magnitude of signal in response to experimental manipulation, 

to methods that look at changes in patterns across voxels in order to make inferences about 

the underlying computations. These multivariate methods not only tell us which brain areas 

are involved in the task, but also tell us something about how task information is reflected in 

spatial variations of activity. 

The patterns of activity across populations of neurons can be used to infer things about the 

type of cognitive representations they support. This functional interpretation of a neural 

activity pattern as a 'representation' implies that a given feature is not only encoded in the 

pattern but also, importantly, the way it is represented serves a functional purpose 

(Diedrichsen & Kriegeskorte, 2016). For example, we might expect that behaviourally 

important differences in two cognitive representations will be reflected in greater differences 

between their corresponding patterns of activity across neural populations – so that these 

differences stand out strongly from differences due to stochastic variation or ‘noise’.  In other 

words, differences in population patterns are interpretable in terms of their effects on 

cognitive processes and behaviour. Methods looking at multivoxel patterns of activity may be 

seen as intermediate step between single neurons recordings and standard univariate 

methods.  

These methods are therefore particularly suitable for looking at more fine-grained hypotheses 

about the way in which memory is represented in the brain, providing a common ground for 
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the observed behaviour, the measurements of brain activity, and the computational models 

of cognition. In the context of this thesis, the use of multivariate analyses will provide a novel 

way to extend and enrich the findings obtained using different methods as well as help to 

answer more nuanced questions about the characteristics of memory representations 

encoded in different brain areas.  

This thesis will extensively use one of the multivariate methods: the Representational 

Similarity Analysis (RSA; Kriegeskorte et al. 2008). In the next sub-sections, I will outline the 

main features of the RSA, followed by the details of the processing stages involved in this 

analysis.  

 

2.1 Representational geometry 

The RSA looks at the relationships (similarities) across different patterns, allowing for making 

conclusions about the structure of neural representation of a given feature. In other words, 

RSA can tell us not only which feature is represented in an area, but also which aspects of this 

feature the neuronal population is sensitive to.  

This RSA is an extension of another popular multivariate approach – pattern classifier analysis. 

Classifier analysis can investigate the discriminability of pre-defined features.  For example, 

fear conditioning (associating certain items with an electric shock) has been found to lead to 

a reorganization of similarity pattern in the frontal areas; the representation of original 

categories (faces/houses) shifted to a representation of affective (threat/ no threat) 

categories, while the visual areas remained sensitive to the original representational structure 

(Visser, Scholte, Beemsterboer, & Kindt, 2013; Visser, Scholte, & Kindt, 2011). Pattern 

classifiers have also been successfully used in memory research to show that category-specific 

activity patterns are separable and can be used to predict the free-recalled category by a few 

seconds (Polyn, Natu, Cohen, & Norman, 2005).  
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However, pattern classification only tells us whether there are reliable differences between 

representations but doesn’t provide further insight into the relative sizes of those differences, 

i.e. the geometrical structure of those differences. The RSA can be used to look at these 

precise representational geometries. For instance, in the visual domain it was found that 

although the activity patterns in V1 most accurately decode different colour categories, the 

perceptual colour space is best represented geometrically in V4 (Brouwer & Heeger, 2009). 

The RSA can therefore answer different and often more parametric research questions 

beyond showing that the patterns of activity produced by two experimental conditions can be 

distinguished from each other in a given region. 

 

2.2 Patterns of activity  

The vector of activity measurements across all channels (in the case of fMRI data, across 

voxels) is called the activity pattern. Each condition (e.g. each stimulus) has its associated 

activity pattern. These spatial patterns are the fMRI representations of the mental states 

associated with a given condition/stimulus in a given area.  

In univariate analyses, the average activity in a given region across participants is compared 

to zero or another average activity measure. The RSA, on the other hand, treats the activity 

patterns as a random variable with a distribution across voxels. Instead of a mean value, it 

uses a measure of the distribution of the patterns of activity, thus combining information 

across space and time. Therefore, unlike the traditional univariate approach, it can account 

for the inter-subject variability in the pattern of activity; the precise signal (in terms of its 

magnitude and spatial distribution across voxels) does not need to be preserved across 

different people, as long as the relationships (i.e. relative differences) between activity 

patterns associated with different features are maintained. 
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2.3 Representational Dissimilarity Matrices 

The distances between neural activity patterns can be expressed in terms of a correlation 

distance (one minus the correlation value), a Euclidean distance, or a Mahalanobis distance 

(spatially-prewhitened Euclidean distance). The Euclidean distance corresponds to distances 

in the physical world and uses Pythagoras’ theorem (i.e. distance is the square root of the 

sums of squared differences between the coordinates) extended to a P-dimensional space 

(where P is equal to the number of voxels). 

These results can be arranged in a matrix called the Representational Dissimilarity Matrix 

(RDM), which summarises the distances between the patterns for all conditions. The off-

diagonals of these matrices are the dissimilarities (or distances) between each condition (each 

activity pattern) and all other conditions. 

RSA is primarily used to compare these dissimilarity matrices (i.e. the ‘neural’ RDMs) to model 

RDMs. The model RDMs can be either theoretically derived matrices with hypothesized 

similarity structure (e.g. distances based on semantic similarity of stimuli), can be based on 

brain RDMs from another area/subject/species, on behavioural measures (e.g. accuracy, 

frequency), or on other computational models. This allows for great flexibility as the precise 

measurements used to construct the matrices do not need to be the same and instead any 

descriptions of similarities between patterns that can be translated into a dissimilarity matrix 

can be used. 

 

2.4  RSA analysis 

In this thesis, the data was analyzed using custom Matlab scripts, which were a part of or 

adapted from the freely available RSA toolbox (Nili et al., 2014). The first- and second-level 

estimates were obtained with SPM8 or SPM12 (www.fil.ion.ucl.ac.uk/spm). The following sub-

http://www.fil.ion.ucl.ac.uk/spm
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sections will outline the stages involved in the analysis. This section is aimed at giving a general 

overview of the processing steps, while the precise details of the analyses used in the studies 

presented in this thesis will be found in the relevant chapters.  

2.4.1 First-level GLM 

The first-level regressors are obtained using the ‘standard’ SPM processing steps and include 

the conditions of interest, head motion parameters, cardiac and respiratory regressor (if 

available), and any other parameter which may explain some of the variance in the data.  The 

regressors are modelled with a boxcar function and convolved with a hemodynamic response 

function in SPM. Importantly, the first-level RSA uses unsmoothed data as the main analysis is 

performed separately for each subject. Otherwise, the pre-processing stages remain the same 

as in univariate analyses.  

The conditions of interest are sets of trials whose activity patterns are compared to each other 

to estimate the brain RDMs, for example corresponding to different stimuli, features or 

different intensities of stimuli.  

2.4.2 Estimating activity patterns 

The regression coefficients, or beta-weights, from the first-level GLM are used as activity 

estimates for each condition. A vector with beta values over voxels is the activity pattern for 

a given condition (Figure 2.1).  

The activity pattern vectors can be based on predefined regions of interest (ROIs; with one 

RDM describing the relationship between activity patterns per ROI) or on searchlights of a 

specified size (with one RDM per searchlight). In searchlight analyses, the activity patterns are 

calculated for all search spheres for all conditions.  

The choice between ROI and searchlight-based analysis is not straightforward. On one side, 

the choice of ROIs is usually informed by previous research, making it more likely that a given 

representation can be detected. Additionally, unlike a searchlight analysis, it does not  require 
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a correction for multiple comparisons. Although only a small portion of the ROI may represent 

a given feature, if there is a lot of spatial variability between subjects, the ROI analysis may still 

be able to detect it on the group level. Similarly, a larger-than-searchlight ROI may be more 

effective when weak information is distributed across the whole ROI. On the other hand, 

however, any uninformative voxels lead to poorer discrimination (Diedrichsen, Ridgway, 

Friston, & Wiestler, 2011). If a given feature is represented in only a subset of voxels within an 

ROI, a smaller searchlight may be more able to detect it (unless spatial variability is high, as 

explained above). It is also not always possible to have a priori knowledge of the location of 

expected effects. Searchlight can also continuously map the presence of a given feature across 

the brain volume, providing additional and more fine-grained information to a single-value 

result from an ROI analysis (Kriegeskorte, Goebel, & Bandettini, 2006). In this thesis, I will use 

a mixture of searchlight analyses and ROI analyses wherever there is a strong hypothesis for a 

location of a specific representation. The searchlight sizes were in line with other studies 

looking at memory representations (Chadwick, Hassabis, Weiskopf, & Maguire, 2010; 

Dimsdale-Zucker & Ranganath, 2019; Libby, Hannula, & Ranganath, 2014; Stokes et al., 2013). 

However, as optimal size of a searchlight depends on the size and shape of the region that 

represents the feature, a number of different sphere sizes were tested; the reported results 

are for the searchlight size which provided most interpretable results. 

2.4.3 Calculating distances 

These activity patterns are then compared to the activity pattern of each of the other k 

conditions using a chosen distance measure (correlation, Euclidean or Mahalanobis), creating 

a k-by-k matrix of distances between all pairs of conditions (k = number of conditions). Two 

identical patterns would have a distance of zero (Figure 2.1). 

The steps below describe how to estimate distances among all pairs of conditions for each 

search sphere or ROI. 
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Figure 2.1. Computing the representational dissimilarity matrix. Brain activity related to each 

condition of the experiment (e.g. different stimuli) is recorded. For each region of interest or 

searchlight, we estimate a pattern of activity across voxels. Then, we calculate a dissimilarity 

measure (in this example, a correlation distance) between each pair of conditions. The 

dissimilarities are then arranged in a k-by-k representational dissimilarity matrix (RDM; k = 

number of conditions). These matrices can then be compared to models, between different 

brain regions or different individuals or species. Reprinted from Nili et al. (2014). 

 

2.4.4 Multivariate Noise Normalization 

The noise in fMRI data is never randomly distributed across voxels but rather tends to show 

some degree of spatial structure (Diedrichsen & Shadmehr, 2005). There are multiple reasons 

for this: spatially-smooth noise processes, anatomical proximity to the vascular system, 

grey/white matter composition, and as a result of motion correction. This is problematic as 

the distance measures weigh each voxel equally, independently of its variance. Ideally, the 

data should be spatially prewhitened by weighting each voxel based on the spatial structure 

of the noise, as estimated by the residuals from the first-level GLM. Unlike univariate noise 

normalization, which scales each voxel by its variance (the diagonals of the error covariance 

matrix), the multivariate method used in the RSA also controls for noise covariance (the off-

diagonals), thus accounting for the noise structure. In other words, noisy voxels or highly 
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correlated clusters of voxels are down-weighted. This is typically done on local regions of 

interest rather than the whole brain. 

In order to perform this step, the raw time-series data is used; i.e. the spatial structure of noise 

is calculated on the first-level estimates and then used to 'adjust' the weighting of each voxel 

in the raw data, before calculating new, prewhitened first-level estimates.  

2.4.5 Crossvalidation 

Crossvalidation is an optional step aimed at bringing the estimated distances closer to the true 

distances between representations. In crossvalidation, the data set is divided into a number 

of ‘partitions’ (usually each partition represents an imaging run, as estimations of noise across 

runs is assumed to be independent), and the activity patterns for all conditions are calculated 

separately for each partition. Although ‘crossvalidation’ in a pattern-recognition context 

involves leaving out a partition to check the unbiased performance of a classifier trained on 

the other partitions, in this context it is used to avoid the positive bias caused by noise in 

squared distance measures like Mahalanobis distance. Without controlling for this, the 

presence of noise would make the Mahalanobis distance between two identical patterns (i.e. 

true distance equal to zero) higher than zero (if the data points have some spread then mean 

squared distances been them will be positive; Walther et al., 2015). ‘Crossvalidation’ here 

implies multiplying the distance in one partition by the corresponding distance in another 

partition (rather than with itself). Thus, when the distances are calculated between all 

conditions for all possible pairs of partitions, and then averaged, they are closer to the true 

distances between pairs of patterns assuming noise across partitions is independent. 

Crossvalidated Mahalanobis distance (or crossnobis) has been shown to have higher reliability 

than other dissimilarity measures (Walther et al., 2015). As a result of crossvalidation, some 

distances, especially the small ones, can become negative. This is because the true distance 

can be both over- and underestimated.  
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However, crossvalidation requires that at least two partitions (independent estimates) exist 

for each condition. This is not always possible as some conditions may only appear in the study 

once. This is especially problematic in memory studies where sometimes a repeated 

presentation of the same stimulus may not be possible (when, for example, looking at single-

trial learning). It may also be inappropriate if there is any reason that the representation has 

changed from one imaging run to the next, for example as a result of learning. In the analyses 

in this thesis, the crossvalidation was therefore used only when possible and appropriate. The 

precise steps of the RSA pipeline used in any given analysis (pattern estimation, spatial noise 

normalization, crossvalidation, etc.) will be provided in their relevant methods sections.  

2.5 Comparison of brain RDM to model RDMs 

The estimates of distances between all pairs of activity patterns (i.e. the brain RDMs) are 

calculated for each search sphere or ROI, for each participant. In order to see whether two 

conditions have the same pattern of activity, it would be enough to compare their distance 

against zero. Alternatively, it is also possible to look at the overall representational structure 

across all conditions by comparing the entire brain RDM to pre-specified representational 

models, i.e. the model RDMs. Model RDMs may be based on computational models, 

behavioural data or brain RDMs from different studies, conditions, subjects or brain regions. 

Conditions are expected to be similar if they belong to the same category or share a feature. 

Comparison of RDMs to the models can be achieved by calculating correlations between 

them. The use of correlation coefficients accounts for subject-specific scaling of the 

dissimilarities that results from individual variability due to physiological responsiveness, head 

movements, etc. (Diedrichsen & Kriegeskorte, 2016). 

2.5.1 Group-level analysis 

The above steps result in a searchlight map of measures of relatedness between the neural 

and model RDMs for every subject, or a single correlation value for a given ROI for every 
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subject. These correlation values are then spatially smoothed (in. searchlight analysis) and 

used in a group-level analysis where a one-sample t-test is performed to compare the average 

correlations across subjects against zero. This comparison tests whether the model RDM 

provides a good fit to the representational similarity observed in the data (brain RDM). 
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3  Chapter 3        

 fMRI study of grid-like representation of the spatial 

environment 

 

 

3.1 Introduction 

An internal map of the environment allows for flexible navigation without the constraints of 

using a limited number of learnt sequences. The hippocampal-entorhinal circuit of spatial cells 

is thought to support this type of memory representation. By combining information about 

the environmental boundaries from boundary vector/border cells (Barry et al., 2006; Lever, 

Burton, Jeewajee, O’Keefe, & Burgess, 2009; Solstad et al., 2008), the current position from 

place cells (O’Keefe & Dostrovsky, 1971), the direction the animal is facing from the head 

direction cells (Taube et al., 1990), the changes in position from the speed cells (Moser et al., 

2014) as well as other complementary information from spatial and non-spatial cells, the EC 

plays a central role in estimating and continuously updating the representation of the current 

location (Hasselmo, 2009). In particular, grid cells are thought to play an important role in path 

integration: using self-motion information to update one’s location (Burgess, Barry, & O’Keefe, 

2007; Hasselmo, 2009; McNaughton et al., 2006). The same mechanisms may also be used for 

planning and imagination of routes (Byrne et al., 2007).  

As described in Chapter 1, grid cells have a unique firing pattern, exhibiting multiple receptive 

fields organised in a hexagonal pattern which consistently emerges in all new environments 

(Hafting et al., 2005) (Figure 1.2). Cells with grid-like properties have been observed in the EC 

in recordings from neurosurgical patients during VR navigation (Jacobs et al., 2013; Miller et 

al., 2015). The grid cell-like signal in the human EC was also detected using functional magnetic 
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resonance imaging (fMRI) (Doeller et al., 2010; Horner, Bisby, Zotow, Bush, & Burgess, 2016; 

Kunz et al., 2015). Despite the relatively poor spatial resolution of fMRI images, it is possible 

to provide evidence for the hexagonal firing structure based on two assumptions (Doeller et 

al., 2010): (i) the orientation of the grid is constant across all grid cells (Barry et al., 2007; 

Stensola et al., 2012; Towse et al., 2014), (ii) ‘conjunctive’ grid cells, whose firing is modulated 

by running direction and running speed (Sargolini et al., 2006), have ‘preferred’ firing 

directions aligned with one of the grid axes. Assumption (i) means that there will be different 

neural dynamics when running along grid axes versus between them (some cells firing a lot 

and others firing a little versus all cells firing at an intermediate rate). The non-linear coupling 

of neural activity to BOLD signal means that there may be differences in the signal generated 

by these different dynamics, even if the total firing rates of the grid cell population do not 

differ, and this difference will also depend on running speed. Assumption (ii), in addition to 

assumption (i), implies that there might be differences in the total firing rates of the 

conjunctive grid cell population according to running direction and running speed, and thus 

differences in the BOLD signal (independent of its precise coupling to neural firing rates). 

These fMRI studies (Doeller et al., 2010; Horner et al., 2016) used the differences in the BOLD 

signal between direction on- and off-axes of the hexagonal grid to look for evidence of 60 

rotational symmetry (grid signal; Figure 3.1). Importantly, no evidence for four-, five-, seven- 

and eight-fold rotational symmetry was observed, suggesting a presence of specifically 

hexagonal spatial structure. Behaviourally, the coherence of the orientation of the grid cell 

signal across voxels positively correlated with memory performance (Doeller et al., 2010).  
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Figure 3.1. Experimental logic from Doeller et al. (2010). (A) Spatial autocorrelation of a typical 

grid cell with a 30 sector aligned with the grid. (B) Schematic of running directions aligned 

(red) and misaligned (grey) with the grid. (C) Predicted modulation of BOLD signal by running 

direction showing 60 periodicity, with a stronger effect for fast than slow speed. Adapted from 

Doeller et al. (2010). 

 

 

The grid-like signal has been detected in humans in a number of different tasks. Using the 

same  analysis method as in Doeller et al. (2010) described above, Kim and Maguire (2018) 

found a hexagonal signal in a 3D virtual environment spanning the entire volumetric space, 

showing that the grid-like representation is not limited to 2D navigation tasks that are most 

commonly used in this line of research. Recent work has also suggested that grid cells may be 

used to code for more abstract 'spaces'. A grid-like signal has been found when navigating an 

abstract space defined by two non-spatial dimensions (length of a bird's legs and length of its 

neck); the signal was stronger when the transitions in this space was aligned with the grid as 

compared to misaligned (Constantinescu, O’Reilly, & Behrens, 2016). Grid cells in the EC were 

also found to represent sound frequencies in rats (Aronov, Nevers, & Tank, 2017) and gaze 
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direction in humans (Julian et al., 2018; Nau et al., 2018). The same mechanism may therefore 

have been adapted to deal with more complex situations that rely on capturing map-like 

relationships between stimulus dimensions.  

Taken together, the above studies show strong evidence that the involvement of grid cells in 

spatial navigations and other non-spatial tasks can be detected using neuroimaging 

techniques in humans. Their role in spatial imagination, however, is still largely unknown. An 

efficient memory system requires that future events can be planned through simulation of 

potential outcomes, and the network of temporoparietal areas containing spatial cells was 

shown to be involved in spatial imagery based on remembered information (Burgess, Maguire, 

Spiers, & O’Keefe, 2001). The BBB model outlined in Chapter 1.3 proposes that the 

mechanisms employed during navigation and encoding of spatial information are also 

engaged during retrieval of this information as well as during imagination of novel routes and 

viewpoints by updating the internal representation with 'mock' idiothetic signals (Byrne et al., 

2007).  Neuropsychological and neuroimaging evidence supports the proposed overlap in the 

networks (including the MTL) used for remembering the past and imaging the future (Schacter 

et al., 2007). This suggests that the spatial memory system not only represents the current 

location and spatial information about the environment but is also involved in simulation of 

potential routes and scenarios.  

In the present study, fMRI was used to look for evidence of grid cell activity resulting from 

both actual and imagined navigation within a VR environment. The same task design has 

previously been used to show evidence for grid-like signal during navigation (Doeller et al., 

2010). Using representational similarity analysis (RSA; Kriegeskorte et al. 2008), the 

differences in neural activity patterns across angular directions and modalities (real vs. 

imagined) were assessed for 60 periodicity and similarity of grid orientation. A recent study 

found evidence for grid-like signals in the EC using RSA (Bellmund, Deuker, Schröder, & 
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Doeller, 2016). In a large-scale VR environment, participants imagined different directions 

from multiple locations. Directions that were 60 apart had more similar pattern of activity 

than other directions. However, this task measured the activity related to imagined facing 

direction from a stationary viewpoint. The current study, on the other hand, aims to look at 

the role of the EC in mental simulation of planned trajectory. Because of the overlap of 

mechanism involved during navigation and imagination, we should expect to see the same or 

similar representation of space in both modalities. The analyses were not limited to the MTL 

due to the previous findings suggesting a wider network of brain areas involved in the 

representation of space and running direction, including the visual cortex and medial 

prefrontal cortex (Doeller et al., 2010) as well as during imagination, such as frontal lobes, 

cingulate cortex, retrosplenial cortex and parietal areas (Addis et al., 2007; Szpunar et al., 

2007), 

The results reported below are a part of a larger project in which, using a univariate analysis 

of the same data, the presence of grid-like activity within the EC has been detected in both 

navigation and imagination (Horner et al., 2016). As in Doeller et al. (2010), the orientation of 

the grid was estimated from half of the data in each participant, and the second half was used 

to detect six-fold symmetry (as well as other control models). The grid-like signal was observed 

in the EC during movement but not stationary periods. Crucially, the 60 periodicity was also 

observed during periods when participants were asked to imagine navigating towards the 

previously memorized location. These results show that grid-like activity of the same 

orientation as during navigation is present during imagination and can be detected in the EC 

using fMRI. The results below extend these findings by using a multivariate analysis approach 

to look for patterns of activity consistent with the 60 rotational symmetry. As in Bellmund et 

al. (2016), the grid-like representation was predicted to result in higher pattern similarity for 
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directions similarly aligned to the grid (i.e. separated by multiples of 60) than directions 

where one of them lays ‘on-axis’ and the other one ‘off-axis’ (i.e. separated by 30, 90, 150). 

 

(Author contribution: analysis and interpretation of data presented here) 

 

3.1 Methods 

3.1.1 Participants 

26 neurologically healthy participants (17 males, 9 females) of mean age 23.7 (SD = 4.2) were 

recruited through the UCL ICN Subject Database. All participants had normal or corrected-to-

normal vision and were right handed. The study was approved by the University College 

London Research Ethics Committee (1825/003) and informed consent was obtained before 

the session.  

3.1.2 Design and procedure 

The VR environment was created with Unity (https://unity3d.com/) and comprised of a flat 

circular plane surrounded by a cliff and more distal background of mountains rendered at 

infinity, as well as trees and clouds, which provided orientation cues. The proximal cues were 

not part of the original setup (Doeller et al., 2010) and were added. here to make it easier for 

participants to orient in the environment as the task required that participants were highly 

accurate in the trajectories they took.  Participants were required to learn the locations of two 

sets of objects, presented in one of three pseudo-randomised arrangements. Within each set, 

the locations of six objects were arranged with equal spacing around the centre of the 

environment, i.e. with angular distance of 60.  The main axes on which the objects were 

located were shifted by 15 in the second set, allowing for sampling of 24 angular directions 

(every 15) across both sets (Figure 3.2). The environment was unchanged across blocks.  

https://unity3d.com/
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Before the scanning session, participants were familiarised with the task and the environment 

until they were able to understand and perform the task accurately. During scanning, 

participants lay in a supine position with the visual display reflected from a back projector by 

a mirror attached to the head coil. Participants moved in the VR using a button box with three 

keys with their right hand (left turn, right turn, move forward) and signalled their readiness 

using a single button with their left hand. 

During the encoding phase, each object was shown at its respective location and participants 

had to ‘collect’ the item by running over it using the three-key pad. Each trial started at the 

end location (the object location) of the preceding trial. Each object was collected five times, 

each time approached using one of the five possible routes, giving 30 trials in total in each set. 

Each encoding phase took approximately five minutes. 

In the subsequent retrieval phase, participants were cued with a centrally-presented item and 

asked to orient themselves in the direction where they believed the object was located, and 

signal with a left-hand button press once they believed they were facing the correct way (cue 

period, see Figure 3.2B). They were then asked to close their eyes and imagine navigating in a 

straight line towards this object, again pressing the left key when this action was complete 

(imagination period). After a variable jitter period during which they could not rotate or move 

(2-6 seconds; wait period), they were instructed to navigate to the location where they 

believed the object was placed and to signal with a left-hand press when in the correct location 

(navigation period). At this point the object appeared in the correct location and, if needed, 

participants had to navigate towards it to collect it (feedback period). The overall structure 

and the structure of trials in the retrieval phase are presented in Figure 3.2B. For every object, 

each of the five possible routes was used twice, giving 60 trials in total in each set. Each 

retrieval phase took approximately 20 minutes. 
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Participants then completed the second encoding-retrieval set with another set of items in 

new locations (shifted by 15; Figure 3.2A), following the same procedure.  

 

A 

 

B 

 

Figure 3.2. Experimental design. (A) The virtual reality environment. The arena presented from 

a birds-eye view, with target-object locations for each encoding-retrieval set represented as 

red and yellow circles. The target axes are shifted by 15 in relation to each other. (B) Structure 

of the experimental session. Each trial within the retrieval phase was further divided into five 

periods of variable duration. Examples of screen shots for the cue, imagination and feedback 

periods are provided.  
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3.1.3 fMRI acquisition 

Imaging data were acquired using echo-planar imaging (EPI) on a 3T Trio (Siemens) scanner 

with a 32-channel head-coil. The parameters were: repetition time (TR) = 3,360ms, echo time 

(TE) = 30ms, voxel size / resolution = 3x3mm, 48 slices per volume. A double-echo FLASH field-

map for distortion correction of the EPI volumes was acquired, as well as a three-dimensional 

MDEFT structural image (1mm3 resolution) for normalisation to the MNI template. 

3.1.4 Data preprocessing 

The images were bias-corrected, unwarped, realigned to the first image, slice-time corrected 

and normalised using SPM8 in Matlab (Mathworks; www.fil.ion.ucl.uk/spm). The first five 

volumes were discarded to allow for T1 equilibration.  

3.1.5 Data analysis 

The data was analysed using the RSA with custom Matlab scripts, some of which were a part 

of the RSA toolbox (Nili et al., 2014). 

3.1.6 1st level GLM 

The predictors for each set of analyses consisted of analysis-specific regressors (i.e. the 

conditions used as a basis for creating dissimilarity matrices in the RSA; see below for details), 

and regressors of no interest: six head motion parameters, regressors for button presses (one 

for right hand and one for left hand) as well as regressors coding for each period which did 

not include the analysis-specific regressors. These regressors were modelled with a boxcar 

function for the duration of movement during the navigation period, for the duration of the 

entire period for all periods which did not include navigation (i.e. entire cue period, 

imagination period; wait period, and feedback period; see Figure 3.2B for task structure), or 

for duration of a button press, and analysed using a General Linear Model (GLM). The 

regressors were temporarily convolved with the hemodynamic response function.  

http://www.fil.ion.ucl.uk/spm
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3.1.7 RSA 

3.1.1.1 Dissimilarity structure in data 

The beta estimates from the first-level analysis were used to obtain condition-specific activity 

patterns (for specific conditions in each analysis see section 3.2 below) in a searchlight-based 

RSA. A whole-brain searchlight analysis was used, using search spheres with three-voxels 

radius from the central voxel. As explained in detail in Chapter 2, the beta estimates of each 

condition were used to calculate correlation distances between all pairs of conditions, 

resulting in a brain RDM (dissimilarity matrix based on brain activity) for every search sphere 

for every participant.  

3.1.1.2 Comparison of brain RDM to model RDMs 

A brain RDM from each search sphere was compared to pre-specified model RDMs (i.e. 

matrices the size of the brain RDM with predicted distances between all pairs of conditions). 

The specific model RDMs used in the current analyses will be described below (see Figure 3.3 

for examples). The brain RDMs were compared to their model RDM using partial correlation 

(partialling out other models from a given analysis; see below). 

3.1.1.3 Group-level analysis 

The above steps resulted in a searchlight map of measures of similarity between the brain and 

model RDMs for every participant. These correlation values were then smoothed with a 5mm 

FWHM Gaussian filter and used in the group-level analysis which compared the average 

correlations across subjects against zero with a one-sample t-test.   

 

3.2 Analyses  

All analyses were performed either on the two encoding blocks or the two retrieval blocks. In 

the analyses presented below, each model was tested against data while removing the effects 

of all other models in the respective analyses. Additionally, a model that predicted higher 
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similarity within a block than across blocks to account for increased similarity within blocks 

was partialled out in all analyses. This was achieved through calculating a partial correlation 

coefficient between the model of interest and the data after removing the effects of all other 

models/predictors. 

The purpose of the main analyses was to look for patterns consistent with the grid cell-like 

activity and with the representation of heading direction. In additional analyses, I looked at 

other representations of space, namely the representations of the current location and the 

goal location. For the ease of reading, however, the analyses below are split based on the 

specific periods within the task (navigation during encoding, navigation and imagination 

during retrieval, and cue period during retrieval). 

 

3.2.1 Encoding blocks 

Within each encoding block, the objects to be collected could appear at six possible goal 

locations (see Figure 3.2). This resulted in 30 different routes between starting and goal 

locations. Each condition (i.e. each regressor in the first level analysis) represented one of the 

30 routes, resulting in a total of 60 conditions across both sets. The next sub-sections will 

describe how, on the basis of these conditions, the model RDMs were constructed to look for 

evidence of different representations.  

3.1.1.4 Grid-like signal 

I looked for a representation of a spatial structure with 60 periodicity. The locations of the 

objects in the two encoding blocks were offset by 15, resulting in routes sampled every 15 

across both sets. Based on the angular direction of the routes, pairs of conditions separated 

by the multiples of 60  (i.e. similarly aligned to the grid, e.g. 0 and 60) were maximally 

similar (distance = 0), pairs differently aligned to the grid (e.g. 0 and 30) were maximally 
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dissimilar (distance = 1), while pairs where one of the bins was aligned with the grid and the 

other was in between the ‘on’ and ‘off’ grid axes (e.g. 0 and 15) had distance equal to 0.5. 

3.1.1.5 Heading direction 

The same conditions based on angular heading directions in each trial as above were used as 

a basis for the current model. The model RDM for heading direction assumed that similarity 

linearly decreases as the angular difference in heading direction increases (distances = 0 – 1), 

reaching maximum distance at 60. The decision to include a maximum angular distance at 

which dissimilarity in patterns should plateau instead of using full 180 range was motivated 

by the findings that the firing of head direction cells shows a tuning curve, with decreasing 

firing as a function of the distance from the preferred direction (e.g. Taube, 1998, 2007; Zhang, 

Heuer, & Britten, 2004). 

3.1.1.6 Goal location 

Each object (and therefore each of the six goal locations) was reached five times during each 

encoding block. The model RDM for goal location assumed that the activity patterns for the 

same goal would be maximally similar for the same location (distance = 0) and then gradually 

increase (distances = 0.2 – 1) as the angular distance between goal locations increases, 

reaching maximum distance at 60 . 

 

3.2.2 Retrieval blocks: navigation and imagination periods 

At retrieval, participants first imagined to navigate and then navigated to a location where 

they believed the target object was located. The continuous metric of heading direction had 

to be discretised in order to represent it as a dissimilarity matrix; the possible movement 

directions (0-360) were divided into twelve 30 conditions per set, with each condition bin 

centred on one of the direction axes used during the corresponding encoding set (in other 

words, the condition bins were based on the 'ideal' straight-line trajectories between starting 
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and goal locations needed to obtain the objects). Each navigation and imagination trial was 

classified as the condition that was the closest to the mean navigation direction during that 

trial.  As the two sets were offset by 15, the resulting direction-bins across both blocks were 

overlapping. In the analyses described below I used either only navigation or only imagination 

periods (resulting in 24 conditions in each).  

3.1.1.7 Grid-like signal 

This model was based on the same principles as the grid signal models in the encoding period. 

Pairs of conditions separated my multiples of 60  (similarly aligned to the grid, e.g. 0 and 

60) had distance equal to 0, pairs differently aligned to the grid (e.g. 0 and 30) had distance 

equal to 1, while pairs where one of the bins was aligned with the grid and the other was in 

between the ‘on’ and ‘off’ grid axes (e.g. 0 and 15) had distance equal to 0.5 (Figure 3.3A). 

3.1.1.8 Heading direction 

In the same way as in the encoding blocks, this model was defined based on angular 

differences in heading direction during either navigation or imagination periods, with 

increasing angular differences represented by increasingly dissimilar patterns (with distance 

measure ranging from 0 to 1, reaching maximum at 60 angular distance; see Figure 3.3B).  

3.1.1.9 Navigation vs. imagination 

I looked for areas that showed more similar patterns of activity within modality (navigation or 

imagination, or in other words during movement and stationary period) than across. The 

model RDM predicted distance of 0 for same modality and 1 for different modality. 
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Figure 3.3. Examples of model RDMs (Representational Dissimilarity Matrices with predicted 

distances between all pairs of conditions). (A) Model of grid-like signal from the analysis of 

retrieval blocks: conditions based on heading direction. The conditions represent 24 direction 

bins of 15 each (12 in each set). The similarity depends on the direction of movement either 

off- or on-axis. (B) Model of heading directions from the analysis of retrieval blocks: conditions 

based on heading direction. The conditions represent 24 direction bins of 15 each (12 in each 

set). The similarity varies with angular difference between heading directions. 

The colour scale represents the level of predicted dissimilarity for any pair of conditions. For 

details of each model, see text. 

 

 

3.2.3 Retrieval blocks: cue period 

In another analysis of the retrieval blocks, I defined conditions as all possible combinations of 

starting locations and the goal locations (30 combinations in total). These were estimated 

during the cue period (i.e. when the object to be retrieved is presented on the screen and the 

participants are asked to turn around in the VR until they face the direction where they believe 

the object is). 

3.1.1.10 Starting location  

As in the analysis of encoding blocks, the model RDM was based on similarity of the starting 

location across trials, with distance measure ranging from 0 to 1, reaching maximum at 60 
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angular distance (measured from the location in the centre of the arena; the angular direction 

similarity can therefore be thought of as simply distance-based similarity).  

3.1.1.11 Goal location 

Here the model RDM was based on the similarity of the goal location (i.e. the location of the 

object to be picked up on this trial; noting that this was not necessarily the same as the 

location the participants navigated towards), with same locations represented as more similar 

(distance = 0 – 1, maximum at 60 angular distance).  

 

3.3 Results  

3.3.1 Angular error 

Participants were successful at learning the locations of the objects within the environment, 

with median angular error across both retrieval blocks = 8 (see Figure 3.4).  

 

 

Figure 3.4. Histogram showing the proportion of trials per 5 of angular error across both 

retrieval blocks.  
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3.3.2 Grid stability 

Based on the grid orientation estimated from the univariate results (reported in Horner et al., 

2016), the differences in grid orientation across the two retrieval blocks (Figure 3.5A,B) and 

across navigation and imagination periods from the same block (Figure 3.5C) were calculated 

for every participant. The average difference in orientation between the two navigation blocks 

was 20.27 (SD = 16.96), between the two imagination blocks: 20.00 (SD = 16.19), and 

between corresponding navigation and imagination periods: 18.31 (SD = 15.35).  

A     B 

 

C 

 

Figure 3.5.  Stability of the grid orientation across participants estimated using univariate 

analyses on the same data, reported in Horner et al. (2016). (A) Angular differences in grid 

orientation across navigation periods. (B) Angular differences in grid orientation across 

imagination periods. (C) Angular differences in grid orientation between navigation and 

imagination periods from the same block, for both retrieval blocks. 
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3.3.3 Encoding blocks 

3.3.1 Grid-like signal  

I found no areas consistent with the representation of spatial structure with 60 periodicity 

consistent with grid-like signal (p > .05 FWE-corrected for the whole brain and for the bilateral 

EC). 

3.3.2 Heading direction  

In order to look for heading direction representation, I compared the data to a model which 

assumed that similarity decreases as the angular difference in heading direction decreases. I 

found areas in the bilateral occipital cortex and left inferior parietal lobe that followed this 

prediction (p < .05 FWE for the whole brain; Figure 3.6).  

 

 

  

Figure 3.6. Representation of heading direction during encoding. Searchlight results showing 

clusters in the occipital lobes (3, -78, -3) and left inferior parietal lobe (-48, -33, 42; p < .05 

FWE-corrected for the whole brain). 
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3.3.3 Goal location  

I found no areas corresponding to the prediction that more proximal goal locations are 

represented with more similar activity patterns (p > .05 FWE for the whole brain).  

 

3.3.4 Retrieval blocks: navigation and imagination periods 

3.3.1 Grid-like signal  

The main prediction regarding the grid-like representation of space was tested at retrieval. I 

found no evidence for this representational structure during navigation or during imagination 

phases in full-brain analyses and when using small-volume correction for bilateral EC. 

3.3.2 Heading direction – navigation  

Activity consistent with the representation of heading direction was found in the occipital 

lobes (p < .05 FWE-corrected for the whole brain; Figure 3.7). 

 

 

Figure 3.7. Representation of heading direction during navigation period at retrieval. 

Searchlight results showing clusters in the occipital lobes (6, -87, 18; p < .05 FWE-corrected for 

the whole brain). 
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3.3.3 Heading direction – imagination  

The same model as above was used to look for heading direction representation during 

imagination. With a FWE-correction for the whole brain, I found a single significant voxel in 

the occipital cortex. At more liberal threshold, approximately the same area as the one during 

the navigation period (see above) was observed (Figure 3.8). 

 

 

Figure 3.8. Representation of heading direction during imagination period at retrieval. 

Searchlight results showing clusters in the occipital lobes (6, -81, -6; for display purposes the 

image is threshold at p < .001 uncorrected). 

 

3.3.4 Navigation vs. imagination  

In this exploratory analysis, I looked at which areas show the highest difference between 

within-modality and across-modalities similarity. At whole-brain-corrected threshold, the 

entire brain showed higher similarity within a modality (navigation or imagination) than across 

modalities. At increased threshold (p < 10-9 FWE-corrected for the whole brain), the areas that 

showed the greatest fit to this model were the occipital lobes extending to posterior parietal 

cortex, and bilateral PPA (Figure 3.9).  
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Figure 3.9. Areas differently engaged during navigation and imagination. Searchlight results 

showing clusters in the occipital lobes (-15, -81, 24; p < 10-9 FWE-corrected for the whole brain). 

 

 

3.3.5 Retrieval blocks: cue periods 

3.3.1 Starting location  

These additional analyses of the cue periods were used to further explore the representations 

of space during stationary periods where it was also possible to define the current (starting) 

locations (during encoding, the time spent at the starting location was very limited). I found 

activity consistent with the representation of starting locations (i.e. higher similarity when 

starting from proximal locations) in the right hippocampus and right parahippocampal cortex, 

which may correspond to the parahippocampal place area (PPA) (p < 10-6 FWE-corrected for 

the whole brain; Figure 3.10). 
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Figure 3.10. Representation of starting location during cue period at retrieval. Searchlight 

results showing clusters in the right hippocampus (24, -21, 15), right parahippocampal place 

area (42, -33, -30), and occipital lobes (-27, -81, 6; p < 10-6 FWE-corrected for the whole brain). 

 

 

3.3.2 Goal location  

I found that the pattern of activity in the left PPA was consistent with the representation of 

the goal location (i.e. trajectories to the same goal more similar to different goals) (p < 10-7 

FWE-corrected for the whole brain; Figure 3.11).   
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Figure 3.11. Representation of goal location during cue period at retrieval. Searchlight results 

showing clusters in the left parahippocampal place area (-27, -45, -12; p < 10-7 FWE-corrected 

for the whole brain). 

 

 

3.4  Discussion 

This study investigated the grid-like signals during navigation and imagination in a VR 

environment. Previous studies using univariate analyses have shown that the differences in 

the BOLD signal between heading directions consistent and inconsistent with the main axes 

of the grid can be used to decode the grid orientation from the fMRI signal (Doeller et al., 

2010; Horner et al., 2016). Here I used RSA to estimate the similarity of the activity patterns 

associated with navigating and imagining to navigate in different directions within a virtual 

environment.   

Grid analyses 

The main aim was to decode the grid-like signal which I expected to be characterized by high 

similarity of heading directions separated by the multiples of 60 (similarly aligned with the 

grid) and low similarity of the directions where one of them lays ‘on-axis’ and the other one 

‘off-axis’ (i.e. separated by 30, 90, 150). In particular, I wanted to see whether the same 

representational structure is observed in both navigation and imagination. I found no evidence 
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for this prediction. However, in retrospect this method may have been unsuitable for testing 

of this model. I will argue that the grid-like signal detectable with univariate fMRI analyses 

could not be detected with the RSA due to the differences in how the grid cells firing affects 

the estimates used by these methods. 

As mentioned in the introduction, the univariate signal consistent with 60 periodicity in the 

EC has been found previously in navigation (Doeller et al., 2010) and both navigation and 

imagination periods on the same data set as presented here (Horner et al., 2016), showing 

that the grid cell activity can be detected in humans using fMRI. The analysis method used to 

detect this signal relies on the two assumptions outlined in the introduction to this chapter.  

First, the ‘regular’ grid cells across the EC have consistent orientation (Barry et al., 2007; 

Stensola et al., 2012). Although their firing is not modulated by the running direction, the 

neural dynamics of the cells differ, with some cells firing a lot and others a little when running 

along axis or all firing at an intermediate rate when running in-between axes. This, combined 

with non-linear mapping of neural activity to the BOLD signal, could produce differences in 

the univariate signal. However, although the overall amount of firing might differ with running 

direction, the pattern of firing across voxels would not be affected.  

Second, the conjunctive grid cells are modulated by heading direction in a unimodal way, with 

preferred firing directions aligned to one of the grid axes (Sargolini et al., 2006). This again 

could produce a univariate signal that differs between aligned and misaligned to the grid 

directions. However, as before, there would be no difference in the pattern of activity across 

voxels for aligned versus misaligned runs; even if the cells with different preferred directions 

were un-evenly distributed across voxels, this would produce variation in activity patterns 

between differently aligned directions, but not between aligned versus misaligned directions. 

There is therefore no reason to suggest that different grid cells become activated in the same 

environment as a result of differences in behaviour such as the heading direction. Rather, the 
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same grid cells should be active regardless of the direction of navigation, and heading 

direction should only affect the dynamics of firing but not the pattern. Thus, different heading 

directions should result in differences in the univariate signal but not in the pattern of neural 

activity, which is what is assumed to be detected with the multivoxel analysis methods such 

as the RSA. The RSA may therefore be unsuitable for looking at activity consistent with the 

grid cells firing; in principle, it should not be possible to detect any differences in patterns 

across conditions above the univariate differences in the BOLD signal. 

On the other hand, one study did find evidence for grid-like representational structure of the 

environment using the RSA. In that study, participants mentally simulated different facing 

directions in a familiar VR environment, and the pattern similarity corresponded to the 

representational structure analogous to the one used in the current study (Bellmund et al., 

2016). The reasons for this discrepancy in findings are unclear. The design in both studies is 

quite different; in the current study, I looked at spatial representations during actual and 

imagined movement, while Bellmund et al. looked at directional imagination in the absence 

of (real or imagined) movement. Potentially, the analysis in the study by Bellmund et al. picked 

up on another process which showed some similarity to the 'on vs. off grid' representation but 

which was different to the grid cells signal. For instance, the detected differences could reflect 

firing of directional cells with multi-modal modulation by direction; tri-modal modulation 

could result in the similarity structure consistent with the 60 periodicity. This type of 

modulation is occasionally seen (N. Burgess, personal communication) but these types of 

responses have not been documented in significant numbers. It is also unclear why such a 

signal would have been present in Bellmund et al., but not the present study. Perhaps the 

signal in Bellmund et al. was somehow more reliable, possibly reflecting the larger 

environment used there, or other elements of design which mitigated against our study (see 

below). Indeed, the grid-like signal in Bellmund et al. was relatively weak – only reaching 
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significance in a small region of interest corresponding to the homologue of medial EC, and 

only in one hemisphere. 

Another alternative is that the grid orientation does vary across voxels to an extent that could 

result in pattern similarity consistent with the hexadirectional model used here and in 

Bellmund et al. (2016). Although previous research showed that the orientation is generally 

shared across grid cells, there is some variability (although lower than would be expected if 

orientations were random; Barry et al., 2007a; Stensola et al., 2012). Additionally, variability 

in orientation between grid cell 'modules' (clusters of grid cells with similar properties such as 

grid scale) is higher between than within modules (Stensola et al., 2012). This may suggest 

that the differences in patterns observed in Bellmund et al. might have reflected differences 

in grid orientation between the modules of different scales. If, as an example, the orientations 

across modules differed by 30, running directions that are 30, 90 and 150 apart would be 

aligned to the grid for some modules and misaligned for the other, resulting in expected 

pattern similarity structure; although differences in grid orientation of this magnitude have 

not been observed, the same argument could potentially work for lower variation. Potentially, 

the smaller environment used here was insufficient to sample enough different grid scales 

(and thus also different grid orientations) to show any differences in activity patterns. The 

presence of grid-like signal in the univariate signal (Doeller et al., 2010; Horner et al., 2016) 

could still be detected despite the variation in grid orientation as long as it was relatively low.  

In addition to the smaller environment, the discrepancy between the current results and 

Bellmund et al. might have resulted from the low power in the current analyses; for in-depth 

discussion of the aspects of the data and task design that might have contributed to this issue 

(e.g. low number of examples in each condition, continuous as opposed to discretised 

environment), see limitations sub-section below as well as section 7.7 of the general 

discussion.  
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Heading direction analyses 

Although it was not possible to detect any grid-like signal using the RSA, the pattern consistent 

with the representation of the heading direction was observed in the occipital lobes during 

both encoding and retrieval phases. Head-direction signal has been previously decoded using 

multivariate pattern analysis of fMRI data from the EC, pre- and parasubiculum (Chadwick et 

al., 2015) and in the posterior parahippocampal gyrus (Bellmund et al., 2016). The current 

results likely do not reflect the activity of the head-direction cells, which outside of the 

hippocampal formation have been found only in the thalamus and the retrosplenial cortex 

(Jacob et al., 2016; Olson et al., 2016; Sargolini et al., 2006; Taube, 2017; Taube et al., 1990). 

This area may instead represent the similarity of the visual scene which, rendered at infinity, 

was more alike for the more proximal heading directions. The same areas were identified in 

both actual navigation and imagination, although at relatively lower level during the 

imagination period, suggesting that the imagined route is reinstated in the cortex as would be 

predicted by the BBB model (Byrne et al., 2007). The patterns of activity were similar, but not 

identical, possibly due to qualitative differences between the two modalities, with imagination 

potentially containing fewer details and less rich or intense content than perception during 

navigation. The representation of heading direction in the occipital cortex was observed in the 

original study using the same paradigm to look for grid signal during navigation (Doeller et al., 

2010), as well as during both perception and imagery of scenes, with stronger responses 

observed during perception, consistently with the current finding (Ganis, Thompson, & 

Kosslyn, 2004).  

Despite the overlap in the neural mechanisms involved in both perception during navigation 

and imagination of movement (Byrne et al., 2007), areas that differed between the two 

modalities were also identified. Consistently with previous research (e.g. Ganis et al., 2004), I 

found that regions in the occipital cortex show the highest between-modality distances, which 
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may reflect the differences in sensory processing involved in perception and imagery. This 

area extended to regions previously implicated in mental navigation: parieto-occipital junction 

(Ino et al., 2002) and precuneus (Ghaem et al., 1997). Finally, the PPA is known to play a role 

in both perception (Epstein & Kanwisher, 1998) and imagery of spatial scenes (O’Craven & 

Kanwisher, 2000), however the current results suggest that the specific representational 

structure in this area is more similar within- than between-modalities. Although imagery 

recapitulates perception to some extent, it cannot match the richness and resolution present 

during actual perceptual experience. 

Starting location analyses 

During the stationary cue period, when the object to be found was displayed on the screen, 

the representation of the starting location (i.e. the currently occupied location), with more 

proximal locations represented by more similar patterns of activity, was found in the right 

hippocampus, right PPA and the occipital lobes. This is broadly in line with the role of these 

regions in representation of space and visual scenes. Hippocampus is known to represent the 

location of the animal in the environment (O’Keefe & Dostrovsky, 1971). The allocentric 

representation of space relies on the ability to represent distances (Wilson & McNaughton, 

1994), which may be achieved through the attractor properties of the hippocampal network 

(Marr, 1971; McNaughton & Morris, 1987; Samsonovich & McNaughton, 1997), as described 

in Chapter 1. Representation of distances in terms of strengths of synaptic connections results 

in a continuous representation of space (Muller, Kubie, & Saypoff, 1991), which could explain 

the pattern of similarity observed in the current study, with more proximal locations 

represented as more similar. This is consistent with a fMRI study which showed that closer 

landmarks are represented with more similar patterns of activity in the hippocampus (Morgan, 

Macevoy, Aguirre, & Epstein, 2011). The parahippocampal place areas represent the local 

visual scenes, particularly the spatial layout (Aguirre, Detre, Alsop, & D’Esposito, 1996; Bastin 
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et al., 2013; Epstein & Kanwisher, 1998) in an observed-cantered reference frame (Epstein, 

2008). In the current study, both the involvement of the PPA and the occipital cortex during 

the cue period may reflect the higher similarity of the visual scene from the same viewpoint 

than from others. The occipital cluster extended to the traverse occipital sulcus (TOS), also 

referred to as the occipital place area (OPA), also involved in scene perception (Dilks, Julian, 

Paunov, & Kanwisher, 2013; Hasson, Harel, Levy, & Malach, 2003; McAvoy & Sahay, 2017). 

Alternatively, the similarity of starting locations could reflect similarity of the visual input. To 

test this, it would be beneficial to exclude trials with high visual similarity. However, as the 

starting location in a given trial was the end location of the previous trial, the facing direction 

would most likely always show some similarity at similar locations (because of facing 

"outward" from the arena, and likely never facing towards the centre of the arena).  

Goal location analyses 

The goal location during cue periods was found to be represented in the left PPA which may, 

again, correspond to the similarity of the visual scene when facing proximal locations, or 

processing of the spatial layout of the environment from an egocentric viewpoint (Epstein, 

2008; Epstein & Kanwisher, 1998). In this analysis, unlike in the starting location analysis, I 

used the actual locations of the objects in the VR which may have not corresponded to the 

retrieved direction, and thus these results should be treated with caution - although the model 

would be appropriate even if the remembered item-locations were incorrect in absolute 

terms, as long as the relative position of each object in relation to other objects was correctly 

remembered. I did not observe patterns related to the goal in the EC/subiculum as would be 

expected from previous studies showing involvement of these areas in representing goal and 

facing directions (Bellmund et al., 2016; Chadwick et al., 2015). This could be because during 

at least some part of the cue period participants rotated around, which may have obscured 

any signal related to facing direction.  
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Limitations 

There were several limitations to this study. Some of them can be attributed to the design of 

the experiment, which originally was not intended to be analysed with the RSA. First, the 

dissimilarity matrices assessed in the RSA require that the stimuli or experimental factors can 

be split into categorical features or conditions. The continuous environment used in this study, 

while allowing for sampling of a wide range of directions, was not optimal for this purpose. In 

particular during the retrieval blocks, participants were likely to take routes which did not 

follow the intended trajectories. Despite this, the RSA analysis required that the environment 

is split into heading direction bins which allowed for classification of behaviour into one of the 

resulting conditions. The conditions themselves were fairly arbitrary in that they were based 

on the 'ideal' straight-line trajectories between starting and end locations in each set, which 

were not necessarily the directions taken by the participants; however, they were assumed to 

be the most likely directions and alternative ways of discretising the environment were found 

to be even less appropriate (as will be explained below).  

Another issue stemmed from the fact that the two sets of encoding-retrieval blocks were 

offset by 15, and so the condition-bins (each spanning 30) were inconsistent across the sets. 

For example, if the first set included a condition with directions between 30 and 60, the 

second set would have included condition between 15 and 45, and between 45 and 75. 

The same heading direction in two different sets would therefore be a part of a different 

condition when comparing similarity across blocks. This, combined with the instability of the 

grid orientation, could have affected the fit of the models to the data. Arguably, a task design 

with a more structured environment would make it easier to construct appropriate conditions. 

One example of a paradigm that achieved this comes from a study looking at representations 

of current location and heading direction in a 3D environment (Kim, Jeffery, & Maguire, 2017); 

the environment consisted of a structure with four floors and four-by-four arrangement of 
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'nodes' on each floor, with every node connected to its neighbours in both vertical and 

horizontal directions by a narrow path. The lack of ceilings or walls allowed for perceiving of 

the entire continuous environment but the paths constrained movement to pre-specified 

directions. Nonetheless, there was still not enough sampling of direction to assess the 

presence of grid-like patterns in that study, which emphasises the difficulty of constructing an 

appropriate environment for this type of analyses. In the current study, limiting the available 

paths was partially achieved in the encoding blocks where, because the items to be collected 

were visible in the environment, participants were more likely to reach them in a straight line, 

providing some control over heading directions. Reassuringly, in these blocks corresponding 

areas as in the retrieval blocks were observed to show the similarity pattern corresponding to 

heading direction. However, unlike during retrieval blocks, I failed to detect any signal 

consistent with the similarity of goal locations, which may be a result of different cognitive 

processes involved at encoding and retrieval of item locations. Possibly, encoding may rely 

more on processing of the object location in an allocentric manner, in relation to the 

landmarks and other remembered objects, while retrieval may be dominated by placing it in 

the egocentric reference frame in order to decide on the required direction; although both 

frames of reference are likely used in both tasks. 

Another attempted solution to the overlapping direction bins in our study was to use 

consistent bins across both sessions (despite differences in starting-goal locations) or smaller 

(15) bins that were consistent across blocks, however in these analyses (not reported here) 

some direction bins were not used at all in a large proportion of participants, and so the 

dissimilarity matrices could not be calculated.  

This highlights another issue with the current design which made it suboptimal for the RSA; a 

small number of examples of behaviour in each condition resulted in relatively poorly 

estimated beta coefficients in the first level GLM analysis, which in turn would have affected 
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the estimates of distances. This might have contributed to the differences in results between 

encoding and retrieval blocks; for example, the corresponding analyses of heading direction 

showed higher number of significant voxels in the analysis of the retrieval blocks than of the 

encoding blocks, potentially due to the higher number of examples used to estimate each of 

the conditions at retrieval (each route was taken once at encoding and twice at retrieval). The 

study was optimised to sample a wide range of possible directions, while for the RSA ideally 

there should be fewer and more constrained movement directions with multiple examples of 

each. 

Small number of trials per conditions also limited the complexity of models; for instance, it 

was not feasible to compare representational structures between trials with different levels 

of angular error. Additionally, I could not combine the analyses of heading direction and start-

end locations during retrieval because there were not enough trials to provide examples of all 

combinations of these conditions.  

The grid orientation, as estimated using univariate analyses, was not stable across blocks. 

Research in rodents has found the grid orientation to be stable across time (Hafting et al., 

2005; Sargolini et al., 2006), even when the context changes and the hippocampal place cells 

undergo rate remapping (Fyhn et al., 2007), as well as in healthy people using intracranial 

recordings (Kunz et al., 2015). It is therefore unclear what could underlie the instability of the 

grid observed in the current data. Possibly, this may be a result of switching between real-

world and virtual reference frames which were inconsistent due to the supine position in the 

scanner (Moser et al., 2014). Although it is not clear how the change to VR would cause 

changes in orientation within the same VR environment across runs, it is clear that the 

environmental orientation references provided in VR will be less strong than provided by real 

environmental and vestibular inputs in the real world (e.g. actual head-rotation is required to 

see head-direction cell firing in rodent VR; Chen, King, Lu, Cacucci, & Burgess, 2018). Although, 
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as explained above, the RSA may not be appropriate for the analysis of grid-like signal, other 

analyses (e.g. of heading direction) could in principle be affected by the unstable orientation 

signal as the orientations of both head-direction and grid cells are similarly anchored to the 

environment (Hafting et al., 2005; Mizumori & Williams, 1993); this may explain why the 

'heading-direction' signal detected here was only observed in the visual cortex, as similarity of 

the visual input would be more stable across runs than the sense of direction. 

3.4.1 Conclusions 

I did not find any evidence for grid-like neural representations during virtual or imagined 

navigation using an RSA analysis of fMRI data. Overall, in retrospect the main aim of the 

current analyses may have been misaligned with the analysis technique I attempted to use. 

Because of the nature of the grid cell signal, where heading direction should only affect the 

magnitude of the BOLD signal but not the pattern of activity across voxels, it may not be 

possible to detect evidence for grid-like representation of space in either navigation or 

imagination (although it may be detectable with larger environments; see Bellmund et al., 

2016). I did, however, find evidence for the representation of the heading direction within 

occipital lobes in both navigation and imagination, supporting the idea that the same 

mechanisms support both real navigation, retrieval of spatial memories and imagination 

(Byrne et al., 2007). Patterns of activity reflecting the similarity of starting locations were 

found in the hippocampus and the right PPA, supporting a continuous representation of space 

in this brain region, as well as areas involved in scene processing. Lastly, patterns of activity 

reflecting the similarity of goal locations was found in the left PPA, but only during retrieval 

and not at encoding, possibly reflecting the differences in cognitive processes during encoding 

and retrieval of goal locations. 
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4  Chapter 4         

 Behavioural study of the effects of category 

membership on pattern separation 

 

 

4.1 Introduction  

As I described in Chapter 1.2, a proposed function of the hippocampus is the separation of 

memory representations during encoding in order to reduce their interference and maximise 

the capacity of the memory storage network (McClelland et al., 1995; McNaughton & Morris, 

1987; O’Reilly & McClelland, 1994). This process, pattern separation, is thought to be 

performed by the DG, which is proposed to orthogonalise the inputs from the EC to the 

hippocampus (Marr, 1971; McClelland et al., 1995; Rolls, 2013). Pattern separation is 

proposed to operate specifically on similar inputs, decorrelating them and producing more 

distinct outputs to be stored in the autoassociative network of CA3 of the hippocampus 

(Leutgeb et al., 2007).  

The task most commonly used to measure pattern separation in humans is the Mnemonic 

Similarity Task (MST) in which participants are presented with a continuous sequence of items 

and asked to decide whether the item is new, old (previously seen) or similar (a ‘lure' 

perceptually similar to but not identical to an old item). Successful recognition of lure items 

within this task is used as an index of pattern separation.  Studies using these tasks have shown 

that the hippocampal signal is consistent with its ability to distinguish between original items 

and similar lures; the hippocampal responses to similar lures resemble those to novel but not 

to repeated items (Bakker et al., 2008; Kirwan et al., 2012; Kirwan & Stark, 2007; Lacy et al., 

2011; Stark et al., 2013; Yassa et al., 2010).  
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Other studies have measured the differences in patterns of activity as a proxy of pattern 

separation. Higher dissimilarity of neural activity patterns in the hippocampus has been found 

to predict later memory performance for individual items, suggesting that items with more 

distinct activity patterns are better remembered (LaRocque et al., 2013). This is consistent 

with the proposed role of pattern separation in the reduction of memory interference. 

Moreover, patients with hippocampal damage are impaired at correctly identifying novel but 

similar items, again suggesting the role of the hippocampus in distinguishing similar memories 

(Kirwan et al., 2012). Likewise, the reduced ability to differentiate lures from original items 

observed in people with Mild Cognitive Impairment was associated with DG/CA3 hyperactivity 

in fMRI, as well as reduced DG/CA3 volume (Yassa et al., 2010).  

These studies provide preliminary evidence consistent with hippocampal (and specifically the 

DG) involvement in pattern separation of similar memories. However, the MST suffers from a 

number of limitations which makes it suboptimal for testing of this function. First, most of the 

studies using MST do not include any relational aspect; i.e. the stimuli are standalone items 

and not more complex, interconnected associations. Arguably, associative processing is the 

crucial function of the hippocampus (e.g. Eichenbaum & Cohen, 2014) and so any task 

exploring one of its functions should require some form of association (Hunsaker & Kesner, 

2013; Liu, Gould, Coulson, Ward, & Howard, 2016). A study combining both imaging and 

lesion-behaviour approaches concluded that the hippocampus is involved in contextual 

memory, but not in memory for individual items (Horner et al., 2012). ‘Pure’ item memory, on 

the other hand, may be processed in other medial temporal lobe structures (e.g. perirhinal 

cortex) (Aggleton & Brown, 1999; Eichenbaum et al., 2007; Horner et al., 2012; McClelland et 

al., 1995; Rugg et al., 2012). 

Another potential issue with continuous recognition tasks such as the MST is the inability to 

distinguish between pattern separation and pattern completion, two complementary 
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processes that utilize overlapping circuits within the hippocampus, allowing for both encoding 

of novel information and retrieval of associated representations. As the former operates at 

encoding and the latter at retrieval, it is suggested that an appropriate task should be one 

where the process of interest (separation or completion) is the most appropriate strategy 

(Hunsaker & Kesner 2013; Liu et al. 2016). The 'similar-lures’ paradigms, however, require 

continuous ‘recall-to-reject’ in addition to intentional encoding, thus blurring the distinction 

between the encoding and retrieval, and so also between pattern separation and completion. 

Put simply, the ability to detect the similar lures might only reflect accurate encoding and 

retrieval of the memorised items, rather than specifically requiring a process of pattern 

separation during encoding. 

One way of dealing with this issue is the use of an incidental-learning paradigm where, for 

example, participants may judge the stimuli based on dimensions other than similarity (e.g. 

whether it is an outdoor or indoor item) while their brain activity is being measured. This has 

been successfully implemented by studies which did not require an explicit old/new/lure 

response. These studies still found evidence for pattern separation in the hippocampal 

responses to the ‘standard’ MST stimuli (Bakker et al., 2008; Lacy et al., 2011; LaRocque et al., 

2013); however, these tasks did not produce a behavioural measure that can be interpreted 

without a reference to the brain activity at the time of encoding.  

In the experiments presented in this chapter I attempted to address some of these limitations 

and thus try to design a task more appropriate for testing pattern separation. To do so, I 

broadly followed the recommendations provided by Liu et al. (2016), which outline the 

features of 'ideal' measures of pattern separation and completion. Liu et al. advise that a task 

designed to measure pattern separation should include an associative aspect and separate 

encoding and retrieval phases, as I already mentioned, as well as using stimuli which allow for 

parametric manipulation of similarity in order to look at graded changes in responses. An fMRI 
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study used different degrees of similarity of lures to 'old' items and showed a change in activity 

to even small changes in the stimulus in CA3/DG, while CA1 showed more graded changes in 

response (Lacy et al., 2011). Manipulation of the degree of similarity may therefore provide 

more insight into the conditions under which pattern separation operates. 

Based on these recommendations, I designed a task where I parametrically manipulated the 

similarity of facial stimuli. I created novel, unique facial stimuli that were equidistant to each 

other in terms of similarity (see the methods section of this chapter). For each pair of faces, I 

created morphs (linear combinations of the original faces) with different levels of similarity to 

the 'prototype' faces. Participants learnt to recognize each prototype face as either a friend 

or a foe. At retrieval, they were presented with either a previously memorized face or a morph 

and asked to identify it as either 'old' (seen during encoding; a prototype) or 'new' (a morph). 

Importantly, the participants did not know in advance that the test will involve recognition of 

old and new stimuli; rather, they were likely to assume that they will be tested on whether 

each face was a friend or a foe. This was to encourage a formation of representations that are 

more distinct for stimuli from different categories than for faces within the same category. 

This therefore resembled the 'similar-lures' paradigms as described earlier, but it included an 

associative aspect (the category to which each face belonged) and separated encoding and 

retrieval phases.  

It was hypothesized that if the pair of original faces is of the same category (e.g. both faces 

are friends or both are foes), their corresponding mnemonic representations will be more 

similar (i.e. less separated) compared to when each member of the pair is from a different 

category. This is because pattern separation should operate mainly along the dimensions that 

need to be distinguished, in this case the valence of faces. In the case of opposite-category 

pairs of stimuli, insufficient pattern separation could lead to incorrect responses and so the 

representations of such stimuli should be more distinct.  
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Although it is not clear whether pattern separation operates selectively on behaviourally 

relevant dimensions, there is some evidence suggesting that the similarity of representations 

in the hippocampus changes with the behavioural requirements of the task. For example, Aly 

and Turk-Browne (2015) showed that the same stimuli in a virtual environment resulted in 

different similarity of patterns in the hippocampus depending on whether the participants had 

to attend to geometrical features of the environment or to the painting in each virtual room. 

Tavares et al. (2015) asked participants to interact with virtual characters of varying levels of 

power and affiliation and found that the hippocampal activity correlated with the position in 

a 'social' space' defined by these two attributes. This provides some evidence that the 

hippocampal representations may be based on behaviourally-relevant dimensions and not 

exclusively on perceptual similarity (as used in the MST).  

It is predicted that, overall, correct classification of morphs as novel will decrease with 

increased similarity to the prototypes. As a result of the need to distinguish between faces of 

different categories, departures from the original 'prototype' representations in the current 

study should be more easily perceived for the opposite-category (pattern-separated) faces, 

and so their morphs should be classified as 'new' at relatively higher levels of similarity to the 

originals. Conversely, lures created from same-category pairs will need to be more dissimilar 

to the original faces to be recognised as novel. For a schematic illustration of the predicted 

pattern of results see Figure 4.1. I will present two experiments designed to explore this 

prediction, each using a slightly altered version of the task that differently manipulate the way 

the faces are encoded (individually or in relation to other faces). 
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Figure 4.1. Diagram showing the expected behavioural pattern. Opposite-valence pairs create 

a greater need for pattern separation, resulting in higher ability to identify similar lures as 

novel. The gradient on the x-axis is not the one used in the studies and is only shown for 

illustration purposes. 

 

 

4.2 Experiment 1 

 

4.2.1 Methods  

4.2.1 Participants 

23 participants were recruited through the UCL ICN Subject Database, with one excluded from 

the analyses due to failure to complete the learning phase of the experiment within an hour. 

The remaining 22 participants (13 females, 9 males) had a mean age of 26.18 (SD = 6.58) and 

normal or corrected-to-normal vision. None of the participants suffered from prosopagnosia 

(face blindness).   

4.2.2 Materials 

Basel Face Model (Paysan, Knothe, Amberg, Romdhani, & Vetter, 2009) was used to create 

original faces and their morphs. BFM is a publicly available 3D Morphable Model (3DMM; 

http://faces.cs.unibas.ch/bfm/main.php?nav=1-0&id=basel_face_model). It was created by 

training the model on 100 male and 100 female mostly European faces of people scanned 

http://faces.cs.unibas.ch/bfm/main.php?nav=1-0&id=basel_face_model
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using a coded light system. Faces were co-registered in the 3D domain by progressively fitting 

a triangulated template mesh to the surface of the face. Each face was then represented by 

an m-dimensional vector (m being the number of vertices: 160,470). Principal Component 

Analysis was used to fit the data, creating a parametric face model. New faces can be created 

by the user through linear combinations of the principal components (PCs), with N-1 PCs 

needed to create N faces.  

The faces in the BFM were additionally represented by colour/texture; however, the faces 

used in the experiments presented here were kept at constant colour parameters (i.e. the 

mean of all faces’ colour at a given vertex). The resulting face colour was that of a Caucasian 

person, reflecting the sample on which the model was trained. 

I created ten equidistant facial stimuli by manipulating the PCs used to define face model. The 

first PC was not used as it corresponded to the overall size or ’masculinity’ of the face, as 

opposed to local features, and had a disproportionate influence on the appearance of the 

stimuli. 

Faces were created by generating the coordinates of N+1 equidistant points in N-dimensional 

space defined by the PCs using the Pythagorean theorem.  Although this could not ensure that 

the faces were equally similar to each other perceptually (as some PCs may be more 

perceptually ‘meaningful’ than others), it resulted in a reasonable measure of similarity or 

distance between two faces, which in turn allowed to create morph faces (combinations of 

two faces) with the same ‘spacing’ along this distance. All faces were presented looking 

straight ahead and on a black background (see Figure 4.2). 
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Figure 4.2. Experimental stimuli. Ten prototype faces created with Basel Face Model. The 

morph faces were created by manipulating similarity between the prototype faces (see text). 

 

 

For each A-B pair of prototype faces (45 pairs in total from ten prototype faces), nine ‘morphs’ 

were generated, with the similarity to face A increasing incrementally from 10% to 90%, in 

10% intervals (and correspondingly decreasing for face B). The morphs were generated by 

calculating the PC coordinates of the points lying on a Euclidean line connecting the 

coordinates of the original face pairs (A and B) at equal intervals and creating facial stimuli 



 
 
 

93 

with these coordinates. This resulted in 405 morphs for a total of 415 facial stimuli. The stimuli 

were  presented via the Cogent 2000 toolbox in Matlab (Mathworks). 

4.2.3 Procedure 

Encoding phase  

Participants were shown one face at a time with a label ‘friend’ or ‘foe’ displayed above the 

centrally presented stimulus. Half of the faces were friends, and half were foes. The division 

of faces into the friend and foe categories was random for each participant. There were four 

encoding blocks; each face was shown once in each block in a randomized order but always 

with the same label. Each stimulus was presented for 5 seconds, preceded by a fixation cross 

(1 second) and followed by a blank screen (0.5 seconds). In total, there were 40 encoding trials 

(each of the 10 prototype faces was presented four times).  

Learning phase 

The learning phase was introduced to ensure that the participants correctly memorized the 

associations between the faces and their labels. Participants were shown one face at a time 

and asked to indicate with a key press whether the face was a friend or a foe. The face was 

presented for 3 seconds during which the response was to be made, preceded by 0.5 seconds 

fixation cross and followed by 0.5 seconds blank screen. Each response was followed by 

feedback: correct responses were indicated by a green background, and incorrect by a red 

background. During the feedback period (1 second), the correct label for a given face was also 

displayed. A lack of response was treated as an incorrect response. Each face was presented 

once within a block, and the order was randomized within each block. The learning phase 

finished when a participant correctly labelled all faces within the block (accuracy 100%) and 

so the number of blocks varied between participants. Every four blocks, participants were 

given an opportunity to take a break and continue when ready.  
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Retrieval 

During the retrieval phase, participants were shown either faces they had previously 

encountered during the two preceding phases, or morph faces. The task was to indicate 

whether the face was ‘old’ (i.e. seen previously) or ‘new’ (a morph). Participants were 

informed that the new faces were created by ‘combining pairs of the old faces’ and so 

expected that all stimuli would to some extent resemble the previously learnt faces. The 

maximum time to respond was 5 seconds. Each face was preceded by a 0.5 seconds fixation 

cross and followed by a 0.5 seconds blank screen. There were 415 trials overall (10 prototype 

faces and 405 morphs).  

 

4.2.2 Results 

On average, participants took 14 learning blocks to achieve the threshold in accuracy (SD = 12, 

range: 2-43).  

4.2.1 Comparison of original and morph faces 

First, I compared recognition performance between original faces and all morph faces, 

regardless of their composition; however, it needs to be stressed that this comparison is 

shown here as a way to summarise the data, while the main effect of interest is the distribution 

of responses and not the mean accuracy, which disregards the dimension of similarity of 

morphs to the prototype faces (see section 4.2.2.2). Accuracy (proportion correct) in correctly 

categorizing the stimuli as ‘old’ or ‘novel’ significantly differed between original and morph 

faces, t(21) = 2.98, p = .007, d = 0.64. The original faces were correctly classified more often 

than the morph faces (Figure 4.3). However, this effect is largely driven by the classification of 

morphs with high similarity to the prototypes as ‘old’ (see Figure 4.4).  

D-prime (d') scores showed that the ability to correctly classify stimuli was significantly greater 

than chance; d' = 0.56 (SD = 0.66), t(21) = 3.99, p < .001, d = 0.85, suggesting that participants 



 
 
 

95 

were able to discriminate the two types of faces, although there was also a significant bias 

towards 'old' responses as suggested by the decision criterion value, C = 0.36 (SD = 0.59), t(21) 

= 2.84, p = .010, d = 0.55.  

 

 

Figure 4.3. Average recognition accuracy between original and morph faces during the 

retrieval phase. Error bars represent +/-1SD. 

 

4.2.2 Comparing response profiles 

I tested whether the categorisation of faces as novel as a function of similarity to the original 

faces depends on whether the pair of original faces were of same or different category. I used 

Kolmogorov–Smirnov test to compare the two distributions of 'new' responses to all stimuli 

between same- and different-category faces for each participant. Each profile consisted of six 

data points corresponding to the mean probability of classifying each 'level' as novel, including 

the original faces (100% similarity) and all intermediate stages (10-50% similarity), across all 

face pairs.  The test revealed no significant difference in the two profiles, D = 0.33, p = .810 

(Figure 4.4). 
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Figure 4.4. Probability of classifying face stimuli as 'new' for original faces (A and B) and morphs 

created by combining the original faces (from 90%A-10%B to 50%A-50%B), separately for 

morphs of same-category and different-category faces.  Error bars represent +/- 1 SEM.  

 

 

4.3 Experiment 2 

The profile of responses in Experiment 1 was the same for morphs created from same- and 

different-category prototype faces. This does not support the prediction that the similarity of 

representations of pairs of faces would be lower for different-category faces, which in turn 

would lead to a correct identification of morphs as 'new' at lower 'distances' from the original 

faces.  

The accuracy results for the morph stimuli in the Experiment 1 were close to the chance level 

(around 50%) and the number of blocks needed to achieve a desirable level of performance 

was high, suggesting that the task was too difficult for participants – although the sensitivity 

measure (d') showed that participants were able, to some extent, to distinguish between old 
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and new faces. The chance-level accuracy on morph faces were largely driven by the morphs 

at the highest levels of similarity to the prototypes. However, the performance was still very 

low and the range in the number of blocks it took to achieve the required level of accuracy 

was high, which meant that some participants were exposed to the same stimuli much more 

than others. The task therefore seemed too difficult, and so it was adapted and made easier 

in order to improve the overall performance.  

First, we used a lower number of prototype faces (eight instead of ten) to make the encoding 

easier and decrease the number of trials. Second, the procedure was changed in a way to 

encourage the formation of representations of faces in relation to other representations. One 

possible explanation of the results from the Experiment 1 could be that during the encoding 

and learning phases, the face-category associations for each stimulus were learnt in isolation 

and this potentially led to emergence of equally distinct representations of prototype faces, 

regardless of whether they belonged to the same or different category. In the next 

experiment, I modified the task so that each stimulus was presented and had to be considered 

in comparison to other stimuli (see methods). This was intended to lead to pattern separation 

along the dimension relevant for the task (i.e. pattern separation of faces from the opposite 

categories). 

At encoding, all faces of the same category were presented on the screen at the same time. 

This was intended to result in formation of individual representations with relatively high 

degree of similarity within each category due to an absence of any behavioural need to 

differentiate between them. This was repeated several times. During the learning phase, two 

faces were presented at the same time and participants were asked to decide whether the 

faces were from the same or different category (regardless of which category it was). It was 

intended that through this alteration to the procedure, the need for behavioural separation 
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(or absence of it) would affect the process of formation of representations of each face, 

making the representations of face pairs with different category membership more distinct.  

These changes to number of stimuli and to the procedure were expected to make the task 

easier and to encourage formation of pattern-separated representations of different-category 

faces. Other details of stimulus creation and procedure were the same as in Experiment 1.  

 

4.3.1 Methods 

4.3.1 Participants 

22 participants were recruited through the UCL ICN Subject Database; four were excluded 

from the analysis as they failed to complete the learning phase of the experiment within an 

hour. The remaining 18 participants (10 females, 8 males) had a mean age of 26.56 (SD = 5.93) 

and had normal or corrected-to-normal vision. None of the participants suffered from 

prosopagnosia (face blindness).   

4.3.2 Materials 

Eight equidistant faces were created using the methods described in Experiment 1.  This 

resulted in 28 face-pairs, which were used to create 252 morphs for a total of 260 facial 

stimuli.  

4.3.3 Procedure 

Encoding 

Four out of the eight prototype faces were presented on a screen at a time. One group of 

faces was labelled ‘friends’ and the other one ‘foes’. The label for a given group was displayed 

above the face stimuli. Each group was presented for 15 seconds, eight times in alternating 

order, with the same faces always comprising each group but with their location on the screen 

(four corners) randomized. The display of each group was preceded by 1 second fixation cross 

and followed by 0.5 seconds blank screen. 
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Learning 

Two faces were shown on the screen, on either side of the screen. Participants were asked to 

indicate whether the faces belong to the same category (both friends or both foes) or to a 

different category. Each pair was presented for 4 seconds during which a response was 

required. Each response was followed by feedback: green background for correct response 

and red background for incorrect. Additionally, the correct label for each face was displayed 

above it for 2 seconds. Each pair of faces was presented once per block, giving 28 trials per 

block. Due to the higher number of responses required within each block in this experiment 

(28 versus 10 in Experiment 1), the threshold was lowered; the learning phase finished when 

the accuracy within a block exceeded 85% (i.e. 24/28 correct responses). 

Retrieval 

The retrieval phase was the same as in the Experiment 1 but with fewer trials (260). The task 

was again to decide whether the face was an ‘old’ face or a ‘new’ face (a morph). The 

instructions given to the participants were as in Experiment 1.  

 

4.3.2 Results 

On average, participants took 14 learning blocks to achieve the threshold in accuracy (SD = 13, 

range: 2-48).  

4.3.1 Comparison of original and morph faces 

There was a significant difference in the recognition accuracy between the original and morph 

faces, t(17) = 4.92, p < .001, d = 1.16 (Figure 4.5). Here again, the effect was driven by an 

incorrect classification of morphs that were highly similar to the prototype faces (see Figure 

4.6).  
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The d-prime showed that the correct classification was above chance level, d' = 0.48 (SD = 

0.40), t(17) = 5.06, p < .001, d = 1.19. Again, there was a bias towards 'old' responses, C = 0.41 

(SD = 0.35), t(17) = 5.03, p < .001, d = 1.19.  

 

 

Figure 4.5. Average recognition accuracy between original and morph faces during the 

retrieval phase. Error bars represent +/-1SD. 

 

 

4.3.2 Comparing response profiles 

Finally, I compared the profiles of responses. As in Experiment 1, I calculated the average 

probability of classifying the stimuli as novel for all pairs of original faces and their morphs, 

proceeding from 100% face A to 50A-50%B in increment of 10%. Again, the Kolmogorov-

Smirnov test revealed that the profile of responses did not differ between stimuli created from 

same-category and different-category faces, D = 0.17, p = 1 (Figure 4.6).  
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Figure 4.6. Probability of classifying face stimuli as 'new' for original faces (A and B) and morphs 

created by combining the original faces (from 90%A10%B to 10%A90%B), separately for 

morphs of same-category and different-category faces.  Error bars represent +/- 1 SEM.  

 

 

 

4.4 Discussion 

In these two experiments, I attempted to manipulate the need for pattern separation by 

inducing the need to distinguish between some pairs of faces but not others. The faces were 

categorised in terms of valence: participants learnt that half of the stimuli were friends, and 

half were foes. I hypothesised that pattern separation would be increased along the 

behaviourally-relevant dimension (i.e. the dimension which had to be distinguished: the 

category membership) and, as a result, different-category stimuli will be represented as more 

distinct to each other than stimuli within each category. However, I found no evidence for this. 

The ability to correctly recognize lures showed the same distribution as a function of similarity 
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to the original faces regardless of whether the two prototype faces were of the same or 

different category. However, it needs to be noted that the task was probably too difficult 

(despite efforts to make it easier in Experiment 2), and so any differences could have been 

masked by the floor effect – although the d-prime sensitivity measure suggested that 'old' and 

'new' stimuli were distinguishable at an above-chance level. 

The task used at retrieval was a similar-lures task where lures were morph faces created by 

linear combination of pairs of original (prototype) faces. As previous studies have shown (Lacy 

et al., 2011; Norman & O’Reilly, 2003), the ability to recognize lures as novel decreases as a 

function of similarity to the original stimulus. I hypothesised that this decrease will be less 

extreme for 'pattern-separated' pairs of stimuli, i.e. pairs of faces from different categories, 

due to higher distinctiveness of different-category representations. Contrary to this 

prediction, lures created from different-category faces were not recognized as novel any more 

readily than morphs of same-category faces.  

There are multiple possible reasons for this pattern of results. The predictions were built on a 

number of assumptions that need to be addressed. First, it was assumed that different 

category membership would lead to higher pattern separation. The process of pattern 

separation is proposed to originate from the need to distinguish between representations in 

order to avoid their interference. Therefore, if two stimuli lead to different outcomes, their 

representations should diverge over learning (Gluck & Myers, 1993). It was therefore assumed 

that the stimuli are likely to be differentiated based on their category membership. 

There is extensive evidence suggesting that category training leads to better perceptual 

discriminability along the category-relevant dimension, a phenomenon called "acquired 

distinctiveness" (Soto & Ashby, 2015; see Goldstone & Hendrickson, 2010 for review). 

However, in these studies the categories are related to the perceptual features that define 
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them. Here, on the other hand, categories were arbitrary and the prototype faces assumed to 

be equally similar to one another regardless of category membership.  

Within memory research, in most studies on pattern separation it is the similarity of 

representations that is assumed to induce interference. Here, on the other hand, similarity 

(i.e. belonging to the same category) is not the factor that could impair performance. Quite 

the opposite, being unable to distinguish between items from the same category would not 

affect one's success on the task in the learning phase, especially in the Experiment 2 in which 

participants only had to recognize whether the two faces are from the same or different 

category, without specifying which category it is. It was therefore the stimuli that differed in 

their behavioural 'meaning' that were intended to require increased pattern separation. It is 

not clear how this could affect pattern separation, and if separation of categories at all 

depends on this hippocampal process and not, for example, on the MTL cortex which extract 

similarity-related information for category building (Huffman & Stark, 2014).  

It has also been argued that pattern separation and other hippocampal mechanisms do not 

operate on representations of individual items at all (Horner et al., 2012). Rats with a lesioned 

DG were only found impaired at item-context but not item memory (Dees & Kesner, 2013). 

However, the already mentioned paradigms using perceptually similar lures do suggest that 

pattern separation may also operate on representations without any associative aspect 

(Bakker et al., 2008; Kirwan et al., 2012; Kirwan & Stark, 2007; Lacy et al., 2011; Stark et al., 

2013; Yassa et al., 2010). 

A study with a relatively similar task to the one used in the current studies also found no 

evidence for pattern separation based on a behavioural need for discrimination (Favila, 

Chanales, & Kuhl, 2016). Participants were presented with pairs of highly similar stimuli (e.g. 

pictures of two similar bridges), which could be associated with either the same face, two 

different faces, or nothing. Like in the current experiments, it was assumed that only the 
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representations of pairs linked to the two different faces would need to be pattern-separated. 

They found increased separation of patterns in the hippocampus as a result of pairing with 

facial stimuli (as compared to the no-face condition) but there was no difference between 

pairs associated with same or different faces. The authors argue that the fact that 

differentiation occurred also for same-outcome stimuli could be explained if presentation of 

one such stimulus would lead to a reactivation of the other, causing the hippocampus to 

resolve this competition by eliminating overlapping features, making the representations 

more distinct as a result. It is not clear whether this could explain the current results, especially 

as here groups consisted of more than two stimuli.   

The second assumption for our prediction was that higher pattern separation of 

representations of the original faces would affect the ability to correctly recognize morphs as 

different to those faces. However, it is only speculative whether more distinct patterns would 

affect the intermediate stages between the learnt stimuli.  

The proposal that memories are stored as discrete attractors (Marr, 1971; Hopfield, 1982; 

Wills, Lever, Cacucci, Burgess, & Keefe, 2005) implies that when moving in between the 

representations, at some point the network will abruptly change from one attractor to 

another. On the other hand, using MVPA Bonnici et al. (2012) found that when making a choice 

of whether the stimulus corresponds to one scene or another, the neural representations of 

morphs of these scenes were similar to other morphs but not to the original scenes, suggesting 

that another 'morph' representation emerged in the hippocampus. The authors propose that 

this argues against the idea of discrete attractors and instead suggests that the ensembles in 

the hippocampus can occupy intermediate configurations, although they do not provide any 

evidence that these representations are in fact 'intermediate' (and not fully distinct from the 

originals). In any case, the current task did not require a binary choice between the two 

original faces but rather relied on the ability to 'resist' the pull of the attractor of the learnt 



 
 
 

105 

representation in order to recognize a lure as novel, and so the requirements of the two tasks 

make them difficult to compare.  

If morphs are represented as intermediate network configuration, as Bonnici et al. suggest, 

the similarity of the original representations would likely play a role in how the morphs are 

perceived. However, it would still be unclear how this could affect the recognition of morphs. 

On one side, 'stronger' (more distinct) representations of the original faces may improve the 

ability to recognize morphs as novel because these representations would be more defined 

and so easier to distinguish from similar but non-identical ones – as was the prediction of the 

current study. On the other hand, however, defined representations may decrease accuracy 

on morph trials because of the strong 'pull' towards the original attractor state, which would 

result in pattern completion to that representations even at lower levels of similarity. 

However, the experiments presented here did not find evidence for either of these two 

possibilities as both same- and different-category pairs showed the same profile of responses 

(although again, the floor effect might have masked any differences between the two 

conditions). 

The very high range of learning blocks that was needed by the participants to achieve the 

appropriate level of performance was also very high, suggesting very pronounced individual 

differences in memory or in motivation to perform well. Although inter-individual variation in 

memory is to be expected, the fact that the participants who took the longest to learn were 

also the ones most exposed to the experimental stimuli likely affected the pattern of results 

in unpredictable way. Additionally, the stimuli were equidistant in terms of the underlying 

principal components but not necessarily in terms of perceptual characteristics. It is possible 

that some were more readily recognised as members of friend or foe categories; as the order 

of presentation was random, it could have introduced bias for some participants. A pseudo-

random presentation could have alleviated this limitation.  
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Although this task was designed to address some of the limitations of previously used tasks, 

some of its aspects may still have been suboptimal. For example, although associative 

information was used at encoding in order to engage hippocampal processing, at retrieval this 

information was not explicitly used. This, retrospectively, goes against the original intention 

to use a 'hippocampal' task as opposed to one that only relies on recognition memory and 

which may be supported by another part of the memory system. The retrieval task involved a 

recognition judgement which may be supported by the MTL cortex rather than the 

hippocampus (Norman & O’Reilly, 2003) 

Additionally, I intended to separate the encoding from retrieval in order to maximise the 

probability that the correct mechanism (pattern separation or completion) will be engaged 

(Liu et al., 2016). However, because none of the 'new' faces were fully unique, it is possible 

that the continuous exposure to morphs over retrieval trials somehow have changed the 

original representations of the memorized faces over the course of retrieval blocks. This might 

have affected the strength or precise features of the learnt representations. This was made 

even more likely by the fact that the morphs were presented much more frequently than the 

original faces. This may explain why the performance on the original faces was much lower 

than 100% despite the fact that learning continued until a consistently high level of 

performance was achieved and participants were assumed to have memorized the faces.  

4.4.1 Conclusions 

Overall, it is unclear whether the results reflected incorrect assumptions about the nature of 

pattern separation of different-category stimuli and how it affects categorization of 

intermediate stimuli, or whether the task was inappropriate and incapable of eliciting 

behaviours consistent with these mechanisms, either because of the nature of the stimuli or 

the floor effect in performance. In the next study in this thesis, I will present another task with 

a new design that addressed some of the issues described in this discussion.  
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5  Chapter 5       

 Behavioural evidence for pattern separation in 

human episodic memory 

 

 

5.1 Introduction 

In this chapter I took a different approach to look at how pattern separation is manifested in 

behaviour. I adapted a task used previously to show evidence for pattern completion (Bisby, 

Horner, Bush, & Burgess, 2018; Horner et al., 2015; Horner & Burgess, 2013, 2014; Trinkler, 

King, Spiers, & Burgess, 2006). This task is particularly suitable for investigating episodic 

memory as it makes use of the associative nature of hippocampal representations to look at 

the underlying mechanisms of memory formation. It uses the coherence of within-event 

associations as an index of pattern completion, a measure which I adapted to look for evidence 

of pattern separation of representations of similar events, as will be explained in more detail 

below.  

The flexibility of using the same measure to assess both mechanisms was made possible by 

the complementary and opposing roles of pattern completion and separation; while the 

elements of each event should be bound together into coherent narratives, the patterns 

associated with different events should be sufficiently different to prevent interference.  

As already explained in detail in Chapter 1, the binding of event elements into a single 

representation (i.e. an event engram; Tulving 1985) is thought to be performed by the 

hippocampus, which acts as a convergence zone, binding items and their context together 

(Cohen & Eichenbaum, 1993; Davachi, 2006; Eichenbaum et al., 2007; O’Keefe & Nadel, 1978). 

This mechanism underlies the holistic nature of episodic memory; when retrieving one aspect 
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of a memory, other elements tend to be recalled as well.  It is proposed that through the 

process of pattern completion to a previously stored event representation, all elements of an 

event can be retrieved from a partial cue, such as one element of that event (Marr, 1971). 

The dependency measure mentioned above explored the holistic nature of episodic 

memories. The properties of memory engrams imply that performance in retrievals of their 

constituent elements should be statistically more dependent than for retrievals of elements 

from different episodes. In a series of studies, Horner and colleagues tested memory for 

imagined person-object-location events. At recall, participants were cued with one element 

from the event (e.g. a person) and asked to recall either the location or the object associated 

with it. The probability of retrieving any given association was found to depend on the 

probability of retrieving other associations from the same event, suggesting that the 

memories for the events were stored as coherent wholes and not a series of independent 

pairwise associations (Horner and Burgess, 2013, 2014; Horner et al., 2015; Bisby et al., 2018). 

At retrieval, a reinstatement of cortical activity associated with all elements was also observed, 

including that of the item which did not have to be recalled on that trial, and the degree of 

reinstatement was correlated with the hippocampal activity (Horner et al., 2015), which is 

consistent with the pattern completion account.  

Here I adapted this measure to assess how similar events are encoded. As in the original 

studies, in the current study participants were presented with three-element episodes 

(person, location and object). The episodes were either unique (unrelated to any other 

episodes) or had one element in common with one other event (e.g. the same person 

appeared in two events). This created pairs of overlapping events of the type assumed to 

require successful pattern separation in order not to interfere with each other. For instance, 

the same person could be associated with a different set of locations and objects – this is akin 

to everyday memories where some elements can be common to more than one event.  
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As the role of pattern separation is to reduce the interference of overlapping memories by 

making their representations less similar, I hypothesized that the statistical dependency in 

retrieval of elements from these overlapping memories will be even lower than for non-

overlapping (unrelated) memories. Because representations of unrelated memories already 

produce sufficiently different neural patterns, their associated patterns do not need to be 

actively orthogonalized in this way (Leutgeb et al., 2007). Therefore, I hypothesized that (i) the 

recall of associations within each event should be highly dependent, as shown in the previous 

studies (Horner and Burgess, 2013, 2014; Horner et al., 2015) due to the holistic 

representation of episodic memories; (ii) the recall of associations from unrelated events 

should be independent; and (iii) the recall of associations from paired overlapping events 

should show lower dependency than the unrelated events, due to the presence of active 

pattern separation of similar events.   

 

5.2 Methods 

5.2.1 Participants 

39 participants were recruited from the University College London student population. Seven 

participants were excluded due to poor overall task accuracy (below 25%) and two due to too 

high accuracy (above 90%). The exclusion criteria was necessary as with very good or very 

poor performance, the low variability in accuracy made the calculations of the dependency 

unreliable. The remaining 30 participants (25 females, 5 males) had a mean age of 25.61 (SD 

= 6.22), had normal or corrected-to-normal vision, were fluent English speakers and were 

familiar with Western culture including major celebrities and politicians (self-reported). The 

study was approved by the UCL Research Ethics Committee and all participants provided 

written informed consent prior to taking part in the study. Following completion of the test, 

participants were debriefed and paid for their time. 
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5.2.2 Materials 

Word stimuli included 40 famous people (e.g. Tom Cruise, Barack Obama), 40 locations (e.g. 

supermarket, kitchen) and 40 objects (e.g. necklace, bottle). Stimuli were combined to create 

45 three-element events with each event consisting of a person, location and object. Fifteen 

of these events were unique from each other in that they shared no common elements (i.e. 

non-overlapping events). The remaining 30 events were combined to create 15 pairs of 

‘overlapping’ events which shared one common element (Figure 5.1A). For overlapping 

events, the common element (person, location or object) was counterbalanced across event 

pairs. Novel randomized events were created for each participant. The stimuli for the task 

were presented via the Cogent 2000 toolbox in Matlab. 

5.2.3 Procedure 

The experiment consisted of a study phase and a test phase. During the study phase, 

participants encoded a total of 45 event triplets with each comprising a person, location and 

object. Each trial began with a 0.5 seconds fixation period, after which participants were 

presented with one of the event triplets (Figure 5.1B). All three elements remained on the 

screen for 8 seconds and participants were instructed to imagine all event elements 

interacting together as vividly as possible. The screen location of each element type (person, 

location, object) was randomized across encoding trials. The trial ended with a blank screen 

presented for 1.5 seconds. Events were only shown once during the study phase. The pairs of 

overlapping events had at least five trials gap between them.   

At test, associative accuracy was assessed using a six alternative forced choice test. On each 

trial, following a 0.5 seconds fixation period, participants were presented with one of the 

previously encoded items at the top of the screen (cue) and six possible ‘target’ items were 

presented below. They were then instructed to decide which of the targets had previously 

appeared in the same event as the cue. All targets on a single test trial were of the same 
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category. For example, if cueing with the person to retrieve the associated location, all six 

options were of locations. Participants were given 8 seconds to select their option via button 

press. All possible cue-target pairs were tested in both directions (e.g., cue with the person to 

retrieve the location, cue with the location to retrieve the person), giving a total of 270 trials. 

The order of trials was randomized. Each trial terminated with a 1.5 seconds blank screen. 

 

A 

 

B 

 

Figure 5.1. Experimental stimuli and an example of a trial sequence. Experimental stimuli: an 

example of the associative structure of two matched, overlapping events where the object is 

the common element (i.e. the same object appears in both events). Non-overlapping events 

consisted of the same elements but shared no elements with other events. (B) Example of the 

trial sequence and timing for the study phase (top) and the test phase (bottom).  
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5.3 Analyses 

5.3.1 Analysis of within-event dependency 

I assessed the statistical dependency in retrieval of different associations from the same event, 

for instance the probability of retrieving both a person and a location when cued by an object 

(see Horner & Burgess, 2013; 2014).  

The dependency measure reflected how often these associations are retrieved either both 

correctly or both incorrectly. I created 2 x 2 contingency tables for each participant. For within-

event dependency, the contingency tables were based on (i) the probability of retrieving two 

items from the same event when cued by the remaining item from that event (AbAc; e.g. 

retrieving either a person ‘b’ or a location ‘c’ when cued by an object ‘A’), and (ii) the 

probability of retrieving an item when cued by the two remaining items from the event (BaCa; 

e.g. retrieving a person ‘a’ when cued either by a location ‘B’ or an object ‘C’).  

This measure was then compared to an independent model and a dependent model 

calculated individually for each participant. The models estimated the level of dependency 

based on the average performance and level of guessing. The independent model assumed 

that the retrieval of any two elements from the same event is completely independent and is 

contingent only on the overall accuracy level. It was calculated by multiplying the probabilities 

of separately retrieving two elements from the categories in question. 

The dependent model additionally adjusted the predicted level of dependency by an event-

specific ‘episodic factor’ – a measure of the average performance on a given event (across all 

retrieval trials for that event) relative to the overall performance. The probability of retrieving 

any association from an event was weighted by the episodic factor for that event. The 

dependent model also accounted for the level of guessing; the episodic factor affected the 

probability of intentional retrieval but not the probability of correct guessing, which is 

assumed to be independent.  
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For each participant, I calculated the measure of dependency as well as the independent and 

dependent models separately for events of non-overlapping and overlapping types. This was 

to check whether both types are retrieved as complete events (i.e. both show high within-

event dependency).  

 

Table 5.1. Contingency tables for independent and dependent models giving the frequency 

(over events) of the four combinations of correct or incorrect retrievals of elements B and C 

when cued with element A. 

 Retrieval of element (B) 

Retrieval of element (C) Correct (PAB) Incorrect (1-PAB) 

Independent Model   

Correct (PAC) ∑
 i=1

N
PABPAC

 ∑
 i=1

N
PAC (1 - PAB) 

Incorrect (1-PAC) ∑
 i=1

N
PAB (1 - PAC) ∑

 i=1

N
(1 - PAB)(1 - PAC) 

Dependent Model  

Correct (PAC) ∑
 i=1

N
Ṕi

ABṔi
AC

 ∑
 i=1

N
Ṕi

AC (1 - Ṕi
AB) 

Incorrect (1-PAC) ∑
i=1

N
Ṕi

AB (1 - Ṕi
AC) ∑

 i=1

N
(1 - Ṕi

AB)(1 - Ṕi
AC) 

Dependent model replaces the probability of correctly recalling B when cued with A (across 

all events; PAB) with Ṕi
AB = Ei

AB (PAB – PG/c) + PG/c where the episodic factor Ei
AB reflects 

performance on event i relative to other events (based on retrievals other than B and C 

cued by A), PG is the probability of guessing, and c = 6 is the number of choices in the test 

trial. PAC is replaced similarly. The dependency model equates to the independent model if 

the episodic factors are set to 1. 
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5.3.2 Analysis of across-events dependency 

The contingency tables for dependencies across pairs of overlapping events were based on 

the probability of correctly or incorrectly retrieving associations from both events. Unlike in 

the ‘standard’ within-event dependency described above, where both compared associations 

(e.g. Ab and Ac) came from the same event, each association came from a different event 

from a pair (event1 and event2). Here the contingency tables were based on (i) how the 

probability of retrieving a specific association depends on the probability of retrieving the 

same type of association from the corresponding paired event (Ab1Ab2), (ii) how the retrieval 

of an item from one event depends on the retrieval of a different-type item from the 

corresponding event when cued by the same-type items (Ab1Ac2), and (iii) the probability of 

retrieval of the same-type items when cued by different-type items in each event (Ba1Ca2).  

Importantly, for the calculation of the dependency measure and models I excluded the trials 

in which the overlapping element was a cue, as these types of trials had two possible correct 

answers, and potentially a retrieval of the incorrect pair could interfere with the retrieval of 

the appropriate item. 

All analyses were performed using custom written scripts in Matlab (Mathworks). 

 

 

5.4 Results 

5.4.1 Associative accuracy 

Overall accuracy across all trials was good (66.42%, SD = 17.66) and well above chance (chance 

would be 16.7% given the six test options). Analysis of performance across cue-type (collapsed 

across retrieval-type) using a 2 x 3 repeated-measures ANOVA with factors of event type 
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(overlapping, non-overlapping) and cue-type (person, location, object) showed a significant 

main effect of event type (F(1,29) = 13.41, p = .001, 2 = 0.32) with slightly higher accuracy in 

overlapping events. There was no significant main effect of cue type (F(2, 58) = 2.56, p = .09, 

2= 0.08) nor a cue-type x event type interaction (F(2,58) = 0.07, p = .93, 2 < 0.01).  A similar 

2 x 3 ANOVA on retrieval-type (collapsed across cue-type) showed no main effect of retrieved 

type (F(2,58) = 2.31, p = .11, 2 = 0.07). The main effect of event was the same as in the cue-

type analysis. There was no interaction between retrieved type and event type (F(2,58) = 1.96, 

p = .15, 2 = 0.06) (Table 5.2). 

 

 

Table 5.2. Proportion correct (SD) for associative memory performance across non-overlapping 

and overlapping events for each cue and retrieval type. 

 

 Retrieval type 

Cue type 

Person Location Object 

Non-Overlap Overlap Non-Overlap Overlap Non-Overlap Overlap 

Person n/a .63 (.17) .68 (.21) .65 (.15) .70 (.20) 

Location .64 (.19) .68 (.22) n/a .59 (.19) .66 (.23) 

Object .62 (.18) .72 (.22) .62 (.20) .64 (.24) n/a 
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5.4.2 Interference 

First, I looked at whether performance on the overlapping pairs of events is related in order 

to see whether memory for one of the events interferes with the memory for the other. 

Negative correlation would be a sign of interference. I calculated a correlation between 

performance accuracy on retrieval trials of overlapping events and averaged them across all 

pairs. I then compared the average correlation scores across all participants against zero. The 

average correlation was negative, consistent with interference (r = -0.10), however the trend 

did not reach significance, t(29) = 1.83, p = .078, d = 0.33. The average correlations for 

overlapping events were, however, significantly lower than for unrelated events, t(29) = 2.09, 

p = .045, d = 0.38.  The average correlation between unrelated events were close to zero (r = 

.01), t(29) = 1.46, p = 0.156, d = 0.27.  

To investigate whether the order of presentation of the overlapping events affects accuracy, 

I compared the average accuracy between first and second event for the overlapping pairs of 

events. I found no difference in performance, t(29) = 1.37, p = .182, d = 0.25. The dependency 

results described below therefore cannot be attributed to effects of prospective or 

retrospective interference of overlapping memories on retrieval performance. 

 

5.4.3 Within-events dependency 

As described above, dependency was assessed by constructing contingency tables for 

retrieving two elements when cued with the third element, and retrieving one element when 

cued by the other two elements across retrieval trials. I then calculated within-event 

dependency (D) in the data by taking the proportion of events where elements were both 

correctly or incorrectly retrieved. This dependency was then compared to the amount of 

dependency predicted if retrievals from the same event were completely independent (Di) or 

dependent (Dd; see Methods for more information on how the models were constructed). I 
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compared dependency in the data with both independent and dependent models separately 

for non-overlapping and overlapping events. A 2 x 3 repeated-measures ANOVA with factors 

of event type (non-overlapping, overlapping) and dependency measure (D, Di, Dd) showed a 

significant interaction between event type and dependency (F(1.52,9.82) = 9.82, p = .001, 2 

= 0.25; Greenhouse-Geisser corrected).  

To further assess the interaction, I first analysed overlapping and non-overlapping events 

separately, comparing the data to independent and dependent models. For non-overlapping 

events, I found greater within-event dependency in the data compared to the independent 

model (D>Di, t(29) = 7.41, p < .001, d = 1.33) and lower than the dependent model (D<Dd, 

t(29) = 4.06, p < .001, d = 0.75). Similarly for overlapping events, dependency in the data was 

greater than the independent model (D>Di, t(29) = 9.00, p < .001, d = 1.66) and was lower 

than the dependent model (D<Dd, t(29) = 10.46, p < .001, d = 1.67) (Figure 5.2). 

I next performed a direct comparison of dependency between non-overlapping and 

overlapping events. There was no difference between non-overlapping and overlapping 

events in the amount of dependency relative to the independent model (D-Di, t(29) = 1.87, p 

= .077, d = 0.34). A comparison of dependency relative to the dependent model showed a 

significant difference between events (D-Dd, t(29) = 3.04, p = .005, d = 0.55) with less 

dependency in the data compared to the dependent model for overlapping events. 

Importantly, both non-overlapping and overlapping events showed greater dependency in the 

data than predicted by the independent model.  
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Figure 5.2.  Mean dependency for the observed data, the independent model and the 

dependent model for the within-event analysis. The error bars represent +/- 1 SEM. 

* p < .001 

 

 

5.4.4 Across-events dependency 

As I have proposed, successful pattern separation between events that share a common 

element would likely reduce dependency due to the decorrelation of neural representations 

of those events. To examine this prediction, I examined the amount of dependency across 

matched overlapping events that shared a common element (i.e. whether retrieval success of 

an element from one event is dependent on the retrieval success of an element from an 

overlapping event) and compared this to the amount of dependency across non-overlapping 

events.  

I calculated dependency in the data and corresponding independent and dependent models 

across pairs of matched, overlapping events (see Methods for how this was achieved).  

First, I looked at whether dependency in retrievals from overlapping events differed from non-

overlapping events. I ran a 2 x 3 repeated-measures ANOVA with factors event type (non-

overlapping, overlapping) and dependency measure (D, Di, Dd). It is important to note that 

the measures used here are the within-event dependency measures for the non-overlapping 
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events and the across-events dependency measures for the overlapping events. As expected 

I found a significant interaction (F(1.46,42.24) = 37.91, p < .001,  2 = 0.57, Greenhouse-

Geisser corrected).  

To test the hypothesis that the overlap leads to a lowered dependency across matched events, 

I compared the amount of across-event dependency to its independent model for 

overlapping, matched events. I tested whether the retrieval of associations from one event 

depends on the retrieval of associations from its matched event. As predicted, this across-

events dependency was lower than the independent model (D<Di, t(29) = 2.70, p = .011, d = 

0.48), and lower than the dependent model (D<Dd, t(29) = 6.48, p < .001, d = 1.17). This 

pattern is different to the one observed in the within-events dependency comparisons where 

the dependency in data was higher than predicted by the independent model. The lower than 

baseline (independent model) dependency supports the hypothesis that the representations 

of similar events are actively separated. 

Across participants, the level of relative dependency also was highly correlated with the 

interference measure, i.e. the correlation between accuracy on overlapping pairs of events (r 

= .80, p < .001). 

Next, I directly compared the dependency between non-overlapping and overlapping events. 

The level of dependency relative to the independent model was lower for the overlapping 

events (D-Di, t(29) = 6.90, p < .001, d = 1.26). A comparison of dependency relative to the 

dependent model also showed a significant difference between events (D-Dd, t(29) = 4.66, p 

< .001, d = 0.85), with lower dependency as compared to the dependent model in the 

overlapping events.  

Since I didn’t find any evidence that accuracy on the pairs of overlapping events depends on 

the order in which they are shown (see comparison between first and second event above), 

the lowered dependency reported here cannot be explained by effects of pro- or retrospective 
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interference on retrieval performance for the overlapping representations. In other words, 

the dependency results cannot be simply attributed to the loss of the representation of one 

event as a result of subsequent encoding of its overlapping pair. 

 

5.4.5 Comparison of across-events relative dependencies  

To directly compare dependency across conditions, I first calculated a difference score 

between each participant’s dependency and the independent model (D - Di). This reflected a 

relative dependency level; positive scores indicated higher dependency level than what was 

predicted by the average performance taken as independent, and vice versa.  

Crucially, I wanted to see whether the relative dependency score for the overlapping pairs of 

events differed from unrelated pairs. If matched events are stored more independently than 

what would be expected from unrelated memories, this would provide evidence for pattern 

separation of overlapping episodic memories. To test this, I randomly paired unrelated events 

(separately for events of non-overlapping and overlapping type). Unrelated events of 

overlapping type were the events that did have a matched pair, but here were paired up with 

another (unrelated) event to calculate the across-events dependency. For example, if event1 

overlapped with event2, in this analysis it could be randomly paired with any other event from 

the set of overlapping paired events (e.g. event3) but not with the event2. This created pairs 

of events that were of unrelated, overlapping type with no shared elements (in contrast to 

pairs of matched, overlapping events which shared one common element).  

I then calculated the across-events dependency measures for these pairs in the same way as 

for the matched pairs of events (see above). This was to ensure that the lowered dependency 

is not a result of the event type, but rather that it is specific to pairs of matched events with a 

common element. In other words, I wanted to show that it is specifically the need for active 

separation of two related episodes that leads to their ‘negative’ relative dependency.  
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As each analysis used a randomly created set of unrelated event pairs, the specific pairs 

selected in any given analysis could have affected the results. I therefore ran each analysis a 

1,000 times and used a Brown’s method (i.e. an extension to the Fisher’s combined probability 

test; Brown 1975; Poole et al. 2016) which provides a combined p-value for non-independent 

tests.  

Each analysis compared the relative dependency in the matched, overlapping pairs (which was 

the same in all 1,000 analyses, as these pairs were not randomly selected) to the relative 

dependency in the same number of unrelated pairs of events, with different unrelated pairs 

selected each time. 

As would be predicted by a pattern separation account, the matched overlapping events 

showed lower relative dependency than unrelated events of non-overlapping type, p < .008, 

and of overlapping type, p < .006 (Figure 5.3). The two types of unrelated events were not 

significantly different from each other, p = .532, and neither was significantly different from 

their baseline, i.e. the independent model (p = .497 for unrelated non-overlapping events and 

p = .475 for unrelated overlapping events; Figure 5.3).  
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Figure 5.3. Mean across-event dependency for pairs of unrelated events (first set of three bars: 

unrelated, non-overlapping events; second set of three bars: unrelated, overlapping events) 

and pairs of matched, overlapping events (third set of three bars). The data for unrelated pairs 

was obtained by randomly selecting pairs of unrelated events (separately for overlapping and 

non-overlapping events) and calculating the dependency and the models, and repeating this 

procedure 1,000 times, each time with a different set of random pairs. The p-values were 

obtained using Brown’s method for combining tests of significance (Brown, 1975). The bars 

represent the mean relative dependency, and the error bars represent the mean standard error 

across the 1,000 tests (unrelated events) or +/- 1 standard error (matched events). 

* p < .01; ** p < .001. 

 

 

 

5.5 Discussion 

Computational models of hippocampal function propose that similar memories are stored as 

distinct non-overlapping representations through a process of pattern separation (e.g. Chavlis 

& Poirazi, 2017; McClelland, McNaughton, & O’Reilly, 1995; O’Reilly & McClelland, 1994; Rolls, 

2013). To test this hypothesis, I examined whether retrievals across events that share a 

common element would be represented as more distinct. The lower correlation between 

average accuracy for pairs of overlapping events than for unrelated events suggested some 

level of interference. A closer look at the data revealed that this interference effect may be 
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underlay by the need to separate the representations of similar events on one hand, and 

binding together of their elements on the other. I show that, whilst retrievals from within the 

same event show dependency, retrievals from overlapping events were 'negatively' 

dependent, i.e. they showed even lower dependency than would be expected from unrelated 

events. This supports the proposal that pattern separation serves to decorrelate similar inputs 

by transforming their representations into orthogonal patterns (e.g. McClelland et al., 1995; 

O’Reilly & McClelland, 1994; Treves & Rolls, 1992).  

Our results are consistent with the view that events are stored as single coherent 

representations and retrieved in a holistic manner. In accordance with previous studies, I 

found greater dependency in the retrieval of elements from the same event (Bisby et al., 2018; 

Horner et al., 2015; Horner & Burgess, 2013, 2014), supporting the holistic way in which 

episodic memories are stored and retrieved (Tulving, 1983). I assume that within-event 

dependency reflects the associative structure in which event elements are bound together as 

a single representation. When cued by a single event element all associated within-event 

elements would be reinstated. This is consistent with computation models of hippocampal 

pattern completion and the way in which event elements are stored in an autoassociative 

network in which presentation of a partial cue will cause reinstatement of all associated event 

elements (Hopfield, 1982; Marr, 1971; McClelland et al., 1995). Neuroimaging evidence, using 

a similar task and dependency measure as I used here, is also complementary to our results in 

suggesting that within-event elements are reinstated in neocortical areas and this 

reinstatement is supported by the hippocampus (Horner et al., 2015).  

Within-event dependency was also seen in events even when they overlapped with other 

events (i.e. shared a common element). This finding is important as it suggests that pattern 

separation affects specifically the representations that may interfere with each other due to 

their similarity (i.e. representations of overlapping events), while the constituent elements of 
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these events, which needs to be bound into coherent narratives, are not separated but instead 

show pattern completion. This is consistent with findings from rats which showed that the 

hippocampus binds information encountered in the same context together while separating 

events from different contexts (McKenzie et al., 2014).  

This supports the proposed role of the different hippocampal mechanisms in storage of 

episodic memories (Marr, 1971; McClelland et al., 1995). The autoassociative network of CA3 

is proposed to store learnt associations in its recurrent connections, which allows for linking 

all elements of a memory together and for their reinstatement through pattern completion at 

retrieval. When the events to be remembered are similar, the dentate gyrus decorrelates their 

representations by 'selecting' a different population of CA3 neurons for their storage (Rolls, 

2013; Treves et al., 2008). In this way, the overlapping representations are pattern separated 

while their constituent elements are bound together. This shows the complementary 

functions of pattern separation and completion in supporting episodic memory. 

Because similar memories are more likely to interfere with each other, it may be that similar 

memories will have less similar representations than unrelated memories do on average. As 

the neural patterns associated with different stored memories in an autoassociative network 

become more similar, the retrieval accuracy falls (Hopfield, 1982; Treves & Rolls, 1992), and 

so there is a need for a mechanism that actively decorrelates similar inputs to avoid 

subsequent interference, driving their respective representations further apart.  

This is what may underlie the differences in across-event dependency, the extent to which 

remembering an association from one event depends on the retrieval of associations from 

another event. If events are represented as separate engrams, we would expect no 

dependency in the retrieval of their respective associations. This prediction was reflected in 

the independent models which assumed that the amount of dependency corresponds simply 

to the average probability of correctly recalling any association, based on performance across 
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trials. For unrelated pairs of events this was indeed found to be the case, suggesting their 

storage as separate memory engrams.  

Interestingly and crucially for our hypothesis, retrievals across matched overlapping events 

(i.e. events with one element in common) showed a level of dependency that was significantly 

lower than predicted by the independent model. This may be because the hippocampal 

representations of these events are actually less similar to each other than memory 

representations are on average due to the need to actively reduce their similarity and, 

consequently, reduce their interference. Representations reflecting commonalities across 

stimuli may be stored elsewhere (e.g. the MTL; McClelland, McNaughton and O’Reilly, 1995), 

but the current task was designed to tap specifically into the hippocampal type of processing 

(see below). The role of pattern separation may be therefore to accentuate the differences 

between similar input patterns, as distinct memories already produce sufficiently different 

output and do not suffer from interference (Lacy et al., 2011; Leutgeb et al., 2007; 

Vazdarjanova & Guzowski, 2004). This leads to even lower dependency than what is observed 

across independent events and what is predicted by the independent model.  

For unrelated pairs of events, the results were the same regardless of whether these events 

overlapped with another event or not – i.e., the across-event dependency was the same for 

unrelated, non-overlapping events and for unrelated, overlapping events. Both showed higher 

dependency than the matched events, and their dependency was no different to the 

independent model. The finding that the dependency was 'negative' only for the matched, 

overlapping pairs but not for unrelated, overlapping events suggests that the results are not 

simply due to the fact that events that are not fully unique are processed in a different way; 

rather, the increased separation occurs only for the specific pairs of events which share an 

element in common and not for all events of this kind.  
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It is noteworthy that the lowered dependency across overlapping events in the current study 

resembles the pattern of results consistently observed (although never reaching significance) 

in within-event associations of open-loop events in previous studies using the original 

paradigm adapted here (Horner et al., 2015; Horner & Burgess, 2014). In these studies, closed-

loop events were identical to the events used in the current study; i.e., all within-event 

elements were linked to one another. In the open-loop events, on the other hand, the chain 

of associations was never 'closed': e.g. person was associated with a location, location with an 

object, and object with an animal, but participants never learnt the person-animal association 

which would 'close the loop'. The current results suggest that possibly the lowered 

dependency observed in the open-loop events may be explained by pattern separation of 

overlapping but, crucially, unrelated associations (i.e. associations that were not bound 

together into a holistic episodic representation).  

Our paradigm extends upon research examining pattern separation processes in humans by 

using a task that would engage the hippocampus, and focuses on the nature of the stored 

representations of similar or unrelated event memories. Previous studies providing evidence 

for behavioural pattern separation have used tasks that require participants to make 

discrimination judgments on whether items were previously seen or similar but not previously 

seen (Bakker et al., 2008; Lacy et al., 2011). In these studies, successful pattern separation is 

inferred from being able to mnemonically distinguish a previously seen item from a similar but 

non-identical lure. The observed brain activity during those tasks corresponds to the 

prediction of the pattern separation account. The activity in the hippocampus distinguishes 

between new items, repeated items, correctly recognized lures and false alarms (lures 

mistakenly categorized as 'old') (Bakker et al., 2008; Kirwan & Stark, 2007; Lacy et al., 2011). 

Additionally, patients with hippocampal damage were shown to have a spared overall 

recognition ability while being impaired at recognition of similar lures (Kirwan et al., 2012), 

again supporting the role of the hippocampus in pattern separation of similar representations. 
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However, arguably a task which involves an associative aspect, as the one used in our study, 

is more appropriate for testing of hippocampal functions. The hippocampus is proposed to be 

involved in contextual memory but not in memory for individual items (Horner et al., 2012), 

which instead may be processed in other medial temporal lobe structures (e.g. perirhinal 

cortex) (Eichenbaum et al., 2007; McClelland et al., 1995). The reduced similarity of patterns 

associated with overlapping spatial memories has been previously found using fMRI in the 

hippocampus (Chanales et al., 2017), however so far evidence for pattern separation of 

complex (non-spatial) episodic memories is lacking. 

Our study therefore offers a novel way of investigating behavioural pattern separation. 

Another advantage of the current task is the segregation of the encoding and retrieval phases, 

i.e. tasks which involve the encoding of overlapping and unrelated memories are more 

appropriate for assessing pattern separation than ones which only consider distinguishing 

memories from similar lures at retrieval. Pattern separation and pattern completion operate 

at, respectively, encoding and retrieval, and so it has been suggested that an appropriate task 

should be one where the process of interest (separation or completion) is the most 

appropriate strategy (Hunsaker & Kesner 2013; Liu et al. 2016). The mnemonic similarity 

paradigms require continuous ‘recall-to-reject’ in addition to intentional encoding, making it 

difficult to separate the two processes, an issue recognised by the authors (Kirwan & Stark, 

2007). This is problematic as the responses to new or old items in such paradigms have been 

shown to lead to a bias towards pattern separation or completion in following trials (Duncan 

et al., 2012). Our task, on the other hand, does not require any recall at encoding or encoding 

at retrieval, potentially making it more 'process-pure' as a result. The current task may 

therefore provide another way of looking at behavioural pattern separation which overcomes 

some of the limitations of pattern separation/completion tasks as outlined by Liu et al. (2016) 

and others (Hunsaker & Kesner, 2013; Kirwan & Stark, 2007). 
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Another alternative would be to use an incidental learning paradigm in order to avoid the need 

for a continuous recall (Liu et al., 2016). This was successfully implemented in two imaging 

studies (Lacy et al., 2011; LaRocque et al., 2013); however, neither study provided a 

behavioural measure of pattern separation and instead they were used to look for separation-

related signal in the hippocampus and MTL.  

Although in the current task it cannot be determined that the first episode from each pair was 

not recalled during the presentation of the second episode from that set, this possibility was 

minimized as the task did not require any recall during the study phase. Rather, participants 

were motivated to focus on the episode at hand to improve their memory for this specific set 

of associations. There was also no difference in accuracy on associations between first and 

second event, making it unlikely that the first event was recalled and somehow affected the 

encoding of the second one.  

One potential alternative explanation could be that the reduction of dependency is due to the 

effect of recall when cued by the overlapping item; in other words, when presented with a 

cue originally associated with two separate events, the ‘dominant’ event may be recalled and 

block the retrieval of the correct associations. However, the dependency measure was 

calculated with these associations excluded and so this cannot explain the pattern of results. 

It is also important to note that the evidence of behavioural pattern separation does not 

necessarily imply that pattern separation in the strict sense is taking place; for this it would 

need to be demonstrated that the neural representations associated with overlapping events 

diverge during encoding as information reaches the hippocampus (specifically its CA3 subfield 

through the DG) from more upstream areas; i.e. more similar inputs result in more dissimilar 

outputs.  
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5.5.1 Conclusions 

This study presents a novel and relatively process-pure way of behaviourally investigating 

pattern separation. I propose that the lowered (‘negative’) dependency in retrieval of 

associations from overlapping events results from the need to differentiate their neural 

representations through pattern separation. This finding is specific to pairs of events with a 

common element and not to pairs of unrelated events (whose retrieval was found to be 

independent from each other), which confirms the predictions regarding how similar episodic 

memories are represented. 
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6  Chapter 6       

 Pattern separation in human episodic memory: fMRI 

study 

 

 

6.1 Introduction 

The previous chapter provided evidence that overlapping multi-element memories are 

represented in a way that is more distinct than unrelated memories. The lowered statistical 

dependency of performance across multiple retrievals from overlapping memories compared 

to unrelated ones is proposed to reflect pattern separation of overlapping memories at 

encoding. This in turn is thought to result from the need to differentiate the stored 

representations of similar inputs in order to avoid subsequent interference between them 

during retrieval (see Chapter 1.2).  In this chapter, I use the same task in a fMRI study to 

explore the hippocampal contribution to memory for similar episodes. I look at whether the 

patterns of neural activity associated with different memory episodes matches the observed 

behaviour; i.e., whether an overlapping element leads to more distinct hippocampal 

representations of the two multi-element memories. Following the hypotheses from the 

previous chapter, it is predicted that the activity patterns for overlapping memories will be 

less similar than patterns for unrelated memories. 

As already described in Chapter 1, rodent studies support the role of the hippocampus, and 

specifically the DG, in pattern separation of representations of similar locations (Gilbert et al., 

2001; Leutgeb et al., 2007; McDonald & White, 1995). In humans, a DG lesion was found to 

lead to a selective impairment in recognition of similar items (Baker et al., 2016), providing 

evidence for the DG involvement in pattern separation. More support comes from 
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neuroimaging studies, although here due to the limited spatial resolution it has not yet been 

possible to functionally separate the CA3 and the DG.  

Studies using adaptation, where the BOLD response to a repetition of a stimulus is reduced 

compared to its first presentation, found evidence that a similar lure was treated as a novel 

item and not a repetition in the combined CA3/DG region (Bakker et al., 2008; Kirwan & Stark, 

2007), even at relatively high degrees of similarity to the original item (Lacy et al., 2011; Motley 

& Kirwan, 2012). However, the hippocampal activity detected in these studies may reflect 

'match-mismatch' processing (Kumaran & Maguire, 2007) rather than pattern separation.  

Recently several studies used differences in patterns across voxels, a proxy for neural pattern 

similarity, to look at pattern separation. This method is particularly suitable as it allows to test 

the main prediction of the pattern separation account: that similar events are represented as 

more distinct patterns of activity.  

LaRocque et al. (2013) showed that subsequent performance on the old/new recognition 

paradigm was predicted by a greater pattern dissimilarity (i.e. higher distinctiveness) between 

the item and other items from the same category in the hippocampus, while the opposite was 

true for the perirhinal and parahippocampal cortices. This suggests that successful pattern 

separation at encoding predicts later memory. However this, as well as previously mentioned 

studies, used standalone objects as stimuli, and not more complex scenes or associations 

whose memory is proposed to specifically require support by the hippocampus (Aggleton & 

Brown, 1999; Cohen & Eichenbaum, 1993; Davachi, 2006; Eichenbaum et al., 2007). 

More complex stimuli have been used to show evidence of pattern separation in the spatial 

domain. Similar environments were found to be represented with distinct hippocampal 

patterns (Bonnici et al., 2012; Stokes et al., 2013), and more distinct patterns predicted later 

recall of the layout of the environment  (Kyle, Stokes, et al., 2015). When presented with linear 

combinations of two previously learnt environments, the pattern of activity in the 
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hippocampus showed an abrupt change in representation which was related to the mnemonic 

decision about the current environment, suggesting that the environments were separated 

from each other and then the activity pattern was completed to the more similar of the two 

stored scenes (Steemers et al., 2016). In a particularly good demonstration of pattern 

separation, participants learnt real-world routes which were either completely independent 

or included overlapping segments. The representations of the overlapping parts of the routes 

became less similar to each other over learning (Chanales et al., 2017). This 'reversal effect' 

was particularly strong for segments that were most difficult to differentiate behaviourally, as 

tested with a separate sample. The similarity of unrelated routes, on the other hand, remained 

the same. This is consistent with the role of pattern separation in reducing interference from 

similar memories by creating decorrelated representations.  

A divergence in activity patterns for multi-element stimuli over time has also been found in 

the non-spatial domain. When watching a film with two interleaved stories, the patterns of 

activity in the hippocampus associated with people, locations and narratives belonging to the 

two stories became less similar (Milivojevic et al., 2016). In another study, using green-screen 

technology, two narratives and two background scenes were combined to create four highly 

overlapping movies (Chadwick, Hassabis, & Maguire, 2011). Multivariate pattern classifiers 

could distinguish between the movies in the hippocampus despite the overlapping content, 

but not in other MTL regions. These studies again suggest that hippocampal representations 

of different events become more distinct over time, particularly when these representations 

are similar and could lead to interference. 

Pattern separation can therefore be detected in the hippocampus for complex memory 

episodes. However, so far no study has looked at whether similar episodic memories are 

represented with more distinct patterns of activity than unrelated memories in the same way 

as representations of overlapping spatial routes are more dissimilar to non-overlapping routes 
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as shown by Chanales et al. (2017).  Additionally, it is not clear how the separation of activity 

patterns associated with different multi-element episodic memories affects subsequent 

memory performance.  

In the current study, I will use the task presented in the previous chapter to look for evidence 

of neural pattern separation (as proxied by dissimilarity of patterns of BOLD activity across 

voxels). I will look at whether the patterns of activity across voxels are more dissimilar for 

overlapping events than non-overlapping events in the hippocampus and other parts of the 

memory system, at both encoding and retrieval.  I will also test whether successful pattern 

separation reduces interference and leads to better memory performance. Finally, I will look 

at whether non-target items are reinstated at retrieval (i.e. an item from the same event as 

the target but that is not the target of retrieval), as would be predicted by the pattern 

completion account.  

 

 

6.2 Methods 

6.2.1 Participants 

33 neurologically healthy participants were recruited from the student population at the 

University College London. Three participants were excluded due to low performance (<20% 

accuracy). Compared to the study in Chapter 5, the exclusion criterion here was lowered to 

reflect the overall lower performance in this study (see Results below), potentially due to 

different experimental setting. The remaining 30 participants (10 males) had a mean age 24.43 

(SD = 3.87), normal or corrected-to-normal vision and were right handed. Participants were 

paid £20 for the scanning session. The study was approved by the University College London 

Research Ethics Committee (1825/003) and informed consent was obtained before the 

session. Following completion of the test, participants were debriefed and paid for their time. 



 
 
 

135 

6.2.2 Materials 

The same stimuli were used as in Chapter 5. Word stimuli included 30 famous people (e.g. 

Tom Cruise, Barack Obama), 30 locations (e.g. supermarket, kitchen) and 30 objects (e.g. 

necklace, bottle). In this study, participants selected famous people they were familiar with 

from a list of 60 candidates before attending the scanning session; out of all familiar to the 

participant people, 30 were chosen at random (all participants were familiar with at least 30 

people from the full list). Stimuli were combined to create 36 three-element events with each 

event consisting of a person, location and object.  

In the behavioural task presented in Chapter 5, the main results (comparison between 

overlapping and unrelated events) were the same for fully non-overlapping (fully unique) 

events and for pairs of unrelated events of overlapping type (i.e. ones that shared an element 

with a matched event but which were paired with another, unrelated one for the purpose of 

the analyses). In the current study, for time efficiency I therefore used only overlapping events 

(i.e. no event was fully unique). Each event was paired with another event with which it shared 

one element (person, location or object). The type of the common element was 

counterbalanced across event sets. Novel randomized events were created for each 

participant. The stimuli for the task were presented via the Cogent 2000 toolbox in Matlab. 

6.2.3 Procedure 

Before the scanning session, participants were familiarized with the task until they were able 

to understand the task. During scanning, participants lay in a supine position with the visual 

display reflected from a back projector by a mirror attached to the head coil. During the test 

phase, participants responded using three keys with their right hand and three keys with their 

left hand, and signalled their readiness to start each block using any button. 

The main part of the procedure was the same as in the behavioural study (Chapter 5) and 

consisted of a study phase and a test phase. For the purpose of the analyses, before the first 
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encoding phase, participants were presented with all stimuli words one at a time, and were 

asked to imagine each item (person, location or object) in turn. Each item was presented in 

the centre of the screen for 3 seconds, preceded by 0.5 seconds fixation cross and followed 

by 1.5 seconds blank screen. This 'item' phase was repeated twice, with all 90 items in each. 

The order of stimuli was randomised in each run.  

This was followed by the study phase, where participants encoded a total of 36 events, each 

comprising a person, location and object. Each trial began with a 0.5 seconds fixation, after 

which participants were presented with one of the event triplets. All three elements remained 

on the screen for 0.5 seconds and participants were instructed to imagine all event elements 

interacting with each other as vividly as possible ("Imagine this person interacting with this 

object at this location"). The screen location of each element type (person, location, object) 

was randomized across encoding trials. The trial ended with a blank screen presented for 1.5 

seconds. Each event was shown once during the study phase.  

At test, associative accuracy was assessed using a six alternative forced choice test. On each 

trial, following a 0.5 seconds fixation cross, participants were presented with one of the 

previously encoded items at the top of the screen (cue) and six possible ‘target’ items were 

presented below in two rows (three targets per row). They were then instructed to decide 

which of the targets had previously appeared in the same event as the cue. All targets on a 

single test trial were of the same category. For example, if cueing with the person to retrieve 

the associated location, all six options were of locations. Participants were given 6 seconds to 

select their option via a button press. All possible cue-target pairs were tested in both 

directions (e.g., cue with the person to retrieve the location, cue with the location to retrieve 

the person, etc.), giving a total of 216 trials. Each trial terminated with a 0.5 seconds blank 

screen. The test phase was divided into two scanning blocks with 108 trials in each. Pairwise 
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associations for each event were split so that half were tested in the first run and half in the 

second run. The order within each run was randomised. 

For the purposes of the RSA analyses, the same stimuli as in the encoding block (i.e. all events) 

were presented again after the test blocks. Participants were asked to imagine the same 

interaction between the event elements as they did in the first encoding block. This time the 

three elements remained on the screen for 4 seconds, and were preceded by 0.5 seconds 

fixation cross and 1.5 seconds blank screen. The order of presentation and location of each 

item-type on the screen was again randomised. For an example of the trial sequence with 

timings, see Figure 6.1. 

 

 

Figure 6.1.Example of the trial sequence and timing for the item presentation phase (top), the 

study phase (second row), the test phase (third row), and the second study phase (bottom row).  
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6.3 fMRI acquisition 

Imaging data were acquired using echo-planar imaging (EPI) on a 3T Trio (Siemens) scanner 

with a 64-channel head-coil. The parameters were: repetition time (TR) = 3,360ms, echo time 

(TE) = 30ms, slice thickness = 2mm, resolution = 2x2mm, 48 slices per volume. A double-echo 

FLASH field-map for distortion correction of the EPI volumes was acquired, as well as a three-

dimensional MDEFT structural image (1mm3 resolution) for normalisation to the MNI 

template. 

 

6.4 Analyses 

6.4.1 Analysis of behavioural data 

All analyses of behavioural data were the same as described in Methods section of Chapter 5, 

with the exception that here I did not use any events of non-overlapping type.  

6.4.2 Analysis of fMRI data  

The images were bias-corrected, unwarped, realigned to the first image, slice-time corrected 

and normalized using SPM12 in Matlab (www.fil.ion.ucl.uk/spm). The first five volumes were 

discarded to allow for T1 equilibration. In univariate analysis, normalised functional images 

were spatially smoothed with an isotropic 6mm FWHM Gaussian kernel.  

The time series were modelled with a boxcar from the stimulus onset to end and analysed 

using a General Linear Model (GLM). The regressors were temporarily convolved with the 

hemodynamic response function. In addition to the regressors of interest, each model 

included six regressors of movement parameters obtained from the realignment procedure 

and one regressor of cardiac and respiratory signals (collected using a pulse oximeter and 

respiratory belt during the scanning session).  

http://www.fil.ion.ucl.uk/spm
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The parameter estimates from each participant from the first level analysis were included in 

the second level univariate analyses, or first analysed with RSA at the level of single subjects 

and then smoothed and used in the second level analysis in SPM. 

The anatomical masks for region of interest (ROI) analyses were created using the WFU 

PickATlas toolbox, with each region defined by the Automated Anatomical Labelling atlas. ROIs 

used were: left and right hippocampus, and left and right parahippocampal cortex. Masks for 

areas specific to different types of items (person, location and object) were created based on 

functional data from univariate analyses of the item presentation phase (see below for detail).  

6.4.1 Univariate analyses 

Univariate analyses were performed in addition to the main RSA analyses in order to look at 

the relationship between overall level of activity and memory performance, as well as to 

define areas specific to the processing of different item types.  

Item type. At item presentation, the trials were split based on the type of item (person, 

location or object). Each of the three item-type regressors modelled the 3-seconds item 

presentation period with a boxcar function, and two regressors modelled the 2.5-seconds ITI 

period and 0.5-seconds fixation cross. The contrasts for the three conditions were used in a 

second level analysis where I looked for areas where activity was associated with each item 

type by contrasting the ‘beta’ GLM coefficient for the regressor for one item type with those 

for the remaining two item types with a paired-samples t-test (e.g. person > (location + 

object)/2). 

Subsequent memory effect. To assess subsequent memory effects, I used a regressor for all 

encoding trials during the first encoding phase (modelled with a boxcar function for the entire 

6-seconds encoding period), and two regressors modelled the 2.5-seconds ITI period and 0.5-

seconds fixation cross. The encoding regressor was parametrically modulated by the number 
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of correct responses across all retrieval trials for this event (a value between 0 and 6). The 

parametric modulator was compared to zero with a one-sample t-test. 

 Retrieval. To look at memory effects at retrieval, I created one regressor each for correctly 

and incorrectly retrieved trials. A boxcar function was used to model each retrieval period (of 

length from trial onset to button press or 6-seconds if no response was given) and two other 

regressors modelled the 2.5-seconds ITI period and 0.5-seconds fixation cross. The beta 

coefficients (from the first level GLM analysis) for correct and incorrect retrieval regressors 

were compared to each other with a paired t-test.  

At retrieval I also looked at whether the signal differs between trials which do and do not 

include the overlapping item as either cue or target. I created two regressors for each type 

(and ITI and fixation regressors) and contrasted their betas (GLM coefficients) with a paired-

samples t-test at the second level.  

Finally, I looked for the changes in BOLD signal related to the item type. I used 12 regressors, 

each corresponding to a particular combination of cue-target type (e.g. person-location, 

person-object, location-object, etc.) and two regressors modelled the 2.5-seconds ITI period 

and 0.5-seconds fixation cross. At the second level, I contrasted trials where a given element 

was a cue or target with trials where it was neither, and repeated this for all element types. 

This method was used in the study using the original version of this task (Horner et al., 2015) 

to look for representations of different item types.  

6.4.2 RSA analyses 

In order to look at more fine-grained hypotheses regarding memory representations, I used 

the RSA. In these analyses, the first-level GLM analysis was performed on unsmoothed images. 

Each trial was modelled as a separate regressor with a boxcar function for the length of this 

trial. The neural RDMs for each analysis were obtained by calculating distances between the 

patterns of beta coefficients for all pairs of conditions (specific conditions will be defined 
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below) from first-level estimates, which were then spatially prewhitened and, where 

indicated, crossvalidated within each searchlight (see Chapter 2 for the explanation of RSA 

procedure). Search spheres had a two-voxel radius from the central voxel. The neural RDMs 

were then correlated with the appropriate model RDMs; relevant models will be explained 

below. Depending on the analysis, this resulted in a searchlight map of correlation values or 

with a single correlation value for each ROI for each participant. Searchlight maps were 

smoothed with a 6mm FWHM Gaussian kernel. The resulting images were compared against 

zero with a one-sample t-test in a second-level GLM analysis in SPM12 unless indicated 

otherwise. Specific conditions and comparisons are explained in the next sub-sections. All 

analyses were performed using custom written scripts in Matlab (Mathworks), some of which 

used functions provided in the RSA toolbox (Nili et al., 2014). 

Pattern separation at encoding. The main analyses investigated the similarity of patterns for 

overlapping and unrelated events. At encoding, each encoding trial (i.e. each event) was 

modelled as a separate regressor. The neural RDMs were then obtained by calculating 

distances between the beta coefficients for each pair of events. The model RDM for this 

analysis predicted a higher distance for pairs of overlapping events than for pairs of non-

overlapping events.  

Pattern separation and interference. In order to see whether increased pattern separation, as 

indicated by lower similarity of patterns, led to lower interference, dissimilarity scores were 

calculated for each pair of overlapping events at encoding. These scores were then correlated 

with the average behavioural accuracy at retrieval across all twelve retrieval trials for that pair 

of events.  

Additionally, I looked at whether overall dissimilarity to other events (regardless of overlap) 

predicts performance. The calculated distances between each event and all other events at 
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encoding (i.e. one 'row' from a neural RDM) were averaged and compared to the mean 

performance on that event. 

Changes to event representations over learning. Although in the current study learning was 

only required during the first encoding phase, it was still possible to look at how the 

representations of different events change over the course of the study by comparing the first 

and second encoding blocks. For each pair of events, the distances in the first encoding block 

were subtracted from those in the second block; positive scores meant that the distance for 

this pair increased. These values were then averaged separately for overlapping and non-

overlapping pairs of events, resulting in two searchlight maps of average difference scores per 

participant. In the second-level analysis, they were compared to each other with a paired-

samples t-test or to zero with a one-sample t-test.  

Pattern separation at retrieval. The main hypothesis was also explored at retrieval. I looked 

for areas where associations from overlapping events are represented as less similar than 

associations from non-overlapping events. The distances were calculated between patterns 

of all correctly retrieved associations (maximum 216; six associations per event). Because of 

the high number of conditions and the size of resulting dissimilarity matrix (216x216), I limited 

this searchlight analysis to the hippocampal and parahippocampal cortex. The resulting neural 

RDMs were compared to a model which predicted higher dissimilarity for associations from 

overlapping events than for those from non-overlapping events. As the retrieval phase was 

divided into two blocks, a model which predicted higher similarity for associations within- than 

between blocks was used in this analysis to partial out the effects of within-block similarity. 

This analysis was also repeated for left and right hippocampal ROIs. 

Encoding-retrieval similarity (ERS). I tested whether the similarity of patterns at encoding and 

retrieval can predict the success on a given trial. I used a whole-brain searchlight analysis. For 

each retrieval trial (i.e. for each association tested at retrieval), I correlated the pattern of 
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activity at retrieval with the pattern of its corresponding event at encoding. I then averaged 

the correlation values separately for correct and incorrect trials for each event, and calculated 

a difference score between correct and incorrect trials. This was repeated for each searchlight, 

resulting in a searchlight map of difference score for each participant.  

Non-target reinstatement. The holistic retrieval of episodic memories implies that all elements 

of an event are retrieved during recall of only a subset of its elements (e.g. one of its 

constituent associations). I therefore looked at whether the item from an event that is not a 

cue or a target (the non-target) in any given trial would also be recalled. For example, in a trial 

where person cues location, the non-target would be the object from the same event. In this 

analysis I used item-specific ROIs of person-, location, and object-related areas from the 

univariate analyses of item types during item presentation phase (see above). Non-target 

reinstatement was measured as a correlation between patterns at encoding and retrieval in 

its type-specific ROI. The correlations between encoding and retrieval in the appropriate ROI 

were calculated for each retrieval trial. A mixed-effect model (with random intercept for each 

subject and each event, with event effect nested within subject effect) was used to see 

whether the correlation values (the measure of non-target reinstatement) differed from zero, 

which would indicate that the non-target pattern at encoding is observed at retrieval. 

Additionally, I looked at whether the level of non-target reinstatement across all within-event 

associations can predict the mean accuracy on a given event; I compared this model to a null 

model which assumed no such relationship.  

 

6.5 Behavioural results 

6.5.1 Associative accuracy  

Overall accuracy was slightly lower than in the behavioural study (Chapter 5) at 54.85% (SD = 

19.43) but still well above the chance level of 16.7%. Analysis of performance across cue-types 
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(collapsed across retrieval-types) using a one-way repeated-measures ANOVA showed no 

effect of cue type (F(2,58) = 0.03, p = .967, 2= .001), and analysis of performance across 

retrieved-type (collapsed across cue-type) also showed no effect of retrieved-type (F(2,58) = 

1.60, p = .212, 2= .09). The means and standard deviations for accuracy across different cue 

and retrieval types for both conditions are in Table 6.1. 

 

 

Table 6.1. Proportion correct (SD) for associative memory performance across events for each 

cue and retrieval type. 

 Retrieval type 

Cue type Person Location Object 

Person n/a .55 (.19) .55 (.21) 

Location .55 (.20) n/a .56 (.19) 

Object .55 (.20) .54 (.21) n/a 

 

 

6.5.2 Interference 

Interference was calculated by correlating performance on the overlapping pairs of events 

and averaging the correlation values across all pairs. I then compared the average correlation 

scores across all participants against zero. The average correlation was negative, consistent 

with interference (r = -0.11) and it was significantly lower than zero, t(29) = 2.28, p = .030, d = 

0.42. The average correlations between non-overlapping events were positive but very low 

and showed trend towards significance (r = .02), t(29) = 2.03, p = 0.052, d = 0.37.  The average 
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correlations for overlapping events were significantly lower than for unrelated events, t(29) = 

2.65, p = .013, d = 0.48.   

To investigate whether the order of presentation of the overlapping events affects the 

accuracy, the average accuracy was compared between first and second event for the 

overlapping pairs of events. The first overlapping event in a pair was better remembered than 

the second event, t(29) = 2.37, p = .025, d = 0.43. 

 

6.5.3 Within-events dependency 

As in Chapter 5, the within-events dependency was assessed by constructing contingency 

tables for retrieving two elements when cued with the third element, and retrieving one 

element when cued by the other two elements across retrieval trials (see Methods of Chapter 

5). The within-event dependency (D) in the data was calculated as the proportion of events 

where elements were both correctly or incorrectly retrieved. This dependency measure was 

then compared to the amount of dependency predicted if retrievals from the same event were 

completely independent (Di) or dependent (Dd; see Methods of Chapter 5 for more 

information on how the models were constructed). 

The within-event dependency in the data was greater than the independent model (D>Di, 

t(29) = 7.38, p < .001, d = 1.35) and lower than the dependent model (D<Dd, t(29) = 11.09, p 

< .001, d = 2.02) (Figure 6.2). 
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Figure 6.2. Mean dependency for the observed data, the independent model and the 

dependent model for the within-event analysis. The error bars represent +/- 1 SEM. 

* p < .001 

 

 

6.5.4 Across-events dependency 

As in Chapter 5, I examined the amount of dependency across matched overlapping events 

that shared a common element (i.e. whether retrieval success of an element from one event 

is dependent on the retrieval success of an element from an overlapping event). I calculated 

dependency in the data and corresponding independent and dependent models across pairs 

of events (see Methods of Chapter 5).  

Consistently with the behavioural study, the across-events dependency was lower than the 

independent model (D<Di, t(29) = 3.04, p = .001, d = 0.56), and lower than the dependent 

model (D<Dd, t(29) = 8.54, p < .001, d = 1.56) (Figure 6.3). 

6.5.5 Comparison of across-events relative dependencies 

As in Chapter 5, I calculated a relative dependency measure (difference score between each 

participant’s dependency and its independent model: D - Di). I looked at whether the relative 

dependency score is lower for overlapping events than for pairs of unrelated events.  



 
 
 

147 

As before, in order to create unrelated pairs, I randomly selected sets of two events with no 

shared elements. I then calculated the across-events dependency measures for these pairs in 

the same way as for the matched pairs of events (see Methods for Chapter 5). Because each 

analysis selected a random set of unrelated pairs, I repeated the procedure 1,000 times, with 

different unrelated pairs selected each time, and used the Brown's method to combine the 

probability values (Brown, 1975; Poole et al., 2016).   

Supporting the results from Chapter 5, I found that overlapping events had lower relative 

dependency than the unrelated events (p = .001). The dependency in unrelated events was 

not different from baseline, i.e. the independent model (p = .289) (Figure 6.3). The main 

behavioural results of increased dependency for within-event associations and decreased 

dependency for specifically the pairs of overlapping events were therefore fully replicated in 

this study. 
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Figure 6.3. Mean across-event dependency for pairs of unrelated events and pairs of matched, 

overlapping events. The data for unrelated pairs was obtained by randomly selecting pairs of 

unrelated events and calculating the dependency and the models, and repeating this procedure 

1,000 times, each time with a different set of random pairs. The p-values were obtained using 

Brown’s method for combining tests of significance (Brown, 1975). The bars represent the 

mean relative dependency, and the error bars represent the mean standard error across the 

1,000 tests (unrelated events) or +/- 1 standard error (matched events). 

* p = .001 

 

 

6.6 fMRI analysis results 

6.6.1 Univariate results 

Encoding. These analyses looked for evidence of univariate memory effects to accompany the 

main RSA findings. First, I looked for areas where activity was predictive of subsequent 

memory. The analysis of the parametric modulator of encoding trials (based on number of 

correctly retrieved associations from an event) revealed a cluster in the left parahippocampal 

gyrus after small-volume correction (SVC) within bilateral hippocampus and parahippocampal 

gyrus (-30, -42, -6; p < .05 FWE small-volume corrected) (Figure 6.4).  
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Figure 6.4. Regions showing subsequent memory effect (p < .05 FWE using small-volume 

correction for the hippocampus and parahippocampal gyrus).  

 

 

Retrieval. In order to investigate memory effects, I looked for locations where activity differs 

between correct and incorrect retrieval trials. I saw a large cluster in the left parietal cortex (p 

< .05 FWE; -42, -62, 46), nucleus accumbens bilaterally (p < .05 FWE; -12, 8, -6 and 14, 8, -6). 

I also saw a small cluster in the right hippocampus (p < .05 FWE; -22, -34, -4). With small 

volume correction using a bilateral hippocampal mask, I saw increased activity for correct trials 

bilaterally. For the contrast between retrieval trials with and without the overlapping item, I 

saw no significant difference in activity in any voxels (p > .05 FWE-corrected for both whole 

brain and SVC for the hippocampus/parahippocampal cortex) (Figure 6.5). 
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Figure 6.5. Regions showing greater activity for correct than incorrect trials included left 

parietal cortex, bilateral nucleus accumbens (p < .05 FWE for the whole brain, top row), and 

posterior hippocampus (p < .05 FWE SVC for bilateral hippocampus, bottom row).  

 

Item presentation. To investigate where the activity differs between different item types, I 

looked at areas involved in imagery of different element types (person, location or object) 

during the item presentation period. I compared activity related to one type to the activity of 

the two remaining types (e.g. person > location + object). In trials including people, I saw 

increased activity in the bilateral occipital lobe (L: -18, -92, -6; R: 18, -90, 0), right fusiform 

gyrus (fusiform face area; FFA) (R: 38, -42, -20), as well as bilateral precuneous/posterior 

cingulate cortex (2, -60, 34). In trials including locations, I saw regions in bilateral 

parahippocampal place area (PPA) (L: -28, -38, -10; R: 30, -34, -14), bilateral retrosplenial 

cortex (L: -16, -56, 18; R: 16, -54, 18), and bilateral posterior parietal cortex (L: -36, -76, 34; R: 

42, -72, 34). In trials including objects, I found clusters in the left anterior inferior parietal 
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cortex (-58, -24, 38) and lateral temporo-occipital area overlapping with the lateral occipital 

complex (-52, -64, 2) (all p < .05 FWE for the whole brain; Figure 6.6).  

These areas were used to define type-specific ROIs for item types. ROIs for person- and object-

specific areas were thresholded at alpha = .05 (FWE), while for location-specific areas I used a 

more stringent alpha level of .001 FWE to restrict the size of this ROI as too large ROIs may 

lead to a loss any spatial information across the region.  

 

A) Person 

   

B) Location 

    

C) Object 

 

Figure 6.6. Regions showing greater activity at item presentation for (A) people, (B) locations 

and (C) objects (all p < .05 FWE-corrected for the whole brain).  
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Retrieval: element type. Next, I investigate whether the same areas show item type-related 

activity at retrieval as were observed at encoding. To look at item type-specific areas, I used 

regressors corresponding to each possible combination of cue-target type, and then 

contrasted trials where a given element was a cue or target with trials where it was neither, 

and repeated this for all element types.  For person, the greatest difference was observed in 

bilateral precunous / cingulate region (4, -52, 28), medial prefrontal cortex (2, 50, -12), 

bilateral occipital (L: -18, -92, -4; R: 18, -92, 2) and bilateral lateral temporal areas (L: -64, -6, -

16; R: 62, -2, -18). For location, I saw areas in the bilateral parahippocampal place area (L: -30, 

-38, -10; R: 30, -32, -14), bilateral retrosplenial cortex (L: -14, -56, 20; R: 12, -54, 18), and the 

posterior parietal cortex (L: -38, -78, 34; R: 42, -72, 32). For object, I identified areas in the left 

lateral temporo-occipital area / lateral occipital complex (-58, -54, -4), anterior inferior parietal 

cortex (-50, -44, 50) and the left inferior frontal gyrus (-48, 40, 14) (all p < .05 FWE for the 

whole brain; Figure 6.7).  
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A) Person 

   

B) Location 

   
C) Object 

 

Figure 6.7. Regions showing greater activity at retrieval for (A) people, (B) locations and (C) 

objects (all p < .05 FWE for the whole brain). 

 

6.6.2 RSA analyses 

Pattern separation at encoding. The first RSA analysis explored the main hypothesis that 

overlapping events should lead to increased separation of patterns. I looked at whether the 

patterns of activity associated with two overlapping events are less similar than those of two 

non-overlapping events during the first encoding phase. I performed a whole-brain searchlight 

analysis and found no evidence that overlapping events are represented as less similar (p > 
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FWE for the whole brain and p > .05 FWE SVC for the hippocampus and parahippocampal 

cortex). On the other hand, I found areas in the bilateral hippocampus and some 

parahippocampal areas where overlapping events were represented as more similar than non-

overlapping events (30, -10, -12 and -34, -36, -8; p < .05 FWE SVC for the hippocampus and 

parahippocampal cortex). When using hippocampal ROIs, I found higher similarity for 

overlapping events in the right hippocampus (t(29) = 2.55, p = .017, d = 0.46) and marginally 

for the left hippocampus (t(29) = 2.04, p = 0.051,  d = 0.37).  

For the second encoding phase (after the retrieval blocks) as well as for a combination of the 

first and second encoding phases using the crossvalidation technique (see Chapter 2), there 

were no areas showing differences in similarity between overlapping and non-overlapping 

events in either positive or negative direction (p > .05 FWE for the whole brain and p > .05 

FWE SVC for the hippocampus and parahippocampal cortex; Figure 6.8). 

 

 

 

Figure 6.8. Areas where the patterns of activity corresponding to pairs of overlapping events 

were more similar than those corresponding to non-overlapping events in the whole-brain 

searchlight analysis of the first encoding block (p < .05 FWE SVC for bilateral hippocampus and 

parahippocampal cortex; masked for the ROI). 
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Pattern separation and interference. In addition to the primary analysis of event patterns at 

encoding, I also explored the association between pattern similarity and behavioural 

performance. To look at whether increased pattern separation reduces interference of similar 

memories, I correlated the dissimilarity measure for patterns of activity for overlapping pairs 

of events at encoding (first encoding block) with the average accuracy score on both events. I 

found no voxels that showed significant correlation (positive or negative) between similarity 

of patterns and behavioural accuracy (p > .05 FWE-corrected for both whole brain and SVC for 

the hippocampus/parahippocampal cortex). ROI analyses in the left and right hippocampi 

were also non-significant (p > .05).  

I then looked at whether events with a more distinct pattern overall (when compared to all 

other events, and not only their matched event) led to better memory. The searchlight 

analysis within the hippocampus and parahippocampal cortex again failed to find regions 

where more dissimilar patterns were predictive of better performance (p > .05 FWE SVC for 

the hippocampus and parahippocampal cortex). ROI analysis in the left and right hippocampus 

(using one brain RDM per ROI), on the other hand, revealed that overall higher pattern 

distinctiveness of an event at encoding is associated with higher average performance on that 

event in the left hippocampus (t(29) = 2.27, p = .031, d = 0.41) but not in the right 

hippocampus, although there was a trend towards significance (t(29) = 1.93, p = 0.064, d = 

0.35).  

Changes to event representations over learning. In order to see whether the event patterns 

become more distinct over time, I compared similarity of patterns between first and second 

encoding phase. In a searchlight analysis limited to the hippocampus, I calculated a difference 

score (difference in similarity between first and second encoding phase) for overlapping and 

non-overlapping events and compared them with a paired-samples t-test. I found no areas 

where the difference in similarity was higher for the overlapping events than for non-
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overlapping events (p > .05 FWE SVC for the hippocampus and parahippocampal cortex), 

suggesting that the representations of overlapping events did not diverge over the course of 

the study more than the representations of non-overlapping events.  

When looking at the two types of events separately, I found that the distances between events 

increased significantly for both overlapping pairs of events (p < .05 SVC for the hippocampus 

and parahippocampal cortex), suggesting that the representations of individual events 

became more distinct over time, but this did not differ between overlapping and non-

overlapping event pairs (Figure 6.9). 

 

   

  

Figure 6.9. Areas where the distances between pairs of events increased between first and 

second encoding phase for overlapping pairs of events (left) and non-overlapping pairs of 

events (right) (p < .05 FWE SVC for hippocampus and parahippocampal cortex; masked for the 

ROI). 

 

 

Pattern separation at retrieval. The main prediction that patterns of overlapping memories 

should show higher dissimilarity (separation) was also tested at retrieval. In a searchlight 

analysis limited to the hippocampus and the parahippocampal cortex, I looked for areas where 
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associations from overlapping events are represented as less similar than associations from 

non-overlapping events. One cluster (16 voxels) was found in the right hippocampus (36, -14, 

-24; p < .05 FWE SVC for the bilateral hippocampus) (Figure 6.10). To look at this effect in more 

detail, I separately analysed associations which did and which did not include the overlapping 

item, to see if, potentially, one type of association drives the results. I found that none of the 

two sub-groups showed any significant effects of overlap (both showed mainly positive 

correlations within the hippocampus and the parahippocampal cortex, however these did not 

reach significance), suggesting that the result based on all associations was not 

disproportionally driven by associations that did (or did not) include the overlapping item.   

  

   

Figure 6.10. Areas showing more dissimilar patterns of activity for associations from 

overlapping events than for associations from non-overlapping events at retrieval (p < .001 

uncorrected for display purposes). 

 

 

Encoding-retrieval similarity (ERS). Additional analyses explored other memory effects by 

comparing similarity of events (and later items) at retriavl and encoding. In a whole-brain 

searchlight analysis, for each retrieval trial I correlated the pattern of activity at retrieval with 

pattern of its corresponding event at encoding (the ERS score), and averaged the correlation 
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values separately for correctly and incorrectly recalled trials for each event. For each 

searchlight, I calculated a difference score between the ERS scores for correct and incorrect 

trials. In the group analysis, I compared these searchlight maps to zero. I found no voxels 

showing a difference in ERS dependant on the retrieval accuracy (p > .05 SVC for relevant ROI).  

I additionally compared the ERS score for correct events only against zero but I also found no 

significant voxels (p > .05 SVC for relevant ROI). 

Non-target reinstatement. In each retrieval trial, I looked for reactivation of the pattern 

associated with the non-target, i.e. the item from the same event that was neither cue nor 

target in this trial. I compared the patterns for the non-target item in its type-specific ROI 

(from the univariate analysis) between encoding and retrieval phases.  

First, I tested the correlation value from all retrieval trials against zero. I used a mixed-effects 

model with random intercept for each subject and each event, with event effect nested within 

subject effect. I compared the intercepts from this model against zero with a one-sample t-

test. I found that the correlation between patterns at encoding and retrieval in item type-

specific areas was significant, t(29) = 2.40, p = .023, d = 0.44.  

I then used a mixed effects regression to see whether the level of non-target reinstatement 

across all within-event associations predicts mean accuracy on a given event (with random 

intercept for each subject and each event, with event effect nested within subject effect). I 

compared it to a null model which predicted no relationship between average non-target 

reinstatement and overall performance on the triads. A likelihood ratio test failed to reject the 

null model, χ2 (1) = 0.81, p = .776.  
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6.7 Discussion 

I investigated the hypothesis that similar (overlapping) memories are represented as more 

distinct neural representation as a result of pattern separation, a process which decorrelates 

similar inputs at encoding in order to prevent their interference. As in the experiment 

presented in Chapter 5, participants memorised multi-element events that were overlapping 

(had an element in common) or did not share any elements. I replicated the behavioural 

findings showing lowered dependency in retrieval of associations from overlapping events, 

and extended these results by showing that the overlapping memories corresponded to more 

distinct patterns of neural activity (Figure 6.10). This may reflect the neural mechanisms 

behind the reduced dependency at the behavioural level. However, the decreased similarity 

of patterns associated with overlapping events was observed only at retrieval, but not at 

encoding. I will discuss possible reasons for this below. 

Evidence of pattern separation at retrieval 

Although I found no evidence of pattern separation at encoding, the processing stage at which 

this mechanism is proposed to operate (Marr, 1971; O’Reilly & McClelland, 1994; Treves & 

Rolls, 1992), the results from the retrieval phase showed that the associations from 

overlapping events were represented with more dissimilar patterns of activity than the 

associations from non-overlapping events in the right anterior hippocampus. This reduced 

similarity was observed despite the fact that these associations shared an element and so 

could be expected to be represented as more similar – as they were at encoding (see below). 

These results were not driven by associations which included (or did not include) the 

overlapping element, as suggested by similar results in both types when analysed separately; 

although neither associations with or without the overlapping items showed a significant 

effect of overlap (as observed in the full dataset), both were in the predicted direction and of 

similar magnitude. Potentially, the decrease in the effect size could be due to the lower 
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number of conditions used in these analyses. Overall, these results support the pattern 

separation hypothesis; they suggest that the events which are most likely to interfere because 

of a shared element are represented as more distinct than unrelated events, and this applies 

to all associations of these events and not, for example, only to the associations with the 

overlapping element. 

This finding is in line with previous studies which showed evidence for pattern separation in 

the hippocampus (Bakker et al., 2008; Bonnici et al., 2012; Chadwick et al., 2011; Chanales et 

al., 2017; Kyle, Stokes, et al., 2015; Lacy et al., 2011; LaRocque et al., 2013). Studies using 

searchlight-based pattern analyses found similar clusters in the right hippocampus (Milivojevic 

et al., 2016; Stokes et al., 2013). In the current study,  however, we were not able to separate 

the hippocampal subfields and look for evidence that pattern separation is reflected 

specifically in the CA3/DG activity and not the CA1 and other MTL areas (Lacy et al., 2011; 

Stokes et al., 2013). 

An alternative explanation of the reduced pattern similarity for overlapping events could be 

retrieval inhibition, a mechanism which suppresses competing memories, leading to adaptive 

forgetting (Kuhl, Dudukovic, Kahn, & Wagner, 2007; Wimber et al., 2008). One study showed 

that the pattern associated with a memory was progressively suppressed when its competitor 

was repeatedly recalled, leading to lower pattern similarity between competing memories 

than between unrelated memories (Wimber, Alink, Charest, Kriegeskorte, & Anderson, 2015), 

which resembles the pattern of results observed here. However, in Wimber et al. the below-

baseline suppression effect only emerged after several retrieval trials whereas it was absent 

(or even reversed; i.e. the competitor was reactivated) during the first retrieval. This repeated 

presentation potentially indicated that this association (rather than its competitor) is to be 

remembered. In the current experiment, on the other hand, the forgetting of the non-recalled 
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memory would not be adaptive as both overlapping events were repeatedly recalled in an 

interleaved fashion.  

Pattern separation at encoding 

At encoding, I found no regions which showed less similar pattern of activity for pairs of 

overlapping events than for pairs of unrelated events. On the contrary, the representations of 

overlapping events in the hippocampus and parahippocampal gyrus were found to be more 

similar. This is inconsistent with previous studies which showed that activity patterns 

associated with different events in the hippocampus can be distinguished from each other 

despite overlapping elements (Chadwick et al., 2011; Milivojevic et al., 2016). However, unlike 

the current study, these studies did not look at whether similar episodic memories are 

represented with more distinct patterns of activity than unrelated memories.  

One study which did show a decreased similarity of patterns for specifically the overlapping 

parts of navigational routes during learning (but not for the non-overlapping parts or for 

different routes), only observed this effect when comparing the first and second half of the 

learning phase (Chanales et al., 2017). Similarly, another study compared two overlapping 

narratives and also only showed a difference in representations of the two episodes in the 

final stage of the task (Milivojevic et al., 2016). A gradual divergence of environment-specific 

activity patterns has also been observed in hippocampal place cells in rats (Lever et al., 2002).  

One possible explanation may therefore be that the divergence of patterns associated with 

overlapping memories develops over time.  

However, this would not be consistent with the proposed mechanism of pattern separation 

which is proposed to immediately orthogonalise overlapping inputs at encoding, resulting in 

decorrelated patterns to be stored in the hippocampus (McClelland et al., 1995; McNaughton 

& Morris, 1987). This is also not consistent with the findings from studies using continuous 

recognition paradigms where evidence for pattern separation is observed immediately at 
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encoding (Bakker, Albert, Krauss, Speck, & Gallagher, 2015; Kirwan & Stark, 2007; Lacy et al., 

2011). However, the findings from Chanales et al. and Milivojevic et al. may suggest that more 

complex episodic representations, like the ones used here, take longer to diverge to the point 

that is detectable in the pattern of activity. 

I tested this hypothesis by comparing the similarity structure between the first and second 

encoding phase. I found that the representations of both overlapping and non-overlapping 

events became less similar, but the representations of overlapping events did not diverge (i.e. 

the distances did not increase) to a higher extent than of non-overlapping pairs of events. It 

needs to be stressed, however, that the design of the current study was different to the two 

studies mentioned above in that these studies used multiple consecutive learning blocks while 

here the two 'encoding' blocks were separated by the retrieval phase, which could have 

affected the representations of the events and/or the processes engaged during the task.  

The results may be a consequence of the encoding period being dominated by perceptual 

similarity. Any signal related to pattern separation of overlapping events may be weaker than 

the effects of similarity, producing output consistent with increased representational 

similarity of overlapping memories. This may explain why the higher similarity observed during 

the first encoding phase was no longer present in the second encoding phase; potentially, the 

first phase was largely influenced by the perceptual characteristics of the stimuli while in the 

second phase the representations might have been more defined. However, I still did not see 

any evidence for pattern separation in this phase, although there are a number of possible 

reasons for this: representations changed as a result of retrieval, participants were fatigued 

or not motivated at this stage (as they knew there would be no memory test following the 

second encoding task), or potentially the balance between representing perceptual similarity 

versus event distinctiveness shifted but not to the point at which pattern separation could be 

detected.  
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 Alternatively, the higher similarity of patterns associated with overlapping events at encoding 

could have reflected a recall of the previously encountered event when encoding its matching 

pair. This would result in activity patterns consistent with pattern completion as opposed to 

pattern separation; the former operates at retrieval and the latter at encoding, but their 

complementary roles mean that they are often difficult to distinguish. It has been 

recommended that to measure pattern separation, the desirable strategy should be the most 

appropriate for the task at hand, and therefore the most likely to use (Hunsaker & Kesner 

2013; Liu et al. 2016). Consistently with this recommendation, previous findings showed that 

different instructions can bias processing towards either encoding or retrieval, as indicated by 

their different neural signatures (Richter, Chanales, & Kuhl, 2016). The current task was 

therefore designed to decrease the likelihood that any retrieval would take place during the 

encoding phase, and vice versa. However, it is still possible that participants re-imagined the 

matching event, either consciously as a way of rehearsal or automatically as a result of pattern 

completion to the already stored overlapping memory. The signal detected at encoding could 

therefore be a mixture of pattern separation of new episodes and pattern completion to the 

matching representations.  

There is also a possibility that the overlapping items were not in fact the same items; for 

example, the kitchen imagined as an element of one event might not have been the same 

kitchen as when imagined in another event. This would require no pattern separation at 

encoding and, potentially, the mechanism of retrieval inhibition (Wimber et al., 2015) would 

suppress the shared features at retrieval. However, the fact that participants were asked to 

imagine individual elements before the memory task hopefully minimised this possibility and 

created fixed representations that were then used throughout the task. The reasons why the 

retrieval inhibition effect was unlikely to be observed at retriavl have been explained in the 

previous section.  
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Pattern separation and performance  

The main role of pattern separation is to reduce interference between memories (McClelland 

et al., 1995; McNaughton & Morris, 1987; O’Reilly & McClelland, 1994). I therefore 

investigated the effect of pattern similarity on performance.  LaRocque et al. (2013) previously 

showed that higher distinctiveness of an item-specific pattern (when compared to all other 

items) predicts later memory for that item, suggesting that higher representational 

dissimilarity leads to better memory performance. I found no evidence for this prediction in 

pairs of overlapping events; there was no relationship between pattern similarity and 

performance across all constituent retrieval trials in that pair.  

However, consistently with LaRocque et al., I found that in the right hippocampus the 

representations of events that were overall more distinct (as compared to all other events and 

not only their matched pair) were associated with higher accuracy at retrieval - although it did 

not reach significance in the whole brain searchlight analysis.  This again seems inconsistent 

with the role of pattern separation in reducing representational overlap between specifically 

these memories that are likely to interfere with each other, as would be expected from the 

behavioural results. As speculated already, the inability to detect pattern separation-like signal 

at encoding may have resulted from retrieval of representation of the overlapping events, 

potentially masking any separation-related activity.  

Encoding-retrieval similarity 

Many models propose that the hippocampus binds the associated elements during learning 

(McClelland et al., 1995; Norman & O’Reilly, 2003). This allows for retrieval of an entire 

memory through pattern completion, a reinstatement of the signal observed at encoding 

when presented with a partial cue, e.g. one of the elements of the event (Hopfield, 1982; 

Marr, 1971; McClelland et al., 1995). This implies that the same neural states should be 

observed at both encoding and retrieval. Studies have shown overlap of areas at encoding and 
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retrieval (reviewed in Rugg et al., 2008) and ability to predict the type of retrieved information 

from a classifier trained at encoding (reviewed in Rissman and Wagner, 2012).  I therefore 

looked at whether the pattern of activity present at encoding is reinstated at retrieval. 

However, I found no areas which showed higher encoding-retrieval similarity of patterns for 

correct than for incorrect trials. This is at odds with other neuroimaging studies which suggest 

a common neural signature associated with encoding and retrieval. However, the encoding 

and retrieval task in the current study were markedly different: participants imagined 

interaction between three elements at encoding, while at retrieval they judged single paired 

associates. This is unlike other studies showing overlap in the patterns at encoding and 

retrieval where the elements to be retrieved directly corresponded to the encoded stimuli 

(e.g. Bird, Keidel, Ing, Horner, & Burgess, 2015; Ritchey, Wing, Labar, & Cabeza, 2013). The 

differences in the type of representations used during the two phases of the current task 

might have therefore underlain the lack of correspondence in patterns at encoding and 

retrieval. 

In the univariate analyses, on the other hand, I observed increased average activity in highly 

similar areas during item presentation and retrieval (because all item-types were presented 

simultaneously at encoding, it was not possible to look for item-specific areas during this 

phase). The areas involved in location processing were consistent with previous literature 

implicating the PPA and interior calcarine area in scene perception (Epstein, Graham, & 

Downing, 2003; O’Craven & Kanwisher, 2000), posterior parietal cortex in spatial cognition 

(Burgess, Jeffery, & O’Keefe, 1999; Sack, 2009), and retrosplenial cortex in scene integration 

(Park & Chun, 2009). The people-specific areas were also in line with studies showing the role 

of the fusiform gyrus in representing faces (O’Craven & Kanwisher, 2000), while the posterior 

cingulate is involved in face perception (Pourtois, Schwartz, Spiridon, Martuzzi, & Vuilleumier, 

2009) as well as autobiographical memory of familiar people (Maddock, Garrett, & Buonocore, 

2001). Finally, the left anterior inferior parietal cortex is known to represent pragmatic 
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properties of tools and objects (Kellenbach, Brett, & Patterson, 1984; Rumiati et al., 2004) and 

the lateral temporo-occipital area is involved in perception of tools (Valyear, Cavina-Pratesi, 

Stiglick, & Culham, 2007) and may be a part of the lateral occipital complex which supports 

object recognition (Grill-Spector, Kourtzi, & Kanwisher, 2001; Pourtois et al., 2009). Their role 

in the current task may reflect the imagery of object-affordances, as all object stimuli were 

intended to be easily handled or manipulated. 

Similar areas were detected during both item presentation and retrieval phases, suggesting 

that the same neocortical areas are engaged during imagination of items from these 

categories and during their retrieval, which is consistent with the proposal that retrieval is 

accompanied by reactivation of signal present at encoding or during passive viewing (Bosch et 

al., 2014; Norman & O’Reilly, 2003; Nyberg, Habib, McIntosh, & Tulving, 2000; Wheeler, 

Petersen, & Buckner, 2000). The current results suggest therefore that although the same 

areas are used for imagination of individual elements and for their retrieval, the specific 

cortical representation is not reinstated, contrary to previous findings (Gordon, Rissman, Kiani, 

& Wagner, 2014; Kuhl, Rissman, Chun, & Wagner, 2011; Ritchey et al., 2013; Wing, Ritchey, & 

Cabeza, 2014). 

Non-target reinstatement 

Another consequence of the holistic representation of episodic memories and pattern 

completion at retrieval is the cortical reinstatement of neural signatures associated with all 

elements of an episode, including elements that are not the target of retrieval. The non-target 

reinstatement has been previously shown by Horner et al. (2015) in the original paradigm used 

in the current study; they showed that when the events were encoded in a holistic way, the 

cortical areas specific to the non-target showed increased activity during retrieval of the 

remaining two elements from the event. Here I extended this finding by showing that the 

specific neural representation of the non-target, i.e. its pattern at encoding, is observed in 
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item type-specific areas at retrieval. This, however, was not related to the overall accuracy on 

an event, as would be expected if pattern completion of all event elements (as indicated by 

reinstatement) was the main factor predictive of the strength of the representation of this 

event.  

Increased activity and memory performance 

Finally, the univariate results showed evidence for a subsequent memory effect only in the 

left posterior parahippocampal gyrus but not in the hippocampus. This is different to previous 

findings showing increased activity to later-remembered items in the hippocampus (Bisby, 

Horner, Hørlyck, & Burgess, 2016; Horner et al., 2016; Staresina & Davachi, 2009). However, 

parahippocampal cortex is consistently implicated in encoding of novel stimuli (Stern et al., 

1996; Tulving, Markowitsch, Kapur, Habib, & Houle, 1994), and specifically in memory for 

contextual (especially spatial) detail (Eichenbaum et al., 2007). A similar posterior cluster has 

previously been found during a source recollection task (Davachi et al., 2003) and was related 

to an encoding-retrieval similarity match in a word-scene association task (Staresina, Henson, 

Kriegeskorte, & Alink, 2012). The area identified here also lies close to the parahippocampal 

place area (PPA) which is involved in scene perception (Epstein & Kanwisher, 1998) and its 

relationship to performance may be explained by the role of spatial context in binding the 

memory elements together (Robin, Wynn, & Moscovitch, 2016).  

During successful retrieval, I observed increased activity in lateral parietal areas which have 

been implicated in successful retrieval (Gilmore, Nelson, & McDermott, 2015; Okada, Vilberg, 

& Rugg, 2012). Similar left-lateralized retrieval-related signal in superior parietal lobe has also 

been observed during successful recognition judgement (Henson, Rugg, Shallice, Josephs, & 

Dolan, 1999). Additionally, I found increased activity in the bilateral nucleus accumbens, which 

is normally associated with rewards processing and motivation (Ikemoto & Panksepp, 1999; 

Schultz, 1998) but has also been suggested to play a role in some aspects of declarative 
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memory (Setlow, 1997). Damage to the basal forebrain is known to cause amnesia (Zola-

Morgan & Squire, 1993), and a case has been reported where a selective lesion to the nucleus 

accumbens led to amnesia (Goldenberg, Schuri, Grömminger, & Arnold, 1999). The univariate 

results are therefore broadly in line with previous research on the neural substrates of 

successful memory encoding and retrieval. 

6.7.1 Conclusions  

The evidence supporting the main prediction of this study, that overlapping memory episodes 

are represented by less similar neural activity patterns as a result of pattern separation, was 

found during retrieval of associations from multi-element events. At retrieval, activity patterns 

in the hippocampus were less similar for overlapping than for non-overlapping events. I did 

not, however, found any evidence for pattern separation at encoding, the processing stage at 

which pattern separation is proposed to operate (O’Reilly & McClelland, 1994; Treves & Rolls, 

1992), inconsistently with previous evidence that pattern separation of episodic memories 

can be detected during encoding (e.g. Chadwick et al., 2011; LaRocque et al., 2013; Milivojevic 

et al., 2016).  Potentially, this may be because the effect of perceptual similarity of overlapping 

events dominated any (smaller) effect of pattern separation. There was also no relationship 

between the degree of pattern separation of overlapping events and overall performance on 

the two events, suggesting that neural dissimilarity of overlapping events does not affect how 

well they are remembered. On the other hand, higher dissimilarity of an event to all other 

events did predict higher performance on that event in the left (and marginally in the right) 

hippocampus, suggesting that overall distinctiveness improves memory. I also found no 

evidence of reinstatement of encoding activity patterns at retrieval, despite showing that the 

same areas are involved in both imagination and retrieval of different item-types. I did, 

however, found some evidence that a non-target item (item from an event that is not 

currently the target of retrieval) is activated in type-specific areas, consistently with pattern 

completion to a complete event representation when presented with a partial input (Marr, 
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1971; McClelland et al., 1995). Overall, I found partial support for the predictions regarding 

pattern separation of overlapping memories and pattern completion of within-event 

elements.   
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7  Chapter 7       

 General discussion 

 

 

7.1 Summary of findings 

The overall aim of this thesis was to apply univariate and multivariate analysis methods to 

functional magnetic resonance imaging (fMRI) data to investigate the brain representations 

underlying spatial and episodic memories.  

Using Representational Similarity Analysis (RSA), Chapter 3 looked for evidence of a grid-like 

representation of space during navigation and imagined movement. However, the results did 

not show any evidence of grid-like signal, despite the success of related univariate analysis of 

the same dataset (Horner et al., 2016). Potential reasons for this will be discussed below (also 

see Chapter 3). I did, however, find evidence of representational structures consistent with 

heading direction in the occipital lobes, which most likely reflected the similarity of the visual 

scene; this was preserved across actual navigation and imagined movement, showing that the 

same representation is used in both modalities. I also found evidence for representation of 

current spatial location in the hippocampus, right parahippocampal place area (PPA) and 

representation of the goal location in the left PPA. These findings are broadly consistent with 

previous literature on spatial navigation in humans and extend univariate results from other 

studies using the same paradigm (Doeller et al., 2010; Horner et al., 2016).  

The second part of the thesis investigated the process of pattern separation of episodic 

memories, a mechanism through which representations of similar memories are decorrelated 

in order to prevent their interference (Marr, 1971; McClelland et al., 1995; Treves & Rolls, 

1992).  The general aim was to design a task which would address some of the limitations of 



 
 
 

172 

the currently used paradigms in the pattern separation literature which, for reasons described 

in Chapters 1 and 4, are suboptimal for looking at this mechanism. I first attempted to induce 

the need for pattern separation by training participants on a task which required them to 

distinguish between facial stimuli belonging to two different categories (Chapter 4). At 

retrieval, I presented participants with these stimuli or with 'morph' faces created by linear 

combinations of the original faces, with varying level of similarity to the originals. I found that 

the ability to distinguish between 'old' (prototype) and 'new' (morph) faces decreased with 

similarity, but, contrary to the predictions, this did not depend on whether the prototype faces 

belonged to the same or different category. However, the overall poor performance levels in 

this study limits any strong conclusions as the absence of predicted results may be a 

consequence of floor effects.   

Extending this method of examining pattern separation, Chapter 5 used more life-like memory 

events comprising multiple associated elements. Using this paradigm enables investigation of 

the coherence of the event representations by examining the statistical dependency of 

performance in retrieving different associations from the same event. I showed that, while 

each event is coherently represented, pairs of similar events (overlapping events with one 

element in common) show the opposite pattern: showing less dependency between retrievals 

from paired events than from unrelated events (or models of independent storage). This was 

interpreted as evidence of pattern separation; the overlapping memories may be stored as 

decorrelated representations, reducing the dependency in their retrieval. Despite this 

lowered similarity of representations of overlapping events, the holistic retrieval of their 

within-event elements (an index of pattern completion) was unaffected by the overlap, 

suggesting that the binding of individual items into a coherent memory is independent of the 

pattern separation of their respective memory engrams.  
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Finally, Chapter 6 investigated the pattern separation of multi-element events at the brain 

level. It was hypothesised that, just as retrievals from overlapping events are less statistically 

dependent than retrievals from unrelated events, the neural representations of overlapping 

events should be less similar to each other. I used the task designed in Chapter 5 to look for 

evidence that overlapping memories are indeed associated with more dissimilar patterns of 

activity in the hippocampus than memories that are unrelated. In the RSA analyses. Univariate 

results showed memory effect (greater activity for correctly remembered associations) in the 

parahippocampal cortex at encoding and in a network of areas (hippocampus, nucleus 

accumbens, left posterior parietal cortex) at retrieval. I also found areas which showed 

increased activity to each of the three item types (people, locations and objects) that were 

highly similar in task phases when items were presented in isolation, and when they were 

presented in association with another element at retrieval, suggesting that the same 

mechanisms may be involved during both encoding/imagination and retrieval. The areas 

included the FFA, PPA and LOC for people, locations and objects, respectively. I found a 

representational structure consistent with pattern separation at retrieval (as indexed by lower 

similarity of patterns of associations from overlapping events), however I found no evidence 

of higher neural pattern separation for overlapping events as compared to unrelated events 

at encoding. On the contrary, the hippocampal representations of overlapping events at 

encoding were more similar. This may be because the encoding phase is dominated by the 

effects of perceptual similarity (which is greater for overlapping events) so that smaller effects 

of pattern separation cannot be detected.  

 

7.2 Using RSA to examine grid cells  

A main aim of the first part of the thesis was to look for evidence of grid-like representation 

of space in both navigation and imagination using RSA analyses. Despite the presence of such 
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signals in univariate analysis of the same data (Horner et al., 2016), I found no such RSA effects 

in the EC or elsewhere in the brain. Multi-voxel analyses are often considered to be more 

sensitive than univariate methods, and are often employed for this reason when univariate 

methods fail.  However, in retrospect, I argue that multi-voxel pattern analyses may be less 

appropriate for looking at this particular research question than univariate methods. Due to 

the firing characteristics of grid cells, changes in heading direction should affect the univariate 

BOLD signal (as shown in Doeller, Barry, & Burgess, 2010 and Horner, Bisby, Zotow, Bush, & 

Burgess, 2016), but not necessarily the pattern of activity across voxels.  

The presence of 60 periodicity in the univariate signal relies on (i) different dynamics of grid 

cell firing when running on- and off-axes of the grid, or (ii) the modulation of firing of the 

conjunctive cells by heading direction, as their preferred firing directions are aligned with grid 

axes (Doeller et al., 2012). These two conditions result in detectable difference in the 

univariate BOLD signal between movement along and in-between grid axes (Doeller et al., 

2010; Horner et al., 2016). However, these on/off axis differences are general to all 

populations of grid cells or conjunctive cells, and would affect all grid cell containing voxels 

proportionally to the number of cells they contain. Thus, heading direction may modulate 

fMRI signal as a common factor across voxels, but changes to a multiplicative factor would not 

affect correlation-based assessments of the similarity of the patterns across voxels for on- or 

off-axis heading (correlations are independent of variations of the overall scale of one or the 

other vector).   

Might there be an alternative mechanism that could support an RSA on/off axis effect? 

Supposing that conjunctive grid cells varied in the distribution of preferred firing directions 

across voxels, this would produce dissimilarity of patterns that unimodally reflects heading 

direction, but not a hexadirectional effect. Nonetheless, a grid-like representation of facing 

direction was observed in another study using the RSA (Bellmund et al., 2016). One 
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explanation of that effect would be populations of cells that fire differently according to on- 

or off-axis movement. It is possible that directional cells with multiple preferred directions 

could produce such patterns across voxels, or other cell types so far unreported in rodents, 

although it is not clear why this signal would be absent in the study presented here. 

Potentially, the larger and more complex environment in Bellmund et al. allowed for detection 

of this relatively weak signal, which even in that study was observed only in one small region 

in the EC.  

Alternatively, if the grid orientation varies across voxels (although evidence suggests that the 

variability is quite low, and high variability would be inconsistent with the assumptions of the 

univariate analyses as described above; Barry, Hayman, Burgess, & Jeffery, 2007; Doeller et 

al., 2010; Stensola et al., 2012), it would be possible to detect the expected differences in 

patterns provided that enough grid cell modules were sampled. The grid cell modules (cluster 

of cells of similar characteristics) show higher consistency in orientation within than between 

modules. The differences between modules of different scales could produce the results in 

Bellmund et al., whereas the smaller environment used here would not sample a sufficient 

range of grid scales to show corresponding effects. It is therefore possible that the variability 

in grid orientation, although low, could be used to successfully detect a pattern similarity 

structure consistent with 60 periodicity but only in larger environments. The null findings in 

the current study could have also been due to some of the limitations described in the 

Discussion of Chapter 3 and in section 7.7 below.  

7.3 Behavioural evidence of pattern separation 

The main aim of the second part of this thesis was to investigate pattern separation of similar 

episodic memories, and the conditions under which it operates. First, I looked at whether a 

behavioural need to distinguish between two categories affects pattern separation of 

representations of their respective members. It was hypothesised that the representations of 
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different-category faces would need to be differentiated to a higher extent than of same-

category faces, in turn affecting the ability to recognise their linear combination (their 

'morphs') as novel as a function of whether they were from the same category or not. The 

results did not support this claim, which might suggest that either the category membership 

does not affect pattern separation of the prototype faces, or that the distinctiveness of 

representations of the prototype faces (as a result of pattern separation) does not affect the 

ability to discriminate their 'morphs'. However, as already mentioned, the task was difficult 

and, although participants' ability to distinguish between old and new stimuli was above 

chance, the low performance could have masked any potential effects of pattern separation 

on discrimination of similar stimuli.  

With a more ecologically valid memory task using multi-element events that were either 

overlapping (with a common element) or fully unique, I found evidence of behavioural pattern 

separation of overlapping memories in Chapters 5 and 6. I used a measure of dependency 

(adapted from Horner & Burgess, 2013), which reflects the extent to which the retrieval of 

associations from one event depends on the retrieval of other associations from the same 

event (i.e. within-event coherency) compared to other associations from different events. I 

found that, although each event was coherently represented, retrieval of associations from 

one event had lower dependency on retrievals from an overlapping event than retrievals from 

unrelated events. This reduction in dependency is interpreted as evidence of pattern 

separation - a mechanism proposed to be performed by the dentate gyrus of the hippocampus 

(Marr, 1971) to decorrelate the neural representations of similar memories in order to 

prevent their interference.  

This extends the results from other studies which have interpreted the ability to distinguish 

visually similar items as an index of pattern separation (Bakker et al., 2008; Kirwan et al., 2012; 

Kirwan & Stark, 2007; Lacy et al., 2011; Stark et al., 2013; Yassa et al., 2010). The present 
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studies add to this literature by showing that more complex multi-element memories that 

share a common item also induce the need for pattern separation, possibly resulting in more 

dissimilar representations. In addition, it was possible to directly address the original 

hypothesis: of pattern separation of the encoding of two memories as a function of their 

similarity, rather than relying on an indirect measure of how well a single memory can be 

distinguished from a similar novel item at test.     

 

7.4 Assessing pattern separation with RSA 

The neural mechanisms behind the behavioural pattern separation of multi-element events 

were investigated using RSA. The RSA was deemed the most suitable analysis method for 

looking at this mechanism as it allowed for direct testing the hypothesis that patterns of 

activity associated with overlapping events are less similar than of unrelated events. As each 

event is both overlapping with another and unrelated to all other events, it would not be 

possible to use univariate methods or pattern classifiers to test this prediction. Instead, I 

looked at the overall similarity structure across all events to see whether its geometry fits with 

the proposed characteristics of the cognitive representations underlying similar memories.  

At encoding, the overlapping events were represented with more similar activity patterns, 

contrary to the pattern separation account which predicts decreased representational overlap 

of similar memories. This is likely due to the higher perceptual similarity which may be more 

salient at encoding and which could have masked any smaller effects of pattern separation.  

Additionally, dissimilarity of patterns of overlapping events in the hippocampus and 

parahippocampal cortex at encoding was not predictive of average performance on these 

events while the overall dissimilarity of event patterns was, suggesting that improved 

performance was related to the overall distinctiveness of a representation and not the degree 

of pattern separation from a similar event. I also explored whether the representational 
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structure changed over time; I compared the similarities across events between first and 

second encoding phases (the second phase took place after the retrieval; see Methods of 

Chapter 6). I found that event representations diverged over time, but the magnitude of this 

change did not differ between overlapping and non-overlapping events, contrary to the 

proposal that the effects of pattern separation on the similarity of specifically the overlapping 

representations may emerge over time.  

At retrieval, on the other hand, I found evidence of pattern separation of similar memory 

episodes: associations from overlapping events had less similar patterns of activity than 

associations from unrelated events. This did not seem to be driven by either associations 

which did (or which did not) include the overlapping item, suggesting that the lowered pattern 

similarity similarly affects all associations from overlapping events and not only those that 

overlap. Finally, inconsistently with the proposal that patterns at encoding are reinstated at 

retrieval, I found no encoding-retrieval pattern similarity for correctly retrieved associations 

anywhere in the brain. However, this may be a consequence of the differences in stimulus 

presentation at encoding and retrieval: participants memorised three-element triads while 

recalled pairwise associations. On the other hand, I found evidence for reactivation of the 

pattern associated with the non-target (i.e. the item from the same event that was neither 

cue nor target in this trial) in its type-specific area, which is in line with the pattern completion 

account that all event elements are retrieved when presented with a partial cue.  

7.4.1 Neural mechanisms of pattern separation 

The similarity structure observed in the activity patterns is assumed to reflect pattern 

separation, a mechanism which operates at encoding and facilitates the formation of distinct 

memory representations, as well as other factors such as perceptual similarity. Pattern 

separation is proposed to rely on the DG which receives similar inputs from the EC and 

transforms them into more sparse representations to be stored in the CA3 subfield of the 
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hippocampus, thus minimising the overlap between patterns of activity (Marr, 1971; 

McClelland et al., 1995; Treves & Rolls, 1992). In humans, pattern separation at the cellular 

level has not yet been observed, although a lesion restricted to the DG produced behavioural 

performance consistent with impaired pattern separation (Baker et al., 2016). The current 

results provide further evidence for the involvement of the (right) hippocampus in patterns 

separation. It was not, however, possible to separate the hippocampal subfields; future work 

with e.g. a 7T scanner allowing for higher image resolution may be able to narrow down the 

precise anatomical substrate of this effect at retrieval, as well as to distinguish between the 

different mechanisms which might have contributed to the overall output at encoding.  

7.4.1 Neurogenesis 

The DG is also one of only two known regions within the brain that continues to create new 

neurons throughout life (the other one being the olfactory bulb; Sahay, Wilson, & Hen, 2011), 

a process called adult neurogenesis, suggesting that this mechanism may be involved in 

reducing overlap of similar memories and preventing interference through pattern separation 

(e.g. Aimone, Wiles, & Gage, 2006; Anacker & Hen, 2017; Johnston, Shtrahman, Parylak, 

Gonçalves, & Gage, 2016). Neurogenesis has been found to have an effect on discrimination 

of similar stimuli and encoding of novel experiences (Clelland et al., 2009; Kirschen et al., 2017; 

Sahay, Scobie, et al., 2011), which are proposed to depend on pattern separation. The role of 

neurogenesis in human memory, however, is still very much a point of debate. A recent paper 

by Sorrells et al. (2018) showed that neurogenesis decreases to undetectable levels during 

childhood, and so the human hippocampus may work differently to that of other species. At 

approximately the same time as these findings, another paper published conflicting results 

showing a continued neurogenesis in humans into adulthood (Boldrini et al., 2018) – although 

the opposite findings may be a consequence of differences in methodology (Kempermann et 

al., 2018). Its precise role, if any, is yet to be established. Development of new methods, such 
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as the task developed here, which may provide behavioural measures of pattern separation is 

therefore beneficial in further advancement of this line of research.  

 

7.5 Mental imagery in spatial and episodic memory 

One of the aims of this thesis was to explore the role of a well characterised human memory 

system in mental simulation, both at encoding and retrieval. In Chapter 3, I looked at how the 

brain represented space during imagination of navigation. Chapters 5 and 6, although not 

specifically designed to compare 'experienced' autobiographical memory with imagination, 

also used imagined events as examples of real life-like memories. My results provide further 

evidence (also see Addis, Wong, & Schacter, 2007; Hassabis, Kumaran, & Maguire, 2007; 

Horner et al., 2016) that the representations used during encoding, retrieval and imagery may 

rely on the same or highly overlapping mechanisms.  

Chapter 3 demonstrated that representations reflecting heading direction in occipital areas 

during both actual and imagined navigation towards a goal location were highly similar. These 

representations likely reflected the egocentric layout of the spatial scene from the different 

viewpoints, hence their dependence on the heading direction. This correspondence across 

modalities consistent with the idea that the spatial memory system is involved in navigation, 

memory retrieval and imagination. As proposed by the BBB model (Byrne et al., 2007), during 

imagination the relevant cortical representations are reactivated by the hippocampus, 

recreating the remembered scene. Movement within this scene can be simulated with 'mock' 

idiothetic signals, which then updates this representation, to re-experience a remembered 

route or imagine a novel one. The evidence for highly similar representations reflecting 

heading direction in navigation and imagination in Chapter 4 provides support for this model. 

The task used in Chapters 5 and 6 used simulated event episodes. Participants were asked to 

imagine an interaction between an object, a person and a location as a way of creating life-
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like multi-element episodes. They then had to retrieve pairwise associations from each event. 

The results suggested that the storage and retrieval of these imagined scenarios rely on the 

same memory mechanisms (pattern separation and completion) and share the same neural 

signatures as encoding and retrieval of actual autobiographical memories (e.g. Addis, Wong, 

& Schacter, 2007; Hassabis, Kumaran, & Maguire, 2007). This may be because creating a 

mental image of this kind and then retrieving it requires a constructive process which is 

common to both memory for experienced events and imagination (Burgess, Becker, King, 

Keefe, & O’Keefe, 2001; Hassabis & Maguire, 2007).  

These results are consistent with the role of the spatial/episodic memory system in 

constructing a rich contextual 'experience' (Byrne et al., 2007; Schacter & Addis, 2007, 2009; 

Tulving, 2002) as opposed to imagery of simple objects (which can be retained in 

autobiographical amnesia; Rosenbaum, McKinnon, Levine, & Moscovitch, 2004). This thesis 

therefore extends current knowledge on the flexibility of the memory system and shows that 

the use of imagination can be a useful tool in investigation of spatial and episodic memory.  

7.6 RSA versus univariate approaches to fMRI data analysis 

This thesis extensively used a relatively novel method of imaging data analysis, the RSA. This 

as well as other multivariate analysis techniques are slowly gaining popularity due to their 

ability to look at novel research questions. In addition to looking at whether a given brain area 

is involved in a given task, as in univariate analyses, RSA can additionally give us metric 

information on task information is represented.  

Univariate approaches allow us to look at cognitive processes underlying behaviour. Processes 

are different from representations in that they are mechanisms that act upon the 

representations, but they do not store any information (Davis & Poldrack, 2013). The increase 

(or decrease) in the BOLD signal can be interpreted as an engagement of a voxel or a brain 

area in a given process. The only representations that can be identified using this approach 
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are those that vary along a single dimension (e.g. stimulus intensity) or representations that 

affect a cognitive process (e.g. different models of memory representations may predict 

differential effects on the activity during retrieval; Davis & Poldrack, 2013). It cannot, however, 

look at multidimensional representations across multiple voxels and so its use is limited – 

although the univariate single-dimension effects can be used to infer information about 

representations, as shown for example in the univariate grid signal analyses (Doeller et al., 

2010; Horner et al., 2016) or in studies looking at fMRI adaptation to make inferences about 

the nature of represented information (Grill-Spector, Henson, & Martin, 2006). 

The notion of representation is important, because it carries a functional interpretation:  the 

function is not only encoded in the area but also is read out by upstream areas (Decharms & 

Zador, 2000). Although RSA cannot directly provide evidence of such cause-effect relationship, 

by defining the representational geometry it specifies the representational content to much 

greater extent and with higher flexibility than is typical of univariate approaches. 

Typical univariate approaches rely on the localisation of a function and so can only look at 

regions that as a whole represent the content, but they cannot distinguish between 

representations encoded as a pattern of activity across voxels. The RSA can look at this type 

of representation, while also removing the need to define the specific spatial correspondence 

between the neural activity and the BOLD signal across voxels; as long as the information can 

be decoded from the pattern, the precise spatial distribution does not matter. This allows for 

inter-subject variability in the spatial distribution of neural responses and for looking at details 

which would be lost when averaging activity across participants in univariate analyses.  

The RSA therefore offers a novel way of looking at very specific hypotheses, especially suitable 

for condition-rich designs.  Looking at the patterns of activity across voxels provides a middle 

ground between univariate approaches and single-cell recordings, thus bringing the human 

research closer to the animal studies. Additionally, as fMRI capabilities increase and the size 
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of voxels decreases, it will become more and more meaningful to look at patterns of activity 

across voxels. The downside of this advantage is that RSA studies require more elaborate task 

designs, with particular attention needed to ensure that the data is optimal for the analyses, 

as will be discussed below. 

Additionally, as seen in this thesis, not all representations are more effectively captured by 

the RSA than univariate approaches. The representations of overlapping and unrelated 

episodic memories (Chapter 6) lent themselves to this approach, as the main question of 

interest regarded specifically the similarity of the underlying neural pattern. The grid-like 

representation of space (Chapter 3), on the other hand, could not be captured by this 

technique while univariate analyses were able to detect differences in the BOLD signal 

consistent with a grid-like representation of space (Doeller et al., 2010; Horner et al., 2016). 

The choice of the appropriate approach should therefore be determined by the particular 

research question and type of data to fully capitalise on the strengths of the respective 

methods.  

 

7.7 Practical considerations for design of RSA-appropriate tasks 

The studies highlighted a number of practical issues related to the use of RSA on fMRI data to 

look at cognitive representations. The RSA has an advantage over other multivariate analysis 

methods of fMRI data such as pattern classifier approaches in that it goes beyond simple 

discrimination of features; rather, it can look at the representational structure of cognitive 

processes, providing deeper insight into the nature of the underlying computations. When 

designing an RSA-appropriate task, however, a number of requisites need to be considered.  

In the first experiment presented in this thesis, one challenge resulted from the continuous 

metric used to measure the behaviour, which had to be translated into RSA-appropriate 

conditions. The movement directions had to be artificially split into directional bins (thus 
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combining a range of different directions into one condition), which additionally were not 

consistent across blocks due to the way the task environment was set up (see Discussion 

section of Chapter 3). This highlights the need for task designs with more structured ways of 

measuring or constraining behaviour, ideally by using a categorical as opposed to a continuous 

metric.  

Another challenge of applying the RSA to the data presented in this thesis was the low number 

of examples of behaviour within each condition. In univariate analyses, the same condition or 

behaviour is often measured repeatedly over multiple scanning runs in block- or event-related 

designs. The main advantage of RSA, however, is the ability to look at the representational 

structure of the cognitive function of interest, which usually entails calculating distances 

between patterns associated with several or even dozens of different conditions. Higher 

number of conditions allows for more elaborate models, but also means that fewer instances 

of behaviour can be used to estimate any one of the conditions.  

On the other hand, some paradigms are not suited for the use of multiple examples of each 

condition. In some memory experiments, in particular, it may not be desirable to, for example, 

present the same stimulus more than once.  The pilot studies used during the design of the 

multi-element event memory task presented in Chapters 5 and 6 (not reported here) showed 

that presenting the same events more than once resulted in too-high performance to detect 

any variability in dependency across the retrieval trials related to the task manipulation 

(overlapping or non-overlapping events). Multiple retrieval trials would also not be suitable in 

this paradigm. The potential benefits of multiple examples of each condition must also be 

weighed against fMRI-related constraints such as the time that can be spent in the scanner by 

the participants and the length of the BOLD responses (and therefore of the inter-trial 

intervals) which impose a limit on the study length and the number of trials. The decision 
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regarding number and kind of conditions is therefore not straightforward and requires 

consideration of multiple, often opposing demands.  

 

7.8 Theoretical design considerations for RSA  

The analysis of the data with multi-voxel methods rely on some assumptions that have to be 

kept in mind when interpreting the result. First, any searchlight analyses assume that 

information can be decoded from all brain regions equally well; in other words, that the 

mapping between the neuronal activity and the brain signal is the same for all regions. This 

may not be the case (e.g. Bhandari, Gagne, & Badre, 2018). Additionally, the correlation 

between two patterns decreases with addition of any uninformative voxels (Diedrichsen et al., 

2011), making the decision about the size of searchlights a crucial one, and yet there are 

almost no guidelines advising on the appropriate sphere size – and it is likely that these would 

be highly dependent on the very specific cognitive process of interest and the brain region 

that represents it. 

There is also a question of whether the use of patterns of activity across voxels can really be 

used as a proxy of neuronal activity patterns. Each voxel not only contains millions of neurons 

(Logothetis, 2008), but also it is not quite clear what information at the neuronal level is 

represented at the level of a voxel, given the hemodynamic transform required to infer the 

neuronal responses (Kriegeskorte et al., 2008). The RSA relies on the Johnson-Lindenstrauss 

lemma which states that if a projection from a neuron space to a voxel space is a random 

projection (i.e. each voxel is a randomly weighted combination of neurons of different 

selectivity), then the distances should be preserved (Johnson & Lindenstrauss, 1984). If 

neurons, and the capillaries linking their activity to the BOLD signal (Attwell et al., 2010), are 

not randomly distributed across voxels, we may not be able to make strong inferences about 

the underlying neural code based on the pattern similarity estimates. This simplification, 
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however, is still useful for interpretation of the activity patterns in relation to computational 

models of cognition (Kriegeskorte & Diedrichsen, 2016). 

 

7.9 Other limitations 

Finally, the MTL is a particularly difficult region to image due to the BOLD signal dropout and 

low signal-to-noise ratio there (Carr, Rissman, & Wagner, 2010). This might have contributed 

to the inability to detect any memory-related activity in this region in the early days of fMRI 

research (Schacter & Wagner, 1999). The scanning sequences used in the two imaging studies 

presented in this thesis were optimized for reduction of signal dropout in the MTL, however 

with a method as sensitive to noise as the RSA, any loss of meaningful signal may have a 

substantial effect on the results.  

 

7.10 Future directions 

Understanding of the memory system is extremely important due to the impact of memory 

loss on people's life. Impairment in spatial memory abilities and disorientation are one of the 

earliest signs of Alzheimer's disease (Allison, Fagan, Morris, & Head, 2016; Chan et al., 2016), 

while imbalance between pattern separation and completion is implicated in the failures of 

memory in old age (Stark, Stevenson, Wu, Rutledge, & Stark, 2015) and Mild Cognitive 

Impairment (Bakker et al., 2015; Stark et al., 2013), an early diagnostic of cognitive decline 

which may result in Alzheimer's (Petersen, 2004). Expanding our knowledge on the workings 

of the memory system in health will eventually allow us to better understand and potentially 

predict memory failures in old age and disease. Diagnosis of pre-dementia stages allows for 

administration of therapy in early stages (Cummings, Doody, & Clark, 2007) and could help to 

evaluate the effects of potential future treatments. Due to the increasing number and the 
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characteristics of the affected population, there is a high need for diagnostic tests that are 

non-invasive, as well as cheap and easy to administer in a standard clinical setting. The task 

presented in Chapter 5 and 6 offers a novel way of measuring pattern separation. More 

research is needed in order to fully understand the precise mechanisms captured by this 

measure, however it may prove to be a suitable alternative to tasks such as the Mnemonic 

Similarity Task (for fuller discussion of this topic, see Chapter 1.2.1 and Introduction to Chapter 

4). Additionally, the task can be further altered to investigate other aspects of this mechanism. 

A few examples of potential modifications are proposed below.  

7.10.1 Manipulation of similarity 

The need for pattern separation is related to the similarity of input, and so it is recommended 

that the level of similarity (and so the level of interference) should be parametrically 

modulated (Liu et al., 2016). In the current paradigm, this could be achieved by manipulating 

the number of overlapping elements between pairs of events to see the effect of the degree 

of overlap on the dependency measure. It would also be possible to test whether the effects 

of perceptual and/or semantic similarity are the same as the effects of element-overlap by 

using either picture stimuli of varying degrees of similarity or manipulating the semantic 

similarity of items.  

7.10.2 Pattern separation over time 

Following earlier discussion about whether the effects of pattern separation are detectable 

immediately at encoding or whether distinct representations of complex events develop over 

time (see Discussion section of Chapter 6 as well as Chanales, Oza, Favila, & Kuhl, 2017 and 

Milivojevic et al., 2016), it would be interesting to look at gradual changes to event 

representations, either over the course of learning within the same session or over extended 

delays. 
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7.10.3 Use of populations with reduced pattern separation 

Another way of testing the validity of the task presented here would be to include special 

populations known to show reduced pattern separation abilities on the Mnemonic Similarity 

Task: older participants (Stark et al., 2015, 2013), patients undergoing chemotherapy (Christie 

et al., 2012), patients with Mild-Cognitive Impairment (Bakker et al., 2015; Yassa et al., 2010), 

schizophrenia (Das et al., 2014) and depression (Déry et al., 2013). The inclusion of these 

groups could further strengthen the claim that the reduced dependency in the retrieval of 

overlapping memories is related to pattern separation. 

7.10.4 Combining spatial and episodic approaches 

Lastly, the two themes of this thesis could be combined to look at the pattern separation of 

memory episodes in an immersive spatial environment like the one used in Chapter 3. Both 

episodic and spatial memory are thought to rely on largely the similar neural systems and 

mechanisms (see Chapter 1), and yet they are most often investigated separately. There is 

plenty of evidence showing behavioural pattern separation in the spatial domain (Bonnici et 

al., 2012; Chanales et al., 2017; Kyle, Stokes, et al., 2015; Stokes et al., 2013) and in memory 

for complex episodes (Chadwick, Hassabis, & Maguire, 2011; Milivojevic et al., 2016), however 

so far there are is a lack of research looking at how the two domains interact together during 

exploration of the environment, despite the important role the spatial context plays in 

episodic memory (Byrne et al., 2007; Schiller et al., 2015; Tulving, 1972). Both Chadwick et al. 

(2011) and Milivojevic et al. (2016) used the 'background' of their video-stimuli to determine 

the spatial context of a scene  - similarly to the behavioural task from Chapters 5 and 6, where 

spatial location was a 'static' contextual element. However, so far evidence is lacking for 

pattern separation of representations of complex episodes in a continuous VR environment. 

The paradigm used in Chapters 5 and 6 was adapted from a task designed to look at pattern 

completion (Horner & Burgess, 2013), which in turn was a variation of a VR task where the 
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participants navigated around a virtual town, encountering avatars that presented them with 

objects (Trinkler et al., 2006), creating similar person-location-object memory engrams to the 

ones used here. Although that study did not find any evidence of pattern completion, this 

might have been due to a low number of trials, low performance and slightly different analysis 

methods. Using the present paradigm and measure of dependency, this VR paradigm could 

be easily adapted to look at pattern separation of overlapping episodic memories in a more 

immersive environment.  

 

7.11 Conclusions 

This thesis used a novel behavioural, univariate and multivariate (RSA) fMRI techniques to 

investigate how spatial and episodic memories are represented in the human brain. The 

findings extend the literature on the mechanisms related to memory for complex, associative 

information, and the role of the memory system in encoding, retrieval and imagery. The thesis 

presents novel findings as well as replications of effects previously observed using univariate 

methods. It extensively discusses the potential reasons for absence of some of the predicted 

effects (e.g. lack of evidence for grid-like representation of space), particularly in relation to 

the use of RSA and its related constraints, and the importance of a careful design of tasks 

optimised for this technique. Understanding of how the patterns of activity in the brain relate 

to complex cognitive functions is a fundamental challenge for the field of memory research, 

and this work contributes to our knowledge of how we can relate computational models of 

cognition to brain representations.  
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