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Street-Frontage-Net: urban image classification using deep 

convolutional neural networks 

Quantifying aspects of urban design on a massive scale is crucial to help develop a deeper 

understanding of urban designs elements that contribute to the success of a public 

space. In this study, we further develop the Street-Frontage-Net (SFN), a 

convolutional neural network (CNN) that can successfully evaluate the quality of 

street frontage as either being active (frontage containing windows and doors) or 

blank (frontage containing walls, fences and garages). Small scale studies have 

indicated that the more active the frontage, the livelier and safer a street feels. 

However, collecting the city-level data necessary to evaluate street frontage 

quality is costly. The SFN model uses a deep CNN to classify the frontage of a 

street. This study expands on the previous research via five experiments. We find 

robust results in classifying frontage quality for an out-of-sample test set that 

achieves an accuracy of up to 92.0%. We also find active frontages in a 

neighbourhood has a significant link with increased house prices. Lastly, we find 

that active frontage is associated with more scenicness compared to blank 

frontage. While further research is needed, the results indicate the great potential 

for using deep learning methods in geographic information extraction and urban 

design. 

Keywords: urban design, deep learning, convolutional neural network, machine vision, 

London, Google Street View, object recognition 

1.0 INTRODUCTION 

Advances in computer vision using artificial neural networks have allowed aspects of 

urban design to be quantified on a massive scale that was previously not possible. This 

is crucial to help develop a deeper understanding of urban design elements that inform 

domains of urban planning such as economic progress, transportation and residential 

well-being. In this study, we specifically focus on the urban design concept of active 

versus blank frontage, where active frontage is defined as ground floor buildings having 

windows and doors as opposed to blank walls, fences and garages (ODPM 2005). 

Quantitatively, the concept of active frontage has been expressed through frontage 
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classes (Law et al. 2017), on which this study focuses, or through ordinal indicators 

such as the façade evaluation scale (Heffernan et al. 2014). The quality of street 

frontages is an important factor in urban design, as it represents the space where the 

built environment and pedestrians interact most closely (Gehl 1971; 2010; Heffernan et 

al. 2014). For example, the greater the number of doors and windows facing a street, the 

more "eyes-on-the-streets", which contributes to the perception of a safe, convivial and 

sociable street (Jacobs 1961; Alexander et al. 1977). There are also health benefits such 

as improved walkability, and economic benefits such as increased land value (Heffernan 

et al. 2014; Nase et al. 2013). Despite being advocated in planning guidance (Llewelyn 

Davies Yeang and Homes Communities Agency 2013), previous research on this topic 

had been limited, firstly in terms of scale, as the majority of previous research used 

small scale questionnaires, and secondly in terms of establishing what benefits active 

frontages provide (Heffernan et al. 2014; Kickert 2016; Nase et al. 2013). The 

collection of such data to evaluate the quality of street frontage is both costly and time-

consuming.   

One approach to collecting this data more efficiently is to cast this as an image 

classification problem (Krizhevsky et al. 2012). In previous research, the use of deep 

learning methods in urban frontage classification was examined (Law et al. 2017) with 

the creation of the Street-Frontage-Net model (SFN) to classify active versus blank 

frontages. The aim of this research is to expand on this previous research by refining 

and explaining the SFN model and also validating the importance of this urban design 

indicator through statistical analyses with both house price and scenicness. 

In this study, we first evaluate the accuracy of the SFN model in predicting active 

versus blank street frontage using different deep convolutional neural network 



3 
 

architectures. We also evaluate the association of street frontage quality with increases 

in house prices, and with differences in scenicness. Finally, we explore the usefulness of 

our SFN model by visualising the neural network model and examining its predictions 

along the street segment.  

2.0 RELATED WORKS 

Despite the importance of active frontages in the urban design literature and the 

ubiquity of urban image data, limited urban computational research has been conducted 

on the classification of street frontages using street image data (Law et al. 2017; Liu et 

al. 2017). Previous computational research on street image data involved manual feature 

extraction to detect edges for classification. Image feature descriptors such as scale-

invariant feature transform (SIFT) and histograms of oriented gradients (HOG) are 

used, for instance, to detect distinctive architectural features in the Parisian cityscapes 

(Doersch et al. 2012), to estimate the perceived safety via online crowd-source games 

(Streetscore, 2014; Naik et al. 2014), and to identify visual discriminative elements in 

predicting city attributes such as theft rates, graffiti presence and house prices (Arietta 

et al. 2016).  

Recent advances in deep learning research (Bengio et al. 2015) have opened up new 

research opportunities in various domains including urban studies (Seresinhe et al. 

2017). Of particular interest are Convolutional Neural Networks (CNNs), initially 

popularised by LeCun et al. (1998), which are well adapted to classifying images and 

extracting image features in machine vision. CNNs regained popularity in 2012 when 

the network architecture AlexNet (Krizhevsky et al. 2012) significantly outperformed 

previous architectures on the ImageNet database by reducing the top-five error from 

26.0% to 15.3%. The ImageNet database is one of the most widely used visual 
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databases in the world for object recognition research, with over 14 million annotated 

images (Deng et al. 2009). Researchers continue to introduce several advances to CNN 

architectures to improve model accuracy and to extend them to other machine vision 

problems such as object detection and image segmentation (Girshick 2015; Ren et al. 

2015). A few of the important architectures used in this study are illustrated below. 

The VGG16 neural network architecture was introduced by Simonyan and Zisserman 

(2014) and has become one of the baseline CNN architectures used in object recognition 

due to its performance and simplicity. This network is the most straightforward of the 

four we use in this study, having thirteen convolutional layers, five pooling layers and 

three fully connected layers. This model achieves an accuracy of over 92.0% on the 

ImageNet database.  

The ResNet-50 network was put forward by He et al. (2015) and uses extremely deep 

neural networks that are strung together with residual blocks. Instead of learning the 

mapping between inputs and outputs, the residual blocks simply learn the difference 

between the two, hence the name. The architecture we use in this study has a total of 50 

layers.  

The Inception-V3 network, which was introduced by Szegedy et al. (2015), extracts 

features from the Inception modules that use small convolutions within each module 

simultaneously. This approach reduces the number of parameters significantly within 

each module. The Inception-V3 network uses a global average pooling layer instead of 

multiple fully-connected-layers.  

Lastly, the Xception architecture (Chollet 2017) introduced Depthwise Separable 

Convolutions into the Inception architecture. The Xception model learns the three 
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colour channels separately rather than simultaneously, hence the name Separable 

Convolutions. The Xception architecture can outperform Inception-V3 networks with a 

similar numbers of parameters.  

CNNs are now being used to understand city characteristics, including place categories 

(Zhou et al. 2014a; Zhou et al. 2014b), the beauty of outdoor places (Seresinhe et al. 

2017), demographic characteristics (Gebru et al. 2017) and in predicting house prices 

(Law et al. 2018). More recently, these techniques have been used to estimate greenery 

and street enclosures, which were found to have an effect on walkability (Li et al. 

2018). More closely related, CNNs have also been used to predict the continuity of a 

street facade as rated by domain-experts (Liu et al. 2017) and in developing the Street 

Frontage Net model (SFN), a street frontage classifier, using both Google Street View 

images and 3D-model synthetic street images (Law et al. 2017).  

3.0 METHOD AND MATERIALS 

The aim of this study is to refine and validate the SFN model, which classifies the 

ground floor of a front-facing street view image into four frontage categories: blank, 

single-side active (single-active), both-sides active (both-active) and non-urban. In order 

to train the classifier, we use Greater London (Figure 1) as the case study from where 

two ground truth street view image datasets are collected. These ground truth images 

are subsequently used in the five experiments detailed in section 4.0. 
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Figure 1: The objective of this study is to refine and validate the Street-Frontage-Net 

Model. The Greater London study area is used as the case study. Contains Ordnance 

Survey data. Crown copyright and database right 2017. 

3.1 Materials 

This study uses the same datasets that were used in Law et al. (2017), which include 

street images collected from the Google Street View API (Google 2017) and street 

images generated from the CityEngine software (ESRI 2013). To collect the Google 

Street View dataset, we first construct a graph from the street network of London, using 

the OS Meridian line2 dataset (Figure 2). More specifically, we take the geographic 

median and the azimuth of the street edge between two junctions to determine both the 

location (longitude, latitude) and the bearing (degree) of each street view image 

location. We then download a total of 112,650 front-facing street images in London, 

and pre-process them by removing invalid images, such as those taken inside a building, 

those that are too dark and those that are not available on Google Street View. We then 

resize the valid images to a set dimension (256 x 256 pixels), and hand label 
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approximately 10% of the total images (10,004) by frontage class, of which 2,632 are 

blank, 2,001 are single-active, 2,814 are both-active and 2,557 are non-urban. For the 

Google Street View images, four street frontage classes are adopted, namely: 0 - blank 

frontage on both sides of the street, 1 - active frontages on one side of the street, 2 - 

active frontage on both sides of the street and 3 - non-urban images (Figure 3).  

The second dataset comprises street images generated from a 3D model of an abstract 

city in ESRI CityEngine, which is a parametric engine for city building (ESRI 2013). 

Creating synthetic image data using a 3D virtual environment can greatly enhance the 

efficiency of collecting urban image data. In total, 4,800 images are generated with this 

process. We remove invalid images, such as repeated images, images that are near an 

intersection and those at the end of a road. This process results in 1,029 filtered images, 

which are then similarly resized to a set dimension (256 x 256 pixels). The ground truth 

labelling is performed automatically, and three sets of images are produced: 0 - blank 

frontages on both sides of the street, 1 - active frontages on one side of the street and 2 - 

active frontages on both sides of the street (Figure 4). The non-urban frontage class is 

not included, as it is not realistic to synthetically create non-urban scenes using the 

parametric software.  

Figure 2: This figure shows the steps involved in retrieving a front-facing Google Street 

View image. From left to right: the street network graph, get the location and bearing of 
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each street, download the street image and manually label the image. 2017 Google Inc. 

Google and the Google logo are registered trademarks of Google Inc. 

Figure 3: This figure shows four typical Google Street View urban frontage images. 

Active frontage is defined as the ground floor building frontage having windows and 

doors, as opposed to blank walls, fences and garages. From left to right: blank frontage, 

single-active frontage, both-active frontage, and non-urban frontage. 2017 Google Inc. 

Google and the Google logo are registered trademarks of Google Inc. 

 

Figure 4: This figure shows the 3D model urban frontage images. From left to right: 

blank frontage, single-active frontage and both-active frontage. 2017 ESRI. All rights 

reserved. 

4.0 EXPERIMENTS 

We use the image datasets, as detailed in the method and materials section, in the 

following experiments. In the first experiment, the sensitivity and robustness of the SFN 

model are tested by comparing different CNN architectures. In the second experiment, 

the frontage variables are used as inputs in a house price regression model. The 

relationship between scenicness and urban frontage quality are examined in the third 

experiment. In the fourth experiment, predictions about model generalisations along 
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different sections of the street are tested. In the final experiment, a CNN visualisation 

method is applied to interpret the results of the model. 

4.1 Experiment One – CNN model selection and tests 

Law et al.’s (2017) study showed that using a simple AlexNet CNN model to classify 

the frontage of a street image results in a high accuracy (75%). However, with recent 

advances in CNN architecture, Law’s results need to be re-examined using state-of-the 

art CNN architecture. This first experiment is divided into three parts. First, we test two 

transfer learning CNN models using the VGG16 architecture, whereby one model uses 

the weights learnt from the ImageNet database (Deng et al. 2009) and another model 

uses the weights learnt from the Places365 database (Zhou et al. 2014a). While the 

ImageNet database focuses on object recognition, Places365 concerns the recognition of 

place categories, such as “residential neighbourhood” and “train station platform”, and 

thus should be more relevant for this research. In the second part of this experiment, we 

compare the VGG-16 model (Simonyan and Zisserman 2014), the ResNet-50 model 

(He et al. 2015), the Inception-V3 model (Szegedy et al. 2015) and the Xception model 

(Chollet 2017). All these models were pre-trained using the ImageNet dataset and 

subsequently fine-tuned for the study. In the third part of this experiment, we will 

compare running these four models with and without the 3D model images. The 

objective is to study the robustness of the results. Furthermore, we will perform a spatial 

out-of-sample test, where the trained model will make inferences for another city – 

Paris – to study the extent to which the London-SFN model generalises to a different 

geography. 

4.2 Experiment Two – estimating the effect of urban frontage on house price through 

the hedonic price approach 
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The ultimate aim of this research is to contribute a valuable method to urban studies for 

analysing city life, from traffic flows to the provision of housing. Example research 

with street frontage might include to what extent street frontage quality might affect 

well-being or house prices. Previous studies using urban characteristics such as street 

frontage have been limited to small areas due to the cost and time required to collect 

such data (Nase et al. 2013). However, deep learning methods can retrieve large-scale 

results of estimated effects on urban performance. The aim of this second experiment is 

to test the effects of different frontage classes on house prices. We frame the second 

experiment as a simplified house price regression problem, whereby house prices are 

broken down into their utility-bearing components, including frontage quality, using the 

hedonic price approach (Rosen 1974; Cheshire and Sheppard 1995). This concept is 

analogous to comparing two properties, each with nearly identical features, except that 

one property has one bedroom and the other has two bedrooms. The price differential 

between the two is equal to the implicit price of the extra bedroom. This approach often 

includes structural features such as the size of the house and its type. It can also include 

location features such as job accessibility, or neighbourhood features such as land use 

diversity. Since its introduction, the hedonic price approach has become an established 

real estate method for pricing environmental goods and constructing housing price 

indices, and serves as evidence in the development of welfare policies (Palmquist 1984; 

Ridker and Henning 1967). To date, the effects of urban frontage on property values has 

largely been supported by a limited number of quantitative studies (Nase et al. 2013). 

Testing the effects of street frontage quality on house prices can reveal the economic 

value of urban frontage design. 
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Table 1: Descriptive statistics for the house price model. The table includes the house 

price in 2011, number of bedrooms, size, age, levels of accessibility, land use diversity 

and the neighbourhood active frontage score.  

Statistic	 N	 Mean	 St.Dev.	 Min	 Max	
lnprice	 6,110	 12.6	 0.5	 11.3	 15.3	
size	 6,110	 97.8	 40	 29	 278	
age	 6,110	 81.4	 37.5	 0	 311	
bedrooms	 6,110	 2.6	 1	 1	 8	
Accessibility	 6,110	 9.5	 0.4	 7.9	 10.1	
Land	use	div.	 6,110	 0.1	 0.1	 0	 0.8	
Active	front	R800	 6,110	 0.3	 0.1	 0.001	 0.7	

 

Table 2: Cross-tabulation for the frontage classes of the house price model. 

Class	 n	 %	
Blank	 1189	 19.46%	
Single-active	 1489	 24.37%	
Both-active	 3153	 51.60%	
non-urban	 279	 4.57%	

 

The dataset used in this experiment was compiled from the UK Land Registry (2017) 

with attributes from the Nationwide Housing Society (2012). The dataset for this 

experiment includes traditional housing attributes such as structural, neighbourhood and 

location features. The structural features for each property transaction include the price 

paid in 2011, the type of property, the number of bedrooms, the size and the age of the 

property. Location features include employment accessibility, which was computed as a 

gravity-based accessibility measure that takes the sum of jobs accessed within 60 

minutes divided by their travel time. Neighbourhood features include distance to the 

nearest parks and land use diversity (entropy) within 800 meters. The datasets used to 

calculate these location features originate from the Ordnance Survey (2017), the Office 

for National Statistics (2017), Valuation Office Agency (2015) and Historic England 

(2017).  
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Two urban frontage indicators are used for the housing price model. The first is the 

urban frontage class, which is predicted for each street using the best performing SFN 

model from the first experiment. The second indicator is the neighbourhood frontage 

score, which is computed by taking, for each property, the average active frontage 

probability within 800m.  

The overall hedonic price of the property is represented by a function H(·), 

parameterized by B that takes its housing attributes X, its urban frontage class f and the 

neighbourhood active frontage score a. The frontage class f is cast as a one hot 

encoding, where a binary dummy variable is created for each frontage class. We 

consider a baseline model H(X), which only depends on housing attributes, and a 

baseline + frontage model H(X, f, a), which depends on the housing attributes, the 

frontage class and the neighbourhood active frontage variable simultaneously. These 

equations yield the following multiple variable regression models: 

𝐻 𝑋 = β% + ∑β( ∗ 𝑋 + 𝜖 

(1) 

𝐻 𝑋, 𝑓, 𝑎 = β% + ∑β( ∗ 𝑋 + ∑β. ∗ 𝑓 + β/ ∗ 𝑎 + 𝜖 

(2) 

We then take model 2 to yield two sub-models. The first sub-model is estimated for 

Inner London and the second is estimated for Outer London. These sub-models aim to 

test the significance of frontage quality effects on house prices geographically. The 

boundary for the sub-models are shown in Figure 5. All the models are estimated by 

minimising the mean squared error loss function using the ordinary least square (OLS) 

method where standard regression statistics and significance are reported. 
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Figure 5: The Inner and Outer London boundary is used for the second experiment. We 

want to study the extent to which the association between frontage quality and house 

prices varies geographically. 

Cross sectional OLS models have certain limitations, one of which is spatial 

autocorrelation, which can result in unreliable estimates for the frontage variables. As a 

result, a standard Moran’s I test is computed for the model (Moran 1948). If significant, 

corresponding spatial regression models such as the spatial lag and spatial error models 

are then estimated as a robustness test (Anselin 1988).  

4.3 Experiment Three – Scenicness and frontage quality comparison 

In the previous experiment, we examined the extent to which urban frontage quality is 

associated with house prices. A related question is: how does urban frontage quality 

contribute to the visual aesthetics or scenicness of an environment, and how does this 

scenicness relate to specific architectural and environmental features? For example, do 
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people perceive classical architectural features with Corinthian columns as being 

scenic? 

The aim of this experiment is to examine the extent to which frontage quality relates to 

perceptions of street view aesthetics. A logical conjecture is that a blank frontage not 

only negatively influences the safety perception of an area, but it also limits views of 

the surroundings, and thus reduces the environment’s visual interest and therefore its 

scenicness. In order to test this idea, we conduct a small-scale exploratory descriptive 

study using a modified version of the Scenic-or-Not CNN model from Seresinhe et al. 

(2017).   

This modified Scenic-or-Not CNN, henceforth referred to as the Street-View-Scenic 

CNN, uses ground truth data on scenicness from two different online games, Scenic-Or-

Not and Scenic-London. The Scenic-Or-Not dataset comprises nearly 217,000 images, 

sourced from Geograph (http://http://www.geograph.org.uk/), covering nearly 95% of 

the 1km grid squares in Great Britain, and was originally used to train the CNN 

presented in Seresinhe et al. (2017). In order to improve the performance for Google 

Street View images, this CNN is further trained on the 6,946 Google Street View 

images that comprise the Scenic-London dataset. We use the Google Street View API to 

randomly sample four images per Inner London Lower Layer Super Output Area 

(LSOA). LSOAs are defined by the Office for National Statistics for statistical analyses, 

with geographic areas ranging from 0.018 to 684 square km and between 983 and 8,300 

residents (1,500 on average). We specifically choose to focus on Inner London to 

increase the sample of urban imagery our CNN is trained on, as we are most interested 

in understanding the characteristics of urban design. We use systematic unaligned 

sampling to generate coordinates for the images, whereby the sample space (i.e. the 
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entire LSOA) is split into four equally sized sub-areas, and a random [x, y] coordinate is 

generated for each sub-area. 

For our Scenic-London dataset, 34,955 ratings were gathered, following a similar 

procedure to Scenic-Or-Not (Seresinhe et al. 2017), whereby we presented our images 

in a web interface to be rated on a scale of 1-10. Only images rated at least three times 

have been included in the CNN training dataset.  

This Street-View-Scenic CNN currently achieves an accuracy score of 0.44 (Kendall’s 

Rank correlation between the predicted scenic scores and the actual scenic scores) for 

Street View images. We then use the Street-View-Scenic CNN to predict scenic ratings 

on a higher resolution dataset of Google Street View images – around 500,000 images 

at a 100-square-meter-resolution grid for London. 

For this experiment, we associate the predictions from the Street-View-Scenic CNN 

model with the predictions from the Street-Frontage-Net CNN model for the study area 

of Barnsbury (Figure 6). We make geographical visualisations to compare the 

predictions. We also conduct a one-way analysis of variance (ANOVA) test, which 

compares the mean scenic ratings between the different frontage classes and determines 

whether any of these means are statistically significantly different from each other.   
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Figure 6: The Barnsbury Case Study is used for the third and fourth experiment. 

4.4 Experiment Four – within-street prediction tests 

A shortcoming of the previous study (Law et al 2017) was the use of just a single 

sample image for each street. This type of sampling might be adequate at the city-scale 

when comparing the average distribution between neighbourhoods, reflecting the 

continuity of active frontages along a street. However, this sampling is inadequate for a 

study within a neighbourhood, as street-level differences can be important. As a result, 

in this fourth experiment, we test the extent to which the predictions of the SFN model 

generalise at different street segment resolutions, specifically how a single image model 

differs from predictions taken every 20m, 40m, 80m, 120m, 160m, 200m and 240m 

within the Barnsbury neighbourhood in London, as illustrated in Figure 6. 

4.5 Experiment Five – model visualisation and interpretation 

Recent advancements in deep learning have allowed computers to achieve human-like 

performance for many visual tasks. However, the application of CNNs can be limited 

due to the black-box nature of neural network models. In recent years, researchers have 
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developed models and methods to interpret these models. These studies have introduced 

methods such as visualising the layers of CNN models, diagnosing CNN 

representations, disentangling complex convolutional-layers, and building explainable 

models (Zhang et al. 2018). For this research, we use the most direct method in 

visualising CNN representation by using the gradient-based methods. Envisaging what 

the CNN sees can help us better trust a network prediction. More specifically, we apply 

Gradient-weighted Class Activation Mapping (Grad-CAM), which uses the gradient for 

a particular class that flows into the last convolutional layer of an input image to 

highlight activated regions for a particular class (Selvaraju et al. 2016). In particular, we 

apply the Grad-CAM method to four representative images of the four classes: blank 

frontage, single-side active frontage, both-side active frontage and non-urban image 

(Figure 3). The results can provide an indication of whether the model is acting upon 

the actual frontage area of an image rather than possible covariates within the image. 

Lastly, we visualise the predictions of the SFN model in order to interpret its 

geographical distribution. 

4.6 Training Setup 

Figure 7: This figure shows the Street-Frontage-Net model, where a street view 

image is the input and the probability of each frontage class is the output. 

The SFN model adopts a standard CNN architecture setup for image classification, 
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where a street view image is the input and the probability of each frontage class is the 

output (Figure 7). We use transfer learning to leverage the knowledge of a pre-trained 

neural network, which is a useful approach when millions of labelled images are not 

available to train a deep learning model from scratch. To train the transfer learning 

model for a different architecture, we first freeze the weights of the penultimate 

convolutional layer of each model, and then train the last convolutional layer and the 

subsequent layers for the new classification task. As each architecture studied in this 

paper is inherently different, future research should include architecture-specific 

sensitivity tests to optimise the accuracy for each CNN architecture. In this case, we try 

to maintain the settings as close to each other as possible for comparison purposes. We 

divide the dataset into training (70%), validation (15%) and testing (15%). We train the 

CNN using stochastic gradient descent with Nesterov momentum to minimise the 

categorical cross entropy loss function, as defined below, where p is the true 

distribution and q is the predicted probability distribution. The cross entropy loss 

function is typically used in a multi-category classification problem.  

𝐻 𝑝, 𝑞 = 	−∑𝑝 𝑥 log	(𝑞 𝑥 ) 

(3) 

We train for 60 epochs with an initial learning rate of 10e-5. A Softmax activation 

function is used in the final layer to estimate the probability distribution of an image 

class, as detailed below, and the frontage class with the highest probability is selected as 

the predicted label. 

𝑝:; =
exp x?@
∑exp	(𝑥:;)	
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(4) 

5.0 RESULTS 

5.1 Experiment One - CNN model selection 

To identify the most appropriate setup and to test the sensitivity of the model, we first 

compare the Google Street View images’ ground truth label with the most likely 

frontage class predicted in Model 1, which uses the ImageNet weights and Model 2, 

which uses the Places365 weights. The results in Table 3 indicate that while both 

models achieve a high accuracy, the model that uses the ImageNet weights (87.5%) is 

more accurate than the model that uses the Places365 weights (78.9%). We introduce 

here the confusion matrix to measure the performance of the classification model. In a 

confusion matrix, the i-th and j-th entries show the number of occasions where the 

network predicted category i corresponds to the observed category j. Hence, off-

diagonal elements indicate mis-classifications. The confusion matrix (Figure 8) 

illustrates that the fine-tuned ImageNet model is significantly more accurate at 

predicting both the blank class and the single-active class than the fine-tuned Places365 

model. This result is surprising considering the Places365 database has been built to 

more accurately reflect the features of environmental images. One reason for this result 

may be that a general image database such as ImageNet can capture more diverse sets of 

general image features than the Places365 database. 
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Table 3: Transfer learning accuracy comparing a VGG-16 ImageNet and a VGG-16 

Places 365 model. 

Transfer	 accuracy	
VGG16-Imagenet	 87.50%	
VGG16-Places365	 78.90%	

 

 

Figure 8: Confusion matrix for the transfer learning experiment comparing a VGG-16 

ImageNet model and a VGG-16 Places365 model. The result shows that the model 

trained with the ImageNet database has a higher overall accuracy.  

We then compare the same ImageNet-based model for four different architectures: 

VGG16, ResNet-50, Inception and Xception. The results (Table 4) show that VGG16 

yields the most accurate results, followed by Xception, ResNet-50 and Inception-V3. 

This outcome is not surprising considering the simplicity of the classification task. As 

each neural network architecture differs significantly from the others, more research is 

needed to optimise for architecture-specific transfer learning strategies. 
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Table 4: Google Street Views prediction accuracy comparing the different CNN 

architecture. 

baseline	 accuracy	
VGG16	 87.50%	
Res-50	 77.90%	
Inception	 77.00%	
Xception	 81.30%	

 

Figure 9: Confusion matrix results comparing different CNN architectures. The result 

show that VGG16 generally achieves the highest accuracy, followed by Xception, 

ResNet-50 and Inception-V3. The results show some confusion between the single-

active class, the blank class and the both-active class.   

The confusion matrix (Figure 9) illustrates that the VGG16 model generally predicts 

with a higher accuracy than the other three models. The single-active class displays 

slight confusion with both the blank frontage class and the both-active class. The non-
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urban class, on the other-hand, has slight confusion with the blank frontage class. These 

results are not surprising, as there are clear overlaps between the single-active class with 

both the blank frontage class and both-active class. Future research in object detection is 

required to overcome these uncertainties. We then compare the model trained on 

Google Street View images with a model trained on both Google Street View images 

and 3D model street view images. The results (Table 5 and Figure 10) show that the 

model augmented with 3D-model images performs slightly better than the same model 

without 3D-model images, across all CNN architectures. This outcome improves 

previous SFN research (Law et al. 2017) and is robust across different CNN 

architectures. 
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Table 5: Google Street View + 3D model street view prediction accuracy

base+3D	 accuracy	
VGG16	 92.70%	
Res-50	 78.10%	
Inception	 79.00%	
Xception	 81.30%	

 

 

 

Figure 10: Confusion matrix results for the four CNN architecture using the Google 

Street View + 3D-model dataset. The results are similar to previous research, whereby 

the model augmented with 3D-model images performs better than the model without 

these synthetic images.  

In order to further validate the result, a spatial out-of-sample test is conducted for Paris, 

France. 281 images located in Central Paris are randomly downloaded using the Google 
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Street View API and manually labelled according to the four frontage classes. The 

London-SFN model is then used to predict the labels of these images, which are then 

compared to the observed labels. The prediction achieves a high accuracy of 77.26% on 

these novel images, which demonstrates the strong generalisability of the model. The 

confusion matrix is shown in Figure 11. 

 

Figure 11: Confusion Matrix results for Paris show that the London-SFN model 

generalises well geographically. However, the result is particularly poor for the single-

active class. 

5.2 Experiment Two - estimating the effect of urban frontage on house price 

through the hedonic price approach 

To test the validity or the usefulness of the urban frontage indicator, we construct a 

house price model and regress London house prices with frontage classes and 

neighbourhood frontage scores, holding various housing attributes constant. We find 

that the frontage class for a particular street segment containing a home is an 

insignificant factor. However, we observe that the neighbourhood active frontage score 

is a significant factor (Figure 12). These results indicate that the amount of active 

frontage immediately surrounding a particular house might not be a crucial factor in 

isolation, but that the frontage across an entire neighbourhood can be important. This 
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result is reasonable, as isolated cases of blank frontages here and there will likely not be 

too important, but a cluster of blank frontages will undoubtedly have more of an adverse 

effect on overall safety perception of an area. We also find that the neighbourhood 

active frontage effect is significant in Inner London and insignificant in Outer London. 

These results may indicate the effect of walkability: active frontages have greater value 

in areas where pedestrians tend to walk more, as the active frontages might be more 

salient. 
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Figure 12: House price regression model results. Model 1 is the baseline model without 

any frontage attributes. Model 2 includes both the frontage class variable and the 

neighbourhood frontage score variable. Model 3 is a sub-model for Inner London and 

Model 4 is a sub-model for Outer London. The results show no significance on the 

frontage class variable but significance on the neighbourhood active frontage score 

variable. These results indicate the amount of active frontage may not be a crucial factor 

in isolation but is important at the neighbourhood level. 
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The spatial dependence tests (Moran’s I) show that the OLS model has significant 

spatial autocorrelation (Table 6). In response, a spatial lag and a spatial error model are 

subsequently estimated. The spatial lag model, on the one hand, still shows significant 

spatial autocorrelation. The spatial error model, on the other hand, shows no significant 

spatial autocorrelation while achieving the lowest AIC when compare to both the OLS 

and the spatial lag model. Figure 13 shows the neighbourhood frontage score variable is 

significant after controlling for spatial effects (spatial error model). Its effects, however, 

decrease when compare to the OLS model.  

Table 6: Moran’s I statistics for the OLS model, the spatial error model and the spatial 

lag model. 

		 Moran's	I	 P-Value	
OLS	 0.502	 2.20E-16	
Spatial-Lag	 0.15	 2.20E-16	
Spatial-Error	 -0.003	 0.771	
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Figure 13: Spatial regression model results. The results show that the neighbourhood 

score variable is significant for the spatial error model which controls for spatial effects. 
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5.3 Experiment Three - Scenicness and frontage quality comparison 

We conduct an exploratory descriptive analysis of the frontage quality of a Google 

Street View image and its perceived scenicness in the Barnsbury study area. Figure 14 

shows the geographical distribution of the frontage classification (on the left) along with 

the urban scenicness of the same area (on the right). The results suggest there is a visual 

correspondence between blank frontages (blue streets) and low scenicness (blue dots). 

The results from the ANOVA tests (Table 7) confirm these observations, suggesting 

that scenicness scores are significantly different between frontage classes. The resulting 

box plot (Figure 15) points to greater differences between the blank frontage class and 

the both-active frontage class, whereby the blank frontage class is found to be less 

scenic and the active frontage class more scenic.  Further research with a larger sample 

size is required to confirm these results. 

 
Figure 14: Comparing urban frontage class on the left and urban scenicness on the right. 

The results show clear associations between the absence of active frontages and low 

levels of scenicness. Contains Ordnance Survey data Crown copyright and database 

right 2017. 
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Figure 15: Box plot illustrating the extent to which scenicness varies for each frontage 

class in the Barnsbury study area. The difference is especially significant with the blank 

frontage class and the both-active class. 

Table 7: ANOVA table illustrating scenicness is statistically significantly different 

between the classes.  

 Df Sum Sq Mean Sq F-value Pr(>F) 

Frontage 1 29.9 29.9 76.95 <2e-16 *** 

Residuals 486 188.8 0.389   

Signif. *** 0.001 ** 0.01 * 0.05   
 

5.4 Experiment Four - within-street prediction tests 

To study the extent to which the SFN model predictions generalise across a street 

segment, we compare the predictions for the Barnsbury area at different street 

resolutions. The cross-tab report (Figure 16) presents the results. First, the single image 

model performs similarly to the 160m, 200m and 240m model. The single image 

model’s accuracy significantly falls at 120m and reaches a low at 20m. This outcome is 
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not surprising, as an entire street is not necessarily homogeneous. Obvious 

heterogeneity exists between frontage classes.  

The accuracy is worst for the non-urban frontage class, with an accuracy of only 29% 

when comparing the single-image model with the 20m-image model. The both-active 

frontage class and the blank frontage class is most accurate, at 65% to 70% when 

comparing the single-image model to both the 20m-image model and the 40m-image 

model respectively. These results suggest that blank class and both-active class are 

predominately homogeneous along a street in London, while single-active class and 

non-urban class are predominately heterogeneous along a street segment. In other 

words, an entire street of blank frontages or both-active frontages are more likely to 

occur than a whole street of non-urban frontages or single-active frontages. Figure 17 

illustrates the comparison of the low-resolution single-image model with the medium-

resolution 120m-model and the high-resolution 20m model. This figure shows 

remarkable visual similarity between the three maps. Figure 17 also demonstrates that 

longer streets have greater heterogeneity in terms of frontage types. These results 

suggest that the use of low-resolution sampling is adequate on a city scale, but high-

resolution sampling is needed at a neighbourhood scale, so that the distribution effects 

of the interconnections between frontages can be more appropriately addressed. 
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Figure 16: Cross-tabulations for predictions of different street resolutions. The results 

show that the single-image model is most similar to the 160m and 200m model, and that 

the accuracy reduces significantly from 120m. The accuracy is far better for the both-

active and blank frontage class. 

 

Figure 17: Prediction comparison for different resolutions of street segments. The figure 

shows visual correspondence across the three resolutions.  

5.5 Experiment Five - model visualisation and interpretation 

For interpretation purposes, we visualise the SFN model using the Grad-CAM method 

to better understand the visual pattern of a neural unit. Figure 18 presents the results in a 

visualisation matrix, whereby images from the four classes – as identified in the 
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methods section – are situated along the x-axis. The visualisation illustrates, from left to 

right: blank frontage, single-active frontage, both-active frontage and non-urban 

frontage. The y-axis shows the location of a particular frontage class’s activation in the 

image: blank frontage activation, single-frontage activation, both-active frontage 

activation and non-urban frontage activation. The results suggest that each frontage 

class image is highlighted by its subsequent frontage class activation. This outcome is 

illustrated by the activation along the diagonal of the gradient visualisation matrix. This 

outcome suggests that the model accurately identifies the frontages of a Google Street 

View image rather than other correlated areas of the images. These results also clearly 

show that the single-active class is inherently a combination of blank class and both-

active classes. These outcomes are also reflected in the poorer accuracy of the single-

active class. We have included a few more successful and failed examples in the 

supplementary information. This visualisation technique is useful in identifying model 

activation errors.  
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Figure 18: Grad-CAM visualisation of the four frontage classes with respect to the input 

image. The visualisation successfully highlights the frontage area of the street view 

image. 

Finally, we use the best performing SFN model to predict both the frontage classes and 

the probability of an active frontage on every street segment in London. Figure 19 

shows the most likely frontage class for each street image of London, where red denotes 

both-active, yellow represents single-active, blue indicates blank and green signifies 

non-urban. Examples of the four classes are highlighted in Figure 19, including Regent 

Street with both-active frontages, Hyde Park with non-urban frontages and streets in 
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Canary Wharf with blank frontages. The results indicate that Inner London has, as 

expected, a higher quantity of both-active frontages than Outer London. Single-active 

frontages are geographically more scattered compared to the other frontage classes, 

while blank frontages are found in Outer London. Non-urban frontages are found along 

parks and motorways. These results are consistent with the hypothesis that newer areas 

are generally less active and are also less pedestrian friendly.  

 

Figure 19: Prediction from the SFN classifier for every street in London where red 

signifies both-active, yellow signifies single-active, blue signifies blank and green 

signifies non-urban. Contains Ordnance Survey data. Crown copyright and database 

right 2017. 

Figure 20 shows the probability of active frontages in London, in which red represents a 

greater probability of active frontages in Inner London and blue indicates a lower 

probability of active frontages in Outer London. Both of these maps will be put online 

as an interactive web-map for demonstration purposes. 
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Figure 20: Active frontage probability for every street in London where red signifies 

higher probability for active frontages and blue signifies lower probability for active 

frontages. Contains Ordnance Survey data. Crown copyright and database right 2017. 

6.0 Conclusion 

To conclude, this study successfully demonstrates the classification of urban street 

frontage quality using deep learning methods. We have also shown that the quality of 

urban street frontage can be an important component to help understand aspects of 

urban planning, such as house prices and perceived scenicness. 

This research extends from previous research (Law et al. 2017) by validating the SFN 

Model, and finds that the VGG16-ImageNet model performs better than more complex 

architecture with a similar specification. The results are consistent for both the model 

with only street view images as well as for the model with both street view and 3D 

model images. The results from the second experiment show that having more active 
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frontages at a neighbourhood level is correlated with higher house prices. One 

interpretation of this result is that neighbourhoods with a greater probability of active 

frontages are perceived as being safer (Jacobs 1961), leading to higher house prices. 

This effect is also greater for Inner London than for Outer London, suggesting that 

frontage quality is more valuable where pedestrians walk more. These results are 

consistent even after accounting for spatial dependency in the data. The results from the 

third experiment show that scenicness is significantly different between different 

frontage classes, and that active frontages have higher scenicness scores than blank 

frontages. One possible interpretation of this result is that blank frontages limit the 

variability of the scene, thereby reducing the visual interest of the environment. The 

results from the fourth experiment show that both-active frontages and blank frontages 

are largely homogenous (70%) along a single street segment and that single-active 

frontages and non-urban frontages are largely heterogeneous (30%) along a street 

segment. These results show that higher resolution sampling is necessary when studying 

frontages within a neighbourhood. Finally, the fifth experiment shows encouraging 

results when visualising the CNN model to determine which parts of a typical street 

image gets activated. The geographical visualisation also supports the general consensus 

that Inner London has a higher frequency of active frontages than Outer London.  

 

7.0 Discussion 

This research successfully demonstrates how the quality of urban street frontage can be 

an important factor for studies that explore different aspects of urban planning, such as 

the economic valuation of a city and the well-being of its citizens, however there are 

several limitations that remain. Firstly, there exists misclassification between single-

active frontages and both blank frontages and both-active frontages. To overcome this 
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concern, initial research has been conducted to develop a street frontage object detector 

that uses the Faster R-CNN model (Ren et al. 2015) to detect and localise building 

frontages, as seen in Figure 21. This result shows a promising research direction in 

retrieving more information from the image dataset. 

 

Figure 21: Predictions from a Faster R-CNN model highlighting the urban frontages of 

a front-facing Street View image.  

Future research is also needed to study the extent to which generated 3D images can 

replace real images in the training data used by the CNN. The success of replicating the 

training data in a 3D virtual environment can greatly enhance the efficiency of 

collecting urban image data. Secondly, the focus on a single case study reduces the 

extent to which the results can be generalised. The small experiment with the Paris 

Street View images represents an early attempt in this direction, however further 

research is needed to develop a universal model for urban frontage assessment. Despite 

the above-mentioned limitations, the results of this study are highly encouraging, and 

confirm that deep learning methods can be successfully used for the purpose of 

categorising urban street frontage on a large scale. We also explore, through a 

preliminary statistical analysis, how our predictions of urban street frontage can be 

related to scenicness, as well as to factors important to urban studies such as house 

prices. These results show clear potential in the use of deep learning methods for 

geographical knowledge discovery and for scientific studies in urban design. 
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