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The radiative transport equation accurately describes light transport in participating 
media, though analytic solutions are known only for simple geometries. We present a 
pseudospectral technique to efficiently compute numerical solutions to large-scale time-
dependent and steady-state problems, with anisotropic scattering. A perfectly matched 
layer is proposed which allows this method to be applied in arbitrarily complex hetero-
geneous media. Our GPU-accelerated implementation of the technique is validated by 
comparison with a Monte-Carlo simulation, demonstrating excellent agreement.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The radiative transport equation (RTE) is a mono-energetic form of the Boltzmann transport equation, which models 
the propagation, attenuation and scattering of particles within participating media [1], and has been applied in numerous 
fields, including neutron transport, and atmospheric physics. In this work we consider the application of the RTE in the field 
of biomedical optics [2,3], where steady-state and time-domain solutions are sought to verify experiments and as part of 
model-based inverse problems.

The RTE, which can be derived directly from Maxwell’s equations [4], describes the distribution of specific intensity, or 
radiance within a domain �,

(
1

c

∂

∂t
+ ŝ · ∇ + μt(r)

)
φ(r, ŝ, t) = μs(r)

∫

SN−1

p(ŝ · ŝ′)φ(r, ŝ′, t)dŝ′ + q(r, ŝ, t) (1)

where the change in radiance φ(r, ̂s, t) at a point r ∈ � in direction ŝ at time t , is given as a balance of energy lost from 
an attenuation term μt = μa + μs accounting for absorption (μa) and out-scattering (μs), inwards scattering from s′ to s, 
and any sources q(r, ̂s, t). In the biomedical imaging modalities of interest here, the Henyey–Greenstein phase function [5]
is typically employed to describe the anisotropic scattering process,

* Corresponding author.
E-mail address: s.powell@kcl.ac.uk (S. Powell).
https://doi.org/10.1016/j.jcp.2019.01.024
0021-9991/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2019.01.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://creativecommons.org/licenses/by/4.0/
mailto:s.powell@kcl.ac.uk
https://doi.org/10.1016/j.jcp.2019.01.024
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.01.024&domain=pdf


S. Powell et al. / Journal of Computational Physics 384 (2019) 376–382 377
p(ŝ · ŝ′) = 1

4π

1 − g2

(1 + g2 − 2g(ŝ · ŝ′))3/2
. (2)

Boundary conditions for the RTE specify that φ(m, ̂s, t) = 0 for ŝ · n̂ < 0, where n̂ is the outward normal to the boundary of 
the domain at m ∈ ∂�: that is to say that in the absence of sources, there is no component of the radiance inwards across 
the boundary.

The high dimensionality of the field variable φ(r, ̂s, t) ∈ RN × SN−1, and the presence of non-local spatial and angular 
operators, is such that analytical solutions to the RTE have been found only for homogeneous infinite and semi-infinite 
geometries [6], and layered media [7].

Numerical solutions to the RTE in arbitrary three-dimensional geometries are typically sought by stochastic Monte-Carlo 
(MC) estimates. This approach converges to the solution in the limit of an infinite number of trials, and is inherently par-
allelisable. Despite the availability of a number of high performance codes, it remains a challenge to generate high quality 
estimates at distances far from a source, where statistical noise dominates. Furthermore, practical implementations require 
the use of variance reduction techniques which produce complex geometry dependent noise statistics which prevents mod-
elling of the noise statistics as part of, e.g., an image reconstruction procedure.

Deterministic methods can be categorised by how they treat the angular discretisation.

• Discrete ordinate (SN ) methods discretise the angular basis over a set of vectors equally spaced over the unit-circle 
or sphere. SN methods suffer from ray effects and may require stabilisation which affects both the performance and 
accuracy of their solutions.

• Spherical harmonic discretisations (P N methods) expand the solution in the natural orthogonal basis over the sphere, 
and truncate the series to allow numerical solution. P N methods can suffer from wave-like distortion owing to the 
truncation of the angular basis, but perform well in highly scattering media such as biological tissue.

The use of the RTE within biomedical optics extends across a number of modalities. Low-resolution time-resolved modali-
ties such as diffuse optical tomography (DOT) require time-dependent solutions on picosecond temporal scales in domains 
c. 100 mm on a side, with feature sizes of a few millimeters. High-resolution hybrid modalities such as photoacoustic to-
mography require steady-state solutions in smaller domains c. 10 mm on a side, but may require sub-millimeter resolution. 
In all cases, domains are scattering dominated, with scattering coefficients c. 10 mm−1 compared to absorption coefficients
of c. 0.01 mm−1, at the near-infrared wavelengths of interest. In this diffuse regime, P N methods are particularly appropri-
ate as the smooth radiance fields which result are accurately captured in approximations of a lower order than would be 
required in an SN method.

Discretisation in space can be achieved with the finite-element method [8–10], though the large size of the resultant 
system matrices has limited the practical application of this method. Alternatively, finite-difference [11] and finite-volume 
[12] methods have been proposed, but the inherent derivative operations require fine discretisation and the use of higher 
order derivative stencils, leading to limitations in their application in large domains. Mesh-free techniques have also been 
proposed [13]. There exists a significant body of work on solutions to the transport equation in other fields, such as neutron 
transport [14]. Here SN methods are more appropriate, and computational performance requirements can be relaxed since 
the models are not typically employed as part of iterative inverse solvers.

The lack of accurate and computationally efficient deterministic methods often leads to the application of the diffusion 
approximation (DA) to the RTE. The DA fails in regions of low scattering, and where the gradient of the energy density is 
large. Furthermore, the DA is parabolic (non-causal) in contrast with the hyperbolic RTE from which it is derived. Hybrid 
transport-diffusion methods have been proposed to balance the computational challenges of transport solutions with the 
approximations inherent in the DA [15,16].

Whilst these differences have until recently been tolerated in the context of diffuse optics, new developments in high-
density, time-domain, and hybrid diffuse optical methods require the use of the RTE to achieve their full potential.

2. The pseudospectral method

Pseudo-spectral methods are typically applied to solve partial differential equations which contain point-wise potential 
operators. The technique exploits the O(N log N) performance of the Fast Fourier Transform (FFT) to take spatial derivatives 
in the spectral domain (k-space) before applying an inverse transform to apply the potential operators in Cartesian space: 
thus, all operators are applied in the space in which they are diagonalised, and a far coarser spatial discretisation can be 
employed, limited only by the Nyquist criterion. Such techniques thus require far less memory and computational effort 
than their finite-difference or finite-element counterparts.

Pseudo-spectral schemes can be constructed for the RTE using both the S N and P N methods, however the elegance 
of our proposed technique is to exploit the fact that the scattering operator of the RTE is also diagonalised in the P N

approximation, and that directional derivative term forms a recurrence relation over the spherical harmonics which is trivial 
to compute. We thus operate solely in the angular-spectral domain.
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To derive our method we expand the radiance and source terms in a Spherical Harmonic basis,

φ(r, ŝ, t) =
∞∑

�=0

�∑
m=−�

√
2� + 1

4π
ψm

� (r, t)Y m
� (ŝ), (3)

q(r, ŝ, t) =
∞∑

�=0

�∑
m=−�

√
2� + 1

4π
qm
� (r, t)Y m

� (ŝ), (4)

and employ the addition theorem for spherical harmonics to restate the phase function,

p(ŝ · ŝ′) =
∞∑

�=0

�∑
m=−�

g�Ȳ m
� (ŝ′)Y m

� (ŝ). (5)

Equations (3) through (5) are substituted into equation (1), and the result is projected into the spherical harmonic basis by 
taking the inner product with Ȳ m

� (ŝ). Following some algebra, this yields a set of coupled first order PDEs [17],(
1
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(
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∂
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])
= μs g�ψm

� + qm
� , (6)

where the terms αm
� = √

(l + m)(l − m) and βm
� = √

(l + m)(l + m − 1) are related to the Clebsch–Gordan coefficients [8,17].
To implement our pseudo-spectral scheme we perform an N dimensional spatial Fourier transform of the radiance dis-

tribution,

F[φ(r, ŝ, t)](k, ŝ, t) = u(k, ŝ, t) =
∞∑

�=0

�∑
m=−�

√
2� + 1

4π
Y m

� (ŝ)ψ̂m
� (k, t) (7)

where

ψ̂m
� (k, t) =

∫
ψm

� (r, t)exp(−ik · r) dr, (8)

and k = {kx, ky, kz} is the k-space wave-vector. Inserting this result into equation (6) results in a set of coupled ODEs,(
1

c

∂

∂t
+ μt

)
ψm

� +F−1[ψ̇m
� ] = μs g�ψm

� + qm
� , (9)

where F−1 denotes the inverse spatial Fourier transform, and

ψ̇m
� = 1

2� + 1

(
−ikz
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− 1
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�+1

])
. (10)

2.1. Discretisation, truncation, transient and steady-state solution

To solve the RTE numerically we form a P N approximation by closing the recurrence under the assumption that ψm
� = 0

for l > N , leading to (N + 1)2 coupled first-order ODEs. The radiance distribution is sampled in space and the continuous 
Fourier transform replaced with its discrete counterpart. Finally, we sample in the temporal domain and implement a nu-
merical approximation to the temporal derivative. For brevity, we choose here to employ a first order explicit time-stepping 
scheme,

ψm
�,t+1 = ψm

�,t + c
t
(
F−1[ψ̇m

�,t] + (μt − μs g�)ψm
�,t

)
+ qm

�,t . (11)

The use of an explicit temporal discretisation provides conditional stability, requiring that a suitable choice of time-step 

t be employed. We have found that time-steps of the order of 100 fs provide stability in the explicit time-stepping 
scheme across a wide range of physiologically relevant parameters. Typical time-domain measurements acquired using 
time-correlated single photon counting (TCSPC) hardware provide measurements with time-bins of c. 800 fs. Thus, for 
time-domain measurements the use of an explicit scheme offers reasonable efficiency.

To compute a steady-state solution, this time-domain solution can be numerically integrated, though the small step-size 
required for stability of the explicit scheme makes this approach inefficient. Alternatively, the time-domain form can be 
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integrated analytically, whence the pseudo-spectral method provides an implicit operator representing the underlying trans-
port equation. Krylov subspace iterative methods can then be employed to find a steady-state solution through repeated 
application of the implicit operator. This technique is related to the method of exponential integrators, a topic to which we 
shall return in the discussion.

2.2. Boundary conditions

The primary limitation of pseudo-spectral methods is that they imply periodic boundary conditions (the exact form of 
which depends upon the choice of transform). In many applications a-periodic boundary conditions are enforced by the 
development of a perfectly matched layer (PML), which attenuates outgoing radiation before it reaches the boundary of the 
computational domain. Since the transport operator in the RTE is advective (that is to say that the action of transport on 
functions in the domain is to translate only along the directions ŝ), a PML can be implemented by the simple addition of 
an additional isotropic loss term outside of the real domain. Further, to adhere to the specified boundary conditions, which 
state that there is no radiation inwards across the boundary of the domain, we must set the scattering coefficient μs = 0 in 
those regions which do not correspond the real domain interest. A full analysis of such boundary conditions was recently 
provided in [18]. We thus solve,( 1

c
∂
∂t + μt

)
ψm

� +F−1[ψ̇m
� ] = μs g�ψm

� + qm
� r ∈ �,( 1

c
∂
∂t + μb

)
ψm

� +F−1[ψ̇m
� ] = 0 r ∈ �c \ �,

(12)

where μb is the PML attenuation term, �c is the full computational domain, and � is the real domain of interest. The exact 
spatial distribution of μb should be chosen to ensure that the solution is attenuated to a sufficient degree on the boundary 
of �c . Choice of μb is straightforward since within �c the radiance decays at a rate exp(−μb |rb|), where rb is the distance 
from the boundary in a given direction. It is also desirable for numerical reasons to choose a distribution which leads to a 
smooth decay of the radiance, in order to limit the introduction of higher spatial frequencies in the spectral representation.

3. Results

The pseudospectral algorithm was implemented in the Julia programming language [19]. The application of the transport 
operator occurrs in three stages.

1. A three-dimensional FFT is applied over the spatial dimensions of the complex valued input radiance field. The direc-
tional gradient operator (s · ∇) is then applied to the resulting k-space coefficients according to eq. (10). The solution is 
returned from k-space through application of an inverse transform.

2. The potential operators (μt − μs g�) are applied to the input radiance field, and the result from (1) is added. This is a 
simple pointwise operation, and concludes application of the transport operator.

3. If required, time stepping is applied according to eq. (11) which updates the input radiance field in-place.

The algorithm defaults to running on the host CPU, where the FFTW library is used to implement the FFT. To improve 
execution speed we have also implemented the algorithm as a set of custom CUDA kernels which execute on the GPU, in 
this configuration the cuFFT library is used to implement the FFT.

All simulations were executed on an nVidia Tesla K40 GPU driven by a 32-core Xeon workstation. In the numerical 
demonstrations which follow, we in each case compare the results of our pseudo-spectral method with a Radiance Monte-
Carlo technique we developed previously [20,21].

3.1. Transient solution without PML

The basic algorithm can be validated without the use of the PML by evaluating the time-domain internal radiance 
distribution over a period before the radiance distribution has propagated to the boundary.

We consider a cube 50 mm on a side of background parameters μa = 0.01 mm−1, μs = 1.0 mm−1, and an anisotropy 
factor of g = 0.9. The region x ≤ 15 mm has a higher scattering coefficient μs = 5.0 mm−1. The domain is discretised into 
a 64 × 64 × 64 grid of points, and the pseudo-spectral method is used to solve the system under a 21-degree spherical 
harmonic (P21) approximation.

The sharp onset of the scattering perturbation, and otherwise low scattering, provide an artificially challenging numer-
ical scenario for the pseudo-spectral solver, promoting the propagation of higher angular harmonics and generating sharp 
features in the resultant fluence field.

A time-step of 0.1 ps was chosen by inspection, and 400 steps were taken such that the initial radiance distribution, 
consisting of an Gaussian of isotropic angular profile, with 1/e diameter 1.5 mm, has time to propagate close the boundary 
of the domain. The simulation took 70 s to complete.

The same parameters were also employed in a Monte-Carlo solver of the RTE, in which 5 × 108 packets were propagated, 
with a kernel run-time of 269 s.
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Fig. 1. Fluence along the line y = z = 0 mm at three points in time, pseudo-spectral method (solid) vs. Monte-Carlo (dots).

Fig. 2. Fluence distribution in the domain at z = 25 mm and t = 65 ps, pseudo-spectral method (left) vs. Monte-Carlo (right).

Fig. 1 demonstrates the evolution of the radiance field during propagation over a line through the domain. Fig. 2 shows 
the resultant fluence through the domain after 60 ps, when the simulation was terminated. The initial field spreads outwards 
through the region of low-scattering close to the speed of light, forming a circular disc in the plane. As the radiance 
encounters the region of increased scattering a characteristic region of back-scattering causes a peak at the interface, and 
the further transport is inhibited and the field becomes diffuse.

An exact comparison is challenging since the time-domain Monte-Carlo solution is inherently averaged spatially and 
temporally (whereas the pseudospectral method is a collocation technique, with an exact solution at points in space and 
time). Further reducing the spatial and temporal discretisation of the MC solution leads to an unacceptable reduction in SNR, 
highlighting the value of the proposed technique. Nonetheless, excellent agreement is found between the two solutions.

3.2. Steady-state internal fluence with PML

The effect of the PML can be evaluated by considering the steady-state fluence in the domain resulting from a given 
source distribution.

The real domain consists of a cuboid of 35.5 mm on a side with homogeneous optical parameters μa = 0.01 mm−1, 
μs = 10.0 mm−1, and anisotropy factor g = 0.95. The real domain is embedded into a computation domain 50 mm on a 
side with a PML attenuation term following a half-cosine profile rising from 0.01 mm−1 at the end of the real domain to 
1.0 mm−1 at the boundary. The domain is discretised into a 64 × 64 × 64 grid of points, and the pseudo-spectral method is 
used to solve the system under a 7-degree spherical harmonic (P7) approximation.

A time step of 0.04 ps was chosen by inspection, and 25 × 103 time steps were integrated to ensure the domain had 
reached steady state conditions. The source term was an isotropic Gaussian distribution, with 1/e diameter 1.5 mm, offset 
from the centre of the domain by 8 mm in the x-axis. The simulation took 223 s to complete.

The same parameters were also employed in a Monte-Carlo solver of the RTE, in which only the real domain was simu-
lated and a matched boundary condition employed. The MC simulation employed 1 × 108 packets, with a kernel run-time 
of 16.1 s.
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Fig. 3. Steady-state fluence distribution in the domain across the x dimension at three points in y, at z = 0 mm, pseudo-spectral method (solid) vs. 
Monte-Carlo (dots).

Fig. 4. Steady-state fluence distribution in the domain across the y dimension at three points in x, at z = 0 mm, pseudo-spectral method (solid) vs. 
Monte-Carlo (dots).

Figs. 3 and 4 demonstrate the resultant steady state fluence for both the pseudo-spectral and Monte-Carlo techniques. 
In each case the characteristic logarithmic decay of the fluence is evident away from the source and boundary, with an 
increased decay towards the boundary. The index-matched boundary conditions imply a non-zero fluence at the boundary 
the domain, evident in each simulation.

Excellent agreement is shown between the pseudo-spectral method and the Monte-Carlo solution.

4. Discussion & conclusions

We have introduced a new technique to solve the radiative transport equation in arbitrary heterogeneous media. The 
technique has been validated against a stochastic Monte-Carlo solver, demonstrating excellent agreement.

The use of a pseudo-spectral method allows a compact representation of the radiance field with sparser sampling than 
required in a finite-difference or finite-element scheme. The method is inherently parallelisable: whilst our implementation 
only uses a single GPU, the cuFFT library and CUDA kernels implement the algorithm can be readily extended to run across 
a number of devices with a minimum of inter-device communication. Our implementation is limited by the performance of 
the FFT, and thus the method demonstrates O(N log N) performance scaling.

The pseudospectral technique is particularly suited to biomedical imaging where inherent scattering leads to (angularly) 
smooth solutions which can be simulated with modest angular discretisations (e.g., Nl ≤ 7). As we have demonstrated, the 
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technique can readily support propagation in low-scattering regions when a higher degree approximation is employed. The 
absence of noise and deterministic performance is such that the technique could be employed as part of a conventional 
image reconstruction method in modalities such as diffuse optical tomography, quantitative photoacoustic tomography, and 
ultrasound modulated optical tomography.

The simplicity and flexibility of the technique suggests numerous avenues for further research. A particularly interesting 
avenue of investigation is the optimisation of the pseudo-spectral method for the computation of steady-state solutions. 
We noted earlier that the use of a Krylov solver to form such solutions directly from the integrated transport operator was 
an alternative to the relatively inefficient numerical integration of the time-domain solution. At present the computational 
performance of this approach is limited as Krylov methods are typically implemented on the CPU, necessitating significant 
overhead in memory transfers between the GPU and host. Overcoming this would yield an attractive technique. We have 
also successfully employed exponential integrators to implement arbitrary time steps in homogenous media, allowing for 
more efficient numerical integration.
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