1 Characterisation of porous anodic alumina membranes for ultrafiltration of

2 protein nanoparticles as a size mimic of virus particles

- 3 Anshul Sharma ^a, Daniel G. Bracewell ^{a*}
- 4 ^a Department of Biochemical Engineering, Gower Street, University College London, UK WC1E 6BT
- 5 *Corresponding author (Email: <u>d.bracewell@ucl.ac.uk</u>)

6 Declarations of Interest: none

7 Keywords

8 Ultrafiltration, viral vectors, protein nanoparticles, porous anodic alumina, membranes;

9 Abstract

10 Viral vectors used in emerging gene therapies face challenges of significant yield loss during 11 downstream processing primarily due to their large size, fragility and mass transfer limitations of the 12 traditional porous chromatography adsorbents. The large size of the vectors in relation to key 13 impurities makes them suitable solutes for ultrafiltration-based separations. Efforts to utilise 14 ultrafiltration for virus purification are often restricted to commercial polymeric membranes with wide 15 pore size distributions and tortuous, interconnected channels. Membranes with narrow pore 16 distributions and straight pore channels such as porous anodic alumina (PAA) may present 17 opportunities for improved virus purification. This paper examines the use of porous anodic alumina 18 membranes for application in virus separation by using model solutes such as thyroglobulin and 19 protein nanoparticles. A systematic approach is used to select a polymeric ultrafiltration membrane 20 rating for comparison with 20nm rated PAA membrane by comparing hydraulic permeability and 21 dextran sieving characteristics of the membranes. Differences in the filterability of the model solutes 22 were characterised. Finally, a discontinuous diafiltration experiment was employed to fractionate 23 smaller model impurity and protein nanoparticles. Results indicate that PAA membranes have 24 superior fouling resistance with 3-4 folds higher flux recovery ratio and 3-fold higher purification 25 factors compared to the polymeric membranes, but the presence of surface defects make them more susceptible to product loss through leaky transmission. 26

27 1. Introduction

Emerging therapies such as gene therapy and cell therapies employ viral vectors for vaccine and therapeutic uses. Biomanufacturing of the viral vectors at present suffers from low process yields due to suboptimal chromatography processes due to inaccessibility of the resin pores for large solutes such as viral vectors resulting in an order of magnitude lower binding capacities compared to proteins [1]. New materials with a more open porous architecture such as gigaporous resins [2], monoliths [3, 4] and nanofiber adsorbers [5] are being actively looked into. Limited studies have been carried out to explore the use of ultrafiltration based processing instead of chromatography based processes by exploiting differences in the size of impurities and viral particles [6-9]. Most of the reported literature

- 36 compares different molecular weight rating or pore size ratings of polymeric ultrafiltration membranes
- 37 or different modules such as hollow fibre and cassette [6, 8]. These membranes have wide pore size

38 distribution, which is often reported to affect the membrane performance especially retention of large

- 39 biomolecules such as viruses [10, 11]. Isoporous membranes with different porous architectures such
- 40 as porous anodic alumina (PAA) membranes are however being investigated in other fields such as
- 41 nanofiltration for water purification and biosensors.
- 42 Porous anodic alumina membranes are widely studied for applications in label-free biosensors [12-14]
- 43 for use as point-of-care diagnostic devices. Applications of PAA membranes in bioseparations have
- 44 been limited to diffusion based separations for haemodialysis [15], separation of similarly sized
- 45 proteins by exploiting differences in solute charge [16], enriching phosphoproteins for mass
- 46 spectrometry [17] and ultrafiltration of small proteins [18-20]. A few reports on PAA membranes have
- 47 examined their potential for virus separations. Moon et al., [21] reported the ability of 35-nm pores of a
- 48 PAA membrane to separate empty and genome filled virus particles of a bacteriophage in centrifugal
- 49 filtration. Jeon et al., [22] have described the use of a PAA membrane for enrichment of hepatitis C
- 50 viruses and when compared to ultracentrifugation achieved four times higher recovery. These studies,
- 51 however, did not compare the PAA membranes to conventionally used polymeric membranes and
- also did not study filtration performance such as flux decline and fouling of the membranes. Further,
- 53 most of the studies have used custom fabricated membranes and not the commercially available
- 54 membranes. This work evaluates a commercial PAA membrane for filtration and separation
- 55 performance and compares them with a traditional polymeric membrane for potential applications in
- 56 virus ultrafiltration.

57 Working with live virus feeds can be challenging due to laborious, time and resource consuming cell 58 culture-based production and subsequent recovery of labile virus particles, the requirement for 59 biosafety containment for all of the experiments and sophisticated analytical tools required such as 60 infectivity and immunochemical assays. Nano-particulates such as inclusion bodies [23] and 61 synthesised protein nanoparticles [24] have been previously used in purification studies as surrogates 62 for virus particles. In this article, we report on the use of model solutes such as large proteins and 63 protein nanoparticles as mimics for viral vectors in ultrafiltration studies. Monodisperse bovine serum 64 albumin nanoparticles (BSA NP) preparations were prepared as reported in the literature [25]. This 65 paper presents a systematic approach for the selection of pore ratings for porous anodic alumina and 66 polymeric membranes to compare these two membrane types of radically different architecture for 67 filterability of large biomolecules. BSA NP of 80-90 nm diameter and thyroglobulin of 20 nm diameters 68 are used as physical mimics for viral vectors representing larger adenovirus and smaller vectors, such 69 as adeno-associated virus respectively. Bovine serum albumin of 66 kDa is used as a model impurity 70 given that most of the host cell proteins in mammalian cell cultures are in the range of 50-100 kDa in 71 molecular weight [26] and albumin is also the most abundant protein in the serum supplemented 72 growth media used in mammalian cell culture. Membrane fouling by these large solutes is studied, 73 and mechanisms of fouling are identified using a statistical curve fitting of experimental data with

- restablished mathematical models [27]. Separation performance of the membranes was also
- compared using mixtures of the model solutes and impurity (BSA) and performing an ultrafiltration-
- 76 diafiltration (UF/DF) run to aid in the fractionation. A hypothesis is put forward to explain the
- differences observed in fouling and sieving behaviour of the two membranes on the basis of
- 78 differences in their architecture.

79 2. Materials and methods

80 Filtration experiments were carried out in a 25 mm diameter Amicon stirred cell from EMD Millipore, USA using 25 mm diameter membrane discs. Commercial PAA membranes with 20 nm pore rating 81 82 (Whatman® Anodisc[™] 25, GE Healthcare, UK) and three polyethersulfone (PES) ultrafiltration 83 membranes (Biomax®, EMD Millipore, USA) of 100, 300 and 500 kDa ratings (as rated by the 84 manufacturer) were used. PAA membranes had a 3 mm wide polypropylene support ring hence 85 reducing the effective diameter to 19 mm. Bovine serum albumin (BSA) and bovine thyroglobulin (TG) were obtained from Sigma-Aldrich, USA. Protein nanoparticles were synthesised from BSA as 86 87 mentioned below in section 2.1. BSA, TG and BSA NP were used as model protein solutes. Feed 88 solutions of BSA, TG and BSA NP were prepared in phosphate buffer saline at pH 7.4 with respective 89 concentrations of 1.0, 0.2 and 1.0 mg/mL as measured using absorbance at 280 nm wavelength. TG 90 at 0.2 mg/mL corresponded to approximately 10¹⁸ particles/mL as estimated from molecular weight of 91 the TG and Avogadro's number. For BSA NP, 1.0 mg/mL concentration corresponded to a particle 92 titre of 1-3 x 10¹¹ particles/mL as measured using nanoparticle tracking analysis (Nanosight LM-10, 93 Malvern Panalytical, UK). Powders of monodisperse GPC-standard dextrans (5, 12, 25, 50, 80, 120, 94 250, 450 and 660 kDa) and polydisperse dextrans (6, 40, 450 and 2000 kDa) were obtained from 95 Sigma-Aldrich, USA and Denmark respectively. Size exlusion columns, TSKgel3000SWXL and 96 TSKgel5000PWXL were obtained from Tosho Biosciences GmBH, Germany. Size exclusion column, 97 BioSEC-5 was obtained from Agilent, USA.

98 2.1 Preparation of BSA nanoparticles

99 A protocol for albumin nanoparticle synthesis was adopted from Storp et al. [25] and modified for use 100 with bovine serum albumin in a shorter preparation time of 4 hours. BSA solution of 100 g/L was 101 prepared in 10mM NaCl solution and the pH of the solution was adjusted to 8.0 using 1M NaOH and 102 subsequently filtered through a 0.22 µm PES syringe filter. BSA solution (1 mL) was precipitated by 103 addition of a desolvating mixture (~2-3 mL) of methanol and ethanol in the ratio of 70:30 at a flow rate 104 of 1 mL/min while the protein solution was stirred at 550 rpm using a magnetic stirrer and bar. Glass 105 beaker of 25 mm diameter and 60 mm height and stirrer bar of 6mm diameter and 20 mm length were 106 used. Addition of the desolvating mixture was stopped as soon as protein solution turned turbid and 107 was then spiked with 60 µL of 8% (v/v) glutaraldehyde solution to cross-link the nanoparticles. Cross-108 linking was carried out for 2 hours at room temperature at the same stirring conditions. At the end of 109 crosslinking, the nanoparticle preparation was diluted approximately 50-fold in the buffer solution and 110 analysed using dynamic light scattering for the particle size distribution.

111 **2.2 Dextran sieving experiments**

- A mixture of four polydisperse dextrans in 20 mM phosphate buffer,pH 7.0 (with final concentrations
- of 1, 1, 1 and 0.5 mg/mL of 6, 40, 450 and 2000 kDa dextrans respectively) was filtered through
- 114 membranes in a 25 mm stirred cell at constant filtrate flux of ~5.5 LMH (1.5-1.6 µm/s) using a
- peristaltic pump (120U, Watson Marlow) and a stirring rate of 1000 rpm. Approximately 20L/m² of the
- 116 dextran feed was filtered and recirculated back to the stirred cell for two recirculation cycles as
- described in a similar protocol reported [28]. Final filtrate solution in the tubing and feed solution in the
- stirred cells were sampled and injected on to a size exclusion column, TSKgel5000PWXL (7.8 x 300
- 119 mm), pre-equilibrated with 20mM phosphate buffer at a flow rate of 0.3 mL/min. Refractive index
- 120 detector, RID-20A (Shimadzu,UK) was used for detection of the dextran peaks. Calibration plot
- 121 between peak elution volume and log value of the molecular weight of dextrans was obtained using
- 122 injections of various monodisperse standard dextrans (5 to 660 kDa). Size exclusion chromatograms
- 123 of the feed and filtrate samples were transformed by converting the elution volume into log molecular
- 124 weight using the calibration equation. A continuous sieving curve was obtained by dividing the signals
- 125 of filtrate with those of the feed at corresponding molecular weights from the transformed
- 126 chromatograms.

127 **2.3 Protein filtration experiments**

- 128 PAA membranes were rinsed in 20% ethanol followed by pre-filtered and deionised water. PES
- 129 membranes were rinsed thrice for 20 minutes using pre-filtered and deionised water as per
- 130 manufacturer's instructions to remove any preservative. Initial buffer flux (J_o) was measured for clean
- 131 membranes by filtering 20 L/m² of the pre-filtered buffer solution at the transmembrane pressure of
- 132 0.6 bar and a stirring rate of 1500 rpm. Equal membrane loadings (26.5 L/m²) and conversion ratio
- 133 (75%) or filtrate outputs (20 L/m²) were used for both membranes. The transmembrane pressure of
- 134 0.6 bar was used for all protein filtration experiments. After filtration of protein solutions, retentate
- solution was carefully aspirated out. The membranes surface along with the stirred cell were rinsed
- three times with the buffer solution, and buffer flux was measured again in the same manner as for
- the initial buffer flux. Flux recovery ratio (FRR, %) was measured as a percentage of the initial buffer
- 138 flux measured post filtration and rinsing. Filtrate, feed and retentate samples were collected and
- analysed for protein quantification using size exclusion chromatography as described in section 2.5.
- 140 Recovery of the protein was calculated using the peak areas of the proteins in samples and feed
- 141 solution and considering total volumes of the samples.

142 **2.4 Fractionation experiment**

143 A mixture of 80nm BSA nanoparticles and BSA was prepared in PBS with a final concentration of 1

- 144 mg/mL for both solutes. Fractionation was carried out in a sequential or discontinuous diafiltration
- mode after an initial concentration step. Equal membrane loadings of ~26 L/m² were applied on all the
- 146 membranes and feed was initially concentrated 4-fold volumetrically. The retentate was then
- subjected to 12 diafiltration steps in sequence. Each diafiltration step involved a manual 2-fold dilution

- of the retentate with PBS followed 2-fold concentration thus each diafiltration step corresponding to
- one diavolume of the buffer exchanged. A transmembrane pressure of 0.6 bars and the maximum
- stirring speed of 1500 rpm was used for the initial concentration step and subsequent diafiltration
- 151 steps. Filtrate collected for all steps of the UF/DF process and final retentate samples were analysed
- 152 for the model solutes using size exclusion chromatography as described in section 2.5. Purification
- 153 factor for the protein nanoparticles was calculated in the retentate as explained in [29].

154 **2.5 Protein quantification using size exclusion chromatography**

- 155 Feed, filtrate and retenate samples from filtration experiments were analysed with size exclusion
- 156 chromatography using Agilent 1260 HPLC system with a diode array detector. For TG and BSA, 50
- 157 µL of sample was injected onto a TSKgel3000SWXL (7.8 x 300 mm) with 30nm pores at a flow rate of
- 158 0.6 mL/min. For BSA NP, 20 µL of sample was injected onto a BioSEC5 (7.8 x 300 mm) with 100nm
- pores at a flow rate of 0.8 mL/min. PBS was used as the equilibration and elution buffer for both
- 160 columns. Proteins were detected by measuring absorbance at a wavelength of 280 nm. Calibration of
- 161 the columns was tested using gel filtration standard from Biorad, UK.

162 3. Results and discussion

169

163 **3.1 Selection of the model protein solutes**

- 164 Bovine serum albumin (BSA) of 67kDa, thyroglobulin (TG) of 670kDa and albumin nanoparticles (BSA
- 165 NP) were chosen as model solutes for host cell proteins, small viral vectors such as adeno-associated
- 166 viruses and larger viral vectors such as adenoviruses respectively. The mean hydrodynamic diameter
- of these solutes was measured to be ~8.7 nm for BSA, ~21 nm for TG and 80-90 nm for NPs as
- shown in **Fig. 1** corresponding to the reported sizes of the abovementioned viral vectors [30].

170 Fig. 1 Particle size distribution of the three model solutes used in the present study obtained

- 171 from dynamic light scattering measured and analysed using Zetasizer NS (Malvern Panalytical,
- 172 UK) Monodisperse latex beads of 47 nm were used to check the calibration of the instrument.

- 173 For nanoparticle preparation, more than 98% of the BSA was found to be converted into the
- 174 nanoparticles as observed using size exclusion chromatography. Both BSA and TG preparations also
- 175 had higher molecular weight components as shown by the size exclusion chromatography (see Fig.
- 176 A.1 for size exclusion chromatogram of BSA solution). The presence of these high molecular weight
- 177 components in BSA ranging from 66 kDa of the monomer and 300 kDa multimers is useful to
- 178 characterise the fractionation performance of the membranes if they are to be used to separate viral
- 179 particles from the smaller proteins impurities such as host cell proteins which have been reported to
- 180 be in range of 25 to 300 kDa with majority in range of 50-100 kDa [26].

181 **3.2 Selection of an appropriate polymeric ultrafiltration membrane for comparability studies**

- 182 Since polymeric ultrafiltration membranes are available in various ranges of materials and ratings,
- 183 selection of the appropriate membrane rating is crucial for proper comparison with the selected PAA
- 184 membranes. Commercial polyethersulfone (PES) membranes were selected over cellulose-based
- 185 membranes due to high permeability of the former as indicated by the manufacturer. Further,
- 186 polymeric membranes and porous anodic alumina membranes are rating differently. Membrane
- 187 ratings for polymeric membranes are usually expressed as their molecular weight cut off (MWCO)
- 188 limits in kiloDaltons using dextran sieving. PAA membranes on the other hands are rated by the mean
- 189 value of the pore size distribution of the active layer pores usually using electron microscopy.
- 190 Polymeric ultrafiltration membranes rated 100, 300 and 500 kDa were compared against the 20nm
- 191 rated PAA membrane for similar hydraulic permeability and dextran sieving characteristics.
- 192 Out of three rating for the PES membrane, 300 kDa PES was found to have the most similar hydraulic
- 193 permeability compared to the PAA membranes as shown in **Fig. 2 and Table 1**. Similar hydraulic
- 194 permeability would indicate similar convective mass transfer for solvent, and similar dextran sieving
- 195 characteristics would indicate similar intrinsic solute transport characteristics between the two
- 196 membranes. It should be noted that the coefficient of variation (CoV) of hydraulic permeability of the
- 197 membrane is higher for large MWCO polymeric membranes (10 and 37% for 500 and 300 kDa PES
- 198 membranes respectively) compared to the 20nm PAA (5% CoV) and 100kDa PES membrane (3%
- 199 CoV). Large coefficient of variation for the 300kDa PES membrane was attributed to filter to filter
- 200 variability as no outlier was detected in a dataset of 9 membrane discs from the same membrane lot.

Fig. 2 Water fluxes at different transmembrane pressure for calculation of hydraulic permeability of 20nm rated PAA and PES membranes of different ratings. Fluxes were measured at room temperature (22-23°C) and using pre-filtered deionised water. The lines represent linear fit of the data points. The slope of the graph represents the hydraulic permeability value of the membranes and error bars represent one standard deviation across the mean values of flux for multiple membranes (n=9 for 300kDa PES and 20nm PAA; n=3 for 100 and 500 kDa PES). LMH represents the unit of flux in L m⁻² hr⁻¹.

209 Dextran sieving curves, as shown in Fig.3, for both membranes were obtained using the same 210 protocol. Though none of the polymeric membranes perfectly resembles the dextran sieving 211 characteristics of the PAA membranes, sieving curve for the 300kDa polymeric membrane appears to 212 be closer to that of the 20nm PAA membrane. Dextran ratings (for 90% rejection) obtained for both 213 300 and 500 kDa rated polymer membranes were larger compared to the ratings provided by the 214 membrane manufacturer as shown in Table 1. Dextran rejection rating for 500kDa could not be 215 measured as the value was beyond the exclusion limit (1000 kDa) for the size exclusion column used 216 in the experiment. For the membrane rated 300kDa by the manufacturer, estimated dextran rating for 217 90% rejection was found to be 6 times larger than the specified rating. Such variations have been 218 previously reported due to lack of a standardised dextran sieving tests resulting in variation of the 219 methodology used including feed composition [31] and filtration modules [32] employed for dextran 220 sieving tests. The stirred cell used in the current study was 25 mm in diameter which has been 221 reported to have increased sieving compared to cells with larger diameters [32]. While larger stirred 222 cells of 45 and 63 mm diameters were available, the largest available PAA membrane discs were 47 223 mm which were not compatible with either of the stirred cells. It was crucial to use the same stirred 224 cell for both membranes to avoid different polarisation conditions due to the different size of modules.

Fig. 3 Dextran sieving curves for porous anodic alumina (PAA) membrane rated 20nm and polyethersulfone (PES) membranes rated 100, 300 and 500 kDa. The horizontal grey line

represents 90% rejection (observed sieving coefficient of 0.1) and is used to compare the
 dextran rating of the membranes by measuring corresponding values of X-axis at the point of

230 intersection of the grey line and dextran sieving curve for each of the membranes.

231 A common dextran sieving test for PAA and PES membranes was useful to compare the effect of 232 pore size distributions despite difficulty in the comparability of absolute ratings for the membranes. 233 This is evident from the sharper curve obtained for the PAA membrane. Dextran being neutral solute 234 does not have any electrostatic interactions with membrane material, and transport of dextrans is 235 purely steric. Thus any variation in the solute transport should be purely due to membrane 236 architecture and not affected by the surface chemistry of the membrane material. Hence for 237 membranes with similar convection and dextran transport properties, any differences observed during protein filtration could be attributed to the mechanisms of retention and fouling. Differences in the 238 239 membrane architecture were confirmed by imaging the active layer surface and cross-section of the 240 PAA and 300kDa PES membranes. PAA membranes show straight pore channels and narrow pore 241 size distribution of the active layer surface as shown in Fig. 4. Larger pores can be observed in the 242 active layer surface of the 300 kDa PES membrane.

244	Fig. 4 Scanning electron microscopy images of the active layer surface (top) and cross section
245	(bottom) of 20nm rated PAA (A and C) and 300 kDa PES membranes (B and D). Images of
246	active layer surface (A and B) were obtained at the same magnification factor (50,000 X) for the
247	membranes. Active and intermediate layers of the PES membranes are shown in the inset
248	(scale bars = 2 μ m) of D as 10-fold magnified images of respective areas. Arrows indicate the
249	active layer side of the membranes. Images were obtained using InLens detector of Zeiss
250	Gemini Sigma electron microscope (Carl Zeiss AG, Germany) at a gun voltage of 5kV after
251	platinum coating of the samples.

Membrane	Hydraulic permeability	Dextran rejection (90%) rating		
(With	(LMH/bar)	(kDa)		
manufacturer				
specified ratings)				
100 kDa PES	890 ± 30	105		
300 kDa PES	1750 ± 640	2000		
500 kDa PES	4100 ± 420	NM		
20 nm PAA	2050 ± 100	900		

- Table 1 Comparison of 20nm PAA membrane with various ratings of PES membranes by
- ²⁵³ hydraulic permeability (mean value ± one standard deviation, n≥3) and dextran rejection rating.
- 254 NM- not measurable
- 255 Based on hydraulic permeability and dextran sieving characteristics, we selected 300 kDa rated PES
- 256 membranes for comparison with 20nm PAA membranes for further filtration experiments using the
- 257 model protein solutes.

258 **3.4 Filterability of solutions of the model protein solutes**

- 259 PAA membranes showed better filterability for all protein solutions compared to the PES membranes
- as shown by higher cumulative filtrate fluxes in Fig. 5. As both membranes had different permeability
- 261 the process flux values were normalised to the initial buffer fluxes measured at the same
- transmembrane pressure. PAA membranes operated at higher normalised flux values compared to
- the PES membranes even for BSA nanoparticles where the difference was smaller but still significant.
- 264 Interestingly, the PES membranes operated at a value of 50% of the initial buffer flux for BSA
- 265 filtration, but no flux decline was captured in the experimental data. This was likely due to the
- 266 presence of the high molecular weight species (150-300 kDa) in the BSA preparations resulting in
- 267 immediate clogging of some of the pores. It was found that the filter discs used for BSA filtration had
- very low permeability values (~900 LMH/bar) compared to the mean value for the entire lot (1750
- LMH/bar). This was a result of random selection of the filter disc from same lot and high filter to filter
- 270 variability with 300kDa PES membrane. Such low permeability value indicate a smaller mean pore
- size of the membrane which can make it susceptible to fouling by larger species in BSA feed. BSA did
- 272 not result in any significant flux decline for PAA membranes as the membranes operated at ~90%
- value for the normalised flux throughout the filtration run which is discussed in next section when
- transmission of the solutes is compared.

275

Fig. 5 Flux decline (absolute flux values on the left side plots and flux normalised to the initial
 buffer flux on the right side plots) observed for filtration of solutions of model protein solutes
 through 300 kDa rated PES and 20 nm rated PAA membranes. Symbols and error bars
 represent the average values and one standard deviation respectively for triplicate filtration

runs. The transmembrane pressure of 0.6 bar and a stirring rate of 1500 rpm was used.

TG and BSA nanoparticles resulted in significant flux decline for both membranes as filtration progressed. However, the shape of the flux decline curves for TG was different for both membranes suggesting different mechanisms of the flux decline. Analysis of the raw filtration data (volume and time) for identification of the dominant fouling mechanism was carried out as described by Bolton et al., [27]. Models were constrained to a single output parameter by using the experimental values of initial buffer flux through the membrane. Mathematical expressions and the results of curve fitting are provided in table B.1 and B.2 respectively in appendix B.

288 Fig. 6 shows curve fits for the TG and BSA nanoparticle filtration with four fundamental mechanisms

of the fouling. The best curve fit with the highest regression coefficient and lowest sum of the square

290 of residuals (SSR) was interpreted as the dominant fouling mechanism responsible for the flux

291 decline. As speculated from the flux decline curves, mechanisms of fouling by TG were different for

292 the two membranes. Intermediate blocking was identified as the dominant mechanism of flux decline

293 in the PAA membrane, and cake filtration was dominant for the PES membrane. For BSA 294 nanoparticles, the quality of the curve fitting was not as good as obtained for TG. Both membranes 295 showed cake filtration as the closest best fit with the experimental filtration data. Interestingly, both 296 membranes showed high flux decline in the initial filtration period where experimental data is well 297 below the best-fit curve for cake filtration. It suggests that the mechanism of flux decline for BSA 298 nanoparticles has 'cake-like' resistance for convection across the membranes. It should be noted that 299 the confidence on the validity of these model fits for BSA nanoparticles is low as the value of sum of 300 the squares of residuals (SSR) was about a magnitude higher compared to those observed for TG filtrations. SEM images of the BSA NP fouled surfaces of the membranes (Fig. C.1 and Fig D.1 in 301 302 Appendices) also do not show a thick and uniform layer. It is more likely that flux decline is through a 303 different mechanism such as osmotic pressure or concentration polarisation. It is also possible that 304 multiple fouling mechanisms are responsible for such behaviour. Combined models of fouling were 305 attempted but the fits were over-parameterised, thus not considered valid. It should be noted that 306 models of the fouling mechanisms are often developed and validated for microfiltration or depth 307 filtration membranes and for purely dead-end filtration without any stirring on the membrane surface. 308 Our experiments were performed using the dead-end mode with high stirring speed above the 309 membrane surface which will impact cake as well as concentration polarisation above the membrane

310 surface.

Fig. 6 Experimental data (open symbols) for TG and BSA nanoparticle filtration through PAA and PES membranes along with best-fitted curves (lines) for four fundamental mechanisms of fouling. Filtrate output is normalised with the membrane area. Mathematical expressions of the fouling models used and output data for curve fitting including goodness-of the fit data is given in table B.1 and B.2 respectively in appendix B.

317 3.5 Transmission of the model protein solutes

Both membranes show high transmission of BSA (>95%) and transmission of the solutes reduced 318 with an increase in the solute size as expected. PAA membranes, however, showed a higher 319 transmission of the larger model solutes (TG and BSA NP) compared to the PES membrane as 320 321 shown in Fig. 7. Higher transmission of BSA nanoparticles through 20nm PAA membranes was 322 unexpected as nanoparticles are more than 2-3 folds larger than the pore rating of the PAA 323 membranes. SEM analysis of the active layer surface of the PAA membranes revealed that the mean 324 pore size of the active layer surface was larger than 20nm pore rating. A mean pore size of 55±7 nm 325 was estimated from image analysis of the SEM images of active layer of the membranes using Image J, but the distribution was narrow and maximum pore diameter was not larger than the mean size of 326 327 nanoparticles. Pore size distribution of the 300 kDa PES membrane showed the presence of large

pores and despite this lower transmission of BSA NP was observed. Pore size distributions of membranes are provided in Appendix F. Particle size distribution of the retentate obtained using PAA membrane did not show any significant difference from that of the initial feed solution which ruled out a favourable transmission of a sub-population of BSA NP (with size smaller than 55 nm) through larger pores in the pore size distribution of the PAA membrane. SEM imaging over a broad surface area of the PAA membranes revealed patches of the surface where the active layer was missing as shown in **Fig. 8**, exposing the support layer underneath which has a larger mean pore diameter of

- ~200 nm. Such large defects have been reported in commercial PAA membranes [18] and are
- attributed to the fabrication conditions.

337

Fig. 7 Transmission of different model solutes through 20nm rated PAA, and 300 kDa rated PES membranes. Observed sieving coefficient represents the ratio of the solute concentration in the collected filtrate and initial feed solution. Data points and error bars represent average values for triplicate runs and one standard deviation across the average respectively.

342 The presence of these large surface defects could explain almost four-fold higher transmission of the 343 BSA nanoparticles through the PAA membrane. Random distribution of these large defects and 344 limited scanning area capability of SEM makes it difficult to obtain an accurate count of such defects 345 and their contributions to the buffer flow rate and solute transmission across the membrane. Since 346 defect free membrane discs were not available, the impact of these surface defects on the hydraulic permeability of the membrane could not be experimentally measured. Even higher hydraulic 347 348 permeability of 1.2047 x 10⁻⁸ m/Pa.s (~2 times than 5.7 x 10⁻⁹ measured in this study) has been previously reported [19] for 20nm PAA membrane indicating that such density of such large surface 349 350 defects may even vary among different membrane lots. Compromised sealing of the PAA membrane 351 discs due to the support ring on the membrane disc was ruled out since reasonable water flow rates 352 were observed through the membranes even at high pressure (1 bar). Also a compromised sealing 353 would likely result almost complete solute transmission even for large solutes which was not

354 observed. Higher transmission of protein solutes through the PAA membrane was also the opposite of 355 the trend observed for sieving of the large dextrans as shown in Fig. 3. Especially for a molecular 356 weight of 670kDa, which is the molecular weight of thyroglobulin, sieving coefficients for thyroglobulin 357 and dextran molecule of same molecular weight were found to be 0.60±0.04 and 0.21±0.01 358 respectively. Likely reason for lower sieving coefficient for dextran molecules could be due to larger 359 hydrodynamic size of the dextran. Stokes diameter for 670kDa dextran molecule was calculated to ~36 nm, larger than ~16 nm calculated for 670 kDa thyroglobulin molecule using M.W. and Stokes 360 361 radius correlation described elsewhere [33]. For 300kDa PES, observed sieving coefficients were 362 higher for thyroglobulin (0.21±0.08) compared to dextran of equal molecular weight (0.39±0.08). Lutz 363 [33] have pointed out that due to linear shape of the dextrans, the molecules will tend to align with their larger diameter perpendicular to the pore entrance thus resulting in larger transmission 364 365 compared to the globular molecules like proteins. This hypothesis appears to be true for PES 366 membranes. Besides size differences other possible explanations for this could be the very low polarising operating conditions of the dextran sieving experiments (constant flux of 5 LMH and stirring 367 368 speed of 1000 rpm compared to variable flux of 2400 to 70 LMH for protein filtration experiments 369 under constant positive pressure of 0.6 bar), the neutral charge of the dextrans and linear shape of 370 the dextran molecules in contrast to the charged and globular protein solutes. It is unclear if the 371 membrane architecture and surface defect of PAA membranes played a role in differences in the 372 sieving of dextran and protein molecules.

- Fig. 8 A low-resolution image of the active layer surface of the 20nm rated PAA membranes
- 375 obtained using a scanning electron microscope (Gemini sigma, Carl Zeiss AG, Germany)
- showing the large surface defects exposing the underlying support layer with pores of ~200nm
 diameter.
- 378 **3.6 Restoration of membrane permeability post filtration**
- 379 Fig. 9 shows the distinct performance of the two membranes when compared by membrane
- 380 permeability post-filtration of different solutes. Restoration of the membrane permeability is indicated
- 381 by a high value of the flux recovery ratio (FRR). Loosely deposited protein on the membrane surface

- 382 was removed by thoroughly rinsing the membrane surface using buffer solution before measurement
- of the post-filtration buffer flux. Rinsing the stirred cell also ensured that post filtration buffer flux
- would not be affected by the residual solute bound on the stirred cell surface. Thus, low FRR values
- indicate tightly bound proteins on either membrane surface or inside membrane bed which would
- 386 require physical or chemical treatment for removal. The membrane surface when examined using
- electron microscopy showed patches of the fouling (see Fig. C.1 and D.1) though the coverage of the
- 388 membrane surface cannot be correlated with the value of FRR thus suggesting a role of the internal
- 389 fouling. For both membranes, FRR values were found to be minimum for the filtration of TG. SEM
- images of the active layer surface of the membranes also showed similar trend with maximum fouling
- 391 observed for TG fouled membranes (see fig. C.1 and D.1).

Fig. 9 Recovery of membrane permeability after filtration of different model solutes (BSA, TG and BSA NP) measured as flux recovery ratio (post-filtration buffer flux as % of the initial buffer flux). Columns represent average value of FRR for triplicate filtration runs and error bars represent one standard deviation across the average value. Star symbols on columns represent the values of the cumulative process flux observed at the end of the filtration (as % of the initial buffer flux) for corresponding membranes and solutes.

399 The PAA membrane showed highest internal fouling by TG as indicated by lowest FRR value of 60% 400 among all three solutes. Hydrodynamic diameter of TG is measured to be ~22 nm which is 401 approximately half of the measured mean pore size of 55 nm for the PAA membranes used. Though 402 high transmission of TG could be explained due to the presence of surface defects, it appears that 403 pores in the distribution may also have been accessed by the TG particles eventually blocking them. 404 This is also apparent from the intermediate blocking fouling model predicted for TG filtration where a 405 few particles initially plug some pores and rest of the particles deposit on the plugged pores. SEM 406 images of the TG fouled membrane also show fouling embedded on smaller pores of the membranes 407 (Fig. C.1). Interestingly, both BSA and BSA NP, showed very high FRR values above 90%. For BSA, 408 which has an average hydrodynamic diameter of 8.7 nm, approximately 6 fold lower than the pore

409 size, pore plugging would only be for the pores at the lower end of the pore size distribution. It should 410 also be noted that average hydrodynamic diameter of BSA also has contribution from the minor HMW 411 component of the BSA solution and actual hydrodynamic diameter of smaller BSA monomers may be 412 smaller than 8.7 nm, thus having high sieving of the BSA from the pores. With a mean diameter of 80 413 nm the BSA NPs are unlikely to enter the smaller pores in the intact active layer of the PAA 414 membrane. FRR value of more than 90% was observed for 80nm BSA NP indicating very little pore 415 plugging by FRR. Restoration of membrane permeability with a simple wash of the membrane surface 416 after protein filtration suggests that the flux decline for BSA nanoparticle filtration is through a 417 pressure dependent and reversible mechanism which manifests immediately as pressure is applied. 418 Concentration polarisation is a pressure dependent and reversible phenomenon which manifests due 419 to an imbalance in solute mass-transfer from bulk solution towards the membrane surface and away 420 from it. Reversibility of the membrane permeability has been previously associated with concentration 421 polarisation based flux decline [34]. SEM image of the active layer surface also shows only a few

422 pores blocked by BSA NP (Fig. C.1).

423 For the PES membrane, FRR values were significantly lower than those of PAA membranes for all 424 solutes. Notably, only 70% of the initial membrane permeability is restored after filtration of BSA 425 where membranes operated at 50% of the initial buffer flux during the filtration as shown in fig 5. This 426 was likely due to internal fouling caused by high molecular weight components (>150 kDa) observed in the BSA solution. Among all the solutes, the lowest FRR value (~20%) was obtained for TG, 427 428 indicating higher internal fouling. The likely reason is that the molecular weight of TG (660 kDa) is 429 close to the molecular weight cut off of 300 kDa for the membrane, thus making the larger pores of 430 the membrane accessible to the solute. Cake like protein depositions were also observed on the 431 membrane surface fouled by TG when observed using electron microscopy (Fig. D.1). Curve fitting 432 with fouling models also identified cake filtration as the dominant mechanism of fouling for TG filtration 433 through PES membranes. Filtration of BSA nanoparticles showed an FRR value of 50% significantly 434 lower than 95% observed for PAA membranes and significantly higher level of fouling observed on 435 active layer surface of the PES membrane as observed using SEM. Higher fouling of the PES membrane by BSA NP could not be explained with the cake filtration model only. Further, coverage of 436 437 the membrane surface area by BSA NP fouling was not very high indicating presence of internal 438 fouling. Membrane compressibility is unlikely as the polymeric membranes were operated at a 439 transmembrane pressure lower than the maximum operating pressure specified.

440 The role of solute-membrane interactions to fouling such as electrostatic binding can be ruled out as 441 both membranes have been marketed as low protein binding materials and experiments were carried 442 out at a moderate salt concentration to minimise such non-specific binding. We suggest that the 443 concentration polarisation is the dominant flux decline mechanism for both membranes in the initial 444 filtration window especially for BSA NP. Since the concentration polarisation has been known to 445 increase the leaky transmission of the polarising solute through the membranes [35, 36], model 446 solutes will likely diffuse into the larger pores in the pore size distribution of the membranes. Pores 447 larger than the nanoparticles were observed on the active layer of the PES membranes and in the

448 surface defects on the active layer of PAA membranes exposing the large pores of the support layer 449 of the membrane underneath. We hypothesise that the differences in the membrane architecture of 450 the two membranes result in different particle retention mechanisms. PAA membranes are thinner 451 (~60 µm) and have near straight channels (low tortuosity). In contrast, the polymeric membrane has 452 thicker active and intermediate layer (~120 µm) with highly tortuous channels. Effective diffusional 453 paths for solute particles would be higher for the polymeric membranes compared to the thinner and 454 straight channels of the PAA membranes. Thus, protein nanoparticle diffusing through the smaller and 455 straight channels of the support layers exposed by defects in the PAA membrane will face less 456 resistance compared to diffusion through large surface pores into the tortuous channels across a 457 thicker membrane bed of the PES membrane. This would result in higher transmission of particles 458 through surface defects of PAA membranes without clogging of the smaller pore on the intact active 459 layer of the membrane. Nanoparticles would gradually deposit inside the PES membrane channels 460 due to the highly tortuous path and collision to the channel walls resulting in internal fouling and low 461 transmission. The proposed hypothesis is illustrated in Fig. 10.

- 463 Fig. 10 Proposed hypothesis for the role of membrane architecture in different particle
- 464 screening behaviour of the PAA and PES membranes resulting in different fouling and

465 transmission characteristics

466 **3.7 Comparison of single solute and binary mixture filtrations**

467 Application of the PAA membranes in the fractionation of virus particles and cell culture impurities will

468 require characterisation of the separation performance of the membranes. For this purpose, a binary

469 mixture of TG and BSA NP, the model solutes for viral particles with BSA were filtered through

- 470 membranes with BSA used as the model impurity. The comparison showed no differences in the
- 471 average flux and value of FRR % when compared to the single solute filtrations of fouling solutes (TG
- and BSA NP) suggesting no further interaction of BSA and the large solutes in the internal fouling of
- the membrane.

Feed	Solutes	Observed sieving coefficients, S _{obs}		
		20 nm	300 kDa	
		PAA	PES	
Single solute	BSA	0.96 ± 0.03	0.96 ± 0.02	
	TG	0.60 ± 0.04	0.21 ± 0.08	
	BSA NP	0.03 ± 0.01	0.01 ± 0.00	
Binary solutes	BSA	0.89 ± 0.03	0.76 ± 0.01	
BSA + TG	TG	0.67 ± 0.09	0.43 ± 0.03	
Binary solutes	BSA	0.68 ± 0.03	0.54 ± 0.06	
BSA + BSA NP	BSA NP	0.18 ± 0.03	0.00 ± 0.00	

474 **Table 2 Transmission of model solutes in single solute filtrations compared to transmissions**

475 observed in filtrations of binary solute mixtures (BSA with TG or BSA NP). Data represents

476 average values ± one standard deviation for triplicate filtration runs.

477 Transmission of the respective solutes during filtration of single solute and binary solutes feed are 478 compared as shown in Table 2. For the PAA membrane, the transmission of TG did not change 479 significantly for the filtration of the binary solute mixture and single solute solution. BSA NP showed 480 unusually high transmission through the PAA membrane in the binary solute feed. For PES 481 membranes, TG transmission was almost two times higher for the binary solute feed compared to the 482 single solute feed. This could be due to the high variability in the hydraulic permeability of the membrane discs of PES membrane even when same membrane lot was used. The membrane discs 483 484 used for BSA+TG filtration had a hydraulic permeability of 1930 \pm 120 LMH/bar compared to 1600 \pm 540 LMH/bar used for the filtration of TG alone. Transmission of BSA NP in the PES membranes 485 486 however remained unaffected by presence of BSA in the feed. Transmission of BSA was however 487 affected by the fouling by larger solutes as a lower sieving coefficient of BSA was observed during 488 filtration of binary solute mixtures as shown in table 2. Unusually high transmission of BSA NP in 489 binary feed filtration through PAA membranes could not be explained as the same lot of the membrane was used for single, and binary mixture filtrations along with same nanoparticle batch were 490 491 used. Nonetheless, it was clear from this experiment that transmission of smaller solutes such as BSA 492 is significantly reduced in the presence of large fouling solutes resulting in lower selectivity that

- 493 indicated by filtrations of the single solute feeds. As both membranes showed high retention of the
- 494 protein nanoparticles, membranes could be used for fractionation of the binary mixtures of large
- 495 protein nanoparticles and a smaller impurity such as BSA. Fractionation was however incomplete in
- 496 this experiment where mixtures were filtered through membranes or feed was concentrated.
- 497 To increase the fractionation, a filtration strategy involving multiple passes of feed or diafiltration could
- 498 be used. This diafiltration based fractionation process was carried out to study separation
- 499 performance and filterability of the mixtures of BSA nanoparticles and BSA through PAA and PES
- 500 membranes including the effect on the internal fouling of the membrane upon a lengthy process as
- 501 would be encountered in actual processing conditions.

3.8 Fractionation of mixtures of model protein solutes (BSA NP and BSA) using discontinuous diafiltration

- 504 Discontinuous diafiltration was used to improve the fractionation of mixtures of BSA nanoparticles and
- 505 BSA. Discontinuous or sequential diafiltration was used after an initial concentration step
- 506 concentrating the protein mixture to 4-fold volumetrically. A total of 12 diafiltration steps (including 2-
- 507 fold dilution of retentate followed by 2-fold concentration) were carried out resulting in a total of 12
- diavolumes of the buffer exchanged. Final retentate solution was analysed using size exclusionchromatography.
- 510 Purification factor, $PF = \frac{Yield_{(BSA NP)}}{Yield_{(BSA monomer)}}$

Fig. 11 shows the fractionation experiment in discontinuous diafiltration mode and the flux decline 511 512 observed. PAA membranes showed significantly higher filtrate flux throughout the filtration run with 513 cumulative filtrate flux value of ~97 LMH compared to ~70 LMH for both PES membranes. This 514 resulted in shorter process time of ~70 minutes for 12 diavolumes diafiltration in PAA membranes 515 compared to ~90 minutes for the polymeric membranes. Note that both PES membrane ratings showed similar flux despite different hydraulic permeability suggesting higher fouling in the 500kDa 516 517 membrane as hydraulic permeability of the 500 kDa membrane is approximately two times higher 518 than that of 300kDa PES or 20 nm PAA membrane.

519 PAA membranes showed three times higher purification factor compared to both polymeric 520 membranes. This is due to high BSA NP retention, and low residual BSA detected in the retentates as 521 shown in chromatograms of Fig. 12 and tabulated in Table 3. The 300kDa PES membrane retained 522 almost all of the nanoparticles, but also had high residual BSA in the retentate. There appears to be a 523 trade-off between the purification factor and BSA NP yield for the membranes studied. In the realworld biologics purification processes, purification factor of 780 as observed for the 300kDa PES 524 525 membrane may be sufficient given that it also results in highest recovery of BSA NP. However, the 526 choice of a membrane for fractionation may also be governed by other factors such as absolute 527 impurity levels, net impurity exposure to patient depending upon the dosage and process optimisation

528 factors (diavolumes required and membrane fouling). Limited fouling was observed for PAA

- 529 membranes as FRR of 96% was measured after protein filtration. Fouling was more significant in the
- 530 PES membranes as only 33, and 14% of the initial buffer flux could be recovered for 300 and 500 kDa
- 531 ratings respectively. The diafiltration step also appears to result in increased fouling in the PES
- 532 membrane as compared to the initial concentration step. This is evident from the reduction in the FRR
- 533 % from ~50% (as shown in **Fig. 9**) to 33 % for BSA NP and BSA mixture. Both PES membranes
- required additional chemical treatment for removal of the internal fouling and restoration of membrane
- 535 permeability details of which are available in the **Fig. E.1** in the appendix section.

536

Fig. 11 Fractionation of mixture of BSA and BSA NP using 20nm rated PAA, 300 and 500 kDa
PES membranes. The top chart shows the initial concentration step (filtrate output to 20 L/m²
during initial 20 minutes) and discontinuous diafiltration mode used for fractionations, and the
bottom chart shows cumulative filtrate flux during the initial concentration and subsequent
diafiltration phase. Initial membrane loadings for all the membranes were equal and similar
diafiltration strategy (diavolumes per step and total diavolumes) was used.

Membrane	% BSA removal (permeate)	% BSA NP retention	% residual BSA (retentate)	Purification Factor (BSA NP)	FRR (%)
20nm PAA	95 ± 3	86 ± 6	0.04 ± 0.00	2170 ± 200	96
300kDa PES	92 ± 3	100 ± 7	0.13 ± 0.01	780 ± 80	33
500kDa PES	93 ± 3	82 ± 6	0.10 ± 0.00	990 ± 100	14

- 543 Table 3 Performance of different membranes for complete fractionation of mixtures of BSA NP
- 544 and BSA. Data represents average values ± one standard deviation for triplicate
- 545 **measurements**.

Fig. 12 High performance-size exclusion chromatograms for initial feed (BSA NP + BSA) and retentate obtained after 12 diavolumes of diafiltration performed using different membranes (20nm PAA, 300 and 500kDa rated PES membranes). Figure in the inset shows the peak of residual BSA monomer in the retentate solutions. Volume concentration factor for retentate is ~4 in relation to the feed volume. Chromatograms were obtained using BioSEC-5 column (7.8 x 300 mm) at a flow rate of 0.8 ml/min with PBS as elution buffer and diode array detector for measurement of absorbance by proteins at a wavelength of 280 nm.

554 **4. Conclusions**

546

To the best of our knowledge, this was the first study comparing conventional polymeric membranes 555 556 with the porous anodic alumina under the same filtration conditions. Previous studies by Prádanos et 557 al. [19, 20] and Lee et. al. [18] have studied PAA membranes with proteins but did not offer any 558 comparison with traditionally used polymeric membranes. A significant challenge in such a 559 comparison was the different rating standards used for PAA and polymeric ultrafiltration membranes. 560 Therefore membranes were first experimentally matched on the basis of hydraulic permeability and 561 dextran sieving characteristics. This was performed for a 20nm rated PAA membrane and compared 562 to three ratings of PES membranes. It was found a 300 kDa rated PES membrane matched most 563 closely. Interestingly, the dextran sieving curve for the PAA membrane was sharper than that of the 564 PES membranes highlighting the narrow pore size distribution of these membranes.

Using the matched PAA, PES membranes an experimental design was chosen to characterise the
filtration and separation performance of the two membrane types for viral vector purification. This
characterisation was done using large solutes like thyroglobulin (~22 nm hydrodynamic diameter) and

568 BSA nanoparticles (~80 nm diameter) as mimics of common viral vectors such as AAVs and AdVs 569 respectively. PAA membranes exhibited 3-4 fold higher transmissions of these mimics as well as 2-3 570 fold higher fouling resistance in comparison to the PES membrane. Both membranes are unsuitable 571 for ultrafiltration of smaller viruses such as AAVs as the mimic solute thyroglobulin was only partially 572 retained and significantly fouled both of the membranes. For BSA nanoparticles (the AdV mimic), both 573 membranes are highly retentive, and PAA membranes show remarkably high restoration of 574 permeability above 90% of the initial value compared to 50% for PES membranes upon rinsing the 575 membrane and stirred cell surfaces with the buffer solution. PAA membranes also exhibited robust 576 separation performance for a complete fractionation of a binary mixture of BSA and BSA 577 nanoparticles in an extended diafiltration process. PAA membranes showed 30% higher flux and 3-578 fold higher purification factor for BSA nanoparticles in comparison to the PES membrane and more 579 than 90% of permeability restored while the PES membrane fouled much more extensively with only

580 33% of the permeability restored which necessitated a chemical cleaning.

581 We propose that the observed differences in the filtration and separation performance of the two 582 membranes are a result of significant differences in their architecture giving rise to different screening 583 mechanisms. PAA membranes screen large solutes like BSA nanoparticles above membrane surface 584 due to a smaller and narrow pore size distribution resulting in very low fouling. PES membranes on 585 the other hand allow such solutes to enter the membrane through the larger pores of the wider pore 586 size distribution typical of this membrane type, but eventually trap these particles within the tortuous 587 pore channels of the thicker PES membrane resulting in higher internal fouling. Leaky transmission of 588 solutes seen in the PAA membranes is likely due to some defects on the active layer allowing access 589 to the highly permeable straight pore channels of the support layer. Low fouling and high nanoparticle 590 retention make PAA membranes an attractive candidate for ultrafiltration of sensitive biomolecules 591 such as viral vectors by reducing process time by reducing the requirement of chemical cleaning in 592 between batches.

593 To further the development of PAA membranes for virus ultrafiltration, fabrication of defect-free 594 membranes should be studied to reduce their susceptibility to loss of performance due to these 595 defects. To substantiate the proposed screening mechanisms of the two membrane types, direct 596 observation of the location of the fouling in the membrane bed could be performed using fluorescently 597 tagged solutes and confocal laser scanning microscopy. Another extension of the present work would 598 be to use a real viral feed and cross flow conditions to leverage high mass transfer characteristics of 599 this mode of operation with representative feed materials. The brittle and fragile nature of PAA 600 membranes may pose a challenge to their adoption at industrial scale so alternative membrane 601 materials with similar membrane architecture should be considered. One such alternative is self-602 assembled block copolymer membranes.

603 Acknowledgements

AS acknowledges University College London for the award of overseas research scholarship for PhD
 studies and the department of biochemical engineering for research funding and facility support.

606 Appendices

607 Appendix A. Size exclusion chromatogram of BSA solution used in filtration experiment

608 showing high molecular weight (HMW) components

Fig. A.1 Chromatogram overlay of the molecular weight (MW) standard (dashed line) and the

BSA solution (solid line) obtained using a size exclusion column, TSKgel3000SWXL at a flow

rate of 0.6 mL/min under isocratic elution with PBS (detailed method is described in section

613 **2.5).** Peak labels represent the molecular weights (kDa) of the peak proteins in the standard.

BSA monomer (~67 kDa) corresponds to the major peak at the retention time of 14 minutes in the

615 chromatograms. Chromatogram also shows the presence of the high molecular weight components

616 (peaks with retention time below 14 min) in the BSA solution. Relative amount of these high molecular

617 weight components in BSA solution was estimated to be ~23% from the peak area%.

618 Appendix B. Mathematical expression for various mechanisms of fouling and results of the

619 <u>curve-fitting of the experimental data with mathematical expressions of mechanisms of fouling</u>

Mechanism	Mathematical expression for filtrate volume, V (m ³ /m ²)			
Standard blocking	$V = \left(\frac{1}{J_0 t} + \frac{k_s}{2}\right)^{-1}$			
Complete blocking	$V = \frac{J_o}{k_b} (1 - \exp(-k_b t))$			
Intermediate blocking	$V = \frac{1}{k_i} \ln(1 + k_i J_o t)$			
Cake filtration	$V = \frac{1}{k_c J_o} \left(\sqrt{(1 + 2k_c J_o^2 t)} - 1 \right)$			

Table B.1 Mathematical expressions of the fundamental mechanisms of fouling in constant pressure filtrations as described by Bolton et al. [27] and used in this study.

623 A mechanism is identified to be dominant mechanism by fitting these expressions to the experimental

624 filtration data (volume filtered per unit membrane area, V (m³/m²); time, t (sec) and initial buffer flux, J_o,

 $\label{eq:constants} 625 \qquad (m/s)). \ k_x \ \text{represents fouling constants for respective models with different units for different}$

626 mechanisms.

	Fouling	BSA nanoparticles			Thyroglobulin		
	mechanism						
		SSR	R²	Parameter	SSR	R ²	Parameter
20nm PAA		(x 10⁻³)			(x 10 ⁻⁴)		i alamotol
	Standard	1.24 ± 0.06	0.49	$k_s = 137 \pm 1$	0.07 ± 0.04	0.99	$k_s = 78 \pm 2$
	Complete	1.78 ± 0.78	0.27	$k_{b} = 0.03$	0.30 ± 0.11	0.95	$k_{b} = 0.02$
	Intermediat	0.65 + 0.02	0 73	k – 278 + 5	0.02 + 0.00	1 00	k – 112 + 4
	е	0.00 ± 0.02	0.70	$R_{\rm I} = 270 \pm 3$	0.02 ± 0.00	1.00	K] = 112 ± 4
	Caka 0.12 + 0.00	0.04	k _c (x 10 ⁻⁶)	0.15 . 0.02	0.00	k _c (x 10 ⁻⁶)	
	Care	0.15 ± 0.00	0.94	$= 4.4 \pm 0.2$	0.15 ± 0.05	0.90	$= 0.64 \pm 0.1$
		SSR	R ²	R ² Parameter	SSR	R²	Parameter
		(x 10⁻³)			(x 10 ⁻³)		
S	Standard	1.83 ± 0.14	0.40	k_s = 145 ± 1	0.17 ± 0.05	0.85	$k_s = 100 \pm 7$
a PE	Complete	2.45 ± 0.16	0.20	$k_{b} = 0.03$	0.33 ± 0.07	0.71	$k_{b} = 0.02$
300kD3	Intermediat	0.95 ± 0.08	0 70	k - 321 + 4	0.08 + 0.03	0.04	k = 160 ± 20
	е	0.00 ± 0.00	0.70	$\kappa_1 = JZ T \pm 4$	0.00 ± 0.03	0.34	$\kappa_1 = 100 \pm 20$
		0 17 ± 0 02	0.04	k _c (x 10 ⁻⁶)	0.01 + 0.01	0 00	k _c (x 10 ⁻⁶)
	Jane	0.17 ± 0.02	0.34	$= 5.8 \pm 0.3$	0.01 ± 0.01	0.99	$= 1.7 \pm 0.3$

Table B.2 Results of the curve fitting of experimental filtration data (model solute filtration

629 through PAA and PES membrane) with well-established mathematical models of the

630 fundamental mechanisms of fouling.

631 Curve fitting was carried out using least-square algorithm in software, OriginPro 9.0 (OriginLab

 $\label{eq:corp.,USA} 632 \qquad \mbox{Corp.,USA}. \mbox{ Parameters represent kinetic constants of the respective mechanisms, k_s (m^{-1}), k_b (s^{-1}), k_i (s^{-1}), $k_$

 (m^{-1}) and k_c (sm⁻² x 10⁻⁶). Regression coefficient (R²) and sum of square of the residuals (SSR) signify

the goodness of the fits. Standard error values for all kinetic constants were less than 5% of the value

635 of the kinetic constants. Data is represented as average values \pm one standard deviation for triplicate

636 filtration runs.

- 637 Appendix C. SEM images of the fouling observed on the surface of the active layer of the 20nm
- 638 **PAA membranes**

Fig. C.1 SEM images showing fouling by different model solutes on the active layer surface of
 20nm rated PAA membranes. A- Unused membrane, B- BSA fouled, C- TG fouled and D- BSA
 nanoparticles fouled membrane.

- 643 Scale bar represents 0.2 μm and images were taken at a magnification of 100,000 for all of the
- 644 samples. Images were obtained after drying and coating the membranes with uniform ultrathin (<1
- nm) layer of platinum using sputter coater and analysed using InLens detector with less than 5kV gun
- voltage. Field emission scanning electron microscope (Gemini Sigma, Carl Zeiss AG, Germany) was
- 647 used.

648 Appendix D. SEM images of the fouling observed on the surface of the active layer of the

649 **<u>300kDa PES membranes</u>**

650

Fig. D.1 SEM images showing fouling by different model solutes on the active layer surface of

300kDa PES membranes. A- Unused membrane, B- BSA fouled, C- TG fouled and D- BSA nanoparticles fouled membrane.

- 654 Scale bar represents 5 μm (except A) and images were taken at a magnification of 10,000 (except
- 655 20,000 for A) for all of the samples. Images were obtained after drying the membranes and coating
- with ultrathin (<1 nm) and uniform layer of platinum using sputters coater and analysed using InLens
- 657 detector with less than 5kV gun voltage. Field emission scanning electron microscope (Gemini Sigma,
- 658 Carl Zeiss AG, Germany) was used.

659 Appendix E. Effect of various treatments on flux recovery ratio (% of clean membrane flux) of

660 <u>fouled membranes after 12 diavolumes diafiltration process for fractionation of BSA and BSA</u>

661 <u>NP</u>

662

663 Fig. E.1 Flux recovery ratio, FRR (% of membrane permeability for fresh membranes) for PAA

664 membrane and PES membranes after an extended UF/DF experiment (12 DF cycles each of

665 one diavolume) for fractionation of a mixture of BSA and BSA NP and effect of various

666 chemical treatments to remove fouling.

Membranes were treated (in sequence) with 1M NaCl soak for 24 hours; buffer backflush (2 x TMP used in protein filtration), 0.1 N NaOH soak for an hour and proteolytic enzyme treatment for 18 hours at room temperature). PAA membrane showed ~96% of initial buffer flux recovered after rinsing with buffer. Polymeric membranes could not be restored to similar levels even with the chemical treatments.

672 APPENDIX F. Pore size distribution of the 20nm PAA and 300kDa PES membranes and overlay

673 of particle size distribution of the model solutes

674

Fig. F.1 Pore size distribution of membrane surface for 20nm PAA and 300kDa PES membrane
 overlaid with particle size distribution of various solutes.

or overlaid with particle size distribution of various soldies.

677 The grey bars and red dotted line represent the histogram of pore counted (Left Y-axis) upon

678 SEM image analysis and fitting of distribution curve respectively for membranes. Particle size

distribution of BSA NP, TG and BSA are displayed as solid lines with right side Y axis.

680 Surface pore size in 20 nm PAA and 300kDa PES membranes followed normal and log-normal

distribution respectively. Larger pore sizes (>90 nm to 180 nm) were observed for the 300kDa PES

682 membrane.

683 References

- [1] E.I. Trilisky, A.M. Lenhoff, Sorption processes in ion-exchange chromatography of viruses. J. 684
- 685 Chromatogr. A, 1142 (2007) 2-12.
- [2] M. Yu, Y. Li, S. Zhang, X. Li, Y. Yang, Y. Chen, G. Ma, Z. Su, Improving stability of virus-like 686
- 687 particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous
- 688 media beyond enhanced binding capacity, J. Chromatogr. A, 1331 (2014) 69-79.
- [3] C.S. Fernandes, B. Goncalves, M. Sousa, D.L. Martins, T. Barroso, A.S. Pina, C. Peixoto, A. 689
- 690 Aguiar-Ricardo, A.C. Roque, Biobased monoliths for adenovirus purification, ACS Appl. Mater. 691 Interfaces, 7 (2015) 6605-6612.
- [4] Y. Wu, D. Abraham, G. Carta, Comparison of perfusion media and monoliths for protein and virus-692
- 693 like particle chromatography, J. Chromatogr. A, 1447 (2016) 72-81.
- [5] O. Hardick, S. Dods, B. Stevens, D.G. Bracewell, Nanofiber adsorbents for high productivity 694 695 downstream processing, Biotechnol. Bioeng., 110 (2013) 1119-1128.
- 696 [6] P. Nestola, D.L. Martins, C. Peixoto, S. Roederstein, T. Schleuss, P.M. Alves, J.P.B. Mota, M.J.T.
- 697 Carrondo, Evaluation of novel large cut-off ultrafiltration membranes for adenovirus serotype 5 (Ad5) 698 concentration, PLoS ONE, 9 (2014) 22.
- [7] M. Weggeman, Viurs purification using ultrafiltration, in: USPTO (Ed.), Crucell Holland B.V., Leiden 699 700 (NL), 2013, pp. 34.
- [8] C. Peixoto, T.B. Ferreira, M.F. Sousa, M.J. Carrondo, P.M. Alves, Towards purification of 701
- adenoviral vectors based on membrane technology, Biotechnol. Prog., 24 (2008) 1290-1296. 702
- [9] S. Subramanian, G.M. Altaras, J. Chen, B.S. Hughes, W. Zhou, N.E. Altaras, Pilot-scale 703
- 704 adenovirus seed production through concurrent virus release and concentration by hollow fiber 705 filtration, Biotechnol. Prog., 21 (2005) 851-859.
- 706 [10] T. Urase, K. Yamamoto, S. Ohgaki, Effect of pore structure of membranes and module 707 configuration on virus retention, J. Membr. Sci., 115 (1996) 21-29.
- 708 [11] S. Giglia, D. Bohonak, P. Greenhalgh, A. Leahy, Measurement of pore size distribution and 709 prediction of membrane filter virus retention using liquid–liquid porometry, J. Membr. Sci., 476 (2015) 710 399-409.
- [12] J.J. Deng, C.S. Toh, Impedimetric DNA Biosensor Based on a Nanoporous Alumina Membrane 711
- 712 for the Detection of the Specific Oligonucleotide Sequence of Dengue Virus, Sensors, 13 (2013) 713 7774-7785.
- [13] C.C. Chen, Z.L. Lai, G.J. Wang, C.Y. Wu, Polymerase chain reaction-free detection of hepatitis B 714
- 715 virus DNA using a nanostructured impedance biosensor, Biosens Bioelectron, 77 (2016) 603-608. 716 [14] P. Chaturvedi, S.D. Rodriguez, I. Vlassiouk, I.A. Hansen, S.N. Smirnov, Simple and Versatile
- 717 Detection of Viruses Using Anodized Alumina Membranes, ACS Sens, 1 (2016) 488-492.
- 718 [15] A.C. Attaluri, Z. Huang, A. Belwalkar, W. Van Geertruyden, D. Gao, W. Misiolek, Evaluation of 719 nano-porous alumina membranes for hemodialysis application, ASAIO J, 55 (2009) 217-223.
- 720 [16] H.U. Osmanbeyoglu, T.B. Hur, H.K. Kim, Thin alumina nanoporous membranes for similar size 721 biomolecule separation, J. Membr. Sci., 343 (2009) 1-6.
- [17] T. Yamashita, S. Kodama, T. Kemmei, M. Ohto, E. Nakayama, T. Muramoto, A. Yamaguchi, N. 722
- 723 Teramae, N. Takayanagi, Separation of adenine, adenosine-5'-monophosphate and adenosine-5'-
- 724 triphosphate by fluidic chip with nanometre-order diameter columns inside porous anodic alumina 725 using an aqueous mobile phase, Lab Chip, 9 (2009) 1337-1339.
- [18] K.P. Lee, D. Mattia, Monolithic nanoporous alumina membranes for ultrafiltration applications: 726
- 727 Characterization, selectivity-permeability analysis and fouling studies, J. Membr. Sci., 435 (2013) 52-728 61.
- 729 [19] P. Prádanos, A. Hernández, J.I. Calvo, F. Tejerina, Mechanisms of protein fouling in cross-flow
- 730 UF through an asymmetric inorganic membrane, J. Membr. Sci., 114 (1996) 115-126.
- [20] P. Pradanos, J.I. Arribas, A. Hernandez, Retention of Proteins in Cross-Flow Uf through 731
- 732 Asymmetric Inorganic Membranes, AIChE J., 40 (1994) 1901-1910.
- 733 [21] J.M. Moon, D. Akin, Y. Xuan, P.D. Ye, P.X. Guo, R. Bashir, Capture and alignment of phi29 viral 734 particles in sub-40 nanometer porous alumina membranes, Biomed. Microdevices, 11 (2009) 135-735 142.
- 736 [22] G. Jeon, M. Jee, S.Y. Yang, B.Y. Lee, S.K. Jang, J.K. Kim, Hierarchically Self-Organized
- 737 Monolithic Nanoporous Membrane for Excellent Virus Enrichment, ACS Appl. Mater. Interfaces, 6 738 (2014) 1200-1206.
- 739 [23] G.M.F. Braas, S.G. Walker, A. Lyddiatt, Recovery in aqueous two-phase systems of
- 740 nanoparticulates applied as surrogate mimics for viral gene therapy vectors, J. Chromatogr. B, 743 741

(2000) 409-419.

- 742 [24] S. Joseph, L. Wenger, D. Bracewell, O. Thomas, Manufacture and characterisation of protein
- nanoparticles as surrogate virus and VLP mimetics for the optimisation of chromatography media,
 New Biotechnol., 33 (2016) S115.
- [25] B. Storp, A. Engel, A. Boeker, M. Ploeger, K. Langer, Albumin nanoparticles with predictable size
 by desolvation procedure, J. Microencapsul., 29 (2012) 138-146.
- [26] M. Jin, N. Szapiel, J. Zhang, J. Hickey, S. Ghose, Profiling of host cell proteins by two-
- 748 dimensional difference gel electrophoresis (2D-DIGE): Implications for downstream process
- 749 development, Biotechnol. Bioeng., 105 (2010) 306-316.
- 750 [27] G. Bolton, D. LaCasse, R. Kuriyel, Combined models of membrane fouling: Development and
- application to microfiltration and ultrafiltration of biological fluids, J. Membr. Sci., 277 (2006) 75-84.
- [28] P. Mulherkar, R. van Reis, Flex test: a fluorescent dextran test for UF membrane
- 753 characterization, J. Membr. Sci., 236 (2004) 171-182.
- [29] B.L. Cheang, A.L. Zydney, A two-stage ultrafiltration process for fractionation of whey proteinisolate, J. Membr. Sci., 231 (2004) 159-167.
- [30] E. Burova, E. Loffe, Chromatooraphic purification of recombinant adenoviral and adeno-
- associated viral vectors: methods and implications, Gene Therapy, 12 (2005) S5-S17.
- [31] M. Bakhshayeshi, D.M. Kanani, A. Mehta, R. van Reis, R. Kuriyel, N. Jackson, A.L. Zydney,
 Dextran sieving test for characterization of virus filtration membranes, J. Membr. Sci., 379 (2011) 239-
- 759 Dextran sleving test for characterization of virus filtration membranes, J. Membr. Sci., 379 (2011) 239-760 248.
- [32] A.L. Zydney, A. Xenopoulos, Improving dextran tests for ultrafiltration membranes: Effect of
 device format, J. Membr. Sci., 291 (2007) 180-190.
- 763 [33] H. Lutz, Ultrafiltration for Bioprocessing, 1st ed., Woodhead Publishing, Cambridge, UK, 2015.
- [34] M.C. Porter, Concentration Polarization with Membrane Ultrafiltration, Ind. Eng. Chem. Prod.
 Res. Dev., 11 (1972) 234-248.
- 766 [35] V.G.J. Rodgers, R.E. Sparks, Effect of transmembrane pressure pulsing on concentration
- 767 polarization, J. Membr. Sci., 68 (1992) 149-168.
- [36] A. Tandon, S.K. Gupta, G.P. Agarwal, Modelling of protein transmission through ultrafiltration
 membranes, J. Membr. Sci., 97 (1994) 83-90.
- 770