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Influence of fluids on VP/VS ratio: increase or decrease?
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S U M M A R Y
The evolution of the ratio between P- and S-wave velocities (VP/VS) with increasing fluid-
saturated porosity is computed for isotropic rocks containing spheroidal pores. The ratio VP/VS

is shown to either decrease or increase with increasing porosity, depending on the aspect ratio α

of the pores, fluid to solid bulk modulus ratio ζ and Poisson’s ratio ν0 of the solid constituents
of the rock. A critical initial Poisson’s ratio ν0, crit is computed, separating cases where VP/VS

increases (if ν0 < ν0, crit) or decreases (if ν0 > ν0, crit) with increasing porosity. For thin cracks
and highly compressible fluids, ν0, crit is approximated by 0.157 ζ/α, whereas for spherical
pores ν0, crit is given by 0.2 + 0.8ζ . When ν0 is close to ν0, crit, the evolution of VP/VS with
increasing fluid-saturated porosity is near neutral and depends on subtle changes in pore shape
and fluid properties. This regime is found to be relevant to partially dehydrated serpentinites
in subduction zones (porosity of aspect ratio near 0.1 and ζ in the range 0.01–0.1), and makes
detection of these rocks and possibly elevated fluid pressures difficult from VP/VS only.
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1 I N T RO D U C T I O N

The ratio of P- to S-wave velocities (VP/VS ratio) is commonly
considered as a key constraint on the nature and composition of
rocks when interpreting seismological data (e.g. Christensen 1996).
It is also well established that the presence of fluid-filled poros-
ity (cracks, pores or open grain junctions) strongly modifies the
VP/VS ratio (e.g. Kuster & Toksöz 1974; O’Connell & Budiansky
1974; Watanabe 1993; Zimmerman 1994; Le Ravalec & Guéguen
1996; Berryman et al. 2002; Takei 2002; Fortin et al. 2007, among
many others). Two systematic observations are that (1) full satura-
tion leads to an increase in VP/VS compared to dry rocks (e.g. Nur
& Simmons 1969), and (2) the opening of liquid-saturated cracks
(e.g. when confining pressure is reduced) also causes an increase
in VP/VS (see experimental data by Christensen 1984). Both obser-
vations are well supported by theoretical models based on effective
medium schemes in cracked materials (e.g. O’Connell & Budiansky
1974; Berryman et al. 2002) and have been used to interpret results
from seismic tomography (e.g. Peacock et al. 2011). However, when
the fluid compressibility is very large compared to that of the rock,
or when the fluid is present in pores shaped differently from thin
cracks (e.g. tubes, spherical pores or polygonal grain-junctions),
the change in VP/VS with increasing fluid-saturated porosity is not
necessarily a monotonic increase. For instance, using an effective
medium theory based on fluid inclusions in the shape of triangular
tubes, Watanabe (1993) showed that, with increasing porosity, VP/VS

initially decreases if the porosity is saturated with water, whereas it
increases if the porosity is saturated with a much less compressible
fluid such as melt. Similarly, the comprehensive review presented by

Takei (2002) shows that a regime exists where VP/VS decreases with
increasing fluid content, notably for gas-saturated cracks (see also
Dvorkin et al. 1999) and for texturally equilibrated water-saturated
inclusions.

Overall, models based on effective medium approaches show
that pore geometry and fluid compressibility have a strong influ-
ence on the variations in VP/VS (or, equivalently, Poisson’s ratio)
with increasing fluid content (e.g. O’Connell & Budiansky 1974;
Zimmerman 1994; Berryman et al. 2002). However, an important
control parameter that has been apparently overlooked is the Pois-
son’s ratio of the host material. In most modelling studies, it is
taken equal to 0.25 for simplicity, and a systematic exploration of
this parameter has rarely been undertaken (a notable exception is
Zimmerman 1991b, 1994, for the case of spherical inclusions). In
addition, published models often require systematic computations
of bulk and shear moduli as a function of fluid-saturated porosity to
access the evolution in VP/VS, but it is desirable to achieve approx-
imate predictions using simple formulae that exhibit clearly how
the three key parameters (Poisson’s ratio of solid constituents, pore
shape and fluid compressibility) influence the results.

Here, we use the differential effective medium scheme to deter-
mine the variations of VP/VS in materials containing an isotropic
distribution of fluid-filled spheroidal inclusions. We determine the
critical parameter values separating cases when VP/VS increases or
decreases with increasing porosity, and provide simple closed-form
asymptotes for limiting pore shapes (cracks, spheres and needle-
like cavities). Finally, we discuss a number of geophysically rele-
vant cases where the presence of fluids may have a counterintuitive
impact on VP/VS.
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2 M E T H O D O L O G Y

We use (1) the differential effective medium (DEM) scheme to
compute the effective elastic properties of solids containing voids
(i.e. dry pores), and (2) the Gassmann relationship to compute the
effect of a fluid filling the voids. Some of our analysis is given in the
limit of small porosity (see Section 4.2) and is therefore general and
does not rely specifically on the DEM approximation (Zimmerman
1991a).

The DEM approach consists in incrementally introducing inclu-
sions (amounting to an increment of porosity), computing the corre-
sponding incremental change in effective elastic moduli, and repeat-
ing the procedure until the target porosity is reached (e.g. Bruner
1976; McLaughlin 1977; Henyey & Pomphrey 1982; Zimmerman
1984; Norris 1985). For an isotropic solid containing randomly ori-
ented, spheroidal voids of a given aspect ratio α, the effective bulk
(K) and shear (G) moduli are given by the following set of coupled
ordinary differential equations (e.g. David 2012)

1 − φ

K

dK

dφ
= −P(α, ν), (1)

1 − φ

G

dG

dφ
= −Q(α, ν), (2)

where φ is the porosity and ν is Poisson’s ratio of the effective dry
porous material. Poisson’s ratio is related to the elastic moduli as

ν = 3K − 2G

6K + 2G
. (3)

The elastic constants of the intact material (at φ = 0), that is, of the
solid constituents of the rock matrix, are denoted K0, G0 and ν0.
The functions P and Q are the bulk and shear compliances of the
spheroidal void, respectively, and depend on the Poisson’s ratio ν

of the dry porous solid, and the aspect ratio α of the spheroids. Full
expressions for P and Q are given in David & Zimmerman (2011a).
In using expressions (1) and (2), we assume the existence of a unique
family of pores of the same representative aspect ratio α, and use the
porosity φ as our control parameter. More complex microstructures
could be represented by using a combination of pores of different
aspect ratios, for instance mixtures of thin cracks and spherical
pores, and using specific concentration parameters for each family
(e.g. crack density and porosity, see Shafiro & Kachanov 1997).
Here, we restrict our attention to a single aspect ratio in order to
highlight the controlling role of this parameter and keep the analysis
as simple as possible.

From the effective moduli of the dry porous material, the mod-
uli of the fluid-saturated material are given by Gassmann’s fluid-
substitution relations in the undrained limit (Gassmann 1951):

Ku = K
φ(1 − ζ−1) + 1 − K0/K

φ(1 − ζ−1) + K/K0 − 1
, (4)

Gu = G, (5)

where subscripts u indicate saturated moduli, K is the dry effective
bulk modulus and

ζ = Kf/K0 (6)

is the ratio of the bulk moduli of the fluid and of the solid constituents
of the material. From the elastic moduli, we compute Poisson’s ratio
using eq. (3) and the VP/VS ratio as

VP

VS
=

√
2(1 − ν)

1 − 2ν
. (7)

Figure 1. Fixed point for Poisson’s ratio and VP/VS as φ → 1 in the dry
case. Low aspect ratios α < 1 correspond to oblate spheroids (crack-like
shapes), high aspect ratios α > 1 correspond to prolate spheroids (needle-
like shapes). Spheres correspond to α = 1. The solid line is the numerical
solution, and dashed lines are the closed-form asymptotes for thin cracks,
spheres and needles.

3 D RY L I M I T

Before investigating the effect of fluids per se, it is instructive to
examine first the evolution of VP/VS with increasing dry porosity. A
full investigation was presented by David & Zimmerman (2011b),
and only the key results are summarized here.

Combining eqs (3), (1) and (2), an ordinary differential equation
for Poisson’s ratio is obtained:

(1 − φ)
dν

dφ
= (1 + ν)(1 − 2ν)

3

[
Q(α, ν) − P(α, ν)

]
. (8)

As shown in Berryman et al. (2002) and David & Zimmerman
(2011b), Poisson’s ratio evolves monotonically with increasing
porosity towards a fixed point νfixed (where dν/dφ = 0) that de-
pends only on the aspect ratio of the pores, and is independent
from the moduli of the solid constituents of the material. Qualita-
tively similar results hold for other effective medium schemes (e.g.
Dunn & Ledbetter 1995). The fixed point νfixed can be computed
by setting Q(α, νfixed) = P(α, νfixed), and is shown in Fig. 1 (solid
line). Closed-form solutions in asymptotic cases (Appendix A) are
obtained for

thin cracks (α � 1):

νfixed � 0.861α − 2.504α2 + 5.882α3, (9)

nearly spherical pores (α ∼ 1):

νfixed � 0.200 − 0.018(1 − α)2 − 0.039(1 − α)3, (10)

and needle-like pores (α � 1):

νfixed � 0.202. (11)

These asymptotic solutions (Fig. 1) show excellent agreement
with the numerical solution over most of the aspect ratio range,
except near the transition between thin cracks and spheres (0.25 �
α � 0.6) and between spheres and needles (1.4 � α � 11). The
asymptote for thin cracks (9) differs from that of Berryman et al.
(2002) for penny-shaped cracks (their eq. B3) probably due to a
typographical error [the asymptotic approximation given by Walsh
(1969) for penny-shaped cracks—his eq. (1b)—does not match the
one rederived in David & Zimmerman (2011a) in the dry case. Rec-
onciling the two expressions requires removing the first unitary term
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on the right-hand side of Walsh’s eq. (1b)] propagated in the liter-
ature since Walsh (1969) (reproduced notably in Berryman 1980).
The key result of the analysis, illustrated in Fig. 1, is that νfixed acts
as a critical boundary separating materials (and pore shapes) for
which increasing porosity produces a decrease or increase in ν (and
VP/VS). When the Poisson’s ratio of the intact material (i.e. that of
the solid constituents of the rock) ν0 is greater than νfixed(α), then
ν decreases with increasing porosity. In the example of thin cracks,
νfixed → 0 as α → 0, so that Poisson’s ratio is systematically decreas-
ing with increasing crack porosity. Such a behaviour is confirmed
by laboratory experiments on gas-saturated (or dry) cracked rocks
(e.g. Dvorkin et al. 1999). Interestingly, any material for which ν0

� 0.2 will see its Poisson’s ratio decrease with increasing (dry)
porosity, regardless of pore shape.

4 C O M P R E S S I B L E F LU I D S

4.1 General DEM results

At a given porosity, ν and VP/VS are always higher for the fluid-
saturated porous solid than for its dry counterpart. This result is
independent of the pore shape, and is a direct consequence of (1)
the increase of K/G in the presence of fluids (Gassmann’s eq. 4 and
5) and (2) ν being an increasing function of K/G.

When the porosity is saturated with a compressible fluid, the evo-
lution in ν and VP/VS with increasing porosity differs significantly
from the dry case. From a physical point of view, one expects that ν

should tend to 0.5 (VP/VS → +∞) as φ → 1 (i.e. when the material
is effectively just a fluid). For a saturating fluid of low compress-
ibility, one also expects that ν should closely follow the evolution
in the dry case at low porosity, before transitioning to an eventual
increase towards 0.5 at high porosity. Such basic physical arguments
indicate that the evolution of ν with porosity might be complex and
non-monotonic.

Complete numerical solutions for the DEM combined with
Gassmann’s relationship are shown in Fig. 2. Each panel of Fig. 2
shows results for ν and VP/VS as function of porosity at fixed (α, ζ )
and for ν0 = 0.15, 0.20, 0.25, 0.30 and 0.35. For thin cracks (α =
10−3, left panels), results are only shown for φ up to 1 per cent.

For thin cracks filled with a low compressibility fluid (α = 10−3,
ζ = 10−2 and ζ = 10−1, Figs 2d and g), Poisson’s ratio increases
rapidly towards 0.5 as porosity increases to around 1 per cent, re-
gardless of the solid’s Poisson’s ratio ν0. For α = 10−3 and ζ =
10−3 (Fig. 2a), ν also rises rapidly to 0.5 at φ > 0.2 per cent, but
the initial evolution ν(φ) depends on ν0. For ν0 = 0.15, ν increases
monotonically with increasing porosity. For ν0 ≥ 0.2, the evolution
at small porosity is a decrease in ν, followed by an increase at φ ≥
0.2 per cent.

In the case of spherical pores (α = 1, Figs 2c, f and i), the
evolution of Poisson’s ratio with increasing porosity depends on
its initial value ν0. For φ < 50 per cent, ν increases if ν0 is less
than around 0.2, and decreases otherwise. At some large critical
porosity (that depends on ζ ), ν rapidly increases to 0.5. The strong
variation of ν at φ near 100 per cent has been discussed in detail by
Zimmerman (1994).

At intermediate aspect ratios (α = 0.1, Figs 2b, e and h), ν

typically evolves non-monotonically with increasing porosity. At
low ζ (ζ ≤ 10−2, highly compressible fluids), ν tends to decrease
with increasing φ up to φ ≈ 40 per cent (at ζ = 10−3) and φ ≈
20 per cent (at ζ = 10−2), before eventually increasing towards 0.5.
For less compressible fluids (ζ = 10−1), the initial evolution of

ν strongly depends on ν0: for ν0 = 0.35, ν(φ) initially decreases,
whereas it is either stable or increases at ν0 ≤ 0.3.

4.2 Critical parameters separating increase from decrease
in VP/VS

One way to understand the numerical results from the DEM ap-
proach is to determine the critical parameter values separating the
cases where dν/dφ < 0 and dν/dφ > 0 at small φ, that is, at the
introduction of fluid-saturated pores in the solid. We define a critical
initial Poisson’s ratio ν0, crit(α, ζ ) such that

if ν0 > ν0,crit then
dν

dφ

∣∣∣
φ=0

< 0. (12)

Since ν0, crit is defined in the limit φ → 0, the following analysis is
not specific to the DEM approximation (when φ → 0, all effective
medium schemes produce the same predictions).

The qualitative evolution of ν0, crit with increasing aspect ratio is
similar for all tested values of ζ (Fig. 3). At low α, ν0, crit initially
decreases with increasing aspect ratio, and then increases up to a
plateau at α ≥ 1. The transition point where ν0, crit is minimum
scales with the ratio ζ /α. The value of ν0, crit at aspect ratios above
1 depends on ζ but not significantly on α. For ζ � α � 1, the
evolution of ν0, crit closely follows that of νfixed in the dry case.

Asymptotic expressions for ν0, crit can be determined in simple
cases (see Appendix B):

thin cracks (α � ζ � 1):

ν0,crit � 0.157
ζ

α
, (13)

spheres (α ∼ 1, ζ � 1):

ν0,crit � 0.2 + 0.8ζ, (14)

and needles (α � 1, ζ � 1):

ν0,crit � 0.202 + 0.760ζ. (15)

The accuracy of these approximations is excellent at very low
ζ , but deteriorates with increasing ζ , especially in the case of thin
cracks (Fig. 3). More accurate asymptotes could probably be de-
termined with higher order expansions in terms of α and ζ , but
we retain formulae (13)–(15) because of their remarkable simplic-
ity. For completeness, Appendix C presents analogue asymptotes
for the case of fluid-saturated rocks in the high-frequency (‘unre-
laxed’) limit and shows only small or no quantitative differences
with eqs (13)–(15). The key result of our analysis, illustrated in
Fig. 3, is the prediction and elementary estimate for the critical
Poisson’s ratio of solid constituents of a rock above which the intro-
duction of fluid-saturated pores produces a decrease in the effective
Poisson’s ratio and VP/VS.

4.3 Estimates of VP/VS at low porosity

The comparison between Poisson’s ratio of the solid constituents of
the rock, ν0, and ν0, crit, provides a simple rule to predict whether
fluid-filled porosity induces an increase or a decrease in the effective
ν of the saturated porous rock. The amplitude of the variation of ν

with φ (dν/dφ at φ = 0) is approximated by asymptotic expansions
of the DEM and Gassmann’s equations for

thin cracks (α � ζ � 1), ν0 � 0.25:

dν

dφ

∣∣∣
φ=0

∼ 20 − 34ν0

45πα
+ 1 − ν0

3

(
1 − 1

ζ

)
, (16)
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Figure 2. Evolution of Poisson’s ratio and VP/VS with increasing fluid-saturated porosity for a range of pore aspect ratios (α = 10−3, 10−1 and 1) and fluid
compressibility ratios (ζ = Kf/K0 = 10−3, 10−2 and 10−1). Solid lines are numerical solutions to the DEM and Gassmann’s Equations (eqs 1, 2, 4 and 5) for
initial Poisson’s ratio ranging from ν0 = 0.15 to ν0 = 0.35. Dashed lines are asymptotic solutions obtained to first order in φ for thin cracks (α � ζ � 1) and
spheres (α = 1).

spheres (α = 1, ζ � 1):

dν

dφ

∣∣∣
φ=0

∼ 3

2

(1 − 5ν0)(1 − ν2
0 )

7 − 5ν0
+ 3

4

(1 − ν0)2(1 + ν0)

1 − 2ν0
ζ, (17)

and needles (α � 1, ζ � 1):

dν

dφ

∣∣∣
φ=0

∼ (1 + ν0)(5 − 28ν0 + 16ν2
0 )

15
+ (1 + ν0)(5 − 4ν0)2

27(1 − 2ν0)
ζ.(18)

Linear approximation for ν(φ) at small porosities using the above
asymptotes are shown as dashed lines in Fig. 2. The approximation
for spheres is remarkably accurate up to very large porosity (φ up to
25 per cent), while the approximation for thin cracks becomes poor
at porosity larger than 0.1 per cent. More accurate, higher order
asymptotes for the case of thin cracks could be obtained, but we
only retain here the very approximate formula (16) for its simplicity,
keeping in mind that full numerical solutions should be used at high
crack porosity, large ζ and ν0 � 0.25.

5 D I S C U S S I O N

Our modelling results demonstrate that the evolution in ν (or, equiv-
alently, VP/VS) with increasing fluid-saturated porosity is potentially
non-monotonic. The critical initial Poisson’s ratio ν0, crit separating
cases when VP/VS decreases or increases shows a complex evolution

at pore aspect ratios near α = 0.1 and fluid compressibility ratios
near ζ = 0.1. This range of parameters is typical of two key sce-
narios of geological relevance: metamorphic dehydration reactions
and partial melting.

The laboratory experiments of Popp & Kern (1993) and Brantut
et al. (2012) showed that both serpentinite and gypsum undergoing
thermal dehydration reactions see their Poisson’s ratio decrease with
increasing reaction progress (i.e. with increasing fluid-saturated
porosity). More specifically, Brantut et al. (2012) used the DEM
approach to show that the pores generated by the transformation of
gypsum to bassanite have an aspect ratio of the order of 0.05. This
relatively large value is required due to the large porosity generated
by dehydration reactions (typically of the order of 10 per cent or
more), which cannot be accommodated by thin cracks only (Bran-
tut et al. 2012). Takei (2002) showed that equilibrated textures for
partially molten and fluid-saturated rocks, where porosity is located
at grain boundaries and triple junctions and is in equilibrium with
surface tension forces, correspond to an effective material contain-
ing spheroidal pores of aspect ratio α = 0.1–0.5.

Using intact Poisson’s ratio of ν0 = 0.33–0.35 for gypsum (Bran-
tut et al. 2012), ν0 = 0.31–0.33 for lizardite (Popp & Kern 1993;
Christensen 1996) and ν0 = 0.26–0.28 for antigorite (Reynard
2013), the evolution of ν and VP/VS of these rocks at the onset
of dehydration is in a regime where it is strongly controlled by the
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Figure 3. Critical initial Poisson’s ratio and VP/VS separating increasing or decreasing ν(φ) at φ = 0. For ν0 > ν0, crit, ν (and VP/VS) initially decreases with
increasing fluid-saturated porosity. Solid lines are numerical solutions. Dashed lines and black circles are asymptotic closed-form expressions for thin cracks,
needle-like pores and spherical pores, respectively. The solid grey curve corresponds to the dry case (same as in Fig. 1).

Figure 4. Critical Poisson’s ratio and VP/VS as a function of aspect ratio and
for indicated compressibility ratios ζ = 0.02–0.2. Grey boxes correspond to
(α, ν0) ranges at the onset of gypsum dehydration (gyp), lizardite dehydration
(liz), antigorite dehydration (atg) and silicate melting (melt).

compressibility ratio ζ (Fig. 4). Gypsum dehydration occurs at low
pressure and temperature, so that Kf ≈ 2 GPa and K0 ≈ 41 GPa,
yielding ζ ≈ 0.05. This set of parameters is clearly in the regime
where ν0 > ν0, crit, and Poisson’s ratio is expected to decrease with
increasing porosity, a prediction confirmed by experiments (Brantut
et al. 2012). For the case of lizardite dehydration at around 400 ◦C,
the evolution of ν depends on the fluid pressure. Under the exper-
imental conditions of the study by Popp & Kern (1993), the fluid
pressure is expected to be commensurate to the confining pressure
of 200 MPa, so that the bulk modulus of water is of the order of
1 GPa (at 400 ◦C). Using K0 ≈ 57 GPa (derived from Christensen
1996), it is found that ζ ≈ 0.02, well within the regime where ν0 >

ν0, crit, so that ν decreases with increasing porosity, as confirmed by
the experimental results. By contrast, if lizardite dehydration occurs

at higher pressure, say 1 GPa, the fluid bulk modulus is around Kf ≈
5.5 GPa, so that ζ ≈ 0.1, and the resulting evolution of ν and VP/VS

is neutral (at α near 0.1) or increasing (at α � 0.07). Similarly, the
case of antigorite dehydration is also complex. At 1 GPa pressure
and 550 ◦C, the bulk modulus of water is Kf ≈ 4.5 GPa. Using a
bulk modulus of K0 ≈ 75 GPa for pure antigorite (Bezacier et al.
2013) results in ζ ≈ 0.06, which places ν0 only slightly above ν0, crit.
Therefore, antigorite dehydration is expected to produce constant
or slightly decreasing ν and VP/VS.

By contrast, the case of partial melting of silicates is unambigu-
ous. Using a lower crustal silicate melt compressibility in the range
18–27 GPa (Stolper et al. 1981) and silicate bulk modulus in the
range 80–110 GPa yields ζ ≈ 0.16–0.34. For most silicate rocks,
ν0 is in the range 0.2–0.3, which is below the predicted ν0, crit for
melt-saturated pores (Fig. 4), so that partial melting is expected to
produce an increase in ν and VP/VS, in accordance with previous
predictions by Takei (2002).

6 C O N C LU S I O N S

The results from the DEM approach demonstrate that the Poisson’s
ratio ν0 of the solid constituents of a rock exerts a key control on the
evolution of ν and VP/VS with increasing fluid-saturated porosity.
This control has often been overlooked and most modelling studies
have instead focused on the effect of pore shape and fluid compress-
ibility, assuming ν0 = 0.25. Here, we computed a critical Poisson’s
ratio ν0, crit(α, ζ ) separating the cases when ν (and VP/VS) decreases
(if ν0 > ν0, crit) or increases (if ν0 < ν0, crit) with increasing poros-
ity. Our analysis of ν0, crit is given in the limit of small porosity,
and is therefore independent from the choice of a specific effective
medium scheme. Simple asymptotic formulae were derived in the
case of thin cracks, spherical pores and needle-like pores (eqs (13),
(14) and (15)). When ν0 is very close to ν0, crit, the evolution of
VP/VS with porosity is near neutral, but becomes sensitive to subtle
changes in pore shape and fluid compressibility. This case is likely
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encountered during dehydration reactions of serpentinites, where
the details of the pore shape (driven by textural equilibration of
the microstructure) and fluid properties (which depend on the local
pressure, temperature and chemical composition) are expected to
drive VP/VS towards either a slight increase or a decrease. A signif-
icant decrease in VP/VS was observed during lizardite dehydration
(Popp & Kern 1993), in accordance to our model’s prediction. More
experimental work is needed to further test the model predictions
over a wider range of conditions and materials.

We only treated the case of isotropic solids containing isotropic
distributions of pore orientations. Anisotropic matrix or anisotropic
pore orientation distributions are expected to change the expected
VP/VS ratio which then depends on the polarization of the seis-
mic waves propagating through the material (Reynard et al. 2010;
Wang et al. 2012). In natural scenarios, such as partially dehydrated
rocks in subduction zones, the combined effects of initial rock prop-
erties, fluid properties, pore shape and anisotropy make structural
interpretations difficult from the measurement of VP/VS only. Unam-
biguous identification of specific rock types (such as serpentinites)
and locally elevated fluid pressures is therefore likely to require
a combination of data sets, including wave speed anisotropy and
attenuation.
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A P P E N D I X A : A S Y M P T O T I C F O R M S I N
T H E D RY C A S E

The fixed point νfixed is given by solving for ν in

Q(α, ν) − P(α, ν) = 0. (A1)

Thin cracks (α � 1). The term Q(α, ν) − P(α, ν) is a rational func-
tion of the variable ν. Removing the unphysical root ν = 1, retaining
the two dominant terms of order zero and one in ν, and performing
a Taylor expansion to third order in α yield the approximation

νfixed ∼
(

4

3π
+ 5π

36

)
α +

(
−254

81
+ 80

27π 2
+ 29π 2

864

)
α2

+
(
1228800 + 1660160π 2 + 165504π 4 + 315π 6

)
186624π 3

α3.(A2)

Nearly spherical pores (α ∼ 1). Taylor expansion of P(α, ν) and
Q(α, ν) for ε = (1 − α) ∼ 0 is used, and eq. (A1) is then solved to
yield a third-order approximation in ε as

νfixed ∼ 1

5
− 16

875
ε2 +

3017088
(

5751377 + 23283
√

59385
)

42875
(

135 + √
59385

)4
ε3.(A3)

Needles (α � 1). The limits of P and Q for needles (see David &
Zimmerman 2011a) are used, and the solution of eq. (A1) gives

νfixed ∼ 1

8

(
7 −

√
29

)
, (A4)

recovering the solution previously derived by Berryman et al.
(2002).

A P P E N D I X B : A S Y M P T O T I C F O R M S I N
T H E S AT U R AT E D, U N D R A I N E D C A S E

Here we only study the behaviour at small porosity, near φ = 0. The
set of eqs (1) and (2) for the DEM scheme then reduces to the dilute
approximation:

K0/K = 1 + φP(α, ν), (B1)

G0/G = 1 + φQ(α, ν). (B2)

The first (and most obvious) method for evaluating ν0, crit in the fluid-
saturated case would be to (1) insert the asymptotic expressions of
David & Zimmerman (2011a) for P and Q in limiting cases of thin
cracks, nearly spherical pores and needles in eqs (B1) and (B2)
to compute the dry moduli in the limit of small porosity, (2) use
Gassmann’s equation to compute the saturated moduli and (3) solve
for ν0, crit for each pore geometry. However, we found this approach
rather cumbersome. Alternatively, the fluid-saturated Poisson ratio
is readily evaluated by solving a modified DEM scheme in the
limit of small porosity, using the shear compliance of dry pores Q
(unaffected by fluid saturation in the low frequency limit) and an
effective pore bulk compliance equal to (1 − ζ )Pu(α, ν, ζ ), where Pu

is the bulk compliance of fluid-saturated inclusions (David 2012).
This approach has been shown to be rigorously equivalent to the
first method described above in the limit of small porosity (David

2012). The critical Poisson’s ratio is given by setting

Q(α, ν) − (1 − ζ )Pu(α, ν, ζ ) = 0. (B3)

Thin cracks (α � 1). Series expansions of Pu and Q for small
α and small ζ (in that order) are used, and yield the following
approximation:

ν0,crit ∼ 40ζ

81πα
. (B4)

Because of the order in which the series expansions are performed,
this approximation is valid for α � ζ . We did not find any useful
approximation for the case ζ ≤ α � 1.
Spheres (α ∼ 1). Series expansions near α = 1 and small ζ result in
an approximation that is independent from α (at least to first order):

ν0,crit ∼ 1

5
(1 + 4ζ ) . (B5)

Needles (α � 1). Series expansions for large α and small ζ yield

ν0,crit ∼ 1

8

(
7 −

√
29

)
+ 203 + 36

√
29

522
ζ. (B6)

A P P E N D I X C : A S Y M P T O T I C F O R M S I N
T H E S AT U R AT E D, U N R E L A X E D C A S E

In the previous Section we derived asymptotes for the undrained
saturated case, which is given by inserting the dry moduli from the
DEM scheme into Gassmann’s equations. The undrained case cor-
responds to the low-frequency limit (Le Ravalec & Guéguen 1996),
where the fluid pressure is the same in all pores within a repre-
sentative elementary volume over which the averaging procedure
is performed. In the high-frequency limit, also called ‘unrelaxed’
or ‘saturated-isolated’ limit, the fluid pressure is not equilibrated
between each pore. This results in saturated effective moduli that
are equal or higher than those predicted in the undrained, low-
frequency regime (Le Ravalec & Guéguen 1996). Although this
case is commonly not directly relevant to the low frequencies used
in conventional seismology (Li et al. 2018), for completeness we
include here the key asymptotes for ν0, crit for each aspect ratio limit.
Although the evolution of ν with increasing φ is quantitatively dif-
ferent compared to the undrained, low-frequency case, only minor
differences are found for the critical Poisson ratio ν0, crit.

The high frequency, unrelaxed critical Poisson’s ratio νHF
0,crit is

given by setting

Qu(α, ν, ζ ) − (1 − ζ )Pu(α, ν, ζ ) = 0, (C1)

where Qu is the shear compliance of a fluid-saturated spheroidal
inclusion (see David 2012, for complete expression).

Thin cracks (α � 1). Series expansions of Pu and Qu for small
α and small ζ (in that order) are used, and yield the following
approximation:

νHF
0,crit ∼ 8ζ

27πα
� 0.094 ζ/α. (C2)

Spheres (α ∼ 1). This case is rigorously equivalent to the undrained
case:

νHF
0,crit ∼ 1

5
(1 + 4ζ ) . (C3)

Needles (α � 1). Series expansions for large α and small ζ yield

νHF
0,crit ∼ 1

8

(
7 −

√
29

)
+ 551 + 91

√
29

1392
ζ � 0.202 + 0.748 ζ. (C4)
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