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Abstract 

Transcription of a large set of nuclear encoded genes underlies biogenesis of mitochondria, 

regulated by a complex network of transcription factors and co-regulators. A remarkable 

heterogeneity can be detected in the expression of these genes in different cell types and 

tissues, and the recent availability of large gene expression compendiums allows the 

quantification of specific mitochondrial biogenesis patterns. We have developed a method 

to effectively perform this task. Massively Correlated biclustering (MCbiclust) is a novel 

bioinformatics method that has been successfully applied to identify co-regulation patterns 

in large genesets, underlying essential cellular functions and determining cell types. The 

method has been recently evaluated and made available as a package in Bioconductor for R. 

One of the potential applications of the method is to compare expression of nuclear 

encoded mitochondrial genes, or larger sets of metabolism related genes between different 

cell types or cellular metabolic states. Here we describe the essential steps to use MCbiclust 

as a tool to investigate co-regulation of mitochondrial genes and metabolic pathways. 
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1. Introduction 

Mammalian mitochondria are estimated to be composed of as many as 1500 genes (1)  

encoded in the nucleus along with the 13 protein-coding genes of the mitochondrial 

genome (mtDNA). To maintain proper mitochondrial function, the expression of the two 

genomes must be both co-ordinated and able to adapt to highly variable energetic 

demands. This results in a remarkable heterogeneity of mitochondrial composition, as 

detailed in numerous recent studies exploring the startling variety of mitochondrial 

function, physiology and proteome make-up across different tissues and cell types (2–4). 

Accordingly, the transcriptional regulation of mitochondrial biogenesis has been shown to 

be a highly complex process (see e.g. (5, 6)), involving numerous transcription factors and 

co-regulators, forming a complex interaction network, which is also highly adaptable via 

post-transcriptional modifications. While physiological regulation of mitochondrial 

biogenesis and composition vary enormously across healthy tissues, it is also known to 

contribute to major disease states. Mitochondrial dysfunction due to defects in the 

mitochondrial biogenesis pathway is known to be an important factor in cancer, 

neuromuscular degenerative disease and cardiomyopathies (7, 8). Whether these changes 

are the primary cause of the disease or the result of adaptation or maladaptation is an 

important open question in many cases. For these reasons bioinformatics tools to 

investigate the co-regulation of nuclear encoded mitochondrial genes not only have the 

potential to examine how physiological regulation works but also to reveal underlying 

factors that contribute to disease.  

While the direct examination of the total mitochondrial proteome affected by the 

transcription factor network is often technically unfeasible, the availability of good quality, 

high coverage gene expression (microarray or RNAseq) data make it realistic to study the 

output of this network at the mRNA level. However, the success of this analysis relies on the 

ability of the applied methods to identify gene-sample ‘biclusters’ of similar mitochondrial 

co-regulation, since a single dataset often contain multiple modes of control in diverse 

mitochondrial gene groups. Here we discuss how a recently developed novel method 

MCbiclust (9) can be used for this task. 

 

2. Materials 



In the following sections we will refer to these software/manuals/datasets:  

1. MCbiclust (doi:10.18129/B9.bioc.MCbiclust, current version 1.2.1), an R package 

available in Bioconductor (10), an open source platform for software in 

bioinformatics.  

2. The MCbiclust package introductory manual (IM) accessed on the Bioconductor 

website 

(https://bioconductor.org/packages/release/bioc/vignettes/MCbiclust/inst/doc/MC

biclust_vignette.html). 

3. The MCbiclust reference manual (RM) providing documentation to the R functions 

involved, accessed on the Bioconductor website 

(https://bioconductor.org/packages/release/bioc/manuals/MCbiclust/man/MCbiclus

t.pdf). 

4. The MitoCarta 1.0 (2) mitochondrial geneset used in the IM. 

5. The microarray dataset from the Cancer Cell Line Encyclopedia (11) also used in the 

IM. 

 

3. Methods 

In this section we will discuss in detail only the implications for applying the methodology to 

the analysis of mitochondrial biogenesis patterns. For complete understanding of the 

method, the theoretical considerations and benchmarking against other algorithms, please 

refer to Bentham et al. (9). 

 

3.1 Choosing a geneset 

Once a dataset has been chosen (for details on choosing your dataset and judging whether 

it is suitable see Note 1), the first step of using MCbiclust is to select a suitable geneset 

representing mitochondrial function with the scope of discovering co-regulation patterns in 

nuclear encoded mitochondrial genes. This is not a trivial problem as there are genes with 

different confidence levels of evidence relating them to mitochondria, as well as genes that 

while not being mitochondrial are highly co-regulated with mitochondrial processes. We 

consider two alternative methods for geneset selection. 

3.1.1. Established databases with mitochondrial genesets 

https://bioconductor.org/packages/release/bioc/vignettes/MCbiclust/inst/doc/MCbiclust_vignette.html
https://bioconductor.org/packages/release/bioc/vignettes/MCbiclust/inst/doc/MCbiclust_vignette.html
https://bioconductor.org/packages/release/bioc/manuals/MCbiclust/man/MCbiclust.pdf
https://bioconductor.org/packages/release/bioc/manuals/MCbiclust/man/MCbiclust.pdf


i) MitoCarta (12) in its latest version (2.0) contains 1158 human and mouse genes with 

strong support of mitochondrial localization.  

ii) MitoMiner 4.0  (13) is an integrated web resource of mitochondrial localisation evidence 

and phenotype data for mammals, zebrafish and yeast. The team behind MitoMiner 

developed the Integrated Mitochondrial Protein Index (IMPI), which in its current version 

(Q3 2017) includes 1550 genes.  

iii) Genes associated with the Gene Ontology (14) term “mitochondrion”, which contains 

1647 genes; genes in the dataset, however, have varying evidence with many inferred from 

in silico analysis. 

 

The user can decide whether to use one of these data sets in order to select the 

mitochondrial genes to be analysed. Alternatively, the intersection (985 genes) or union of 

all three datasets (1997 genes) could be used. The size of the geneset is an important factor 

for determining the speed at which MCbiclust completes the analysis. However, an 

increased geneset size does not necessarily bring any benefits (see Note 2).  

3.1.2 Interaction networks of mitochondrial genes 

An alternative strategy to using public lists of known or predicted mitochondrial genes is to 

compose a list by using a single well established mitochondrial gene and determine its 

interactions from the existing correlation structure in the dataset of interest. By taking a 

single, well established mitochondrial gene, e.g. a component of the electron transport 

chain or the mitochondrial ribosome, the remaining genes can be ordered by the strength of 

the Pearson’s correlation coefficient to the expression of this gene across all of the samples 

(see Note 3 for details). The geneset, used by MCbiclust to initiate the analysis, can then be 

selected as the top genes correlated with the mitochondrial gene of interest. The 

advantages of this method are that (i) it is more likely to include genes that are strongly co-

regulated with mitochondrial processes, thus representing a specific function; (ii) it is more 

likely to identify biclusters that are associated with a single mitochondrial gene of interest; 

and (iii) the geneset can be specifically tailored for each dataset. The disadvantage of using 

this strategy is that the geneset will differ in each user case, thus comparison of results will 

become more complex or even unfeasible. 

Overall, there is no ‘correct’ way to choose a geneset, and the appropriate way should be 

decided on a case by case basis, according to the precise biclusters that are being sought. 



Nor should an investigator be limited to running a single geneset as the results of MCbiclust 

using multiple genesets can be compared (see Note 4). 

 

3.2 Running MCbiclust to identify co-regulation of nuclear encoded mitochondrial genes 

Following the selection and loading the sample set and initial geneset(s) (IM 3.1), `FindSeed` 

is used to identify a ‘seed’ of samples with high Pearson correlations between the genes in 

the geneset (IM 3.2; 3.3). Importantly, this method is stochastic and identifies the samples 

by a greedy search. Thus, in order to find an exhaustive and representative sample set, it is 

required to run `FindSeed` multiple times. The different strategies to perform this task are 

discussed in Note 5. 

 

Multiple runs of `FindSeed` result in a number of sample seeds. Once a suitable number of 

sample seeds have been found, the next step is to identify how many distinct modes of 

regulation of the geneset have been found, i.e. which samples are included, and how genes 

are correlated in these sample seeds. Clearly, if the samples are identical in different seeds, 

they represent the same pattern, but it is not clear if different samples between seeds 

represent fundamental differences in regulation or the seed has selected different samples 

that are representative of the same pattern. For this reason, the different outputs of 

MCbiclust must be compared at the gene-level using a parameter that is called the 

correlation vector (CV, see IM 3.4). The CV is a vector that quantifies the correlation of each 

gene measured in the dataset to the average expression of a group of genes in the chosen 

geneset that are selected as ‘highly representative’ of the bicluster. The CV for each run can 

then be compared to one another, after which the runs are clustered and then the 

Silhouette method (15) is used to identify the number of distinct biclusters found in the 

analysis (IM 4. and RM: SilhouetteClustGroups). The CVs can be averaged across each 

distinct bicluster and consequently the samples can be ranked by how well they preserve 

the correlation within the geneset. The final output of MCbiclust for each bicluster found is 

a correlation vector describing the strength of the correlation of each gene to the bicluster 

and an ordered list of samples (IM 4). Accordingly, the biclusters can be visualised with a 

distinctive ‘Fork plot’ with the ranked samples on the x-axis plotted against the PC1 value 

from a PCA analysis of the samples within the seed, with the PC1 value being fitted to the 

remaining samples (IM 3.10). At the beginning of the ranking the samples separate into an 



upper and lower fork. By convention, the sign of the PC1 value being chosen is such that the 

upper fork samples will have genes with a positive correlation vector that are up-regulated 

and genes with a negative correlation vector value that are down-regulated. The lower fork 

samples have the opposite phenotype. 

 

3.3 Analysing the resulting biclusters 

The analysis of the resulting biclusters involves the separate analysis of genes and samples. 

Sample analysis is dataset-specific and involves associating samples in the distribution plot 

with the different properties (metadata) of sample groups made available for the dataset 

(for previous examples, see  Figs. 5, 6, 7 and 8 from Bentham et al. (9)).  In patient derived 

gene expression samples, this typically includes clinical outcome, genetic and histological 

subtypes of the disease. Thus, biclusters are the basis of stratification, that is, classification 

of disease states according to mitochondrial gene expression patterns. 

On the other hand, the methods for the analysis of genes can be generalised for different 

biological applications and are listed below. 

3.3.1 Geneset enrichment analysis 

The simplest analysis is a geneset enrichment analysis on the values of the correlation 

vector (IM 3.5). The correlation vector can be viewed as a ranked list of genes with values 

between +1 and -1, and thus geneset enrichment analysis can be run on the entire ranked 

list, or on selected genesets, e.g. the top positive or negative correlation vector values. At 

this point, any geneset enrichment method can be used (e.g. DAVID (16), GSEA(17), 

gProfiler(18)). The MCbiclust package comes with a specifically designed method that uses 

the entire correlation vector and applies the Mann-Whitney test to identify gene ontology 

terms that have significantly different distributions (either more positive or negative) as 

compared to the entire distribution of values. The output gives the average CV value for 

each significant term, thus terms that are positive in average (i.e. up-regulated in the upper 

fork, down-regulated in the lower fork) can be distinguished from those that are negative in 

average (i.e. down-regulated in the upper fork and up-regulated in the lower fork). 

Interpretation of the significant terms can be challenging, since standard terms often give 

no other detail than the list of genes that are  generally related to ‘mitochondria’. For fine 

grain understanding of the differences in pathways, the individual genes involved must be 

examined. Different mitochondrial pathways of interest, such as the metabolic enzymes, 



can each be examined individually. For these metabolic pathways, it is also possible to build 

diagrams of the pathways to show which parts have been regulated in different ways, e.g. 

with the pathview R package (19). On the other hand, geneset enrichment analysis can be 

useful for identifying non-mitochondrial pathways that are also being simultaneously co-

regulated with mitochondria, providing further insight into the biology behind the 

underlying process. 

3.3.2 Comparison of genesets across biclusters 

In cases where two or more biclusters are found, it is appropriate to compare the 

differences in the co-regulation of the genes in the biclusters. In order to identify a module 

of genes that are regulated in the same way across different biclusters, different 

visualisation techniques can be applied. First, co-regulation of genes in different biclusters 

can be compared using the CVplot function in MCbiclust (IM 4, RM: CVplot). This function 

plots the values of the correlation vectors against each other for all the genes, as well as 

genes in any chosen geneset (e.g. mitochondrial genes). In this way, modules of co-

regulated genes across different biclusters can be identified. Alternatively, these groups can 

be identified through examining the intersection of genesets (e.g. up-regulated in bicluster 

1, up-regulated in bicluster 2, etc.), using Venn diagrams for a small number of groups. If the 

number of different biclusters is large, a different technique such as UpSet plot (18) can also 

be used. Examples of these visualisation techniques are shown in Figure 1.  

 

3.4 Identification of samples in other datasets matching the bicluster. 

Once a bicluster has been identified and associated with a particular type of mitochondrial 

function, a further aim is to determine whether this type of gene expression pattern can be 

identified in additional data sets. Theoretically this could be achieved by running the entire 

MCbiclust pipeline on this new dataset and comparing the resulting correlation vectors to 

understand whether a similar bicluster is present.  However, this approach might be time 

consuming and often datasets are not large enough for MCbiclust to reliably identify 

biclusters (see discussion on the required dataset size in Bentham et al. (9)). Thus, ideally a 

method is required that can take a small dataset or single sample and determine whether 

these samples fall into a particular bicluster and whether they belong to a particular branch 

in the fork distribution. 

3.4.1 Point score algorithm 



A method of choice included in the MCbiclust package to achieve the classification of single 

samples is the PointScore algorithm (RM: PointScore). This method uses the two genesets (A 

and B) determining the distribution of samples in the fork pattern (see Note 6 for how these 

genesets are chosen). Geneset A includes genes up-regulated in the upper fork and down-

regulated in the lower fork, and geneset B contains genes down-regulated in the upper fork 

and up-regulated in the lower fork. ‘PointScore’ scores samples based on how well they 

match this regulation by comparing the genes in the genesets to the median value across 

the entire dataset. Importantly, this method requires that the dataset contains samples that 

are representative of all types of regulation seen in the original dataset (where the bicluster 

was identified), so that the median of the genes can be used as a dividing line for resolving 

up- or down-regulation in samples. For this reason, the PointScore algorithm cannot be used 

for single or too few samples. 

For single samples or datasets with very few samples there are two further solutions 

detailed in sub-sections 3.4.2 and 3.4.3.  

3.4.2. Single sample GSEA (ssGSEA) 

Single sample GSEA (20), from the Bioconductor package GSVA (21), can be applied by 

taking the same genesets as used in the PointScore method and calculating the ssGSEA 

score, based on how the genes in each geneset are up or down regulated, compared to 

other genes in the samples. Therefore, for an upper fork sample, the ssGSEA score for 

geneset A will be positive and the score for geneset B will be negative.  

3.4.3. First principal component values 

It is possible to calculate the PC1 value of the sample (using the R function lsfit from the 

known PC1 loadings), and compare it directly to the initial bicluster. This technique requires 

that this sample (or small dataset) is normalised to the original dataset. This is only reliable 

when the datasets are all measured on the same platform, quantile-normalisation is 

performed and any possible batch effects are removed between experiments (for example 

by using ComBat (22)). 

 

4. Notes 

 

1. As a method MCbiclust is agnostic towards the data platform and can be run on both 

microarray and RNASeq data. However, for a successful run, the data must meet one 



important requirement,  that the dataset contains enough samples.  As a rule of 

thumb, at an absolute minimum there should be at least 100 samples in the sample 

set. In general, the more samples are in a data set, the more likely MCbiclust is able 

to find significant biclusters. If the dataset contains few samples, it can be analysed 

by comparing to previously analysed larger sets, as described in 3.4.  

2. MCbiclust calculates the correlation matrices of the chosen geneset repeatedly. 

Thus, the larger the geneset chosen, the more computation time is needed to 

perform MCbiclust. In general, a geneset containing more than 1000 genes is sub-

optimal and significantly slows down  the computation. There is also little advantage 

to augment the size of the geneset past a certain point, since the biclusters we seek 

to find are large; as long as a significant number of genes in the geneset are 

contained in them, they will be found. Additionally, genes outside the geneset can 

easily be found to be associated with the bicluster in the correlation vector stage of 

the method (see section 3.2). Thus in general, there is no need for genesets 

significantly larger than 1000. 

3. This can be achieved simply using base functions such as the apply and cor function 

in R e.g. vec1 <- apply(data, MARGIN = 1, FUN = function(x) cor(x, 

as.numeric(data[gene.loc,])) and then selecting the genes that have the highest 

correlation, e.g. hicor.loc <- order(abs(vec1), decreasing = TRUE)[seq_len(1000)]. 

4. Since the choice of the initial geneset is an important factor in determining the 

results of MCbiclust, running MCbiclust on different initial genesets, e.g. a general 

mitochondrial one from MitoCarta, as well as various different genesets made up of 

genes that are strongly correlated with mitochondrial genes of interest is a good and 

recommended strategy. 

5. FindSeed should be run enough times to identify all significant biclusters present in 

the dataset. Typically, this number should be at least 100. However, some biclusters 

are only identified rarely by random search, and to find these, it is necessary to run 

FindSeed a very large number of times. In these cases, it is of help to use high 

performance computing to run the FindSeed algorithm. An alternative way to find 

these rare biclusters is to run FindSeed on different initial genesets or run FindSeed 

on the dataset after removing the most commonly selected samples in the final 

seed. This way the final seed is forced to include samples not yet chosen. 



6. Genesets that represent the upper and lower fork can be created directly from the 

correlation vector selecting genes with a value greater than a certain threshold e.g. > 

0.9 for upper fork and < -0.9 for lower fork. 
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Legend to Figures 
 
 
Figure 1. Comparison of genesets across biclusters using CVplot and Upset plots. 
Plots produced from a RNA-Seq dataset from CoMMpass (Relating Clinical Outcomes in MM 
to Personal Assessment of Genetic Profile) IA9 study (NCT01454297) produced by the 
Multiple Myeloma Research Foundation (MMRF) containing transcriptomics from 734 
patient samples. A. shows an output of CVplot comparing the correlation vectors from three 
different runs of MCbiclust with mitochondrial genes from Mitocarta (Mito), a gene set 
based on the most correlated genes to mitochondrial gene MRPL58 (ICT1) and random 
(Rand) gene sets. The lower diagonal plots (cyan) represent values of the non-mitochondrial 
genes in the correlation vector while the upper diagonal plots (red) represent the 
mitochondrial genes in the correlation vector. In this case a very similar bicluster (in terms 
of the genes which are most strongly correlated to it) is found from all three initial gene sets 
used. Plots in the diagonal axis show the frequency distribution of mitochondrial (red traces) 
and non-mitochondrial (cyan traces) genes across the correlation values in the three 
biclusters. B. shows the output from the UpSet R package to determine the intersections of 
the significant genes identified in each of these correlation vectors from MCbiclust’s custom 
gene set enrichment method (see 3.3.1). The significant gene sets found in each bicluster 
have been split into two groups (pos and neg) depending on whether they are associated 
with genes with positive or negative correlation vector values. The majority of significant 
terms are shared between all three biclusters, again indicating that these the three 
biclusters are close to identical. 
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