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A. CALCULATION OF THE EXOTIC MAJORON PROCESS

We here detail the computation of the amplitude and differential decay rate of the

0νββφ process. We follow the calculation of the standard long-range contributions pre-

sented in [1] and start from the effective Lagrangian

L0νββφ = LSM + LRφ, (SM.1)

with the SM charged current

LSM =
GF cos θC√

2
jµLJLµ + h.c., (SM.2)

and the exotic 7-dimensional operators incorporating right-handed lepton currents and

the Majoron φ,

LRφ =
GF cos θC√

2mp

(
εφRLj

µ
RJLµφ+ εφRRj

µ
RJRµφ

)
+ h.c.. (SM.3)

Here, GF is the Fermi constant, θC is the Cabbibo angle and the leptonic and hadronic

currents are defined as

jµL,R = ēγµ(1∓ γ5)ν, JµL,R = ūγµ(1∓ γ5)d, (SM.4)

respectively.

To lowest order of perturbation, the amplitude for the process of 0+
I → 0+

F 0νββφ

decay depicted in Fig. 1 (center) of the main text is

M = −
∫
d4xd4y〈F |T {LSM(x)LRφ(y)} |I〉. (SM.5)

The time-ordered product is expanded as

T {LSM(x)LRφ(y)} = 2 εRX
(GF cos θC)2

mp

× T {JµL(x)JνX(y) ē(x)γµPLν(x)ν̄(y)γνPLe
c(y)︸ ︷︷ ︸

ΞLµν(x,y)

φ(y)}, (SM.6)

with the chiral projectors defined as PL,R = 1
2
(1 ∓ γ5). Using the neutrino propagator

with momentum q and mass mν , the highlighted term ΞL
µν(x, y) can be expressed as

ΞL
µν(x, y) =

∫
d4q

(2π)4

e−iq(x−y)

q2 −m2
ν + iε

ē(x)γµPL(/q +mν)γνPLe
c(y)

=

∫
d4q

(2π)4
qα

e−iq(x−y)

q2 −m2
ν + iε

ē(x)γµγαγνPLe
c(y). (SM.7)
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The amplitude needs to be antisymmetric under the exchange of the electrons e1 and e2,

and thus we generalize

ΞL/R
µν (x, y) =

1√
2

∫
d4q

(2π)4

e−iq(x−y)

q2 −m2
ν + iε

(
uL/Rµν (E1x,E2y)− uL/Rµν (E2x,E1y)

)
, (SM.8)

with u
L/R
µν (E1x,E2y) = qαē(E1, x)γµγαγνPL/R e

c(E2, y) and Ei is the energy of each elec-

tron.

We now perform the integral over the temporal variables. The integration over q0 is

straightforward by means of the residue theorem,∫
dq0

2π

1

q2
0 − ω2

f(q0) =
i

2ω
f(ω), (SM.9)

with ω2 = q2 +m2
ν . On the other hand, expanding the time-ordered product as

T {LSM(x)LRφ(y)} = Θ(x0 − y0)LSM(x)LRφ(y) + Θ(y0 − x0)LRφ(y)LSM(x), (SM.10)

and using the operator eiHt to extract the temporal dependence from the different wave

functions, for example φ(y) = eiEφy0φ(y), one can directly integrate over x0 and y0 ob-

taining the analogous expression to Eq. (C.2.19) in [1],

M = εφRX
(GF cos θC)2

√
2mp

∑
N

∫
d3xd3y

∫
d3q

2π2ω
JρσLX(x,y)φ(y)

×

{
eiq(x−y)

[
uLρσ(E1x, E2y)

ω + A2 + 1
2
Eφ
−
uRσρ(E1y, E2x)

ω + A1 + 1
2
Eφ

]

− eiq(y−x)

[
uLρσ(E1x, E2y)

ω + A1 − 1
2
Eφ
−
uRσρ(E1y, E2x)

ω + A2 − 1
2
Eφ

]}
,

(SM.11)

where A1/2 = EN−EI+ 1
2
Qββ+me± 1

2
(E1−E2). We anticipate the closure approximation

and define the matrix element of the hadronic currents as

JρσLX(x,y) =
1

2
[〈F | JρL(x) |N〉 〈N | JσX(y) |I〉+ 〈F | JσX(y) |N〉 〈N | JρL(x) |I〉] . (SM.12)

In addition, the following properties under the exchange of position and electron energies

were used in Eq. (SM.11),

uL/Rρσ (E1x, E2y) = uR/Lσρ (E1x, E2y), JρσLX(x,y) = JσρXL(y,x). (SM.13)
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The integration over x0 and y0 in Eq. (SM.11) also provides the overall energy conservation

condition δ(Qββ+2me−E1−E2−Eφ) withQββ = EI−EF−2me. It is included in the phase

space, Eq. (SM.31) below, by requiring Eφ = Qββ+2me−E1−E2. We additionally assume

that the Majoron φ is emitted predominantly in an S-wave configuration, φ(y) ≈ 1.

Considering the term between braces in Eq. (SM.11), one can write everything under

the same exponential by interchanging x and y,

eiq(x−y)

{ [
JρσLX(x,y)uLρσ(E1x, E2y)

ω + A2 + 1
2
Eφ

+
JρσXL(x,y)uRρσ(E1x, E2y)

ω + A2 − 1
2
Eφ

]

−

[
JρσLX(x,y)uLρσ(E2x, E1y)

ω + A1 + 1
2
Eφ

+
JρσXL(x,y) uRρσ(E2x, E1y)

ω + A1 − 1
2
Eφ

]}
. (SM.14)

It is furthermore useful to split the leptonic uL,Rρσ functions by separating out the part

containing γ5 as u
L/R
ρσ = 1

2

[
uρσ ∓ u5

ρσ

]
. We then define

F±ρσ = uρσ(E1x, E2y)± uσρ(E1y, E2x), (SM.15)

F 5±
ρσ = u5

ρσ(E1x, E2y)± u5
σρ(E1y, E2x), (SM.16)

J±ρσ = JLXρσ (E1y, E2x)± JXLρσ (E1y, E2x). (SM.17)

These definitions become useful if one recalls that in the non-relativistic impulse approx-

imation, the JL part of JLXρσ acts on the n-th nucleon whereas the JX part acts on the

m-th when performing the sum over all neutrons in the initial nucleus. The superscript ±

in J±ρσ thus indicates if the combination of currents is symmetric or antisymmetric under

the interchange of m↔ n. The same applies to F±ρσ and F 5±
ρσ .

The closure approximation implies that the sum over all possible intermediate states is

performed analytically using the completeness of all intermediate states and by replacing

the intermediate state energies EN with a common average 〈EN〉. This means that the

antisymmetric combinations under the interchange of the nucleons m and n will vanish,

as the sum is performed over all possible configurations. From Eqs. (SM.11) and (SM.14),

the non-vanishing terms are

M = εRX
(GF cos θC)2

2
√

2mp

×
∑
N

(Hω2 −Hω1)

{
J+
µνF

+,µν − J−µνF 5−,µν +
Eφ
E12

(
J+
µνF

5+,µν − J−µνF−,µν
)}

,

(SM.18)
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where Hωi are neutrino potentials defined as

Hωi =

∫
d3q

2π2ω

ω

ω + Ai
eiq(x−y). (SM.19)

Now, the connection with the results of [1] can be done by contracting the leptonic and

nuclear currents within the impulse approximation. The only change in our case is in the

ω term,

Mω ∝ (Hω2 −Hω1)

{
(X3 +X5R)

[
F 0

+ +
Eφ
E12

F 0
5+

]
+ Y3R

[
F 0

5− +
Eφ
E12

F 0
−

]
+ (X l

4R +X l
5)

[
F l

+ +
Eφ
E12

F l
5+

]
+ (Y l

4 − Y l
5R)

[
F l

5− +
Eφ
E12

F l
−

]}
, (SM.20)

where the X and Y terms are functions of nuclear parameters and operators defined in

Appendix C of [1]. The Fα
(5)±-terms are generated by the contraction of the hadronic and

leptonic parts in Eqs. (SM.15)-(SM.17) factorizing out the dependence with the momen-

tum qα from the leptonic part (see Eq. (C.2.25) in [1]). One trivially recovers the ω term

in the expression (C.2.23) of [1] for Eφ → 0.

Comparing Eq. (SM.20) with the results from [1], one can track the dependence with

Eφ in the decay rate down to Eq. (C.3.9) of [1]. The main change for 0+
I → 0+

F transitions

is in the terms N3 and N4 where a contribution proportional to Eφ appears explicitly,N1

N2

 =

α∗−1−1

α∗11

[4

3
Z6 ∓

4

meR

(
Z4R −

1

6
ζZ6

)]
, (SM.21)

N3

N4

 =

α∗1−1

α∗−11

[−2

3
Z5 ∓

E12

me

(
Z3 +

1

3
Z5

)
+
Eφ
me

Z3

]
. (SM.22)

Here, αjk = Ãj(E1)Ãk(E2) describe the Coulomb-corrected relativistic electron wave func-

tions and ζ = 3αZ + (Qββ + 2me)R the correction of the electron P wave, with the fine

structure constant α and the radius R and charge Z of the final state nucleus. The

information about the electron wave functions is encoded in

Ã±k(E) =

√
E ∓me

2E
Fk−1(Z,E), (SM.23)

with the Fermi factor

Fk−1(Z,E) =

[
Γ(2k + 1)

Γ(k)Γ(2γk + 1)

]2

(2pR)2(γk−k)|Γ(γk + iy)|2eπy, (SM.24)
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Isotope Qββ [MeV] MGT χF χGTω χFω χ′GT χ′F χT χR χP

82Se 2.99 2.993 −0.134 0.947 −0.131 1.003 −0.103 0.004 1.086 0.430

136Xe 2.46 1.770 −0.158 0.908 −0.149 1.092 −0.167 −0.031 0.955 0.256

TABLE I. Energy release Qββ and relevant nuclear matrix elements for 82Se and 136Xe used in

the calculation of the 0νββφ decay rate and distributions. The nuclear matrix elements were

taken from the shell model calculations [2] (82Se) and [3] (136Xe), except for MGT in 136Xe where

we use an updated value from the same group [4].

where γk =
√
k2 + (αZ)2, y = αZE/p and p =

√
E2 −m2

e.

In order to arrive at Eq. (SM.20) one should neglect the higher order terms E2
12,

E12Eφ and E2
φ as they are suppressed with an extra denominator (ω + Ai) compared to

Eq. (SM.19).

The Zi terms are given in Eqs. (SM.25)-(SM.28) below and they contain the nuclear

matrix elements and effective particle physics couplings. The Zi terms are the same as

in [1], with the relevant couplings λ → εφRR and η → εφRL substituted. Note that the

term with Z1 in Eq. (C.3.9) from [1] related to the standard 0νββ decay disappears from

Eq. (SM.21), as we are not considering the interaction LSM(x)LSM(y).

Z3 =
[
−εφRR(χGTω − χFω) + εφRL(χGTω + χFω)

]
MGT , (SM.25)

Z4R = εφRLχRMGT , (SM.26)

Z5 =
1

3

[
εφRR(χ′GT − 6χT + 3χ′F )− εφRL(χ′GT − 6χT − 3χ′F )

]
MGT , (SM.27)

Z6 = εφRLχPMGT . (SM.28)

The above equations are valid when both εφRL and εφRR are present. For our numerical

calculations, we use the Qββ values and nuclear matrix elements MGT , χF , etc. presented

in Table I for 82Se and 136Xe. We use the following values for the remaining parameters:

GF = 1.2× 10−5 GeV−2, α = 1/137, gA = 1.27, R = 1.2A1/3 fm with the mass number A

of the isotope in question. The factors N1, N2, N3 and N4 in Eqs. (SM.21) and (SM.22)

are then fully described and the energy-dependent coefficients are

a(E1, E2, Eφ) = |N1|2 + |N2|2 + |N3|2 + |N4|2, (SM.29)

b(E1, E2, Eφ) = −2 Re (N∗1N2 +N∗3N4) . (SM.30)
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The differential decay rate for the 0+ → 0+ 0νββφ decay can then be written as [1]

dΓ = C [a(E1, E2, Eφ) + b(E1, E2, Eφ) cos θ]w(E1, E2, Eφ) dE1 dE2 dcos θ, (SM.31)

with

C =
(GF cos θCgA)4m9

e

256π7(mpR)2
, (SM.32)

w(E1, E2, Eφ) = m−7
e p1p2E1E2Eφ. (SM.33)

Here, gA is the axial coupling of the nucleon and R is the radius of the nucleus. The

magnitudes of the electron momenta are given by pi =
√
E2
i −m2

e and 0 ≤ θ ≤ π is the

angle between the emitted electrons. Throughout the above expressions, the Majoron

energy is implicitly fixed by the electron energies as Eφ = Qββ + 2me − E1 − E2 due to

overall energy conservation.

The total decay rate Γ and the half life T1/2 are then calculated as

Γ =
ln 2

T1/2

= 2C

∫ Qββ+me

me

dE1

∫ Qββ+2me−E1

me

dE2 a(E1, E2, Eφ)w(E1, E2, Eφ). (SM.34)

The fully differential energy information is encoded in the normalized double energy

distribution

Γ−1 dΓ

dE1dE2

=
2C

Γ
a(E1, E2, Eφ)w(E1, E2, Eφ). (SM.35)

This function, in terms of the kinetic energies normalized to the Q value, (Ei−me)/Qββ,

is plotted in the top row of Fig. 1 for the case of 0νββφ Majoron emission through εφRL

(left) and εφRR (center) as well as for the SM 2νββ decay (right). The plots are for the

isotope 82Se but would be qualitatively similar for 136Xe. As can be seen, the shapes

depicted as contours are different between all three modes. Especially the εφRR exhibits

an asymmetry in that one of the electrons takes the majority of the visible energy. If

the individual electron energies can be measured, as e.g. in the NEMO-3 or SuperNEMO

experiments, this can be exploited to enhance the signal over the 2νββ background. As

an illustrating example, requiring that any one of the electrons in a signal event has a

kinetic energy Ei −me > Qββ/2 would reduce the 0νββφ-εφRR rate only by a factor of 2

but would suppress the 2νββ rate by a factor of 20. The distributions in Fig. 2 of the

main text can be easily determined by appropriately integrating over dΓ
dE1dE2

.
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FIG. 1. Double electron energy distribution dΓ
dE1dE2

(top row) and electron angular correlation

α (bottom row) as function of the individual electron kinetic energies for 82Se. Each column

is for a specific scenario: 0νββφ Majoron emission through εφRL (left) and εφRR (center); SM

2νββ decay (right). The angular correlation of the latter is approximately identical to ordinary

Majoron emission 0νββJ .

In addition to the energies, the angle between the electron momenta also contains

useful information. The so-called angular correlation defined by

α(E1, E2) =
b(E1, E2, Eφ)

a(E1, E2, Eφ)
, (SM.36)

is a function of the individual electron energies which can take values between −1 (the two

electrons are dominantly emitted back-to-back) and +1 (the two electrons are dominantly

emitted collinearly). For 82Se it is plotted in the bottom row of Fig. 1 in the three

modes of interest. As expected from angular momentum considerations, the electrons are

dominantly emitted back-to-back in the SM 2νββ decay with (V − A) lepton currents,

α < 0 for all energies. For εφRL, they are dominantly emitted collinearly, α > 0 for all
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energies. In the case of εφRR, the behaviour is complex due to the asymmetry of the

amplitude under the exchange of electrons and nuclear recoil effects. The correlation α

changes sign, with α > 0 when any one electron has a kinetic energy Ei −me > Qββ/2

but α < 0 when both electrons each have a kinetic energy Ei −me < Qββ/2. Note that

Fig. 1 provides the full kinematical information in each mode; all measurable quantities

can be constructed from these distributions.

As discussed in the main text, averaged over all energies, the electrons are actually

emitted almost isotropically for εφRR. This is quantified by integrating Eq. (SM.31) over

all energies analogous to Eq. (SM.34) to yield the angular distribution

dΓ

d cos θ
=

Γ

2
(1 + k cos θ), (SM.37)

with the average angular correlation factor k.

B. ULTRAVIOLET COMPLETE SCENARIOS

Left-right symmetry

Here we briefly discuss the Left-Right symmetric scenario mentioned in the main text as

a possible ultraviolet completion generating the effective operators in Eq. (1) in the main

text. At some energy scale above the electroweak scale we assume a left-right symmetric

gauge symmetry

GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)X . (SM.38)

It breaks down to the SM gauge group GSM ≡ SU(3)c × SU(2)L × U(1)Y at a scale MR.

The SM electric charge is related to the generators of the gauge groups by the relation

Q = T3L + T3R +
X

2
= T3L + Y. (SM.39)

In the minimal Left-Right symmetric model, the quantum number X is identified with

B − L, i.e. B − L is a gauge symmetry in the model. Consequently, left-right symmetry

breaking is usually assumed to induce several B − L violating interactions, including

generation of Majorana neutrino masses via a seesaw mechanism.

In general, though, one can define a new quantum number ζ such that

X = (B − L) + ζ. (SM.40)
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Field SU(2)L SU(2)R B − L ζ X SU(3)C

qL 2 1 1/3 0 1/3 3

qR 1 2 1/3 0 1/3 3

`L 2 1 -1 0 -1 1

`R 1 2 -1 0 -1 1

UL,R 1 1 1/3 +1 4/3 3

DL,R 1 1 1/3 -1 -2/3 3

EL,R 1 1 -1 -1 -2 1

NL,R 1 1 -1 +1 0 1

χL 2 1 0 +1 1 1

χR 1 2 0 +1 1 1

φ 1 1 2 -2 0 1

TABLE II. Field content and quantum numbers under GLR in the Left-Right symmetric scenario

proposed.

If ζ 6= 0 then B − L can remain a global symmetry, independent of the left-right gauge

symmetry. We here propose such a scenario where the field content and their quantum

numbers for such a realisation of a Left-Right symmetric model are summarised in Table II.

Apart from the SM fields qL, `L and the SM quark singlets which transform as a doublet

qR under GLR, left-right symmetry naturally includes right-handed neutrino fields νR as

part of the right handed lepton doublet `R.

As noted, the assumed symmetry breaking pattern is given by

GLR
MR→ GSM

mW→ SU(3)c × U(1)Q. (SM.41)

For the left-right symmetry breaking, we use a doublet Higgs scalars χR, whose vacuum

expectation value (VEV) breaks the left-right symmetry [5–10]. This field does not have

any exclusive interaction with the SM fermions and hence the B − L quantum number

is no longer uniquely determined. Thus for χR, we can choose B − L = 0, and hence,

ζ = 1 in Eq. (SM.40). Note that our model differs from earlier models in this choice of

the B − L quantum number 1. The left-right symmetry ensures that we have a second

1 Nevertheless, the model remains anomaly free under the charge X as the new vector-like fermions do
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doublet Higgs scalar χL with the same assignment of B−L = 0 and ζ = 1. Interestingly,

these assignments do not require any additional global symmetries, but will allow B − L

to remain as a global symmetry after the electroweak symmetry breaking.

A priori, we have two choices of Higgs scalar for breaking the electroweak symmetry.

The first choice is that we retain the Higgs bi-doublet from the conventional model, which,

after electroweak symmetry breaking, will generate Dirac masses for all the fermions. One

particularly interesting scenario arises if we assume that only quarks acquire their masses

through the VEV of the bi-doublet and the Yukawa couplings giving rise to such masses of

leptons are forbidden by some symmetry2. Both the charged and the neutral leptons would

then acquire Dirac seesaw masses in this scenario [11–17]. An alternative is that there is no

Higgs bi-doublet and the left-handed Higgs doublet χL breaks the electroweak symmetry.

In such a scenario the quark masses and the charged lepton masses are generated through

a seesaw mechanism introducing new vector-like states. This scheme is often called the

universal seesaw mechanism. We will mainly focus on this second scenario, however all

the discussion presented are applicable for both the scenarios.

In the leptonic sector, we introduce four singlet vector-like fermions, which are the

charged and neutral heavy leptons NL, NR, EL, ER in Table II, all carrying B − L = 1,

and hence ζ = −1 for the neutral fermions NL,R and ζ = 1 for the charged fermions EL,R.

The left-right symmetry breaking will allow mixing of these fermions with the light leptons

and the assignment of lepton number is somewhat more natural than in conventional left-

right symmetric models where similar new singlets carry vanishing lepton numbers. The

VEVs uL,R of the fields χL,R introduce mixing of the new neutral leptons σL,R with the

neutrinos and the new charged leptons EL,R with the charged leptons.

In the absence of the Higgs bi-doublet, χL breaks the electroweak symmetry. In this

case we need to introduce vector-like states for all fermions in order to generate their

masses. Consequently, all the masses of quarks, leptons and neutrinos are generated by a

Dirac seesaw mechanism.

For the charged and neutral leptons there are no bare Dirac mass terms. The Yukawa

not contribute to the anomalies and the assignments of X for the chiral fermions are the same as that

of B − L in the conventional Left-Right symmetric model.
2 For example one may introduce an additional discrete Z2 symmetry such that `R, NR and ER are odd

under this discrete symmetry. Note that in such a case the vector-like mass term for N and E (see.

Eq. (SM.42)) will break this Z2 symmetry softly.
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interactions that give masses to the leptons are given by

LY = `TL · fL · C−1NL χL + `TR · fR · C−1NR χR + N̄L ·mN ·NR

+ ¯̀
L · hL · ER χL + ¯̀

R · hR · EL χR + ĒL ·mE · ER + h.c.. (SM.42)

Here, we suppress generation indices and thus fL,R, mN , hL,R and mE are 3× 3 matrices

in the space of fermion generations. The charged lepton masses are generated through a

Dirac seesaw mechanism and the mass matrix is given by

m` = uLuR

(
hL ·m−1

E · h
†
R

)
. (SM.43)

In discussing the fields associated with neutrinos, we now work with the CP conjugates

of the right-handed fields for convenience,

νR
CP→ (νR)c = (νc)L = σL, NR

CP→ (N c)L = ΣL, (SM.44)

so that the mass matrix of the fields (νL, σL, NL,ΣL)T can be written as

Mν =


0 0 uLfL 0

0 0 0 uRfR

uLfL 0 0 mN

0 uRfR mN 0

 . (SM.45)

This results in a spectrum of six Dirac neutrinos, three very heavy with masses ≈ mN

and three light with masses ≈ uLuRfLfR/mN . The heavy Dirac neutrinos are composed

of NL and ΣL while the light Dirac neutrinos represent the active SM neutrinos in a

combination of νL and σL or νR. Unlike the usual models of light Dirac neutrinos [18–25],

where the light neutrino masses are proportional to a small induced VEV, in this scenario

the smallness of neutrino masses is due to a seesaw mechanism where the heavy seesaw

scale corresponds to the masses of the vector-like neutrino states.

Finally, the last ingredient of this model is a light charge-neutral scalar particle φ

that can potentially be a Dark Matter candidate [26–28]. Of main interest to us, the

presence of such a particle with a Yukawa coupling to N of the form gφNNφ, can lead to

0νββφ decay with emission of a light neutral scalar φ from a single effective dimension-7

operator of the form Λ−3
NP(ūOd)(ēOν)φ as discussed in the main text. This model provides

a working example of a scenario where purely Dirac neutrinos can mimic conventional

12



0νββ decay through emission of extra particle that carries lepton number. This illustrates

the necessity of searches for extra particles in double beta decay to understand the nature

of neutrinos.

Leptoquarks and R-parity violating supersymmetry

Here we briefly discuss an alternative scenario for generating the effective Majoron

current in Eq. (1) of the main text. This setup is based on a simple extension of the SM,

introducing two heavy scalar leptoquarks S3,2,1/6, S3∗,1,1/3 and a scalar singlet φ. Here, the

quantum numbers of the leptoquarks under the SM gauge group SU(3)C×SU(2)L×U(1)Y

are as indicated. The interesting part of the Lagrangian is given by

LLQ = Y 1
αβLαd̄RβS3,2,1/6 + Y 2

αβeRαuRβS3∗,1,1/3 + Y SφHS†3,2,1/6S
†
3∗,1,1/3. (SM.46)

Assigning lepton numbers as L(S3,2,1/6) = −1, L(S3∗,1,1/3) = −1 and L(φ) = −2 this

Lagrangian conserves lepton number. In Eq. (SM.46), we have written out explicitly

generation indices of the lepton and quark fields, α, β = 1, 2, 3. Thus, Y 1 and Y 2 are

in general 3 × 3 matrices. However, double beta decay will be sensitive only to first

generation.

Integrating out the heavy leptoquark states, this Lagrangian leads to an effective cou-

pling εαβ(d̄RL
α)(ēcRuR)Hβφ. After electroweak symmetry breaking and Fierz rearrange-

ment of the fields at low energies, the effective current
εφRR
mp
jµRJRµφ is generated as shown

in Fig. 2 (right).

The phenomenology of this setup depends on whether the scalar φ develops a VEV,

Y SΦHS†3,2,1/6S
†
3∗,1,1/3 ⇒ Y S〈φ〉HS†3,2,1/6S

†
3∗,1,1/3. (SM.47)

In this case, lepton number is spontaneously broken and a massless (exotic) Majoron

appears automatically and Majorana neutrino masses are generated. In Fig. 2 (right) we

show the 2-loop neutrino mass diagram, which will result unavoidably for 〈φ〉 6= 0. A

rough estimate of the neutrino mass generated by this diagram is

mν ≈
Y 1Y 2mumdm`

(16π2)2

Y S〈φ〉vSM
Λ4

, (SM.48)

where Λ is of the order of the leptoquark masses and mu, md, m` indicate the SM quark

and lepton masses. For couplings of order one, 3rd generation SM fermion masses and
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FIG. 2. Possible leptoquark contribution to the decay 0νββφ (left). If φ develops a VEV, the

2-loop diagram (right) is unavoidable in this model. Note that the presence of this singlet VEV

signals lepton number violation.

Λ = O(1) TeV, neutrino masses of the order of the atmospheric scale can be generated

for 〈φ〉 ≈ 10 GeV. However, due to the smallness of the first generation fermion masses,

no constraint on their couplings to leptoquarks can be derived from neutrino masses.

As in all such Majoron models, whether the constraints from non-observation of 0νββφ

are more important than neutrino mass constraints or from the non-observation of ordi-

nary 0νββ depends on the unknown value of 〈φ〉. For 〈φ〉 approaching zero lepton number

is effectively restored and at low energies 0νββφ will provide the only constraint.

Finally, we would like to remark that the two leptoquarks in this model have the same

quantum numbers as the scalar quark doublet and down-type scalar quark singlet fields,

S3,2,1/6 ≡ Q̃ and S3∗,1,1/3 ≡ d̃c in supersymmetric models. This opens up to possibility

to speculate about Majoron model variants in R-parity violating supersymmetry. How-

ever, different from the model discussed above, for R-parity violating supersymmetry the

Lagrangian would contain terms LαQβS3∗,1,1/3 instead of eRαuRβS3∗,1,1/3. This affects the

discussion of the phenomenology, since (i) neutrino masses become 1-loop effects and (ii)

at low energies different currents from the ones considered in the main text would be

generated.
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