
Abstract— Identifying current and future informal regions within

cities remains a crucial issue for policymakers and governments in

developing countries. The delineation process of identifying such

regions in cities requires a lot of resources. While there are various

studies that identify informal settlements based on satellite image

classification, relying on both supervised or unsupervised machine

learning approaches, these models either require multiple input data to

function or need further development with regards to precision. In this

paper, we introduce a novel method for identifying and predicting

informal settlements using only street intersections data, regardless of

the variation of urban form, number of floors, materials used for

construction or street width. With such minimal input data, we attempt

to provide planners and policy-makers with a pragmatic tool that can

aid in identifying informal zones in cities. The algorithm of the model

is based on spatial statistics and a machine learning approach, using

Multinomial Logistic Regression (MNL) and Artificial Neural

Networks (ANN). The proposed model relies on defining informal

settlements based on two ubiquitous characteristics that these regions

tend to be filled in with smaller subdivided lots of housing relative to

the formal areas within the local context, and the paucity of services

and infrastructure within the boundary of these settlements that require

relatively bigger lots. We applied the model in five major cities in

Egypt and India that have spatial structures in which informality is

present. These cities are Greater Cairo, Alexandria, Hurghada and

Minya in Egypt, and Mumbai in India. The predictSLUMS model

shows high validity and accuracy for identifying and predicting

informality within the same city the model was trained on or in

different ones of a similar context.

Keywords— Machine Learning; Slums; Informal Settlements;

Complexity; Spatial network; Spatial statistics; Neural Networks;

Egyptian cities

1. INTRODUCTION

1.1 Overview

It is evident that most of the world population will either be

born in cities or will move to cities In 2015, the total urban

population of the world exceeded the rural population for the

first time and this trend is set to continue (UN-Habitat, 2007,

2016). As a result, many cities face challenges with

accommodating this rapid urban growth.

Globally, one in three city residents is a slum dweller. This

presents a major challenge for urban housing as most of these

settlements are not yet seen in official governmental maps

(Montgomery, 2008; Roy, Lees, Palavalli, Pfeffer, & Sloot,

2014; UN-Habitat, 2007). This adds challenges, first, for

understanding the dynamics of cities in the global south.

Second, it remains ambiguous how people select a particular

location to create their homes and later their settlements

(Ibrahim, 2017). Last, this complicates the process of

1 Literally, random or unplanned areas, including slums (Ibrahim, 2017;
O’Donnell, 2010).

2 Literally, chanty town or a slum (Novaes, 2014).

diagnosing and monitoring cities to cope with the necessity of

providing adequate services and enhancing the living

conditions of urban dwellers.

Within cities development in the global south, informality

has taken various shapes and forms. There are different ways of

defining them:“Ashwa’iat1” of Egypt, “Favelas2” of Brazil,

“Campamentos3” of Chile, or others elsewhere. Although these

pinpoint similar informal regions within cities, they retain

subtle social and spatial features that make each term a unique

identifier for its local context, which are not necessarily

perceived as slums but rather a diversity of ‘unofficially

planned areas’. With such a wide spectrum of informal regions

across the globe, the current knowledge gap remains in

addressing such a diversity of informal regions with ‘a unified

global method’ (Mahabir, Croitoru, Crooks, Agouris, &

Stefanidis, 2018), that can cope with the process of rapid

urbanisation and enables it to be used by policy-makers and

planners in developing countries, where availability of data can

be a major issue.

1.2 predictSLUMS concept and features

In this article, we introduce an unprecedented model for

identifying and predicting informal settlements that relies only

on street intersections data. The currently proposed

predictSLUMS is a ‘predictive-static model’. Unlike satellite

image classification of slums that are more likely to be context

based study, the models aims to identify the complex urban

system of informal regions and slums in different cities. Its

algorithms deal with informal settlements from a generic view

that identifies informal regions in various contexts globally,

regardless of the precise urban form, number of floors, street

width, or the material used for construction. It identifies and

predicts informal regions in accordance with data on delineated

informal areas. It also predicts informality in regions that are

not yet labelled as such due to the absence of data, by relying

on understanding the configuration of informal settlements in

3 Literally, camp or tent cities. Also known as mushroom towns (Salcedo,
2010).
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other contexts where labelled data can be used for training the

model.

Fig. 1 illustrates the basic idea of the predictSLUMS model.

The model inputs street intersections data and outputs the

location of informal regions in a city; the error can be back-

propagated. The model output resolution is a lattice of a grid

size (100m x 100m), where each cell of the grid is identified as

either formal or informal. The key features of the model are:

a. The model relies on one source of input data to function,

enabling it to be used by planners and policy-makers in the

global south;

b. One model can be fitted to different cities;

c. By training the model in one city, the model can predict

informal and slum areas in a different city of a similar urban

context and structure.

1.3 Paper structure

The paper is structured as follows: Section 2 gives a brief

review of urban modelling and the detection of informal

settlements. Section 3 presents the methodology and algorithms

of the predictSLUMS model. Section 4 describes some cases

where the model has been applied and the data used. Section 5

gives the main findings of the predictSLUMS simulation.

Section 6 discusses these results, their relevancy, and the

limitations of the model. Last, a summary and some conclusions

are given in Section 7.

2. THE STATE OF URBAN MODELLING AND SLUMS

DETECTION: A REVIEW

Significant advances in urban modelling have been made in

recent years. For example, by perceiving cities as complex

systems, it has been shown that the forms and shapes of cities

follow similar developmental paths based on scaling laws and

fractal dimensions that allow a bottom-up evolving of geometry

within a temporal scale (Batty, 2008; Bettencourt, 2013;

Cottineau, Hatna, Arcaute, & Batty, 2017; Isalgue, Coch, &

Serra, 2007; Kühnert, Helbing, & West, 2006). Batty, Xie, &

Sun (1999) have introduced a theoretical dynamic model that

simulates the various types of urban sprawl in a city. Patel,

Crooks, & Koizumi (2012, 2018) introduced an agent-based

model that explores the formation of slums in Ahmedabad in

India. However, within the various attempts of spatial

modelling of urban expansion and residential location choice,

identifying informal zones within cities remains a missing

attribute in many urban models (Berberoğlu, Akın, & Clarke, 
2016; Feldman et al., 2007; O’Donoghue, Morrissey, &

Lennon, 2014; Shafizadeh-Moghadam, Asghari, Tayyebi, &

Taleai, 2017; Tian et al., 2016; Waddell et al., 2003).

What makes the detection of informality a complex process

is the lack of general definition of what informal settlements

are. The subtlety of differences in spatial features between

formal and informal settlements, in many cases, complicates the

classification process among these merged regions (Hofmann,

Taubenböck, & Werthmann, 2015).

There is a wide range of literature that introduces methods of

image classification for various applications of remote sensing,

relying on both supervised and unsupervised machine learning

(Li, Wang, Li, & Chen, 2017; Liu et al., 2016; Lüscher, Weibel,

& Burghardt, 2009; Ma et al., 2017; Patino & Duque, 2013;

Sharma, Liu, Yang, & Shi, 2017; Tan, Hu, Li, & Du, 2015; W.

Zhang et al., 2017; Zhu, Li, Hu, & Wu, 2017), that is also

adopted among different scholars for identifying informal and

slum areas (Kuffer, Pfeffer, & Sliuzas, 2016). For instance,

Kohli, Sliuzas, & Stein (2016) introduced a method for slums

detection based on satellite image classification by applying

experts’ knowledge of the morphology of local slums area in

Pune, India. They also implemented an object-based image

detection for slum areas in Ahmedabad, Cape Town and

Nairobi, relying on complementary data acquired from

questionnaires (Kohli, Stein, & Sliuzas, 2016). Similarly, an

image classification approach for identifying slums in Accra,

Ghana (Engstrom et al., 2015), in Hyderabad, India (Kit,

Lüdeke, & Reckien, 2012), and in La Paz, Kabul, Kandahar,

and Caracas based on supervised machine learning (Graesser et

al., 2012). Wurm, Taubenböck, Weigand, & Schmitt (2017)

relied on Synthetic Aperture Radar data for mapping and

identifying slum areas in Mumbai, using supervised machine

learning approach for classification. Data captured from

Unmanned Aerial Vehicles was used to identify informality in

Maldonado, Uruguay and Kigali, Rwanda (Gevaert, Persello,

Sliuzas, & Vosselman, 2017). Optical Spaceborne data were

used to classify informality in arid areas (Stasolla & Gamba,

2007). Agent-based modelling has been an approach for

detecting the growth of the informal settlements in Dar-es-

Salaam based on vector-based data represented in building

blocks (Augustijn-Beckers, Flacke, & Retsios, 2011). Methods

of detecting informal settlements may vary. However, what is

clear is that all these approaches discussed above require

multiple and sophisticated data to which access may be limited

for many less developed countries. This highlights the necessity

of a unified method that can be used globally (Mahabir et al.,

2018).

On the other hand, flows and networks systems are

indispensable for understanding spaces in cities (Batty, 2013).

Since the emergence of network theory, the spatial network has

been an important means of data for urban studies (Barthélemy,

2011; Zhong, Arisona, Huang, Batty, & Schmitt, 2014). For

example, Boeing (2017a) used street network data to analyse

the complexity of urban morphology in the US cities. Arcaute

et al., (2016) used them to identify the hierarchy of cities and

regions in the U.K. relying on percolation theory. Nevertheless,

population growth in cities was defined based on the same

means of data (Arcaute et al., 2014; Masucci, Arcaute, Wang,

et al., 2015, 2015; Masucci, Arcaute, Hatna, Stanilov, & Batty,

2015). Accordingly, the availability of the spatial network data

and their significant impact on the studies of urban

morphologies raise more questions of how can we rely on them

to understand more about the fundaments of cities development

when slums and informal settlements are present.

3. METHODOLOGY

Hypothetically, informal settlements are characterised by

small subdivided lots that allow the incremental process of self-

build housing. These regions are characterised by the paucity of



large public spaces and services that require relatively larger

lots than those assigned for housing. These leave the layout of

such a settlement filled in with a random pattern of nearly equal

small subdivided lots relative to their local formal neighbouring

settlements, regardless of the urban form, number of floors, the

materials used for construction, or the width of the local streets.

Consequently, understanding the interrelation between street

intersections of a region in comparison to neighbouring regions

can provide a classification of planned and non-planned

regions. Thus, it can define informal settlements in different

context globally. Based on this hypothesis, this paper addresses

two research questions. First, how can we identify the status of

the built-environment (formal, or informal) using street

network data? Second, is it possible to predict informal areas

and slums in a city by understanding housing informality in

other cities of similar context?

The model algorithms are divided into two phases; the model

deals with each phase consecutively. The first phase deals with

clustering indices and variables selection. It shows the

association and the likelihood of the computed variables with

the informal settlements that may or may not fully represents

the actual settlements, whereas the second phase of the model

predicts the actual formal/informal regions. Fig 2 shows the

general architecture of predictSLUMS. The first phase focuses

on computing variables that are more likely to be associated

with informality relying on geospatial analysis. The second

phase deals with the prediction aspects of the model. It relies on

the architecture of Artificial Neural network (ANN) to output

the informal regions for the studied area.

The figure also shows the transition of the spatial

representation and resolution of the model. It shows the

transition from clouds of points that represents the street

intersections towards the final resolution of the model of a grid

size (100m x 100m). There are two crucial aspects to be noted.

First, after computing the variables from the street intersections

in the first phase, the results of these variables create a grid cell

with centroids, in which they no longer represent the actual

street intersections points. The prediction of the ANN model is

then computed using these centroids. This allows better

accessibility and greater freedom for using the predicted results

of the model for any further research or urban simulation that

may be conducted in various programming languages.

In this study, we refer to the street intersections as ‘incident

points’ as they do not carry any feature attributes apart from

their coordinates.

3.1 Phase I: Identification

3.1.1 Clustering and computing variables

To identify homogenous clusters that may represent informal

settlements in cities, three methods were analysed. First, we

conducted Average Nearest Neighbour (Nn) analysis to test

whether these incident points are significantly clustered or

dispersed (Clark & Evans, 1954). This analysis computes the

average distance between each point and its nearest neighbours.

If the computed average distance is less than the hypothetical

randomly distributed distance, then the points are significantly

clustered. Contrary, if the observed distance is below the

expected hypothetical distance, then the points are dispersed.

Nn is calculated as:ܰ݊ ൌ ഥഥಶതതതത (1)

where ഥܦ is the observed average distance between each point
and its nearest neighbours, ഥாܦ is the expected average distance
between each point and its nearest neighbours.ܦഥ = ∑ ௗసభ (2)

where ݀ is the distance between the point and its nearest
neighbours, and ݊ represents the number of incident points.ܦഥா = ǤହඥȀ (3)

FIG. 2
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where ܣ is the area of the minimum enclosed rectangle for the
incident points.

The null hypothesis is rejected, when the value of Nn is less

than one, consequently, the intersection points are significantly

clustered. However, this analysis only shows significances of

clustering or disparity but does not interpret the type of

clustering spatially nor the behaviour of the clustering over a

range of different distances.

Second, we have computed Multi-Distance Spatial

Clustering Analysis, knowing as Ripley’s K-function (Ripley,

1981). This analysis aims to depict the change in the

classification of the incident points, whether clustered or

dispersed, over a range of band distances. The K-function,

known as L(d) is calculated as:ܮ(݀) = ට∑ ∑ ,ೕసభ,ೕಯసభగ(ିଵ) (4)

where ݀ represents the distance, ݊ represents the number of
points, A represents the total area that confined all points, and݇݅, ݆ represents the weight. For minimizing the computing time,
the weight is set to 1 when the distance between i and j is less

than d, as there is no edge correction.

As a result, at a given distance, the distribution of the incident

points is considered to be more clustered than a random

distribution when the k-observed value is larger than the k-

expected one; reciprocally, the distribution is considered to be

dispersed. In order for the k-value to be identified as a

statistically significant cluster, the k-observed value must be

larger than the upper confidence envelope`4.

The percolation theory can illustrate the hierarchy and the

change in classification of random points in a given space

within a range of distances, in terms of clustering size (Elsa

Arcaute et al., 2016; Christensen, 2002; Piovani, Molinero, &

Wilson, 2017). Yet, it does not explain how significantly

dispersed the neighbouring points surrounding these clustered

groups are within a given distance. Consequently, in order to

identify the significant spatial variation of the points

classification at a given distance, in term of low and high

clustered or dispersed groups, we conducted an “optimised”

Getis-Ord Gi analysis, known as a Hot Spot Analysis (Getis &

Ord, 1992). This method aims to identify clusters of

concentration of high or low values.

The index for Getis-Ord local statistics (Gi*) represents the

GiZscore and it is calculated as:ܩ∗ = ∑ ௪,ೕ௫ೕିതೕసభ ∑ ௪,ೕೕసభ
ௌඨቈ∑ ೢ,ೕమ షቀ∑ ೢ,ೕೕసభ ቁమೕసభ షభ

(5)

where ݔ is the value of point j,ݓ, represents the spatial weight
between point i and j, n is the number of incident points.തܺ = ∑ ௫ೕೕసభ (6)ܵ = ට∑ ௫ೕమೕసభ − ( തܺ)ଶ (7)

The larger the positive value of Gi*, the more intense the

clustering of points of high values. When the results are

statistically significant they are referred to as hot spots. For

negative statistically significant values of Gi*, the smaller the

4 The confidence envelope is constructed based on a random distribution of

the intersection points, so-called permutation, based on Monte Carlo test.

value, the more intense the clustering of points of low values

are. These are referred to as cold spots.

In order to reduce the critical thresholds of the p-value from

a statistical point of view, first, GiZscore values are optimized

based on a False Discovery Rate (FDR) correction method

(Benjamini & Hochberg, 1995). This method is used to

eliminate errors associated with spatial dependency and

multiple testing. It is computed as the expectation of Q:ܴܦܨ (ܳ) = E(Q) = E ቀ ାௌቁ (8)

Where v indicates the false positive rates, s indicates the true

positive rates.

Second, while the model relies on GiZscore results, as a step

forward for further optimization and for other cities of different

context, Local Moran’s I clustering and outlier method

(Anselin, 1995) may be significant as it identifies the

significance boundaries between points that can depict whether

a neighbouring point belongs to an adjust group or not. This

method can differentiate the classification of points, not only in

terms of high and low values of clustering or dispersion but also

from the local and global scale of all neighbouring points,

resulting in identifying spatial outliers. However, this method

is only a complementary one to the main GiZscore indices to

ensure that the model can fit to different cities, bearing in mind

the subtleties of the local setting of the variables that may vary

from city to city, nonetheless, the administrative boundaries of

cities that are not necessarily a cutting edge from the global

spatial perspective.

3.1.2 Calibration

First, in order to compute GiZscore that define the optimum

clustering of hot spots in cities, pinpointing the optimum

distance (computed in Equation 4) requires manual calibration

through trial and error before reaching the classification of the

incidents points that is statistically significant within a band

distance that is representative of the informal and slum areas in

cities. After computing the statistically significant GiZscore

where the hot spots are more likely to represent informal

settlements, calibration for prediction is done automatically

relying on the training sample of the machine learning

algorithms that will be discussed in phase II.

3.1.3 Cross-validation and prediction of hot-spots

In order to cross-validate the outcome of the classification

that represents informal settlements, two methods are used, one

parametric and one non-parametric, in order to avoid the

assumption of normal distribution of the data.

 Method 1: Independent samples t-test analysis

This method is used to compare the means of the GiZscore

for both groups; informal, and formal regions. When the p-

value is less than 0.05, the null hypothesis can be rejected and

the results of GiZscore can be illustrated as statistically

significant. It can be used to differentiate between formal and

informal zones. For further explanation regarding t-test

analysis, see Hoffman (2015); Smalheiser (2017).



 Method 2: Muli-Nominal Logistic (MNL) Regression model

Unlike the previous method where GiZscore was used as a

continuous numerical variable, in this method, it is defined as a

discrete variable, whereas the statistically significant values of

GiZscore, can represent three categories; Hot-spot, Not

significant, and Cold-spot. For the sake of this study, we are

interested in understanding how these categories of hotspot

analysis are associated with the informality status and the

numbers of neighbouring intersection points, in order to cross-

validate the outcome of the hotspot classification with informal

regions. Hence, a Multi-Nominal Logistic (MNL) regression

model is conducted to analyze the collinearity among the three

categories of GiZscore, as a dependent variable, in relation to

the informality status, and the change in a number of

neighbouring intersection points as two independent variables.

For further explanation regarding discrete choice models and

utility functions, see Ben-Akiva et al. (1997); Schroeder (2010).

The utility function of alternative hotspot category i in the

occurrence of j is computed as:ݒ ൌ ߝ  ∑ ܾݔ்א (9)

where ݔ represents the attribute k for point j on hotspot
occurrence of i, ܾ is a coefficient in the utility function, ܶ
represents the set of attributes, ߝ represents the stochastic part
of the utility function.

The coefficient of the MNLmodel is computed by estimating

the maximum likelihood, whereas the stochastic part ߝ is
computed by assuming it as a double exponential distribution.

The logarithm of the likelihood of the MNL model of the actual

occurrence of hotspots can be expressed as:ܮ�݃ܮ ൌ ∑ ∑ ܻ �݈݊ୀଵேୀଵ � ܲ(ܻ ൌ ݆Ȁݔǡ ,(ߚ
where ܲ(ܻ ൌ ݆Ȁݔǡ (ߚ = ୣ୶୮�ሺ௩ೕሺ௫ೕǡ್))∑ ୣ୶୮�ሺሺ௩ሺ௫ǡ್))ೕసభ (10)

where ܻ is the dependent variable of the three categories of hot
spots, X represents the independent variables, ݒ is the utility
function for jth alternative of ith choice, ܰ represents the

occasion of choices, ݆ represents the number of alternatives, ܲ
represents the predicted probability of the occasion of i category

of hot spots, ߚ represents the parameter vector of the model,
In order to validate the fitness of the model, three measures

were conducted; pseudo R-square, the significance of Chi-

square, and the confusion matrix of the actual values and the

predicted ones for each city.

3.2 Phase II: Prediction of informal regions and slums

Globally, not all informal settlements are well-defined and

delineated in cities. Thus, it may add challenges for the cross-

validation and self-calibration when computing the model.

Hence, we introduce in this model a predicting method of

unlabelled data, in which it is perceived as an indispensable

feature for predictive modelling (Blum & Mitchell, 1998;

Liang, Mukherjee, & West, 2007; Wu, Zhao, Qin, Lai, & Liu,

2017). We attempt to identify the informality in cities by

training the model with well-defined and calibrated model of

other cities with similar context, i.e. same region, or country.

5 Based on trial and model selection, the proposed ANN architecture has
performed significantly better than a Kernel Support Vector Machine model for

Greater Cairo with 6.4% increase in accuracy.

3.2.1 ANN model architecture

We introduce Artificial Neural Networks (ANN) for

classification and prediction. For the purpose of this study,

unlike other machine learning algorithms for classification (i.e.

Kernel Support Vector Machine), ANN model performs better

with minimal input variables and with a large dataset for

nonlinear classification tasks5. This makes ANN a good fit for

the research purpose. Additionally, the accuracy of the model

and the required time for computing it are another advantages.

For further explanation, see Chen (1990); Goh (1995); Guan,

Wang, & Clarke (2005); Nefeslioglu, Gokceoglu, & Sonmez

(2008); Pijanowski, Pithadia, Shellito, & Alexandridis (2005);

Pradhan, Lee, & Buchroithner (2010).

The ANN models are trained on the data sets of the studied

cities in order to identify the current state of the informal

settlements within the same city or elsewhere that can be used

as a predictive model for identifying informal areas in a new

data sets for the future of these cities or the surrounding context.

Fig. 3 shows the general architecture of the ANN model.

Four input variables are used for ANN models that are

previously computed in the first phase; GiZscores (three

categorical variables), NNeighbor, the X and Y-Coordinates of

the hot spot points. Based on trial and error, these coordinates

enhance the performance of the model to better understand the

profile of informal sprawl especially when the training and

testing are performed for a single city, whereas the role of the

coordinates is marginalized when the model is trained and

tested for a group of cities.

All the input variables are covariates, whereas the dependent

variable of the models (Y), is discrete nominal variable coded

as 0 and 1 that represents informality. In order to operate with

the algorithms of the ANN model, the input variables are

standardized. After several trial and error for tuning the hyper-

parameters of the ANN model, these input variables are fed-

forward to two hidden layers of 100 and 30 neurons

respectively, to output a single neuron that classifies the

planning status of the region.

The training algorithm of the model is based on the back-

propagation of error to update the weights of the neurons. It is

FIG. 3

PREDICTSLUMS-ANN ARCHITECTURE



compiled based on the optimization algorithm of a stochastic

gradient descent with an initial learning rate of 0.001, relying

on ‘adam’ optimizer (Kingma& Ba, 2014). The dataset for each

city is divided randomly into training and testing (that is used

for validation) sets in a portion of 70% and 30% respectively.

The model is trained by feeding the training set as mini-batches

of size 10, in which the weights of the neurons are adjusted after

each mini-batch. This process of training and validation is

repeated by 600 training cycles (epochs).

The output of the neurons for each layer of the ANN model

is computed based on the general formula:ܻ ൌ �ሺ ݔݓ  ܾሻ (11)

where ݊�is the total number of input neurons, ݔ represents each
input neuron, ݓ represents its weight, ܾ represents the bias, s
represents the activation function of the layer.

The input and the two hidden layers are activated based on

Rectified Linear Unit (ReLU) to increase the non-linearity of

the model and enhance the performance of the neurons (Dahl,

Sainath, & Hinton, 2013; Glorot, Bordes, & Bengio, 2011). It

is computed as ሺݏଵ):ݏଵ ൌ �ሺݔሻ ൌ ����ሺͲǡ ሻݔ (12)

The output of the model is activated based on a sigmoid

function .(ଶݏ) It is computed as:ݏଶ ൌ (ݔ)ߜ = ଵଵାషೣ (13)

The overall feed-forward propagation of the ANN model for

the single output neuron can be expressed as:

Net୭ ൌ ∑ଶඋݏ� ݓ כ ∑]ଵݏ ∑൫ݓ )ୀଵݔݓ ൧ୀଵୀଵ ඏ (14)

where n is the total number of neurons in the input layer, m is

the total number of neurons in the first hidden layer, q is the

total number of neurons in the second hidden layer, ݓ
represents the weight between the neuron i in the input layer

and the first hidden layer, ݓ represents the weights of neuron
j in the first hidden layer and the second hidden layers, ݓ

represents the weights between the neuron k in the second

hidden layer and the output neuron.

3.2.2 ANN model accuracy and cross-validation

The accuracy of the ANN models is validated based on a

Loss Function of Cross-Entropy error (E) method for n-class

(Golik, Doetsch, & Ney, 2013; Janocha & Czarnecki, 2017). E

is calculated as:ܧ ൌ െ∑ ݐ log(ݕ) (15)

where ݐ is the target vector, ݕ is the output vector, n is the
number of classes for classification (n=2).

In order to validate the performance of the model throughout

the entire dataset, we have computed K-Fold Cross Validation

for each model. Each dataset is divided into K-segmentations

(K=10) where the model is computed 10 times. Each one is

trained on (K-1) folds and validated in the remaining fold. This

can represent the mean and the variance of the accuracies of the

model through the different segments of the dataset (Jiang &

Wang, 2017). For each value of K, the model is fitted with λ as
an estimated parameter for the other k-1 folds to give βି(λ),
whereas the K-Fold Cross Validation error is computed as:ܸܥ(λ) = ଵ∑ ∑ �ሺݕ െ ௧ℎ�௧ୀଵאβି(λ))ଶݔ (16)

where ݔ is the independent variables of the model, ݕ the
dependent variable.

Furthermore, we also computed the confusion matrix of the

actual and predicted values to assess the false negative and

positive of the model classification for the entire dataset.

3.3 predictSLUMS model summary

Fig. 4 shows the flowchart of the predictSLUMS model. It

comprises the consecutive steps of the model, highlighting the

two discussed phases and three main processes of the model;

algorithms, calibration, and validation. The first section of the

flowchart shows how street intersections are classified relying

on a different set of spatial statistical analysis and different

variables are computed. The second section shows the manual

FIG. 4

PREDICTSLUMS FLOWCHART



calibration and validation processes of the model, whereas the

last section shows how the proposed model can predict

informality in the same city, or elsewhere by training the model

in cities with a valid classification. This feature can allow the

model to function in cities that not necessary holds official data

for validation.

4. CONTEXT AND CASE STUDIES

We have applied the predictSLUMS model for five cities;

four Egyptian cities, and one Indian city. While we focus on the

Middle East and North Africa (MENA) context, we also aim to

verify the algorithms of the model globally without being

confined to a certain context.

4.1 Egyptian case studies

Egypt, one of the most populated countries in the MENA

region, has the biggest portion of informal settlements in the

region which are locally-known as Ashwa’iat (Ibrahim &

Masoumi, 2018; Sims, 2013; UN-Habitat, 2012). Out of a total

population of approx. 93 million, at least 40 million live in

informal housing. This makes Egyptian cities a crucial case for

identifying and predicting informal settlements. Less than 5%

of the Ashwa’iat in Egypt can be considered as unsafe areas or

slums. The model deals with all types of Ashwai’at and slums

without classification of the types or the degree of severity of

the informal areas.

We have computed the model for four Egyptian cities with

diverse urban sprawl profiles; Greater Cairo (including Cairo,

Giza, Qaliobya cities, and two new towns; 6th of October and

New Cairo), Alexandria, Hurghada, and Minya. There were

five main criteria for selecting these case studies; the size and

population of the city, geographical location, rural-urban

structure, and forms of informal area (See Fig. 5).

This paper focuses on representing the model results in the

case of Greater Cairo in detail, however, the model results for

the other cities will be discussed briefly.

There are two reasons that Greater Cairo is an appropriate

case study for identifying and predicting housing informality.

Firstly, at least 70% of urban dwellers live in informal housing.

Secondly, there is a diversity of informal sprawl and a wide

spectrum of urban patterns.

The city of Alexandria is the second biggest urban

agglomeration in Egypt, in which at least 40% of housing is

informal. Due to the spatial configuration and constraints of the

city, the informal areas are rather more compacted and have

grown more vertically in comparison to Greater Cairo. Unlike

other cities in Egypt, informal housing there can take the form

of a high-rise building of more than ten floors.

The city of Minya is located in upper Egypt. It is

characterized by rural development. Informal sprawl mainly

takes place in rural areas in the form of relatively dispersed low-

rise buildings.

Finally, the city of Hurghada is located by the Red Sea where

the development of the city is based on the tourism sector. The

informal areas are mainly characterised by low-rise scattered

housing in desert hinterland and core areas of the city.

4.1 Indian case study

To verify the predictSLUMS model in another context, we

have computed the model for Mumbai in India. What makes the

context of Mumbai different from the ones in Egypt is that

slums there have various densities and forms. This adds a new

dimension for identifying slums and informal areas in cities of

higher densities, and demonstrates the possibility of using this

model in the various contexts of cities of the global south.

4.2 Data

For the Egyptian case studies, we used the official GIS data

surveyed by the General Organization of Physical Planning in

Egypt (GOPP) for the four Egyptian cities (GOPP, 2014).

For the case of Mumbai, we used a raster image that

represents the official the planning status to calibrate and

validate the model, whereas, for the spatial network, we have

used the open source data provided by OpenStreetMap (OSM)

as input data for classification and prediction.

4.2.1 Street network data

The street network data of Greater Cairo comprises 194,869

street intersection points (nodes), including endpoints and a

total length of 18,636.5 km. Data of Alexandria contains 63,441

nodes and of a total street length of 5,647.7 km. Data of

Hurghada includes 9,611 nodes and of a total street length of

1,058.8 km. last, Minya contains 4,604 nodes and the total street

length is 329.6 km (See Fig. 6). What makes this data a better

dataset than that provided by OSM is that the local streets of

both formal and informal areas are well-delineated by field

surveys that contains the entire hierarchy of street network,

including the local ones in the informal areas and the delineated

slums. This enhances the precision of the model when relying

on the densities of street intersections.

For the case of Mumbai, as we aim to introduce the concept

of the predictSLUMS model regardless to the type of data that

may or may not be available elsewhere. The OSM data

comprises 30,110 nodes, and of a total length of 4,182.8 km.

We have used the street intersections data from the original

form of the spatial networks for all case studies without

performing any filtrations or data processing.

4.2.2 Informality status data

To validate the model results for the case of the Egyptian

cities, we used the data of the informal regions defined by

GOPP for the four studied cities. The planning status is defined

either formal or informal, including unplanned areas and slums,

and is mainly based on official field surveys. This classification

is based on four main criteria – planning zones, land ownership,

building standards and location. Land that is officially planned,

is developed by acquiring a building licence, and the building

follows the area code of the neighbourhood is considered to be

formally developed. Land that is owned properly but the

housing is not built properly or officially is considered

informally developed. The method of land acquisition and

ownership is another crucial issue; informal areas include those

built on state land, or land in other forms of ownership, that

does not give individuals the right to build their houses.

Housing built on land not identified through the official land-

use plan of the city as being available for this purpose is also

considered informal. For example, housing that is built on

agriculture land. Finally, housing units that are built on the

periphery or the hinterland of the administrative urban

boundary of the city is considered informal housing. There are

a wide range of literature that review informality of housing in



Cairo and other Egyptian cities, in which it is in line with the

official census used in this study (Harris & Wahba, 2002;

Hassan, 2012; M. Ibrahim, 2017; O’Donnell, 2010; Sims, 2010,

2015; Sims, Sejoume, & El Shorbagi, 2003; Soliman, 2007,

2012).

To validate the results for the case of Mumbai, we have used

a map that identifies the formal and the informal regions in

Mumbai that is open-access and provided by PK Das &

Associates (2011). The map is prepared based on google maps

and the official development plan from Municipal Corporation

of Greater Mumbai in 2011. The output of this map is in line

with several studies related to slums and informal regions

conducted in Mumbai (Bürgmann, 2015; Y. Zhang, 2017).

In order to operate with the model, we have processed this

image by classifying the two categories of formal and informal

areas relying on supervised image classification. The result is

standardized for the model to a raster of grid cells of size 100m

(See Fig. 7).



FIG. 5

EGYPTIAN CASE STUDIES AND HOUSING INFORMALITY IN GREATERCAIRO



FIG. 6
STREET NETWORK DATA FOR THE EGYPTIAN CASE STUDIES

A) ALEXANDRIA CITY B) GREATER CAIRO C) HURGHADA CITY D)MINYA CITY



FIG. 7

SPATIALNETWORK AND INFORMALITY INMUMBAI, INDIA



5. RESULTS

5.1 Clustering indices of Greater Cairo

Computing Nn using Euclidean distance, gives a ratio between

the observed and the expected average distance between

incident points equal to 0.2, with a z-score equal to -666.3 (See

Table 1). This is a statistically significant result, which means

that there is a less than 1% likelihood that the pattern of the

incident points is the result of a random distribution and

suggests that the incident points are clustered.

The results of the K-function analysis conducted in order to

understand the change in classification of points within an

interval of distances, show that the points are significantly

FIG. 8

A) RESULTS OF EXPECTED AND OBSERVED K-FUNCTION ANALYSIS OF GREATERCAIRO
B) RESULTSOFTHE LOGDIFFERENCESOFOBSERVED AND EXPECTEDVALUESOFGREATER CAIRO

߲ = 0 ࣔ =28 or more (up to 37) ࣔ=22 or more (up to 37)

ࣔ =15 or more (up to 37) ࣔ =9 or more (up to 37) ࣔ =1 or more (up to 37)
FIG. 9

THE DENSITY OF STREET INTERSECTIONOFGREATER CAIRO IN A LATTICE (100MX100M)

TABLE 1
RESULTS OF AVERAGENEARESTNEIGHBOURSANALYSIS

Observed Mean

Distance

Expected Mean

Distance

Nearest

Neighbour
Ratio (Nn)

z-score

24.9133m 118.1095m 0.210934*** -666.37019
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clustered over the distance between 100m to 4600m since the

observed k indices are larger than the expected k –value for

each band distance, are greater than the high confidence

envelope. The k-function suggests a noticeable change in the

spatial change of classification of points at an approximate

distance of 500m (See Fig. 8).

Fig. 9 illustrates selected cases that represent various clusters of

Greater Cairo’s neighbourhoods according to the density of

street intersections. Based on visual inspection, the results show

that the points are intensely clustered where informal

settlements are located, beside the historical part of Greater

Cairo within a higher intersections density in the core central

region of the city. In contrast, the newer developed areas, i.e.

New Cairo city (the area to the East) or 6th of October city (the

area to the West), seem to be dispersed when compared to the

older parts of Greater Cairo. However, these findings do not

represent clusters that are statistically significant to informal

regions.

FIG. 10
THE RELATION BETWEEN THE RESULTS OF GIZSCORE WITH AND WITHOUT FDR CORRECTION FORGREATERCAIRO

FIG. 11
STATISTICALLY SIGNIFICANT NEARSTNEIGHBORS ANDHOT SPOTS IN GREATER CAIRO, AT DISTANCE:334M (GRID CELL: 100M X 100M)
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5.2 Optimized Hotspot analysis (statistically significant

classification)

After applying the FDR correction method as shown in Fig.

10, the results of the Gi-Ord analysis illustrate that the hot and

cold spot areas in Cairo are optimized where the threshold

values are minimized for both positive and negative values.

At an optimized distance of 344m, GiZscores that represent

the three categories (hot, not significant and cold spots) and the

computed nearest neighbours in Greater Cairo show a high

degree of representative results of informal regions when

compared visually to the official data of informal settlements.

There are fewer regions in New Cairo town that are labelled as

hot spots that do not represent informal zones (See Fig. 11).

5.3 Model fit for Greater Cairo

5.3.1 Comparing the clustering indices with the status of the

built environment (t-test)

Table 2 illustrates the results of the t-test analysis, using a

95% confidence level, for the two computed variables. The p-

values for both predictors (GiZscores, and NNeighbors) are

statistically significant. The changes in the values of these two

variables are associated with the type of group, formal or

informal, to which each incident point belongs. In the case of

the group of informal areas, the mean number of neighbours is

larger than for those in formal areas. Also, the mean of

GiZscore is larger for those in informal areas than those in

formal areas. This means that informal regions are more likely

to be a hotspot with a denser number of intersection points than

those in formal areas.

5.3.2 The association between hot spots and informal regions

In order to understand the association between hotspots,

informal areas and the number of neighbouring intersection

points, an MNL model was created (see Table 3 for the MNL

model results for Greater Cairo). In general, the model shows

statistically significant results for the two studied predictors, in

relation to GiZscore as an independent variable with a good fit

in term of significant chi-square value and likelihood ratio.

In the case of cold spots, the number of neighbouring

intersection points is statistically less when compared to the

reference category of not significant zones (negative B-value

for NNeighbors). Also, cold spots tend to comprise of more

formal zones than of informal ones when compared to the not

significant areas (positive B-value for the formal area).

In the case of hot spots, the number of neighbouring

intersections are likely to be denser when compared to the not

significant zones (positive B-value for NNeighbors). On the

other hand, hot spots tend to contain more informal areas than

those regions categorized as not significant (negative B-value

for the formal area).

Fig. 12 shows the residuals of the MNL model for the five

studied cities (maximum iteration = 100). By looking at the

table of predicted and observed values, the models show a good

fit for the association and the prediction of hot spots in the cases

TABLE 2

T-TEST STATISTICS AND MODEL PARAMETER

Informality N Mean

Std.

Deviation

Std. Error

Mean t df

Std. Error

Difference

95% Confidence Interval of
the Difference

Lower Upper

NNeighbors Formal Area 27976 46.192 21.982 0.131 -88.420*** 43,728.000 0.203 -18.308 -17.514

Informal
Area

15754 64.102 17.026 0.136 -94.832*** 39,572.944 0.189 -18.281 -17.541

GiZScore Formal Area 27976 0.197 3.302 0.020 -93.764*** 43,728.000 0.032 -3.100 -2.973

Informal

Area

15754 3.234 3.158 0.025 -94.933*** 33,881.348 0.032 -3.099 -2.973

*** statistically significant at p-value equal to 0.000

TABLE 3
MNL PARAMETER ESTIMATES

Hot and Cold Spots B Std. Error Wald df Exp(B)

95% Confidence Interval for

Exp(B)

Lower Bound Upper Bound

Cold

spot

Intercept -0.421*** 0.064 42.910 1.000

NNeighbors -0.041*** 0.001 2,000.496 1.000 0.960 0.958 0.962

Formal Area 1.603*** 0.052 964.303 1.000 4.970 4.491 5.499

Informal Area 0b 0.000

Hot spot Intercept -4.657*** 0.060 5,991.541 1.000

NNeighbors 0.085*** 0.001 8,144.955 1.000 1.089 1.087 1.091

Formal Area -0.626*** 0.027 526.132 1.000 0.535 0.507 0.564

Informal Area 0b 0.000

a. The reference category is: Not Significant.

b. This parameter is set to zero because it is redundant.
*** statistically significant at p-value equal to 0.000

Model Fitting: Likelihood Ratio test: Chi-Square equal to 28576.4 at p-value equal to 0.000



of Cairo and Alexandria. The accuracy of prediction declines in

the remaining three cases. However, in general, the model

shows good validation for the correlation between the

computed variables of the GiZscore and the NNeighbors with

the informality data. This demonstrates that the ANN models

can predict actual informality from such variables as those used

here.

5.4 ANN Models prediction and validation

We have computed eight ANN models to provide evidence

of predictSLUMS’s reliability. The goal was not just to show

the high accuracy of the model but to show the versatility of the

predictSLUMS model, which can be trained in one city to

predict the formal and the informal areas within the same city

or another city. Table 4 gives a summary of the computed ANN

models

Fig. 13 to Fig. 17 represent, in detail, the overall simulation

of the predictSLUMS model. For each studied city, an ANN

model has been computed to predict the informal regions there.

The accuracies for both training and validation in regard to each

training cycle (epoch) are illustrated. In order to assess the

variance of the training dataset, the results of K-Fold Cross-

Validation is shown. To further assess the performance of the

model, a confusion matrix has been computed for the actual and

predicted values for each category (formal/informal) for the

entire dataset using the pre-trained models for each city,

whereas an overall validation accuracy of the entire dataset is

also illustrated.

Critical aspects of the training and validation of models are

discussed below.

In the case of Greater Cairo, the average accuracy of the

cross-validation is 87%, and the variance is 0.0087. The model

shows a good accuracy that is nearly normalized over the

different segments of data with an overall accuracy for the pre-

trained model of 89.3%. The training and validation accuracies

according to each training epoch show a uniform growth,

highlighting the good fit of the training algorithm.

In the case of Alexandria, the average accuracy obtained

from the K-fold cross-validation dropped to 83%, whereas the

variance is 0.0097. The overall validation accuracy of the model

is 83.6%

In the case of Hurghada, the average accuracy of the model

is 91% and the variance is 0.027%. Unlike the cases of Greater

Cairo and Alexandria, the deviation of the accuracies has

increased, whereas the high threshold is 96% and the low

threshold is 86%. However, the model shows an overall good

classification accuracy for both formal and informal regions

with a validation accuracy of pre-trained model of 93.3%.

In the case of Minya, the average accuracy of the cross-

validation reached 98%. This is not due to an overfitting of the

model; (this can be seen from the training and validation

accuracy charts), but rather the small size and the simplicity of

the city in comparison to the other studied cities.

In the case of Mumbai, the model shows the lowest average

accuracy of cross-validation, which dropped to 80% with a

good variance of 0.091. While the model shows a good fit of an

overall validation accuracy in classifying informal regions and

slums in Mumbai of 82.1%, there are several reasons that can

explain such a drop in the accuracies. Most importantly, the

spatial data used for analysis and the validation data used for

training and calibration play an important role in such a drop.

We used OSM data, which does not fully delineate all informal

regions to the local street level; this has affected the results of

the GiZscore values to be normalized among the different areas

of the city. Accordingly, this has influenced the model

performance.

Additionally, we have computed a single model for the four

Egyptian cities, where it has been trained and tested on a

random sample of their data, 70% and 30% respectively. The

overall validation accuracy of this model is 81.1%. Similarly,

we have trained a single model for the five cities, with a

validation accuracy of 78.3%. Last, we have trained and tested

a model in the data set of Cairo, Alexandria, Hurghada and

Mumbai with a validation accuracy of 74.9%. We have used

pre-trained model to predict the formal and the informal regions

of Minya city, in which the model shows an accuracy of 71.2%.

This model exemplifies the benefits of our novel approach for

identifying and predicting slums by showing a single model can

fit different cities regardless to their local context.
TABLE 4

NEURAL NETWORKMODELS SUMMARY

ANN Models Sample random distribution N (valid) Percent Model overall

validation accuracy

(pre-trained model)

K-Fold Cross-Validation

10-folds average

accuracy

Variance

P
re
d
ic
ti
o
n
w
it
h
in
th
e
sa
m
e
ci
ty

Model 1 Training
Greater Cairo

30611 70% 89.3% 87% 0.008

Testing 13119 30%

Model 2 Training
Alexandria

16298 70% 83.6% 83% 0.009

Testing 6986 30%

Model 3 Training
Hurghada

1470 70% 93.3% 91% 0.027

Testing 631 30%

Model 4 Training
Minya

870 70% 97.6% 98% 0.021

Testing 373 30%

Model 5 Training
Mumbai

5227 70% 82.1% 80% 0.019

Testing 2241 30%

P
re
d
ic
ti
o
n
in
d
if
fe
re
n
t

c
it
ie
s

Model 6 Training The four Egyptian

cities

49250 70% 81.1% - -

Testing 21108 30%

Model 7 Training The five case studies 54478 70% 78.3% - -

Testing 23348 30%

Model 8 Training Cairo, Alexandria,

Hurghada and
Mumbai

53608 70% 74.9% - -

Testing 22975 30%

Prediction Minya 1243 - 71.2%



In general, the training and validating accuracies of the ANN

models in each city tend to be uniform. We have only applied

features dropout regulation (0.5) after each hidden layer (Dahl

et al., 2013; Srivastava, Hinton, Krizhevsky, Sutskever, &

Salakhutdinov, 2014) for only model 8 to avoid overfitting

when predicting formal and informal areas in Minya. This is

may be relevant for future model when training the model in

other cities.

FIG. 12

MNLMODELS RESIDUALS FOR CASE STUDIES
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FIG. 13
PREDICTSLUMS - GREATER CAIRO: IDENTIFICATION, TRAINING AND PREDICTION
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PREDICTSLUMS - GREATER CAIRO: IDENTIFICATION, TRAINING AND PREDICTION
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FIG. 15
PREDICTSLUMS - HURGHADA: IDENTIFICATION, TRAINING AND PREDICTION
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FIG. 16
PREDICTSLUMS - MINYA: IDENTIFICATION, TRAINING AND PREDICTION
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PREDICTSLUMS - MUMBAI: IDENTIFICATION, TRAINING AND PREDICTION
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6. DISCUSSION

6.1 Informality and scaling laws: number of

intersections, street length, and population

Even though the morphologies and the sizes of the studied

cities vary, and different urbanization processes may have

shaped them, they still follow common principles of growth.

This may be one of the reasons that allowed the model

algorithms to function in different cities regardless of their

spatial profile. In fact, these general scaling laws have

manifested in many western cities (Bettencourt, 2013;

Cottineau et al., 2017; Isalgue et al., 2007; Masucci, Arcaute,

Hatna, et al., 2015). Interestingly, despite the degree of

informality that exists in Middle Eastern cities, it seems that

they also tend to follow a similar behaviour of growth.

By looking at the distribution of the total number of street

intersections in a grid of a side 100m (∂) for the five studied
cities, it was found that the intersection points (݊ሻ follow a
scaling law that are ideally represented in an exponential

decaying function (See Fig. 18). This finding is in line with that

observed in the general distribution of street intersections in

London and California (Masucci, Arcaute, Hatna, et al., 2015),

although they were represented in a form of an inverse power

equation. It is noted that, ݊ for the studied cities is linearly
associated with both; the total street length and the population

size of the city (See Fig. 19 and Fig. 20).

FIG. 18

DISTRIBUTION OF INTERSECTION POINTS

FIG. 19

THE RELATION BETWEEN INTERSECTION POINTS AND POPULATION FOR THE

STUDIED FOUR CITIES

6.2 Informality: different forms but similar features?

The main concept and motivation behind the proposed model

is to reduce the required input data for classification and

prediction of informal regions. This can make it possible for

policy-makers and planners to overcome the limitation of poor

data availability of informal settlements while still identify

informality.

It is crucial to pinpoint that even though informal regions

take different forms and shapes based on the local

characteristics of the city and its spatial configuration, these

informal regions still reserve unique and subtle identifiers that

distinguish them from formal settlements. Consequently, this

model can detect informal areas and slums in zones that lack

data, while retaining accuracy of prediction, by training the

model in areas of similar context. However, it should be noted

that the accuracy tends to be enhanced when the model is

trained in cities that are geographically close to the one for

which the prediction is being done.

The representation of hot-cold spots seems to be better in

larger cities where informal regions are characterised by urban

features, rather than those cities enshrouded with rural

characteristics. From the MNL residuals, the model has a better

prediction accuracy in Cairo and Alexandria than in Minya and

Hurghada, where informal areas are less compact.

6.3 Prediction accuracy and spatial resolution

In general, the model shows a good accuracy and validation

across the entire datasets of the five studied cities. This opens

the door for further application of the model globally. More

specifically, the accuracies of each model in each city may vary

for several reasons. First, the complexity of cities is relative to

their structure and their size which may influence the overall

accuracy of predicting informal areas in cities. Second, the

consistency of the training and calibrating data used as input is

another factor that could influence the overall accuracy of the

model. Such factors cannot be controlled entirely in each city.

However, by studying more cities of different contexts and with

different input data, the learning algorithms of the model can be

adapted to deal with these issues. Lastly, the date of the data

used for analysis is another crucial aspect that may influence

the precision of the output of the model. For instance, the model
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may accurately predict informality based on the date of the

spatial data used, but this can be compromised when it is

calibrated and validated using older data on the formal

delineation of informal areas.

The spatial resolution of the predictSLUMSmodel is another

key element that influences the accuracy of the model. While

prediction of the model is based on the centroids of the grid

cells, the current version of the model produces a prediction

map in a grid lattice of side 100m. However, the actual

prediction of the model depends on input data on planning

status, used for training and validation. For example, if the

model is trained and calibrated based on a vector based map of

informal areas at the land parcel level, the results could be given

to the same resolution. However, since not all the data for each

city is available in this format, the current version of the model

is standardized to a grid lattice of a side 100m, thus giving the

opportunity to apply the model in different contexts regardless

of the precision of the data used for validation.

6.4 Spatial network and OpenStreetMap (OSM) data

While the input data of the model is minimal, there is still

variation in the consistency and availability of appropriate

spatial data. In this paper, we have relied mainly on the official

spatial network data for the Egyptian cities, mainly for

consistency and accuracy reasons. However, in order to

promote the usage of the model regardless of the type of data,

we relied on OSM data for the spatial network for the

application of the model in Mumbai. While OSM data has

become a ubiquitous source of information, its consistencymay

vary from city to city. However, there is continuous

development of various methods to enhance the acquisition and

analysis of complex street networks, i.e. OSMnx (Boeing,

2017b), which suggest that current inconsistencies may soon be

a problem of the past.

6.5 Limitations

While the predictSLUMS model offers significant

improvements for defining the urban system of housing

informality in various cities over other techniques, there are still

various limitations that need to be addressed in future research.

First, the proposed model is a predictive static model. The

challenges remain in introducing a temporal scale to the model.

However, before moving into a dynamic model, two steps seem

to be essential. First, addressing the third dimension of space

and understanding how vertical sprawl takes place, as well as

understanding the degrees of informality, seem to be crucial

factors for introducing a reliable and useful predictive model in

the case of informality.

A second issue remains as to how the model is validated.

Currently, it relies on data on well-identified informal

settlements. This requires further enhancement to include the

different context of missing data. In order to predict future

scenes of informality, the model introduces the first steps

towards predicating unlabelled data in a city of the currently

defined regions by using the pre-trained models. However, the

challenges remain in overcoming the paucity of the validation

data of the planning status that is required for training and

validating the model. A potential way to overcome this issue is

to shift the training of the model from an offline way to online

training when crowdsourcing data or a potentially developed

platform is available for the purpose of updating the planning

status of the built environment.

6.4 predictSLUMS vs satellite image classification

Currently, methods relying on satellite image classification

represent the current state-of-the-art of informal and slums

detection. However, there are several drawbacks of these

methods (Mahabir et al., 2018), that make the predictSLUMS

model a better state-of-the-art for identifying and predicting

slums and informal areas. These drawbacks are:

1. Image classification does not define the urban system of

informal regions in cities, it is only confined to the specific

regions that the study took place in, in which in many cases not

even an entire city and cannot be duplicated in other places as

the way the model is trained is only valid for a certain case.

2. The data accessibility of such high resolution satellite

images or data coming from unmanned vehicles that are

commonly used for this approach make such studies only valid

for certain regions and cannot be used in others, specifically in

the case of Egypt or the MENA region, where is this data will

come from? The minimal input data of the predictSLUMS

enables it to be used by planners and policy-makers in different

regions.

3. from a technical point of view, dealing with points is less

computationally expensive than classifying images. This can

allow the model to be conducted on a mega scale.

4. In term of model accuracy, the models show good results

above 80%, that even more accurate than many studies done in

the past using image classification.

5. This model algorithm can deal with different cities,

nevertheless, allows the possibility of predicting informal areas

in a city from the labelled data of another city.

7. CONCLUSION AND FUTURE WORK

Understanding urban systems remains a crucial challenge for

planners and policy-makers. It is unequivocal that informal

processes enlarge the complexity of understanding the

dynamics of cities. This paper aims to contribute to the methods

of urban modelling by using machine learning and artificial

intelligence in identifying parts of complex systems. It

highlights the importance of finding a unifying definition and

unique identifiers that can pragmatically represent informal

settlements in Egypt and elsewhere, and untangle the

complexity of their forms and shapes. The paper focused on

answering two research questions. First, how it is possible to

infer the status of the built environment from street network

data. Second, whether it is possible to identify and predict

informality in a city by understanding informality in others.

In this research, we introduced the predictSLUMS model; it

is an unprecedented approach to identifying and predicting

informal settlements from street intersections. The model

algorithms rely on both spatial statistics and machine learning

approaches. After computing two variables from street

intersections that are likely to represent informality,

Multinomial Logistic Regression (MNL) and Neural networks

(ANN) have been used to validate and predict informal regions

within the same city as the training data, and in a different one.

The model’s key features can be summarized in three points.

First, it requires minimal input data to function. Second, the



model can identify and predict hotspots that represents

informality in a city. Last, by training the model in one city, it

can predict informality in a different city. This minimal

requirement of input data enables it to be used by policy-makers

and planners in developing countries, where data availability

can be a major issue.

The model has been computed for five major cities,

including; Greater Cairo, Alexandria, Hurghada, and Minya in

Egypt and Mumbai in India. It identifies informal settlements

with a high degree of accuracy regardless of their density or

degrees of severity. While the overall accuracy of the model is

high for identification and prediction, it does vary from city to

a city. When using MNL, the model shows a better

identification of informal regions in larger cities when

compared to smaller ones.

As for future work, three areas seem to be significant for the

expansion of this model besides addressing the model

limitation:

1) Exploring other contexts globally to enhance the model

performance in understanding the subtitles of informal and

slum areas in regions beyond the studied five cities.

2) Moving from static to dynamic to not only predict

formal/informal areas but also to explore the formation of

slums through time.

3) Moving from offline training to online training through

an interactive platform where the model validation and

calibration can be based on up-to-date evidence.
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