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 Abstract 21 

Several emerging pathogens have arisen as a result of selection pressures exerted by modern healthcare. 22 

Klebsiella quasipneumoniae was recently defined as a new species, yet its prevalence, niche, and propensity to 23 

acquire antimicrobial resistance genes are not fully described.  We have been tracking inter- and intra-species 24 

transmission of the Klebsiella pneumoniae carbapenemase (KPC) gene, blaKPC, between bacteria isolated from a 25 

single institution.  We applied a combination of Illumina and PacBio whole-genome sequencing to identify and 26 

compare K. quasipneumoniae from patients and the hospital environment over 10 and five-year periods 27 

respectively. There were 32 blaKPC-positive K. quasipneumoniae isolates, all of which were identified as K. 28 

pneumoniae in the clinical microbiology laboratory, from eight patients and 11 sink drains, with evidence for 29 

seven separate blaKPC plasmid acquisitions.  Analysis of a single subclade of K. quasipneumoniae subspecies 30 

quasipneumoniae (n=23 isolates) from three patients and six rooms demonstrated seeding of a sink by a patient, 31 

subsequent persistence of the strain in the hospital environment, and then possible transmission to another patient.  32 

Longitudinal analysis of this strain demonstrated the acquisition of two unique blaKPC plasmids and then 33 

subsequent within-strain genetic rearrangement through transposition and homologous recombination.   Our 34 

analysis highlights the apparent molecular propensity of K. quasipneumoniae to persist in the environment as well 35 

as acquire carbapenemase plasmids from other species and enabled an assessment of the genetic rearrangements 36 

which may facilitate horizontal transmission of carbapenemases.   37 

 38 

  39 
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Introduction:  40 

In the last 50 years transformations in healthcare have created new niches for microorganisms such as 41 

Acinetobacter baumannii complex and Candida auris to arise from obscurity and emerge as important pathogens. 42 

Similarly, we have seen an increasing number of highly resistant Klebsiella pneumoniae strains which have been 43 

successfully transmitted worldwide(1).  Klebsiella pneumoniae has proven to be an important contributor to the 44 

modern antibiotic resistance epidemic with its ability to acquire and carry antimicrobial resistance plasmids, as 45 

well as being successful a human pathogen. More recently, whole-genome sequencing has revealed that many 46 

isolates classified as K. pneumoniae actually encompass three related but distinct species – K. pneumoniae, K. 47 

variicola and K. quasipneumoniae(1, 2).  K. quasipneumoniae was originally thought to be largely confined to 48 

agriculture and the environment, however it appears that it may also be prominent in human disease(3), and 49 

several recent reports have demonstrated that it harbors virulence factors and acquires clinically relevant genes of 50 

antimicrobial resistance(4, 5). Although there have been relatively few reports of K. quasipneumoniae to date, the 51 

true prevalence of this organism is likely underestimated as it is not generally distinguished from K. pneumoniae 52 

in routine testing of clinical laboratories(2).  53 

Bacterial evolution via horizontal gene transfer is central to the ongoing crisis of antimicrobial resistance among 54 

clinically relevant bacteria.  Hospital wastewater is being increasingly recognized as an ideal reservoir for 55 

resistance gene exchange and amplification, with ongoing antimicrobial selection pressure exerted through 56 

antimicrobials excreted in patient waste(6).  Premise plumbing can be seeded by antimicrobial resistance genes in 57 

diverse bacterial strains and species, and represents a difficult-to-treat reservoir for ongoing gene exchange, 58 

creating successful drug-resistant bacteria that can thrive in both the environmental and human niches(7). 59 

Whole-genome sequencing studies have demonstrated that our understanding of the interplay between 60 

antimicrobial resistance plasmids and their host strains/species is limited(8).  The host range of a plasmid is 61 

critical for acquisition and persistence in specific species, but it appears that some bacterial strains are better 62 

equipped than others to prevent acquisition of or destroy foreign plasmid DNA(9).  The durability of plasmid 63 
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acquisition events and the creation of new highly resistant strains reflects complex dynamics which depend on the 64 

characteristics of the plasmid in question as well as host strain tolerance(10, 11). Seldom do we have the 65 

opportunity to witness strains acquiring plasmids in vivo or in the environment and inferences about genetic re-66 

arrangements are often highly speculative.  However, understanding the mechanisms and frequency of resistance 67 

gene transfer events occurring in real world contexts can provide important insights into the wider evolutionary 68 

landscape creating modern multidrug resistant bacteria which cannot be effectively modeled in lab 69 

experiments(12).   70 

Within our institution we have seen ongoing transmission of diverse carbapenemase-producing organisms for the 71 

last decade, driven by genetic exchange of the Klebsiella pneumoniae carbapenemase (KPC) gene (blaKPC) in 72 

patients and the environment(13, 14).  This has enabled us to understand specific pathways of genetic mobility 73 

involving numerous different mobile genetic elements and host bacterial species(13, 15). Herein we examine 74 

blaKPC acquisition and associated genetic rearrangements within K. quasipneumoniae as a real-life representation 75 

of an emerging pathogen associated with the hospital wastewater environment.    76 

Results 77 

From our collection of blaKPC-positive isolates from patients (2007-2017) and the hospital environment (2013-78 

2017), there were a total of 32 blaKPC-positive K. quasipneumoniae isolates, all of which were identified as K. 79 

pneumoniae in the clinical microbiology laboratory (Table 1).  Twenty-three of these were K. quasipneumoniae 80 

subspecies quasipneumoniae (KpIIA) (ten patient isolates from four patients and 13 environmental isolates from 81 

seven rooms) and nine were K. quasipneumoniae subspecies similipneumoniae (KpIIB) (five patient isolates from 82 

four patients and four environmental isolates from four rooms). The KpIIA and KpIIB isolates were separated by 83 

>100,000 single nucleotide variants (SNVs). We identified a single strain of KpIIA and four strains of KpIIB 84 

differing from each other by >20,000 SNVs (Fig. 1).   Many isolates have multiple virulence factors 85 

(Supplemental data) including several genes involved in capsule production (16) and several fimbrial elements.  A 86 

type VI secretion system was present in all KpIIA but not all KpIIB.  From a resistance gene standpoint, in 87 

addition to blaKPC all isolates harbored a fosA, blaOKP as well as a multidrug efflux transporter (oqxA/oqxB)(17). 88 

 on A
pril 8, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


Within the KpIIA strain, there were two subclades separated by ~150 SNVs (Fig. 1a). The first subclade 89 

contained two isolates separated by 10 SNVs (Fig. 1a). CAV1360 was from patient 1 in November 2009 and 90 

CAV2279 was identified in early 2014 (shortly after environmental sampling began) from room B that patient 1 91 

had occupied in May 2009.     92 

The second subclade of KpIIA contained isolates from three patients (patients 2-4) and six rooms (rooms A, C-G). 93 

The earliest of these was from patient 2 in November 2013. Patient 2 was in the hospital with a prolonged stay in 94 

the Surgical Trauma and Burn Intensive Care Unit (STBICU) following complications of a liver transplant 95 

(Figure 2).  Patient 2 was noted to be first colonized with blaKPC-positive KpIIA in November 2013. KpIIA was 96 

not found in the STBICU environment prior to closure for remediation of KPC-contamination of the drains in 97 

December 2013.  Following drain exchange and unit re-opening patient 2 was immediately moved back into the 98 

STBICU and subsequently occupied rooms C, D, E and G in the STBICU, suggesting that the KpIIA isolates in 99 

these rooms originated from patient 2 (Figure 2). Patient 3 was admitted to the STBICU at the same time as 100 

patient 2 and thus could have acquired KPC-KpIIA directly from patient 2 without environmental transmission.  101 

Patient 4 was later admitted to STBICU room E for 28 days and discharged before he was found to have KpIIA.  102 

He was never on a ward at the same time as any other patients known to carry KpIIA, suggesting acquisition from 103 

the hospital environment.  104 

There were four patients (patients 5-8) carrying four distinct strains of blaKPC-KpIIB seen over a five year period 105 

(Fig. 1b, Table 1).  For patient 7, the same KpIIB strain (~80 SNV differences) was also seen in sinks from two 106 

rooms in the Medical Intensive Care Unit (MICU) (rooms H-I) and two rooms in the STBICU (rooms J-K) in 107 

December 2013 when environmental sampling first began; this preceded detection in the patient in February 108 

2014.  Patient 7 was admitted to the MICU (location of rooms H and I),  but did not stay any of the rooms where 109 

the isolates within the same KpIIB were identified.  The other three patients with KpIIB each had a unique blaKPC 110 

strain, none of which were identified in another patient or the environment.  Patient 6 also with a unique strain 111 

had a prolonged hospital stay and was also colonized/infected with another blaKPC-positive species (K. 112 

pneumoniae).  113 
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Three patients developed infections with KPC-KpIIA (Table 1). Patient 1 died of ventilator-associated pneumonia 114 

with KPC-KpIIA following a complicated heart transplant. Patient 2 had both ventilator-acquired pneumonia, 115 

which was successfully treated, and a subsequent untreatable intraabdominal infection with KPC-KpIIA 116 

bacteremia, which contributed to the patient’s death after a long hospital stay with a complicated liver transplant. 117 

Patient 4 had a successfully treated complicated KPC-KpIIA urinary tract infection. Patient 3 did not develop an 118 

infection with KpIIA. None of the patients with KpIIB developed K. quasipneumoniae infections, however two of 119 

the patients did develop infections with other species carrying blaKPC (K. pneumoniae for patient 6 and Serratia 120 

marcescens for patient 8) (Table 2). 121 

Genetic variation and rearrangements within KpIIA 122 

All KpIIA isolates were closely related at the core chromosome level, with a maximum divergence of <180 123 

SNVs. If blaKPC were acquired only once in this lineage then any sequence variation within the 10 kb blaKPC 124 

transposon Tn4401 would be the result of mutational change, which is expected to be rare. Surprisingly, the 125 

Illumina sequence data revealed a great deal of sequence variation within Tn4401 (Fig. 1a). Two sites (positions 126 

8015 and 9663 in the Tn4401b reference) showed variation at the single-nucleotide level, and one isolate had a 127 

deletion at positions 7075-7153. Interestingly, several isolates showed mixtures at one or both of the variable 128 

sites, indicating two or more different versions of Tn4401 in the same isolate. This included mixtures at position 129 

8015, which is located within the blaKPC gene and differentiates blaKPC-2 and blaKPC-3, indicating that there were 130 

isolates with both blaKPC alleles.  131 

Similarly, if a single blaKPC plasmid were acquired and stably maintained within KpIIA, then we would expect to 132 

see a single flanking sequence context for Tn4401. On the contrary, there was significant diversity in Tn4401 133 

flanking regions, with eight and seven different 5 bp sequences on the left and right sides of Tn4401 respectively, 134 

suggesting active transposition of Tn4401 within KpIIA and/or multiple plasmid acquisitions. 135 

To better understand the origin of the genetic diversity within and surrounding Tn4401, we performed long-read 136 

PacBio sequencing on three of the KpIIA isolates (CAV2013 from patient 2, CAV1947 from room C and 137 
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CAV2018 from room C), as well as a S. marcescens isolate from patient 2 (CAV1761). The room C isolates were 138 

chosen because this room only became positive after admission of patient 2 following sink trap exchange in the 139 

STBICU, hence they are expected to be descended from the patient 2 KpIIA. 140 

Both patient 2 isolates had a single blaKPC plasmid each (Figure 3a-b). The KpIIA isolate had a 447,095 bp 141 

“RepA_CP011611” blaKPC-3 plasmid, and the S. marcescens isolate had a 69,158 bp IncU/IncX5 blaKPC-2 plasmid 142 

(18). Both plasmids contained Tn4401b, however there were two SNV differences within the Tn4401b sequence, 143 

one at position 8015 (differentiating blaKPC-2 and blaKPC-3) and one at position 9663. 144 

The KpIIA isolates from room C (CAV1947 and CAV2018) had three and two blaKPC plasmids respectively (Fig. 145 

3c-d). Both isolates harbored the IncU/IncX5 blaKPC plasmid from the patient 2 S. marcescens isolate, indicating 146 

likely blaKPC plasmid transfer from S. marcescens to K. quasipneumoniae (Fig. 3e). In CAV1947, the plasmid 147 

sequence was identical to the patient isolate, CAV1761, with the exception of two large indels (Fig. 4a). One of 148 

these was a 16,315 bp deletion immediately adjacent to Tn4401, presumably as a result of intramolecular 149 

transposition in cis, that converted the left flanking sequence from TTTTT to ACAAT and removed the IncU 150 

replicon sequence (Fig. 3g). In CAV2018, the plasmid sequence was identical to CAV1761, except for a single 151 

5,923 bp deletion that truncated part of the Tn4401 sequence (Fig. 3h, 4a). 152 

Both isolates also harboured the ancestral RepA_CP011611 blaKPC plasmid from the patient 2 KpIIA isolate, with 153 

several SNVs and large indels (Fig. 4b). Interestingly, in CAV2018, one of the SNVs was located within Tn4401, 154 

such that the CAV2018 RepA_CP011611 plasmid contained blaKPC-2 rather than blaKPC-3. Given that there was 155 

plasmid transfer of the IncU/IncX5 blaKPC-2 plasmid from S. marcescens, we infer that the blaKPC-2-containing 156 

RepA_CP011611plasmid most likely arose as a result of homologous recombination between these two different 157 

plasmids flanking the blaKPC region (Fig. 3f, k). The Illumina data also revealed similar patterns of homologous 158 

recombination in other isolates (notably CAV2983, CAV2984, CAV3444, CAVp64 and CAVp275, which all 159 

have the TTTTT IncU/IncX5 plasmid flanking sequences, but with the C8015T blaKPC-3 mutation and without the 160 
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T9663C mutation), suggesting frequent exchange of Tn4401 variants between different blaKPC plasmids within the 161 

same host bacterium (Fig. 1, 3k). 162 

CAV1947 also harboured a third blaKPC plasmid, representing transposition of Tn4401 into a 4,095 bp non-163 

typeable plasmid that was present in the CAV2013 ancestor from patient 2 (Fig. 3i, 4c). 164 

K. quasipneumoniae has acquired blaKPC on multiple occasions 165 

The average unique plasmid Inc types per isolate was over four according to plasmid finder (Supplemental data).  166 

Within KpIIB, there were four divergent strains separated by >20,000 SNVs, suggesting four separate acquisitions 167 

of blaKPC in this subspecies. Within KpIIA, there were two subclades separated by ~180 SNVs. Given that 168 

Tn4401 variation and flanking sequences were different between the two subclades (apart from the GTTCT 169 

flanking sequence which is known to be present in many different blaKPC plasmids)(13); and that there was no 170 

epidemiological overlap, it is most likely that the subclades acquired blaKPC independently. Additionally, as 171 

described above, the second subclade likely acquired blaKPC on two occasions, with the second acquisition 172 

originating from S. marcescens. Therefore, overall there were likely seven acquisitions of blaKPC by K. 173 

quasipneumoniae, three in KpIIA and four in KpIIB. 174 

Interestingly, there was evidence that one of the acquisitions in KpIIB also originated from S. marcescens, 175 

indicating the compatibility of these two species in exchanging plasmids. This was in the patient 8 KpIIB lineage. 176 

Patient 8 was first colonized with blaKPC-S. marcescens carrying Tn4401b with a T9663C mutation and 177 

TTTTT/TTTTT flanking sequences. Four months later, blaKPC-KpIIB was identified with the same Tn4401 178 

mutation and flanking sequences, suggesting plasmid transfer from S. marcescens to K. quasipneumoniae within 179 

this patient. 180 

Discussion 181 

We describe the behaviour of nosocomial blaKPC-positive K. quasipneumoniae strains within a single-hospital 182 

setting, observing their propensity to uptake multiple carbapenemase plasmids from other species, and 183 
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disseminate between patients and sink drains.  Our study also suggests that rapid genetic rearrangement occurs in 184 

the mobile genetic elements carrying blaKPC in KpIIA.   185 

There is increasing recognition that the hospital environment is an important reservoir in the transmission of 186 

carbapenemase-producing Enterobacteriaceae (CPE), but delineating transmission chains is often challenging(19, 187 

20). Through our K. quasipneumoniae example we provide compelling evidence for patient-to-drain and drain-to-188 

patient transmission, as has been observed in other studies(7).  We also provide evidence supporting the ability of 189 

K. quasipneumoniae to be maintained in the environment for a long period of time, with the first subclade of 190 

KpIIA detected in the environment on initial sampling, even though it had not been seen in a patient nor had that 191 

patient been in the room for over three years. The costly closure of the STBICU and exchange of all the sink drain 192 

plumbing pipes had a limited effect on environmental contamination with CPE; instead it appears to have 193 

provided an environment for immediate new seeding and establishment of previously unobserved carbapenem-194 

resistant strains. There are potential other reservoirs to consider but health care workers have not been identified 195 

as a source of CPE. We have a fairly robust screening program in place and have sequenced all patient isolates 196 

and included all K. quasipneumoniae in this series making silent colonization less likely(21, 22).  We were not 197 

sampling the toilets or hoppers during most of the study and we have only sequenced a portion of environmental 198 

isolate which could provide an unidentified environmental source of K. quasipneumoniae(14).  Understanding the 199 

dynamics and natural history of colonization of premise plumbing with CPE will be important in designing 200 

effective interventions to limit transmission(23).   201 

Although there have only been a handful of reports of K. quasipneumoniae since its definition as a species in 202 

2014, it does appear that this organism is widespread(2, 5, 24, 25).  As seen here, it is not readily distinguished 203 

from K. pneumoniae with current clinical microbiology techniques and thus the true prevalence is unknown(2, 204 

26). On the evolutionary time scale, modern medicine has provided a novel ecology with immunocompromised 205 

patients, widespread antimicrobial use, newly circulating antimicrobial resistance genes and the design of the 206 

modern hospital providing new microbiologic niche for organisms to emerge(7, 27). We found several virulence 207 

factors in our collection some of which have been identified in other K. pneumoniae or K. quasipneumoniae; 208 
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capsule, fimbrial adhesion proteins, and a type VI secretion system (5, 16).  As seen here we provide evidence for 209 

K. quasipneumoniae to be sustained in both a human host and the environment encountering several different 210 

species which may be relatively new in the evolutionary tree of Klebsiella sp(1).  As a consequence of these 211 

encounters transfer of mobile DNA occurs via traceable carbapenemase plasmids.  We found evidence for seven 212 

independent acquisitions of blaKPC by K. quasipneumoniae, suggesting that this species is amenable to plasmid 213 

uptake from other species of Enterobacteriaceae. Given the difficulties in accurately identifying K. 214 

quasipneumoniae, this species may therefore be more significant in the context of blaKPC dissemination than has 215 

previously been recognised.  216 

Within K. quasipneumoniae, there was surprising variability in mobile elements carrying blaKPC, which was the 217 

result of several different processes observed amongst a limited number of highly related isolates(n=23). We also 218 

found multiple acquired antimicrobial resistance genes and every isolate had more than one plasmid 219 

incompatibility type(18).  Specifically, there were multiple independent blaKPC plasmid acquisitions, homologous 220 

recombination between different blaKPC plasmids, transposition of Tn4401 into new plasmids, intramolecular 221 

transposition in cis of Tn4401, a deletion within Tn4401 and a deletion truncating Tn4401. This high degree of 222 

genetic mobility has been similarly observed in other small studies(28, 29), and highlights the difficulty in 223 

developing an accurate understanding of the transmission epidemiology of important drug resistance genes which 224 

can be rapidly mobilized by multiple independent genetic modalities.  225 

Within KpIIA, there were multiple acquisitions of blaKPC within the same lineage, such that a blaKPC-positive 226 

KpIIA strain acquired a second, unrelated blaKPC plasmid from S. marcescens. Consequently, there were then two 227 

different blaKPC plasmids, with different Tn4401 sequences and different blaKPC alleles, within the same host 228 

bacterium. This situation facilitated multiple rearrangements via homologous recombination between the different 229 

plasmids, resulting in the generation of new combinations of Tn4401 SNVs and host plasmids. Multiple 230 

acquisition of resistance plasmids followed by rearrangements between those plasmids is likely to be important in 231 

the generation of adaptive allelic combinations which contribute to the amplification of cross-class antimicrobial 232 

 on A
pril 8, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


resistance within strains. High-risk clones with a propensity for uptake of antimicrobial resistance plasmids may 233 

represent important targets for intervention(30). 234 

This study has several limitations. Most notably, it is a small retrospective series, preventing a full understanding 235 

of the role of the environment. Also, the order of genetic rearrangements is also not completely known given the 236 

limited number of long-read sequenced isolates and inability to capture all isolates from the environment over 237 

time.  We offer however, that this is higher resolution than seen in many studies, and the analysis does contribute 238 

to the greater understanding of rapid rearrangement and mechanisms at play around mobility of genetic elements 239 

harbouring genes of antibiotic resistance in Enterobacteriaceae.   240 

In summary, we demonstrate the relevance of K. quasipneumoniae as a species fit for nosocomial transmission in 241 

the modern era that is capable of acquiring and maintaining relevant resistance elements.   242 

 243 

Methods:  244 

Setting  245 

Isolates were collected at the University of Virginia, a 619-bed tertiary care hospital, from August 2007- May 246 

2017. A robust K. pneumoniae carbapenemase-producing organism (KPCO) prevention program existed 247 

throughout the study period as previously described(31), and included perirectal screening beginning in April 248 

2009 in the medical intensive care unit (MICU) and surgical intensive care unit (STBICU), and weekly screening 249 

of all patients in the MICU and STBICU as well as units where any known KPCO-colonized patient was 250 

present(32). Screening was performed as previously described(32). Clinical Enterobacteriales and 251 

Aeromonadaceae isolates, as identified by MALDI-TOF or VITEK2 (Biomerieux, Durham, NC), with an elevated 252 

ertapenem or meropenem minimum inhibitory concentration (MIC) by VITEK2 (Biomerieux, Durham, NC) 253 

immediately underwent CarbaR (Cepheid Sunnyvale, CA) carbapenemase PCR testing. All species identification 254 

was performed using a combination of VITEK2, VITEK-MS (Biomerieux, Durham, NC).  Clinical data was 255 
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gathered by retrospective electronic medical record review under University of Virginia Health Sciences 256 

IRB#13558 with waiver of consent.  257 

In September 2013 sink trap sampling for KPCO began using previously described techniques(14) with a swab 258 

for drain collection and p-trap water.  Following identification of KPCO in the hospital environment, the STBICU 259 

was closed to patient care in December 2013. Over the following 9 weeks all sink drain pipes were removed and 260 

replaced with sink traps that eliminated overflows on the sink bowl.  Patients were readmitted to the surgical 261 

intensive care unit in February 2014.  Bleach, hydrogen peroxide and ozone impregnated water (2ppm) were 262 

applied weekly from February-May 2014 in the STBICU (following drain exchange and sink bowl overflow 263 

closure and removal) and from March-May 2014 in the MICU (without drain exchange or sink bowl overflow 264 

removal).  265 

Whole-genome sequencing and Bioinformatics Analysis 266 

Illumina sequencing was performed as described previously(33). PacBio long-read sequencing and assembly were 267 

performed as previously described(13).  268 

Broad level species classification was performed using Kraken(34). To identify K. quasipneumoniae isolates, we 269 

queried all isolates initially classified as K. pneumoniae against reference sequences representing each of the four 270 

clades in Holt et al(1). We arbitrarily selected a single reference sequence for each clade; these were: ERR025521 271 

(KpI), ERR025986 (KpIIA), ERR025528 (KpIIB) and ERR025573 (KpIII). We used mash v1.1.1(35) with 272 

parameters “-r -m 5” to compare Illumina data for each of our isolates to these reference sequences. Each isolate 273 

was then assigned to one of the four Kp clades according to the reference with the lowest distance value. All 274 

isolates assigned to KpIIA or KpIIB were included in the analysis. In addition, we also included any other KPCO 275 

isolates from patients carrying K. quasipneumoniae. 276 

To identify chromosomal single-nucleotide variants (SNVs), Illumina reads for each K. quasipneumoniae isolate 277 

were mapped to the CAV2013 chromosome sequence (derived from long-read sequencing), with mapping and 278 

variant calling performed as described previously (36). A phylogeny was generated using IQ-TREE v1.3.13 (37) 279 
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from an alignment of variable sites where at least 70% of samples had a high-quality reference/variant call (i.e. we 280 

excluded sites where >30% of samples had an “N” call). This was run with parameters “-blmin 0.000000001 -nt 4 281 

-m GTR”, with -fconst used to specify the number of invariant sites. 282 

To identify Tn4401 variation and flanking sequences from Illumina data, we used TETyper with published 283 

parameters(38).  284 

The Illumina paired-end short reads were de-novo assembled using SPAdes assembler v 3.10.1 (35). Assembly 285 

statistics were evaluated using QUAST v4.0. (36) Plasmid Inc typing was performed using PlasmidFinder v2.0.1 286 

against the Feb 2018 version of Enterobacteriaceae database (16), with minimum identity of 80% and minimum 287 

coverage of 50%. Acquired antimicrobial resistance genes were screened from the assemblies using NCBI’s 288 

AMRFinder tool v1.0, which relies on a curated AMR protein database and a collection of Hidden Markov 289 

Models, with 90% minimum identity to translated amino-acid residues and 50% minimum coverage of reference 290 

protein sequence. (37) Identification of bacterial virulence genes was performed using ABRicate v0.8.11 291 

(https://github.com/tseemann/abricate), against the Virulence Factors Database (accessed on Feb 2019), with 80% 292 

minimum identity and 50% minimum coverage. 293 

Data availability 294 

Illumina paired-end sequence data can be accessed from NCBI BioProject ID PRJNA411762.  The accession 295 

numbers for completed closed genomes from hybrid assembly of PacBio and Illumina are - GCA_003146655.1 296 

(CAV2013), GCA_003146685.1 (CAV1947), GCA_003146635.1 (CAV2018), and GCA_003146705.1 297 

(CAV1761).  All other relevant data for the manuscript are within supplementary data tables. 298 
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 309 

Figures 310 

Fig. 1. Maximum likelihood phylogeny for KpIIA (a) and KpIIB (b) isolates, with Tn4401 variation and 311 

flanking genetic contexts. Branch lengths are shown as SNVs per genome. 312 

Fig. 2. Patient movements and positive environmental samples with a single strain of K. quasipneumoniae 313 

(KpIIA) in the STBICU. Colored bars for patients match rooms where environmental isolates were identified. 314 

Black bars represent rooms with no KpIIA identified. The dotted lines indicate STBICU closure with removal and 315 

new installation of sink drains and exposed sink plumbing. Patient 1 is not depicted as there was no admission to 316 

the STBICU and no overlap in time or space with other patients carrying KpIIA.  317 

Fig. 3. Plasmid structures determined from long-read sequencing of four isolates and inferred intermediate 318 

blaKPC plasmid structures. a-d. Sequenced isolates. e-j. Inferred intermediate plasmid structures. Note that the 319 

ordering of deletion, homologous recombination, transposition and plasmid loss events is arbitrarily represented 320 

as the actual order of events is unknown. k. Examples of crossover events leading to the generation of new 321 

combinations of SNVs within Tn4401 (top) or the complete swapping of Tn4401 variants between different 322 

plasmids (bottom). Black boxes indicate products of homologous recombination that were observed in long-read 323 

data (top) or Illumina data (bottom). 324 
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Fig 4. Alignments of IncU/IncX5 (a), RepA_CP011611 (b) and non-typeable (c) blaKPC plasmid structures 325 

determined from long-read sequencing. Tn4401 is indicated by a grey arrow. Light pink shading indicates 326 

regions of identity, light blue shading shows inverted regions, SNVs are indicated by red lines and short indels by 327 

blue lines. 328 

 329 

 330 

 331 

 332 
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Table 1. All Sequenced blaKPC-Klebsiella quasipneumoniae isolates from patients and the hospital 333 
environment 334 

label Isolate Subspecies of K. 

quasipneumoniae 

Date Source Infection/outco

me 

1 CAV1360 KpIIA Nov-09 Sputum Ventilator 

associated 

pneumonia. in 

complicated 

heart transplant 

recipient/Expire

d 

2 CAV2013 KpIIA Nov-13 Perirectal 

surveillance 

N/A 

      

2 CAVp203 KpIIA Dec-13 Bronchoscopy  Ventilator 

associated 

pneumonia 

//Successful 

treatment 

2 CAVp26 KpIIA Apr-14 Blood  Intraabdominal  

infection/Expire

d 

2 CAVp20 KpIIA Mar-14 Perirectal 

surveillance 

N/A 

2 CAVp64 KpIIA Aug-14 Perirectal 

surveillance 

N/A 

2 CAVp72 KpIIA Sep-14 Perirectal 

surveillance 

N/A 

2 CAVp103 KpIIA Nov-14 Blood Successful 

treatment of … 

      

      

3 CAVp67 KpIIA Aug-14 Perirectal 

surveillance 

N/A 

      

      

4 CAVp275 KpIIA Jul-15 Urine Complicated 

urinary tract 

infection/ 

Successful 

treatment  

5 CAV1142 KpIIB Aug-09 Perirectal 

surveillance 

N/A 

6 CAVp186 KpIIB Dec-13 Perirectal 

surveillance 

N/A 

7 CAV2009 KpIIB Feb-14 Perirectal 

surveillance 

N/A 

8 CAVp296 KpIIB Oct-15 Perirectal 

surveillance 

N/A 
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8 CAVp360 KpIIB Dec-16 Perirectal 

surveillance 

N/A 

Room A 

(MICU) 

CAV2244 KpIIA Jan-14 Shower  

Room B 

(CTA) 

CAV2279 KpIIA Jan-14 Shower  

Room C 

(STBICU) 

CAV1945 KpIIA Feb-14 Drain swab (First 

sample after 

replacement) 

 

Room C 

(STBICU) 

CAV1947 KpIIA Feb-14 p-trap water -(First 

sample after 

replacement) 

 

Room C 

(STBICU) 

CAV1964 KpIIA Mar-14 Drain swab   

Room C 

(STBICU) 

CAV2018 KpIIA Apr-14 p-trap water   

Room D 

(STBICU) 

CAV2019 KpIIA Apr-14 p-trap water  

Room C 

(STBICU) 

CAV2397 KpIIA May-14 Drain swab  

Room E 

(STBICU) 

CAV2697 KpIIA Jul-14 Drain swab  

Room F 

(MICU) 

CAV2957 KpIIA Sep-15 Drain swab   

Room G 

(STBICU) 

CAV2983 KpIIA Oct-15 p-trap water   

Room G 

(STBICU) 

CAV2984 KpIIA Oct-15 Drain swab   

Room G 

(STBICU) 

CAV3444 KpIIA Feb-16 p-trap water   

Room H 

(MICU) 

CAV1880 KpIIB Dec-13 Drain swab  

Room I 

(MICU) 

CAV1895 KpIIB Dec-13 Drain swab  

Room J 

(STBICU) 

CAV1832 KpIIB Dec-13 p-trap water   

Room K 

(STBICU) 

CAV1887 KpIIB Dec-13 p-trap water  

Medical Intensive Care Unit (MICU), Surgical Trauma and Burn ICU (STBICU) 335 
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Table 2. All additional blaKPC-positive isolates from patients with K. quasipneumoniae  336 

Pat

ien

t 

Isolate  Species Date Source Infection Genetic 

information 

Flank 

 

      Tn4401 

isoform 

Right/left 

2 CAVp202 S. marcescens Dec-13 Urine No Tn4401b-8 TTTTT/TTTTT 

 
 

2 CAVp11 S. marcescens Feb-14  

Intraabdominal 

abscess 

Yes Tn4401b-8 TTTTT/TTTTT 

 
 

2 CAV1761* 
S. marcescens Mar-14 Perirectal 

surveillance 

 Tn4401b-8 TTTTT/TTTTT 

 
 

3 CAVp50 Klebsiella 

pneumoniae 

Jul-14 Perirectal 

surveillance 

N/A Tn4401b-

truncated 

(deletion 

9299-10006) 

-/TTGCA 

3 CAVp57 Klebsiella 

pneumoniae 

Jul-14 Perirectal 

surveillance 

N/A Tn4401b-

truncated  

-/TTGCA 

3 CAVp71 Klebsiella 

pneumoniae 

Aug-14 Perirectal 

surveillance 

N/A Tn4401b-

truncated  

-/TTGCA 

3 CAVp104 Klebsiella 

pneumoniae 

Dec-14 Perirectal 

surveillance 

N/A Tn4401b-

truncated  

-/TTGCA 

6 CAV1750 Klebsiella 

pneumoniae 

Dec-12 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp127 Klebsiella 

pneumoniae 

Feb-13 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp130 Klebsiella 

pneumoniae 

Mar-13 Urine Yes Tn4401b-1 GTTCT/GTTCT 

6 CAVp139 Klebsiella 

pneumoniae 

Apr-13 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp151 Klebsiella 

pneumoniae 

Jul-13 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp152 Klebsiella 

pneumoniae 

Jul-13 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp177 Klebsiella 

pneumoniae 

Sep-13 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp180 Klebsiella 

pneumoniae 

Nov-13 Perirectal 

surveillance 

N/A Tn4401b-1 GTTCT|TACCT

/ 

AGCAT|GTTC
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6 CAVp183 Klebsiella 

pneumoniae 

Nov-13 Intraabdominal 

abscess 

Yes Tn4401b-1 GTTCT/GTTCT 

6 CAVp184 Klebsiella 

pneumoniae 

Nov-13 Perirectal 

surveillance 

 N/A Tn4401b-1 GTTCT/GTTCT 

6 CAVp185 Klebsiella 

pneumoniae 

Nov-13 Perirectal 

surveillance 

N/A  Tn4401b-1 ATATT|GTTCT

/ATATT|GTTC

T 

6 CAVp3 Klebsiella 

pneumoniae 

Jan-14 Biliary drain Yes Tn4401b-1 GTTCT/GTTCT 

8 CAVp269 Serratia 

marcescens 

Jun-15 Blood Yes Tn4401b-8 TTTTT/TTTTT 

8 CAVp270 Serratia 

marcescens 

Jun-15 Perirectal 

surveillance 

N/A Tn4401b-8 TTTTT/TTTTT 

8 CAVp361 Escherichia 

coli 

Dec-16 Perirectal 

surveillance 

N/A Tn4401b-8 TTTTT/TTTTT 

8 CAVp374 Citrobacter 

freundii 

Mar-17 Perirectal 

surveillance 

N/A Tn4401b-8 TTTTT/TTTTT 

 337 
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Fig 1b. 
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Fig 2. 
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Fig 3. 
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Fig 4a 

Fig 4c 

Fig 4b 
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