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ABSTRACT

Jumping to conclusions during probabilistic reasoning is a cognitive bias reliably observed in
psychosis and linked to delusion formation. Although the reasons for this cognitive bias are
unknown, one suggestion is that psychosis patients may view sampling information as more
costly. However, previous computational modeling has provided evidence that patients
with chronic schizophrenia jump to conclusions because of noisy decision-making. We
developed a novel version of the classical beads task, systematically manipulating the cost of
information gathering in four blocks. For 31 individuals with early symptoms of psychosis
and 31 healthy volunteers, we examined the numbers of “draws to decision” when
information sampling had no, a fixed, or an escalating cost. Computational modeling
involved estimating a cost of information sampling parameter and a cognitive noise
parameter. Overall, patients sampled less information than controls. However, group
differences in numbers of draws became less prominent at higher cost trials, where less
information was sampled. The attenuation of group difference was not due to floor effects,
as in the most costly block, participants sampled more information than an ideal Bayesian
agent. Computational modeling showed that, in the condition with no objective cost to
information sampling, patients attributed higher costs to information sampling than controls
did, Mann–Whitney U = 289, p = 0.007, with marginal evidence of differences in noise
parameter estimates, t(60) = 1.86, p = 0.07. In patients, individual differences in severity of
psychotic symptoms were statistically significantly associated with higher cost of information
sampling, ρ = 0.6, p = 0.001, but not with more cognitive noise, ρ = 0.27, p = 0.14; in
controls, cognitive noise predicted aspects of schizotypy (preoccupation and distress
associated with delusion-like ideation on the Peters Delusion Inventory). Using a
psychological manipulation and computational modeling, we provide evidence that
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early-psychosis patients jump to conclusions because of attributing higher costs to sampling
information, not because of being primarily noisy decision makers.

INTRODUCTION

A consistent psychological finding in schizophrenia research is that patients, especially those
with delusions, gather less information before reaching a decision. This tendency to draw a
conclusion on the basis of little evidence has been called a jumping-to-conclusions (JTC) bias
(Garety & Freeman, 2013). According to cognitive theories of psychosis, a JTC bias is a trait
representing liability to delusions. People who jump to conclusions easily accept implausi-
ble ideas, discounting alternative explanations and thus ensuring the persistence of delusions
(Garety & Freeman, 1999; Garety, Bebbington, Fowler, Freeman, & Kuipers, 2007; Garety et al.,
2013). Reviews and meta-analyses have confirmed the specificity, strength, and reliability of
the association of JTC bias and psychotic symptoms (Dudley, Taylor, Wickham, & Hutton,
2016; Fine, Gardner, Craigie, & Gold, 2007; Garety & Freeman, 2013; Ross, McKay, Coltheart,
& Langdon, 2015; So, Garety, Peters, & Kapur, 2010; So, Siu, Wong, Chan, & Garety, 2015).

The JTC bias is commonly measured in psychosis research using variants of the beads in
the jar task (Huq, Garety, & Hemsley, 1988). A person is presented with beads drawn one at
a time from one of two jars containing beads of two colors mixed in opposite ratios (Garety,
Hemsley, & Wessely, 1991; Huq et al., 1988). JTC has been operationally defined in the beads
tasks as making decisions after just one or two beads (Garety et al., 2005; Warman, Lysaker,
Martin, Davis, & Haudenschield, 2007). The commonly used outcome in this task is the num-
ber of beads seen before choosing the jar, known as draws to decision (DTD). The task requires
the participant to decide how much information to sample before making a final decision. This
behavior can be compared to the behavior of an ideal Bayesian reasoning agent (Huq et al.,
1988). However, when people experience evidence seeking as costly, it is thought that gath-
ering less information could be seen as optimal, leading to monetary gains at the expense of
accuracy (Furl & Averbeck, 2011).

Although the JTC bias has been well replicated, the neurocognitive mechanisms under-
lying it are unknown; many possible psychological explanations have been put forward, not
all of which are mutually exclusive (Evans, Averbeck, & Furl, 2015). Motivational factors, such
as intolerance of uncertainty (Bentall & Swarbrick, 2003; Broome et al., 2007), a “need for
closure” (Colbert & Peters, 2002), a cost to self-esteem of seeming to need more informa-
tion (Bentall & Swarbrick, 2003), or an abnormal “hypersalience of evidence” (Esslinger et al.,
2013; Menon, Mizrahi, & Kapur, 2008; Speechley, Whitman, & Woodward, 2010), have been
posited as potentially underlying the JTC bias. A common theme emerging from the intoler-
ance of uncertainty, the need for closure, and the cost to self-esteem hypotheses is that patients
experience an excessive cost of sampling information.

Computational models allow researchers to consider important latent factors influencing
decisions. The costed Bayesian model (Moutoussis, Bentall, El-Deredy, & Dayan, 2011) incor-
porates a Bayesian consideration of future outcomes with the subjective benefits or penalty
(cost) for gathering additional information on each trial and the noise during the decision-
making; Moutoussis and colleagues (2011) applied this computational model to the informa-
tion sampling behavior of a sample of chronic schizophrenia patients undertaking the beads
task. They found, contrary to their expectations, that a higher perceived cost of the informa-
tion gathering did not underpin the JTC bias. Therefore they concluded that differences in the
noise of decision-making were more useful in explaining the differences between patients and
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controls than the perceived cost of the information sampling. However, here we reason that
a rejection of the increased cost of information sampling account of the JTC bias based on
this finding is premature, as patients with chronic schizophrenia may not be representative of
all psychosis patients, especially not those at early stages of psychosis—a stage particularly
relevant for understanding the formation of delusions. A variety of different cognitive factors
may contribute to the JTC bias; the balance of contributory factors may differ in different patient
populations, with noisy decision-making relating to executive cognitive impairments pre-
dominating in chronic but perhaps not in early stages of psychosis. Furthermore, Moutoussis
and colleagues applied their model to an existing dataset (Corcoran et al., 2008) that used the
classic beads task. In this task, no explicit value was assigned to getting an answer correct or
incorrect, and no explicit cost was assigned to gathering information. The authors themselves
concluded that their work required replication, including incorporation of experimental
manipulation of rewards and penalties.

The current study investigated the hypothesis that patients with early psychosis attribute
higher costs to information sampling using a novel version of the traditional beads task and
computational modeling. Focusing on patients at early stages of psychosis allowed us to in-
vestigate the JTC bias before the onset of a potential neuropsychological decline seen in some
patients with chronic schizophrenia and to study a largely unmedicated sample of psychosis
patients. Specifically, we were interested in testing whether patients adapt their decision strate-
gies when there is an explicit cost of information sampling. We therefore developed a variation
of the beads task in which there were blocks with and without an explicit cost of information
sampling, and we gave feedback for correct and incorrect answers. This manipulation allowed
the comparison between groups on different cost schedules. However, it also allowed us to
test the competing hypothesis, which is that psychosis patients jump to conclusions because of
primarily noisy decision-making behavior. Under this account, patients should be insensitive
to a cost manipulation in the novel setup of the paradigm and apply random decision-making.

This study presents a novel investigation of the processes that lead to reduced infor-
mation sampling in psychosis. We hypothesized that (a) psychosis patients would gather less
information than controls when gathering information is cheap and that (b) psychosis patients
and controls would adjust their information sampling according to experimental cost manip-
ulations and that the adjustments would mitigate, but not abolish, the difference between the
groups. Finally, we hypothesized that (c) the costed Bayesian model applied to this paradigm
and a largely unmedicated early-psychosis group would provide explanatory evidence for JTC
bias in favor of less information sampling because of higher perceived costs rather than purely
noisy decision-making.

METHODS

Study Participants

The study was approved by the Cambridgeshire 3 National Health Service research ethics
committee. An early-psychosis group (N = 31) was recruited, consisting of individuals with
first-episode psychotic illness (N = 14) or with at-risk mental states (ARMS; N = 17) from the
Cambridge early intervention service in psychosis (CAMEO). Inclusion criteria were as fol-
lows: age 16–35 years and current psychotic symptoms meeting either ARMS or first episode
of psychosis (FEP) criteria according to the Comprehensive Assessment of At-Risk Mental
States (CAARMS; Morrison et al., 2012; Yung et al., 2005). Patients with FEP were required to
meet ICD-10 criteria for a schizophrenia spectrum disorder (F20, F22, F23, F25, F28, F29) or
affective psychosis (F30.2, F31.2, F32.3). Healthy volunteers (N = 31) without a history of
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psychiatric illness or brain injury were recruited as control subjects. None of the participants
had drug or alcohol dependence. Healthy volunteers had not reported any personal or family
history of neurological or psychotic illness and were matched with regard to age, gender, hand-
edness, level of education, and maternal level of education. None of the patients with ARMS
were taking antipsychotic medication, and four patients with FEP were on antipsychotic med-
ication at the time of testing. All of the experiments were completed with the participants’
written informed consent.

Behavioral JTC Task

This was a novel task (Figure 1), based on previously published tasks (Garety et al., 1991;
Huq et al., 1988) of reasoning bias in psychosis, but amended in the light of decision-making
theory, according to which the amount of evidence sought is inversely proportional to the costs
of information sampling. These costs include the high subjective cost of uncertainty and the
cost to self-esteem or other factors (Moutoussis et al., 2011). Participants were told that there
are two lakes, each containing black and gold fish in two different ratios (60:40). The ratios
were explicitly stated and displayed on the introductory slide. A series of fish was drawn from
one of the lakes; all the previously “caught” fish were visible to reduce the working memory
load. The participants were informed that fish were being “caught” randomly from either of
the two lakes and then allowed to “swim away.” We used a pseudo-randomized order for each
trial, which was the same for all participants. The lake from which the fish were drawn was
also pseudo-randomized.

Participants could ask for a maximum of 20 fish to be shown. After each fish shown,
they indicated whether the fish came from Lake G (mainly gold) or Lake B (mainly black) or
asked to see another fish. The trial terminated when the subject chose the lake. There were four

Figure 1. Experimental design of a single trial. In 50% of the trials, fish were coming from the mainly
black lake, and in 50%, they were coming from the mainly gold lake. The order was pseudo-
randomized so that the same sequences were used for all participants. Feedback, depending on
the block, was either of the words “Correct” and “Incorrect” in Block 1 or the number of points won
(or lost) during the trial in all subsequent blocks.
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blocks, each with the 10 trials of the predetermined sequences to increase reliability. Block 1
was similar to the classical beads task and was included to provide a reference point. The only
difference was that feedback (“correct” or “incorrect”) was provided after each trial. In Block 2,
a win was assigned to a correct decision (100 points) and a loss (−100 points) to an incorrect
decision. In Block 3, the cost of each extra fish after the first one was introduced (−5 points)
was subtracted from the possible win or loss of 100 points for making a correct or incorrect
decision, respectively. Block 4 was similar to Block 3, but the information sampling cost was
incrementally increased: The first fish would cost 0 points, the second −5 points, the third
−10 points, and so on. Thus a higher number of fish sampled led to more lost points. Subjects
performed the task at their own pace. Whether Lake G or Lake B was correct was randomized.
The task consisted of four blocks. Within each block were 10 trials of predetermined sequences
of fish to increase reliability. All of the fish that were “caught” during one trial were visible on
the screen to minimize the working memory load. Block order was not randomized because
the task increased in complexity.

The main outcome variable was the number of fish sampled (DTD). Secondary outcomes
were the accuracy of the decision, calculated according to Bayes’s theorem, based on the
probability of the chosen lake given the color and number of fish seen (Everitt & Skrondal,
2010), and the dichotomous JTC variable, which is defined as making a decision after two or
fewer pieces of information.

Figure 2. State space schematic. A) Markovian transitions in this task. Top: belief (probabilistic)
component of states; middle: observable part of the state (data/feedback). Down arrows: actions
(sample, declare). Bottom: true state. For example, let the cost of sampling be very high. Then b0
may be “equiprobable lakes,” Action 1 “sample,” s1 “B,” b1 “60% B,” Action 2 “declare B,” and s1
“Wrong.” B) In this example, sampling cost is very low. A person has drawn 15 fishes, 7 of them g,
hence the position of 15 on the x-axis and +1 on the y-axis as there is a +1 excess of black fish so far.
The visible states corresponding to all possible future draws are shown. Looking ahead (example:
gray arrow), the agent finds the “sampling” action more valuable in that the current preference for
the B lake is likely to be strengthened at very low cost.

Computational Psychiatry 22



Cost Evaluation of Decisions in Early Psychosis Ermakova et al.

Partially Observable Markov Process Decision-Making We consider a belief-based model of
decision-making, formally a partially observable Markovian decision process, to model be-
havior in this task. The process is Markovian because we can concisely formulate the state
in which the people find themselves upon observing nd draws, so that the state contains all
information that can be extracted from observations thus far. As beads are drawn from one jar
only at each trial, this can be simply defined as the number of g fishes seen so far and the to-
tal number seen: s =

[
nd, ng

]
. The agent is interested to infer upon the true state of the world,

which is a B or G lake. This is not directly observable but partially observable. The agent main-
tains a belief component of their state, P(G | s). The Markov property still holds: future beliefs
are independent of past beliefs given the current state (Figure 2A). As we will see, belief-state
transitions can be calculated just by considering the evidence so far. Given the current be-
lief state, the probability of the possible unfolding of the task into the future can be estimated
and hence the expected returns for each possible future decision (Figure 2B). The value of the
available choices can thus be estimated: choosing the B lake DB, the G lake DG, or sampling
another piece of information DS. The agent chooses accordingly and either terminates the trial
or gathers a new datum and repeats the process (Figure 2).

We now formally specify the model. Let P
(
G|nd, ng

)
be the probability of the lake being

gold after drawing nd fish and seeing ng gold fish. Using Bayes’s theorem, and assuming that
a gold lake and a black lake are equally probable,

P
(
G|nd, ng

)
=

P
(
nd, ng|G

)
P(G)

P
(
nd, ng|G

)
P(G) + P

(
nd, ng|B

)
P(B)

=
P
(
nd, ng|G

)
P
(
nd, ng|G

)
+ P

(
nd, ng|B

) ,

P
(
nd, ng|G

)
=

(
ng

nd

)
P(g|G)ng [1 − P(g|G)]nd−ng ,

P
(
nd, ng|B

)
=

(
ng

nd

)
P(g|B)ng [1 − P(g|B)]nd−ng ,

P
(
Gnd, ng

)
=

P(gG)ng [1 − P(gG)]nd−ng

P(gG)ng [1 − P(gG)]nd−ng + P(gB)ng [1 − P(gB)]nd−ng
. (1)

We then need to calculate the value of each action. For the “declare” choices, the action value
is the expected reward for a correct answer minus the expected cost for a wrong answer. For
example, if Q

(
DG; nd, ng

)
is the action value of declaring the lake gold, after drawing nd fish

and seeing ng gold fish,

Q
(

DG; nd, ng
)
= RCP

(
Gnd, ng

)
− CW P

(
Bnd, ng

)
, (2)

where RC is the reward for declaring the color of the correct lake and CW is the cost of declaring
the color of the wrong lake. In our task, RC = CW , so

Q
(

DG; nd, ng
)
= RC

[
P
(
G|nd, ng

)
− P

(
B|nd, ng

)]
= RC

[
2P

(
G|nd, ng

)
− 1

]
.

Similarly,

Q
(

DB; nd, ng
)
= RC

[
P
(

B|nd, ng
)
− P

(
G|nd, ng

)]
= RC

[
1 − 2P

(
G|nd, ng

)]
.

The action value of sampling again is the expectation over the value of the next state
minus the cost of sampling CS(nd). If the value of the (possible) next state is V(s′), the action
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value for sampling again is the sum over the new possible states, weighted by their probabili-
ties. The latter depends, in turn, on the identity of the true underlying lake, L:

Q(DS; s) = −CS + ∑
L∈{G,B}

P(L|s)∑
s′

V
(
s′

)
P
(
s′ |L

)
. (3a)

The possible outcomes for sampling again, and getting a black fish (going from (nd, ng) to
(nd + 1, ng)) and getting a gold fish (going from (nd, ng) to (nd + 1, ng + 1)), are

Q
(

DS; nd, ng
)
= −CS (nd)

+ P
(
G| nd, ng

)
×

{
V
(
nd + 1, ng + 1

)
P(g| G) + V

(
nd + 1, ng

)
P(b| G)

}
+ P

(
Bnd, ng

)
×

{
V
(
nd + 1, ng + 1

)
P(gB) + V

(
nd + 1, ng

)
P(bB)

}
.

(3b)

Agents will tend to prefer actions with the greatest value. An ideal, reward-maximizing agent
will always choose the action with the maximum value and will thus endow the corresponding
state with this value. Denoting q as the vector of action values,

q(s) =
[
Q(DG; nd, ng), Q

(
DB; nd, ng

)
, Q(DS; nd, ng)

]
⇒ V(nd, ng) = max(q(s)). (4a)

Real agents will choose probabilistically as a function of action values, so

V(s) = ∑
a∈{DS,G,B}

qs p(a|q(s)). (4b)

Agents cannot fill in the action values for sampling starting from their current state, as
the next state value is not known. However, they can fill in all values by backward inference.
At the very end, nd = 20, sampling is not an option, and the action values can be calculated
directly from Equation 2 and the state value from Equation 4. Once all possible state values
for nd = 20 have been calculated, Equations 2, 3a, 3b, 4a, and 4b are used to calculate action
and state values for nd = 19 and downward to nd = 1.

We now turn to the ideal, deterministically maximizing agent against which we can
compare human performance. When given the same sequence of fish as human participants,
on average, the ideal Bayesian agent samples 20, 20, 3.5, and 1 fish in each of the four blocks,
respectively, achieving total winnings of 1,070 points (Table 3). For no cost (Blocks 1 and 2), an
ideal Bayesian agent samples all the fish and has p = 0.835 of being correct (100% if we had
infinite fish). For constant cost (5 points, Block 3), it samples until the difference between black
and gold fish (Nb − Ng) is 2, with p = 0.692 probability of being correct. For increasing cost
(Block 4), it guesses after the first fish, so there is 0.6 probability of being correct. To model
real agents, the probabilistic action choice in Equation 4b took the softmax form:

ln p(a|q(s)) = qa/T + z, (5)

with z a normalizing constant that is the same for all the actions at a specific state and T a
decision temperature parameter, described later (Moutoussis et al., 2011).

Thus two parameters shape a participant’s behavior:

• CS, the cost of sampling, that is, the subjective cost of each additional piece of informa-
tion compared to the final reward. It may be greater or smaller than the costs imposed
by the experimenter but is here taken to be constant (in a given block). High values of
CS mean that decisions are made early.
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• T, the noise parameter. As this value increases, the probability of the participant following
the ideal behavior (for their given value of CS) decreases and their actions become more
uniformly random.

Model Parameter Estimation Here we were interested in the most accurate possible esti-
mates of the means and variances characterizing the psychosis and control groups. We there-
fore used what is known as a hierarchical model, a variant of the random effects approach.
Here a participant’s model parameters are drawn from a group, or population, distribution.
This procedure estimates the mean and variance for CS and for T for the whole group. For a
group of, for example, 30 participants with 10 data points each, we use 300 data points to
estimate 4 values (i.e., mean and variance for each of the two parameter distributions) rather
than 2 different parameters for each of the 30 participants (i.e., 60 parameters in total). We
assumed both parameters to be positive and a priori uncorrelated and therefore appropriately
modeled by independent gamma distributions. The standard ways that mathematicians param-
eterize gamma distributions are in terms of a shape and scale or rate. However, these do not
map intuitively to the quantities we are usually interested in clinical research, that is, a mea-
sure of center and a measure of spread. Thus we follow Moutoussis et al. (2011) in describing
our parameters by mean and variance. We used the expectation-maximization (EM) technique
(see Ermakova, Gileadi et al., 2018, Appendix; see also Moutoussis et al., 2011). In brief, EM
proceeds by first assuming uninformative distributions at the group level; using these as un-
informative priors, it derives probability distributions for the parameters of each participant
based on each one’s data. This is expectation. Then, it reestimates the group-level distributions
to maximize the likelihood of the (temporarily fixed) lower level. This is maximization. The
group-level distributions then form empirical priors that are used in place of the uninformative
ones. The process is repeated until all estimates are stable; we ran between 25 and 30 iterations
of the EM algorithm (see Ermakova, Gileadi et al., 2018, Appendix). Runs took about 30 s per
iteration per participant on a single core of an Intel Core2 Duo CPU and 4 GB of RAM.

Once the maximum likelihood parameters for a given group are estimated, they can be
interpreted using the integrated Bayesian information criterion (iBIC; Huys et al., 2012, 2015),
which uses the likelihood values of best-fit parameters for two different models to decide which
model best represents the data. In the case of the ordinary BIC, to assess model fit, we calculate
the maximum likelihood of the data of each participant given a particular model, and we pe-
nalize this in proportion to the number of parameters in the model. The underlying assumption
is that a greater number of parameters represents a proportionate reduction of prior belief that
the participant belongs to a given region of the parameter space and that all parameters are on
the same footing for each participant. The volume of this parameter space scales to the power
of its dimensionality, that is, the number of parameters, so the log of this, used in the BIC,
is proportional to this number of parameters. Redundant parameters, which would result in
overfitting, are thus penalized. However, this approximation can be refined. The study sample
itself gives information about the prior probability that a particular parameter obtains at the
micro-level of the individual. This is the empirical prior, which, in our case, is calculated by
EM. Now the complexity penalty at the level of the individual is calculated by forming a mean,
or integrated, likelihood weighed by this prior. This allows for the data to speak to some param-
eters being “more equal than others” in penalizing complexity. We can now account well for
the penalty due to the prior at the level of the individual, but we have not considered the level
of the group. Should we assume that, say, patient participants should be fitted with different
empirical priors than healthy controls, or the same? To compare separate-fit and common-fit
statistical models, we turn to the BIC approximation of complexity proportional to the number
of parameters, but now at the level of the groups. Thus the integrated BIC, which is integrated

Computational Psychiatry 25



Cost Evaluation of Decisions in Early Psychosis Ermakova et al.

in the sense that it contains weighted-mean likelihoods rather than maximum likelihoods, also
contains a penalty term for models in proportion to the number of empirical priors, or groups,
used. Therefore it can be used for hypothesis testing: If one model has all participant parame-
ters coming from one distribution (four parameters) and a second model separates the control
and unhealthy groups (eight parameters), a comparison of iBIC values can be used to decide
if splitting the sample is justified. The interested reader is referred to Huys et al. (2012, 2015)
for mathematical details.

In addition, we conducted analyses based on individual participants’ estimated model
parameters. A reliable test of the hypothesis that the groups differ in the cost (or noise) pa-
rameters can be created by forcing the model to treat all participants as coming from one
group, with a single group mean and variance, then using the model’s estimates of the single
subject parameters to conduct a test of whether there are differences according to diagnostic
group. This approach is overconservative but serves a purpose in subjecting the test of group
differences to a stern challenge.

Rating Scales and Questionnaires

The participants underwent a general psychiatric interview and assessment (Tables 1 and 2)
using the CAARMS (Morrison et al., 2012; Yung et al., 2005), the Positive and Negative Symp-
tom Scale (PANSS; Kay, Fiszbein, & Opler, 1987), the Scale for the Assessment of Negative
Symptoms (SANS; Andreasen, 1989), and the Global Assessment of Functioning (GAF; Hall,
1995). The Beck Depression Inventory (BDI; Beck, Steer, & Brown, 1996) was used to assess
depressive symptoms during the last 2 weeks. IQ was estimated using the Culture Fair Intel-
ligence Test (Cattell & Cattell, 1973). Schizotypy was measured with the 21-item Peters et al.
Delusions Inventory (PDI-21; Peters, Joseph, Day, & Garety, 2004).

Statistical Analysis of the Behavioral Data

The effect of manipulations of wins, losses, and costs on the DTD and accuracy was assessed
by repeated-measures analysis of variance (ANOVA) using SPSS 23. Although DTD was not
normally distributed, repeated-measures ANOVA is robust to violations of normality and was
therefore an appropriate test to run. IQ and depressive symptoms scores were initially included
as covariates and dropped from the subsequent analysis where nonsignificant. We report two-
tailed p-values, which were significant at p < 0.05. When the assumption of sphericity was
violated, we applied Greenhouse–Geisser corrections. We also examined whether DTD was
correlated with the severity of psychotic symptoms in the patient group (CAARMS positive
symptoms) and with schizotypy scores on the PDI in controls using Spearman’s correlation
coefficients. The intraclass correlation coefficients (ICCs) were used to estimate the consistency
of decision-making. We calculated the ICCs of the mean number of choices in each block
separately for patients and controls.

For completeness and to help relate our study to prior literature (or for future meta-
analyses), we report data on the dichotomous variable JTC, defined as making a decision after
receiving one or two pieces of information, and we compare the FEP and ARMS patient groups
separately to controls on Block 1 DTD and estimated model parameters.

RESULTS

Demographical Characteristics of the Participants

In Tables 1 and 2, the sociodemographic and cognitive parameters as well as clinical measures
of the participants are presented. Although healthy volunteers had higher IQ compared to the
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Table 1. Sample characteristics for healthy controls and patients with early psychosis

Controls (n = 31) Early psychosis (n = 31)

Variable Mean SD Mean SD Statistics

Age (years) 21.58 2.41 22.52 4.66 t(60) = 0.993, p = 0.325
Gender (male/female) 18/13 18/13 χ(1) = 0.0, p = 1
IQ 110.52 15.79 102.26 17.91 t(60) = −1.926, p = 0.059
Level of education 2.35 0.79 2.00 1.17 U(2) = 373.5, p = 0.117
Mother’s level of education 2.19 0.91 2.11 1.37 U(2) = 440.0, p = 0.884
Smoking (yes/no)a,* 6/25 18/13 χ(1) = 9.79, p = 0.004
Alcohol 2.42 0.85 1.78 1.37 U(2) = 419.5, p = 0.368
Cannabis 0.90 0.79 1.26 1.23 U(2) = 430.0, p = 0.459
Other drugsb,* 0.49 1.02 1.11 1.36 U(2) = 355.5, p = 0.039
PDI-21* 4.45 2.34 7.83 4.58 t(45) = 3.359, p = 0.002
Distress* 9.52 6.94 24.00 15.32 t(45) = 4.430, p < 0.001
Preoccupation* 10.28 6.48 24.78 16.11 t(45) = 4.341, p < 0.001
Conviction* 13.31 8.13 26.56 17.11 t(45) = 3.58, p = 0.001
BDI* 3.40 3.90 25.34 14.12 t(57) = 8.197, p < 0.001
CAARMS summary scorec,* 0.52 1.15 18.00 7.53 t(60) = 12.776, p < 0.001

Note. Intelligence was measured with a Culture Fair Intelligence Test. BDI = Beck Depression Inventory; CAARMS = Comprehensive
Assessment of At Risk Mental States; PDI = Peter’s Delusion Inventory.
a0 = nonsmoker; 1 = smoker. bSubstance use was measured on a 5-point scale ranging from 0 (never used) to 5 (daily user). Other
drugs included hallucinogens, stimulants, or sedatives. cA summary score of Unusual Thought Content, Non-bizarre Ideas, and
Perceptual Abnormalities intensity and frequency subscales (for individual subscales of CAARMS and other clinical assessment
measures, see Table 2).

*Significant differences.

psychosis group, the difference was not significant, and the groups were matched with regard
to level of maternal education and number of years of education. The control and patient
groups did not differ with regard to gender or age. There were significantly more smokers in
the patient group compared to the control group, and some subjects of the patient group used
more recreational drugs. For all of the other measures (e.g., alcohol or cannabis), there were
no significant group differences. As expected, there are significant differences between the
healthy volunteers and the patients in all subscales of CAARMS (Table 2), on the self-reported
depression questionnaire (BDI), and in self-reported schizotypy scores (PDI). In the patient
group only, we performed additional clinical assessments. The mean (±SD) score for PANSS
positive symptoms was 13.68 (±3.99); for PANSS negative symptoms 9.87 (±4.88); for SANS
0.35 (±0.75), and for GAF 55.00 (±18.54).

Group Differences in the Number of DTD and Points

Inspection of Figure 3A reveals that in all of the blocks, the controls took more DTDs than the
patients. Mauchly’s test indicated that the assumption of sphericity was not violated, W(5) =
0.211, p < 0.001. On mixed-model ANOVA, there were significant main effects of block,
F(3) = 94.49, p < 0.001, and of group, F(1) = 5.99, p = 0.017, on the number of DTD. The
interaction between the group and the block was also significant, F(3) = 4.32, p = 0.006. This
indicates that, depending on the group, block change had different effects on DTD. Group
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Table 2. Clinical assessment measures for 31 patients with psychosis

Mean SD

UTC 2.44 2.19

UTC frequency 2.33 2.01

NBI 3.41 1.67

NBI frequency 3.52 1.48

PA 3.33 2.06

PA frequency 2.52 1.89

DS 0.59 1.28

DS frequency 0.96 1.99

ADB 1.81 1.82

ADB frequency 2.15 1.92

SS 1.59 1.48

SS frequency 1.30 1.44

GAF score 55.00 18.54

SANS score 0.35 0.75

PANSS positive 13.68 3.99

PANSS negative 9.87 4.88

Note. BDI = Beck Depression Inventory; GAF = Global Assessment of Functioning; SANS =
Scale for Assessment of Negative Symptoms. Comprehensive Assessment of At Risk Mental States
(CAARMS) subscales included Unusual Thought Content (UTC), Non-bizarre Ideas (NBI), Perceptual
Abnormalities (PA), Disorganized Speech (DA), Aggression/Dangerous Behavior (ADB), Suicidality
and Self-Harm (SS).

differences were statistically significant in the first two blocks (Block 1, p = 0.007; Block 2,
p = 0.028), whereas in Blocks 3 and 4, the group differences were increasingly attenuated, as
the cost of decision-making became increasingly high (Block 3, p = 0.059; Block 4, p = 0.419).
Control behavior was more similar to the ideal Bayesian agent than patients on the first three
blocks but not Block 4 (Table 3). Group differences in the probability of being correct were
very similar to the results in the number of DTD (Figure 3B).

Analyzing the points won/lost in Blocks 2–4 (Figure 4), we identified four outliers in
each group that significantly exceeded the ±2 standard deviation threshold. After excluding
these subjects, the mixed-model ANOVA revealed a significant effect for block, F(2) = 93.73,
p < 0.001, a marginally significant interaction between Block · Group, F(2) = 2.52, p = 0.086,
and a significant groups effect, F(1) = 4.14, p = 0.047. Patients won significantly fewer points
in Block 2, F(2) = 4.65, p = 0.035, but did not differ from controls in Blocks 3 and 4, both
p > 0.3. Percentage and count of people displaying a JTC reasoning style are presented in
Table 4.

Intraclass Correlations of DTD and SD of the Mean DTD

ICCs of the mean number of DTD within each block were calculated separately for patients
and controls. Within all blocks in both groups, the correlations were very high, indicating
that behavior was consistent within each block (ICC values: Block 1, patients 0.965, controls
0.943; Block 2, patients 0.982, controls 0.973; Block 3, patients 0.972, controls 0.976; Block 4,
patients 0.973, controls 0.978).
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Figure 3. Performance: Draws to decision and accuracy according to block and group. A) Mean number of draws to decision in the four
blocks of the task. On mixed-model ANOVA, there were significant main effects of block, F(3) = 94.49, p < 0.001, and of group, F(1) = 5.99,
p = 0.017, and an interaction between group and block, F(3) = 4.32, p = 0.006, with group differences in Block 1, p = 0.007, and Block 2,
p = 0.03. B) Probability of being correct (accuracy) at the time of making the decision in four task blocks. Here there was an effect for
block, F(2) = 93.73, p < 0.001, a marginally significant interaction between Block · Group, F(2) = 2.52, p = 0.086 and a significant groups
effect, F(1) = 4.14, p = 0.047.

Correlation of Symptoms and IQ With DTD

We calculated two-tailed Spearman’s correlations with positive psychotic symptoms in patients
and with PDI scores in controls. In the patient group, we used a summary score of the three
CAARMS subscales that quantify positive psychotic symptoms, namely, Unusual Thought Con-
tent, Non-bizarre Ideas (mainly persecutory ideas), and Perceptual Aberrations. An additional
advantage of the summary measure is that it provides one measure to reduce the number of
correlations that need to be performed. We also ran correlation BDI scores because the groups
differed on this measure. In the group with psychotic symptoms, the correlations with the over-
all CAARMS score were significant in the first three blocks (Block 1, ρ = −0.515, p = 0.003;

Table 3. Information sampling in controls, patients, and an ideal Bayesian agent

Group Control (n = 31), Mean (SD) Psychosis (n = 31), Mean (SD) Ideal Bayesian agent

DTD 1 12.01 (5.42) 8.14 (6.16) 20

DTD 2 12.69 (5.67) 9.15 (6.31) 20

DTD 3 5.80 (4.23) 4.14 (2.64) Nb − Ng = ±2

DTD 4 3.71 (3.12) 3.03 (2.09) 1

P corr 1 0.72 (0.10) 0.66 (0.10) 0.835

P corr 2 0.75 (0.09) 0.69 (0.11) 0.835

P corr 3 0.65 (0.07) 0.62 (0.08) 0.692

P corr 4 0.62 (0.09) 0.59 (0.08) 0.6

Note. DTD = draws to decision (i.e., number of fish seen by the participant before reaching a decision); Nb = number of black;
Ng = number of gold; P corr = probability of being correct in Blocks 1–4.
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Figure 4. Mean number of points won or lost in Blocks 2–3 across all 10 trials. Patients won
significantly fewer points in Block 2, F(2) = 4.65, p = 0.035, but did not differ from controls in
Block 3 and 4, both p > 0.3.

Block 2, ρ = −0.489, p = 0.005; Block 3, ρ = −0.491, p = 0.005). There were no correlations
in the psychotic symptoms group between DTD and BDI score, for all p > 0.1.

In controls, we found significant correlations of DTD in Block 1 with the Distress, ρ =

−394, p = 0.035, and Preoccupation, ρ = −0.462, p = 0.012, subscales of the PDI. DTD in
Block 2 correlated with the Preoccupation subscale of PDI, ρ = −0.387, p = 0.038. There
were no significant correlations with BDI scores (e.g., for Block 1, ρ = −0.023, p = 0.905).

In the patients, we furthermore found a positive correlation between IQ and the first three
blocks (Block 1, ρ = −0.481, p = 0.006; Block 2, ρ = −0.362, p = 0.045; Block 3, ρ = −0.364,
p = 0.044). There was no such correlation in the controls.

Group Differences in the Probability of Being Correct (Accuracy)

Mauchly’s test indicated that the assumption of sphericity was not violated, W(5) = 0.667,
p < 0.001. There was a significant main effect of block on the probability of being correct,

Table 4. Percentage and count of people who displayed JTC reasoning style

Control (n = 31), n (%) Psychosis (n = 31), n (%)

No JTC 18 (58.1) 15 (48.4)

JTC Blocks 1/2 0 (0.0) 1 (3.2)

JTC Blocks 3/4 11 (35.5) 7 (22.6)

JTC all Blocks 2 (6.5) 8 (25.8)

Note. JTC (jumping to conclusions) is defined as reaching a decision after being given just one
or two pieces of information.
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F(3) = 53.502, p < 0.001, and a significant effect of group, F(1) = 5.514, p = 0.022. There was
a significant interaction between the group and the block, F(1) = 2.791, p = 0.042, indicating
that as the cost of decision-making increased, the group differences became attenuated.

Additional Analyses Having Excluded Participants on Medication or to Make Groups More Closely
Matched on IQ

To demonstrate that the findings were unaffected by antipsychotic medication, we conducted
repeat analyses having excluded the four patients taking antipsychotic medication. The results
were similar to in the full sample. As before, on mixed-model ANOVA, there were significant
main effects of block, F(3) = 88.59, p < 0.001, and of group, F(1) = 5.21, p = 0.026, on the
number of DTD. The interaction between the group and the block was also significant, F(3) =
4.54, p = 0.004. Group differences were statistically significant in the first two blocks (Block 1,
p = 0.013; Block 2, p = 0.023) but reduced in Blocks 3 and 4 (Block 3, p = 0.098; Block 4,
p = 0.55).

When we excluded the three highest IQ controls and two lowest IQ patients to make
groups more similar in IQ (resulting in control mean IQ 107 and patient mean 105), the re-
sults were similar: On mixed-model ANOVA, there were significant main effects of block,
F(3) = 90.2, p < 0.001, and of group, F(1) = 5.25, p = 0.026, on the number of DTD. The in-
teraction between the group and the block was also significant, F(3) = 3.50, p = 0.017. Group
differences were statistically significant in the first two blocks (Block 1, p = 0.013; Block 2,
p = 0.039) but reduced in Blocks 3 and 4 (Block 3, p = 0.062; Block 4, p = 0.45).

Computational Modeling Results: Analysis of Group Estimates of Model Parameters

In our computational analysis of Blocks 1–3, we found that patients with early psychosis as-
signed a higher cost to sampling more data than did healthy controls (Table 5). For example, in
Block 1, where there was no explicit cost, the modeled mean cost of sampling in the controls
was very low (1.9 · 10−3) compared to that of patients (1.7). The modeled variance was also
higher for the patient group (13) compared to the controls (2.0 · 10−6). The estimated noise
parameters were similar in both groups. For example, in Blocks 1 and 2, the respective group
estimated mean noise parameters were 3.4 and 3.6 in controls and 4.2 and 2.9 in patients,
respectively.

In Block 3, where an explicit cost of 5 points per fish sampled was assigned, the model
shows that patients very slightly overestimated the cost of sampling compared to the assigned
cost (estimated mean cost of sample for patients 5.2), whereas the controls underestimated it
(estimated mean cost of sample 1.6).

In Block 4, we explicitly told participants that the cost for additional information is not
fixed but increases with amount of information requested. We did not fit the computational
model to Block 4 because the model does not take into account the increasing cost structure
set up.

To test the null hypothesis that both groups are drawn from the same distribution of
behavior parameters, we used iBIC. Table 6 shows the results of that calculation, where the
null hypothesis can be rejected with strong evidence. For example, in Block 1, despite the fact
that the iBIC penalizes the use of extra parameters substantially, when fitting CSm, CSv, Tm,
and Tv separately for each group, iBIC was 3,450.2, compared to an iBIC of 3,489.7 for fitting
them as one combined group. Taken together, the iBIC can be used to compare the hypotheses
about the two models of interest. In our case, those are the following two: (a) Unhealthy and
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Table 5. Best-fit distribution parameters for all groups in all experiments

Group CSM CSV TM TV LL

Block 1: No cost

Control 1.9 · 10−3 2.0 · 10−6 3.4 13 −943.747

Psychosis 1.7 13 4.2 13 −762.993

Combined 0.7 2.2 3.6 13 −1,735.65

Block 2: No cost, but win or loss (±100)

Control 5.0 · 10−3 1.3 · 10−5 3.6 21 −841.202

Psychosis 3.0 44 2.9 7.5 −690.567

Combined 1.5 13 2.5 7.0 −1,549.28

Block 3: Fixed cost, plus win or loss (±100)

Control 1.6 9.9 4.1 2.2 −707.604

Psychosis 5.2 100 4.4 2.2 −545.704

Combined 3.1 38 4.2 1.0 −1,260.45

Note. Best-fit parameters were calculated for each participant group separately and for the group formed by combining both par-
ticipant groups. CSM = mean cost per sample for a particular group; CSV = variance of cost per sample within a particular group;
TM is the mean noise parameter for a particular group; Tv = variance of the noise parameter within a particular group; LL = log-
likelihood of the data given the parameters.

Table 6. Integrated Bayesian information criterion values for the model where all participants are drawn from the same distribution, compared
to the model where the healthy and unhealthy groups differ in their distributions

iBIC differernce iBIC differernce

iBIC iBIC iBIC after medication after closer IQ

Block combined separate difference exclusions matching

1 (no cost) 3,489.7 3,450.2 39.5
(very strong)

43.9 36.1

2 (no cost, win
or loss ±100)

3,116.9 3,100.3 16.7
(very strong)

16.6 −12.9

3 (fixed cost, plus
win or loss ± 100)

2,539.3 2,543.4 −4.1
(preference for
combined
model)

−6.2 −4.1

Note. iBIC values and differences are presented for analyses with all participants. iBIC differences are also shown for repeat analyses
after exclusions for antipsychotic medication or closer IQ matching. Positive iBIC differences indicate the preference for separate
groups, negative for a single combined group. iBIC = integrated Bayesian information criterion.
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healthy groups have independent CS and T parameter distributions, characterized by eight
numbers (mean and variance for CS and for T, for each group), and (b) all participants come
from the same pool of noise and cost parameters, characterized by four numbers. The iBIC
suggests that Hypothesis 1 is better explained by the separate model in Blocks 1 and 2 and by
the combined model in Block 3. Model fits were not changed substantially after exclusion for
medication (Table 6).

Computational Modeling Results: Analysis of Individual Participant-Level Cost and Noise Parameters

A very strong test of the hypothesis that the groups differ in the cost (or noise) parameters can be
created by forcing the model to treat all participants as coming from one group, with a single
group mean and variance, then using the model’s estimates of the single subject parameters to
conduct a test of whether there are differences according to diagnostic group. Although we
found (see earlier) that in Blocks 1 and 2, this assumption did not fit the data as well as modeling
the groups separately, so the approach is overconservative, this procedure serves a purpose in
subjecting the test of group differences to a stern challenge. The groups differed significantly on
estimated cost parameters in this procedure (Block 1, controls mean = −0.24, median= −0.04,
interquartile range = 0.07, psychosis mean = −1.1, median = −0.1, interquartile range 1.2,
Mann–Whitney U = 289, p = 0.007; Block 2, controls mean = −0.8, median = −0.04, in-
terquartile range = 0.08; psychosis mean = −2.2, median = −0.14, interquartile range = 4.9,
U = 363, p = 0.038; Block 3, controls mean = −2.0, median = −0.17, interquartile range =

2.3, psychosis mean = −4.2, median = −0.48, interquartile range = 8.62, U = 338, p = 0.045)
but generally were similar on estimated noise parameters (Block 1, controls mean = 2.96,
SD = 2.08, patients mean = 4.14, SD = 2.86, t[60] = 1.86, p = 0.07; Block 2, controls mean =

2.27, SD = 1.61, patients mean = 2.81, SD = 1.95, t[60] = 1.2, p = 0.23; Block 3, controls
mean = 4.1, SD = 0.74, patients mean = 4.31, SD = 0.41, t[60] = 1.2, p = 0.23).

The results were similar after exclusions for medication (Block 1, cost group difference Mann–
Whitney U = 248, p = 0.008; noise group difference t[60] = 1.79, p = 0.08) or to equalized IQ
(Block 1, cost group difference U = 246, p = 0.01; noise group difference t[60] = 1.5, p = 0.13).

Individually estimated greater cost parameters predicted higher psychotic symptom sever-
ity in patients, ρ = 0.58, p = 0.001. There was no significant association between estimated
noise parameters and psychotic symptom severity, ρ = 0.27, p = 0.14. In controls, cost was
associated with PDI preoccupation, ρ = 0.41, p = 0.03, and marginally with distress, ρ = 0.35,
p = 0.06, and noise was associated with overall PDI score, ρ = 0.34, p = 0.07, distress, ρ =

0.42, p = 0.02, and preoccupation, ρ = 0.45, p = 0.01.

Cost parameter estimates were highly correlated across blocks (Blocks 1 and 2, ρ = 0.9;
Blocks 1 and 3, ρ = 0.6; Blocks 2 and 3, ρ = 0.7). Noise parameters were also correlated
across blocks (noise on the first two blocks, ρ = 0.8; noise on Blocks 1 and 3, ρ = 0.3; noise
on Blocks 2 and 3, ρ = 0.4). However, despite associations across blocks, there were significant
effects of block on both cost and noise (repeated-measures ANOVA effect of block on cost,
F[2, 122] = 14, p = 0.000003; effect of block on noise, F[2, 122] = 22, p = 5 · 10−9). Cost and
noise parameters were related to each other (e.g., on Block 1, ρ = 0.7) and, to a lesser extent, to
IQ on some blocks (e.g., IQ vs. Block 1 cost, ρ = 0.3; Block 3, ρ = 0.3; Block 1 noise, ρ = 0.2;
Block 3 noise, ρ = 0).

Subgroup Analysis

On Block 1 DTD, controls (mean DTD 12.1, SD = 5.4) gathered more evidence than FEP
(mean 6.7, SD = 6.0), one-tailed t(44) = 3.0, p = 0.002, and ARMS (mean 9.2, SD = 5.9),
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one-tailed t(47) = 1.7, p = 0.045. On Block 1, cost parameter, controls (median 0.04,
interquartile range 0.07) had lower values than FEP (median 2.5, interquartile range 4.1),
Mann–Whitney U = 106, one-tailed p = 0.003, and ARMS (median = 0.06, interquartile range
0.7), Mann–Whitney U = 183, one-tailed p = 0.04. On Block 1, noise parameter, controls
(mean 3.0, SD = 2.1) had lower values than ARMS (mean 4.2, SD = 3.1), t(45) = 1.7, one-
tailed p = 0.045, and, marginally, than FEP (mean 4.0, SD = 2.7), t(44) = 1.5, one-tailed
p = 0.075).

DISCUSSION

Our study shows that early-psychosis patients generally gather less information before coming
to a conclusion compared to healthy controls. Both groups slightly increased their DTD when
rewarded for a correct answer (Block 2) and significantly decreased their DTD when there was
an explicit cost for the sampling of information (Blocks 3 and 4). The decrease was strongest
in Block 4, including the incremental cost increase for each “extra fish.” These effects were
especially strong in controls, as they gathered significantly more information during Blocks 1
and 2 compared to patients. Thus patients had a lower “baseline” against which to exhibit a
change in DTD with increasing cost. However, we emphasize that an ideal Bayesian decision
agent would still sample fewer information than the average control or patient in Blocks 3
and 4 (in Block 4, the ideal Bayesian agent decides after the first fish, whereas our human
participants sampled more). This indicates that potential floor effects may not be responsible for
the decreased reduction of DTD in patients compared to controls. Together with our modeling
results, this finding supports the hypothesis that, independent of the objective cost value of
information, patients with early psychosis experience information sampling as more costly
than controls do.

In this novel version of the beads task using blocks with explicit costs, JTC can be an ad-
vantageous strategy, because sampling a large amount of very costly information would cancel
out the potential gain due to correctly identifying the lake. Consistent with this, group differ-
ences were especially strong in the first two blocks, where information sampling was free. In
Block 3, when there was only a small cost of information, both groups responded to that change
by lowering the number of fish sampled. The difference between the groups was marginally
significant on Block 3, where patients still applied fewer DTD, p = 0.06. However, further in-
creasing the information sampling cost completely abolished the group differences. Our data
furthermore show that patients were significantly worse in overall accuracy (i.e., probability of
being correct at the time of making the decision) and total points won, indicating the applica-
tion of an unsuccessful strategy. In general, these results show that healthy controls were more
flexible in adapting their information sampling to the changed task blocks. Controls increased
the number of fish sampled when there was a reward for the correct decision and decreased
it when information sampling had a cost. Patients also decreased the number of DTD when
information sampling became more costly, but not as much as the controls, suggesting that the
patients view information sampling generally as costly, somewhat independent of the actual
value and the feedback. The results on Blocks 1 and 2, furthermore, indicate that psychosis
patients have difficulties integrating feedback appropriately to update their future decisions.
This is similar to results we reported in a recent study on the win-stay/lose-shift behavior in a
partially overlapping early-psychosis group (Ermakova, Knolle et al., 2018).

The variance in DTD across the two groups was similar, and the ICCs were all greater
than 0.94, indicating consistent decision-making behavior across the 10 trials in each block
and within each group. If patients were acting more randomly, they would apply noisier and
more variable decision-making behavior, but we did not observe this, which is in contrast
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to Moutoussis et al. (2011). Concluding from their Bayesian modeling data, they proposed
that patients had more noise in their responses, leading to the reduced number of DTD. When
modeling our data in a similar way, we found a difference between the groups in the perceived
cost of information sampling, but less evidence in differences in the noise of decision-making
behavior. We suggest that the contrast between our findings and those of Moutoussis et al.
(2011) may be due to the differences in the patient groups used in the two studies. Whereas
Moutoussis et al. used chronic, mainly schizophrenic, patients with a potential neuropsycho-
logical decline and a lower IQ (of 92), our study used patients at early stages of psychosis with
preserved cognitive functioning (IQ 102). Severity of psychotic symptoms was related to DTD
and cost parameters in our sample; however, as all our participants were in the early stages of
illness, we were not able to explore relationships with chronicity statistically. We did, however,
conduct secondary analyses to examine subgroup differences within our patient sample. On
Block 1 DTD and cost parameters, the patients with confirmed psychotic illness (FEP) had the
most pronounced differences from controls, whereas regarding the noise parameter, there was
little difference between the patient groups, and indeed, the ARMS group, with milder symp-
toms, had slightly higher noise parameters. Differences in task design may also contribute to
differences in the results from Moutoussis et al. Block 1 was most similar to that previous study:
It differed in the type of test (computerized fishing emulation test vs. the classic test using ac-
tual beads and actual jars) and in providing feedback (i.e., “correct” or “incorrect”) after each
decision, as well as in showing the sequence of fish drawn in each trial. These changes in our
task potentially assisted patients (e.g., if some patients had memory deficits), which might also
contribute to why we did not observe robust differences in the noise parameter in Block 1.
When analyzing the objective cost of information sampling in Block 3, we found that patients
slightly overestimated the cost, while the controls underestimated it. Furthermore, key contrib-
utors to the best-fit parameters may be those who jump to conclusions most: participants who
consistently made a decision after viewing only one fish. The proportion of those individuals
was significantly higher among the patients.

The percentage of people with psychosis who demonstrated JTC reasoning style in our
study was relatively low, at 26%, compared to previous studies that report 40% of individ-
uals (Dudley et al., 2011) or half to two-thirds of the individuals with delusions (So et al., 2010).
Likewise, our objective DTD values were slightly higher than those in most other studies. This
might be due to the use of early-stage psychosis patients and the presence of feedback in our task
compared to previous studies. Feedback has been shown to increase information sampling and
accuracy both in patients with delusions and in controls (Lincoln, Ziegler, Mehl, & Rief, 2010).

Additionally, we found a correlation between IQ and DTD in the first three blocks in
the patient group, so we cannot completely exclude the contribution of intelligence to the
information-gathering bias. Some argue that impaired executive functions or working mem-
ory deficits contribute to the JTC bias (Falcone et al., 2015; Garety et al., 2013). A low IQ
could lead to a low tolerance for uncertainty and an equivalent high cost of the information
sampling as well as the inability to integrate feedback to update future decisions. If more in-
formation is unpleasant, because it exceeds one’s capacity to utilize it, it could be viewed as
costly. However, the fact that the correlation between IQ and DTD does not appear in con-
trols argues against this. The groups were well matched on maternal education level (a proxy
for premorbid or potential IQ), but the patient group had lower current IQ than controls (as
expected, given that schizophrenia spectrum disorders are robustly associated with reduced
current IQ compared to the general population). When we excluded the three controls with
the highest IQ and the two patients with the lowest IQ, the DTD results were broadly un-
changed. Computational modeling in Block 1 was not changed by these exclusions, although

Computational Psychiatry 35



Cost Evaluation of Decisions in Early Psychosis Ermakova et al.

in Block 2, there were some differences. After the exclusions, in Block 2, the BIC values did
not suggest evidence that the participants from different diagnostic groups are drawn from dif-
ferent populations. However, when we examined the individual-level modeled parameters,
even after the exclusions, there was evidence that patients had higher estimated sampling
costs compared to controls. Taken together, the findings indicate that lower IQ associated with
psychosis is likely to contribute to the JTC bias but is unlikely solely to explain its existence
in psychosis. The results of the study were unchanged when we excluded four patients tak-
ing antipsychotic (dopamine receptor antagonist) medication, which is consistent with two
prior studies in healthy volunteers, suggesting that dopaminergic manipulations do not have
a large effect on information sampling (Andreou, Moritz, Veith, Veckenstedt, & Naber, 2013;
Ermakova, Ramachandra, Corlett, Fletcher, & Murray, 2014).

When comparing our results to those of Moutoussis et al. (2011), the use of the same
computational model, implemented in the same way, is advantageous. However, we note that
there are limitations in the approach. For example, the use of a gamma distribution may not
be optimal in the case of values near zero (Moutoussis et al., 2011). It could be hypothesized
that the degree of cognitive noise should be a constant per individual and that thus it would be
more parsimonious to apply the same noise parameters for a given subject across blocks. Our
data suggest that this is not the case. Noise is highly correlated across blocks, just as cost is.
However, the experimental manipulation of block had a highly significant effect on both cost
(as intended by our paradigm design) and noise (an incidental effect). Noise parameters were
reduced in Block 2, where a correct decision is explicitly rewarded, compared to Block 1,
where it is not (indicating that information sampling is not immutable but can be adaptively
altered by psychological manipulation). Noise parameters were greater in Block 3 than in
Block 2, presumably because the decision is more difficult in Block 3 (where participants need
to balance the stated benefits and costs of sampling). When decisions reach a certain level of
difficulty, participants may appear more random in their decision-making because they can no
longer effectively utilize the information available.

Rather than focusing on ICD-10 or DSM–V schizophrenia patients, we studied a group
of patients early in their course of psychosis. All patients in our study suffered from current
psychotic symptoms. Psychosis is often viewed as an upper part of the continuum, ranging
from rare occurrences of delusions or hallucinations at one end through individuals with reg-
ular “schizotypal” traits (van Os, Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009).
Consistent with this approach, and with the theory that a JTC-style cognitive bias contributes
to psychotic symptom formation (Huq et al., 1988), we found that patients with more severe
positive symptoms sampled less information and had higher estimated sampling cost param-
eters. To investigate the idea of the psychosis continuum further, we looked at the correla-
tions between information sampling and schizotypy characteristics in healthy volunteers. In
this group, we found a negative correlation between the number of DTD and the scores on
the distress and preoccupation subscales of the PDI, indicating that less information sampling
is associated with higher scores. This is consistent with studies by Colbert and Peters (2002)
and Lee, Barrowclough, and Lobban (2011), as well as the recent meta-analysis by Ross et al.
(2015), in keeping with a continuum model of psychosis. Regarding modeled parameters in
controls, estimated noise was associated with total PDI score, PDI distress, and PDI preoccu-
pation, and estimated sampling costs were associated with PDI preoccupation and, marginally,
with distress. This hints at the intriguing possibility that hasty decision-making due to cogni-
tive noise may be a more important contributory factor to delusion-like thinking in the healthy
population than it is to psychotic symptoms in psychotic illness, where hasty decision-making
due to higher information sampling costs appears to be more important.
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Summary

In summary, we found that early-psychosis patients demonstrate a hasty decision-making style
compared with healthy volunteers, sampling significantly less information. This decision-
making style was correlated with delusion severity, consistent with the possibility that it may be
a cognitive mechanism contributing to delusion formation. Our data are not consistent with the
account that patients sample less information because they are in general more noisy decision
makers. Rather, our data suggest that patients with psychosis sample less information before
making a decision because they attribute a higher cost to information sampling. Although psy-
chosis patients were less able to adapt to the changing demands of the task, they did alter
their decision-making style in response to the changing explicit costs of information, indicat-
ing that an impulsive decision-making style is not completely fixed in psychosis. This finding
is consistent with the possibility that information sampling may be a treatment target, for ex-
ample, for psychotherapy (Moritz et al., 2014), and that patients with psychosis may benefit
in this neuropsychological domain, as they have in other domains, from cognitive scaffolding
approaches exemplified in cognitive remediation therapy (Cella & Wykes, 2017).
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