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A B S T R A C T

A recent study (James et al. 2016) found that attention-deficit/hyperactivity disorder (ADHD) was associated
with hypo-arousal, indexed by low electrodermal activity, during a low-demand reaction-time task, which
normalized in a fast-incentive condition. We now investigate if (1) autonomic arousal in individuals with ADHD
changes over a long testing session and (2) across time, to clarify if arousal profiles are context-dependent. We
also examine (3) how autonomic arousal relates to each ADHD symptom domain, and specificity of arousal
profiles to ADHD, by controlling for oppositional defiant/conduct disorder (ODD/CD) symptoms. Skin con-
ductance level and non-specific fluctuations were measured during four successive resting-state and cognitive
conditions (Resting-state time 1, Continuous Performance Task, Fast Task: Baseline and Fast-Incentive condi-
tions, Resting-state time 2) from 71 adolescents/young adults with ADHD and 140 controls. Lower arousal was
observed in individuals with ADHD only during a slow, low-demanding task, and more fluctuating arousal was
observed towards the end of assessment. Both inattentive and hyperactive-impulsive symptoms were associated
with arousal levels and fluctuations, independently from ODD/CD. Overall, we extend previous findings showing
that under-arousal, but also fluctuating arousal, are context-specific rather than stable impairments in ADHD.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common neu-
rodevelopmental disorder with postulated links to hypo-arousal and
arousal dysregulation. The state regulation and cognitive-energetic
accounts suggested that a sub-optimal arousal state in ADHD may lead
to inconsistent cognitive performance, reflected for example by within-
subject fluctuations in reaction time (van der Meere, 2005; Sergeant,
2005). Recent initial findings from our research group have suggested
that hypo-arousal, while observed during performance on a low-de-
mand reaction time task, is not stable in individuals with ADHD but
may be normalized during more stimulating tasks (James et al., 2016).
More research is needed to understand the physiological underpinnings
of ADHD by exploring whether ADHD case-control differences are
context-dependent or stable across time, and whether these differences

are specific to ADHD or can be explained by other related behaviors.
Skin conductance provides an objective and reliable index of arousal

in the peripheral nervous system (Boucsein, 2012). SC is a measure of
electrodermal activity, which is stimulated by the autonomic sympa-
thetic nervous system, a system involved in regulating arousal and
alertness (Boucsein, 2012; Critchley, 2002). In this study, we use the
term ‘arousal’ to describe changes in electrodermal activity. Skin con-
ductance level represents the tonic level of arousal (average level) and
non-specific fluctuations represent a phasic (transient) change in
arousal. Increased skin conductance level indexes an increase in per-
ipheral arousal (Boucsein, 2012), whereas increased non-specific fluc-
tuations indicate more variability in arousal.

Several studies have reported attenuated skin conductance level in
children with ADHD, compared to controls, indicating hypo-arousal
during resting-state (eyes open and eyes closed) and task conditions
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(Barry et al., 2012; Conzelmann et al., 2014; Dupuy et al., 2014; Iaboni
et al., 1997; Lazzaro et al., 1999; Mangeot et al., 2001; Mangina et al.,
2000; O'Connell et al., 2004). Research is more limited in adults, where
study findings across resting-state and task conditions are inconclusive
in terms of hypo-arousal in ADHD (Mayer et al., 2016; Hermens et al.,
2004). Mixed findings, mainly from studies on younger children and
adolescents with ADHD, have emerged also for non-specific fluctua-
tions. While several studies on children and adolescents with ADHD
reported significantly fewer non-specific fluctuations in their electro-
dermal activity during resting conditions than controls (Beauchaine
et al., 2001; Crowell et al., 2006; Satterfield and Dawson, 1971), other
studies in children have not replicated these findings (Beauchaine et al.,
2015) and one study even found the opposite direction of effects in a
resting condition while participants listened to 40-decibel white noise
(Pliszka et al., 1993). Further research is needed using large samples,
across testing conditions, to clarify these inconsistencies in the litera-
ture.

Our understanding is also limited regarding the specific aspects of
ADHD that arousal measures tap into. Only one study, which consisted
of girls with and without ADHD, has explored the relationship between
skin conductance level and the two ADHD symptoms domains sepa-
rately, reporting that lower skin conductance level was strongly cor-
related with higher inattentive symptoms (r=−0.45) and weakly-to-
moderately correlated with hyperactive-impulsive (r=−0.23) symp-
toms, in individuals with and without ADHD (Dupuy et al., 2014). No
study to our knowledge has explored this with non-specific fluctuations,
and the relationship between skin conductance level and non-specific
fluctuations remains poorly understood. Studies in children have re-
ported that non-specific fluctuations correlate positively with average
skin conductance level (Burch and Greiner, 1960; Silverman et al.,
1959); yet neuroimaging and electrophysiological studies suggest that
non-specific fluctuations and skin conductance level index different
underlying processes (Lazzaro et al., 1999; Nagai et al., 2004).

In a recent investigation with a large sample of adolescents and
young adults, we found that individuals with ADHD displayed auto-
nomic under-arousal during a baseline (slower, non-rewarded) task
condition of a four-choice reaction time called the Fast Task, but this
was normalized in a more stimulating fast-incentive condition
(James et al., 2016). These findings support an arousal dysregulation
account of ADHD rather than suggesting that individuals with ADHD
display stable hypo-arousal. Further support for this view comes from a
study that investigated autonomic arousal measures in participants
during a sustained attention to response task before and after taking
part in either self-alert training, where participants learned to modulate
their arousal levels, or placebo training (O'Connell et al., 2008). Results
showed that both ADHD and control participants had increased specific
skin conductance responses, indicating increased phasic arousal, after
the alertness training. Another study in a healthy population sample
found increased skin conductance level during a continuous perfor-
mance task compared to baseline, a difference defined as ‘activation’,
which further suggests context-dependent effects of autonomic arousal
(Vaez Mousavi et al., 2009). We now investigate context effects in
ADHD further by studying tonic (skin conductance level) and phasic
(non-specific fluctuations) autonomic arousal across a longer experi-
mental assessment, to improve our understanding of the stability of
autonomic arousal profiles in ADHD.

In this study we firstly aim to (1) extend initial findings from
James et al. (2016) and investigate if ADHD case-control differences in
both tonic arousal, indexed by skin conductance level, and phasic
arousal, indexed by non-specific fluctuations, vary across a long testing
session consisting of a combination of resting-state and task conditions
(Resting-state time 1, Continuous Performance Task (CPT-OX), Fast
Task: Baseline and Fast-Incentive condition, Resting-state time 2)
commonly used in ADHD research, in a large sample of adolescents and
young adults. We then more specifically aim to (2) examine if ADHD
case-control differences in autonomic arousal measures vary across

time from Resting-state time 1 to time 2. These findings may provide
insight on whether low levels and fluctuating arousal in ADHD reflect
context-specific states or stable traits. This in turn would be relevant
both for our understanding of the nature of biological underpinnings of
ADHD and potentially for treatment, as modifiable markers of ADHD
may be suitable targets for interventions, such as biofeedback para-
digms. Thirdly, to further understand which aspects of ADHD specifi-
cally tap into tonic and phasic arousal, we aim to investigate (3) how
arousal measures are associated with each of the ADHD symptom do-
mains of inattention and hyperactivity/impulsivity.

In all analyses, we also aim to investigate if associations between
ADHD and arousal are independent of oppositional defiant disorder and
conduct disorder (ODD/CD) symptoms, which frequently co-occur with
ADHD and have previously been associated with lower skin con-
ductance level and skin conductance responses (Delamater and Lahey,
1983; Fung et al., 2005; Posthumus et al., 2009). One small study of
males found that among individuals with ADHD, those with and
without comorbid CD showed similar profiles of fewer non-specific
fluctuations during a baseline resting condition compared to controls
(Beauchaine et al., 2001); however, more powerful studies including
both males and females are needed to determine the specificity of
arousal profiles in ADHD.

2. Materials and methods

2.1. Participants

The original sample (before quality control and exclusions) con-
sisted of 275 participants, followed-up on average 5.8 years (SD=1.1)
after initial assessments. At follow-up, participants were on average
18.0 years of age (age range: 11.1–25.9). 108 participants had a diag-
nosis of DSM-IV combined type ADHD in childhood (9 sibling pairs, 90
singletons) and 167 were controls (74 sibling pairs, 19 singletons).

Participants with ADHD were initially recruited from ADHD clinics
in south-east England (Kuntsi et al., 2010). Diagnosis of DSM-IV com-
bined type ADHD was established using the Parental Account of
Childhood symptoms (PACS), a semi-structured interview with high
inter-rater reliability (Chen et al., 2008). The control group was initially
recruited from schools in the UK, aiming for an age and gender match
with the clinical sample. For this analysis, there were no differences in
age and sex between the control and clinical sample (Table 1) and re-
running the main analyses controlling for age and sex did not change
the pattern of results. All participants were aged between 6 and 17 at
initial assessment. Exclusion criteria were: IQ < 70, autism, epilepsy,
brain disorders and any genetic or medical disorder associated with
externalizing behaviors that might mimic ADHD. At follow up, eight
controls met DSM-IV ADHD criteria based on parent-ratings (n=6) on
the Barkley Informant Rating Scale (Barkley and Murphy, 2006); these
participants were excluded from analyses. The investigation was carried
out in accordance with the latest version of the Declaration of Helsinki.

Skin conductance data were available for 221 participants (mean
age: 17.7 years, age range: 11.9–23.3), out of our original sample of
256, as skin conductance data collection equipment did not arrive until
after the initial participants had been assessed. We additionally ex-
cluded participants within each testing condition (percentage of ex-
cluded individuals across conditions: 10%−19%) who experienced skin
conductance equipment failure or extreme drowsiness. The final sample
consisted of 71 ADHD probands and 140 controls. The ADHD and
control groups did not differ in age (t=0.20, p=0.66), gender
(χ2=0.63, p < 0.43), but did differ on IQ scores (t=−7.47, p <
0.001; Table 1).

2.2. Materials and procedure

Participants with childhood ADHD were classified as having ADHD
if they met DSM-IV criteria for ADHD at follow-up. If they scored a ‘yes’
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on ≥ 6 items in either the inattention or hyperactivity-impulsivity
domains of the Diagnostic Interview for ADHD in adults (DIVA;
Kooij and Francken, 2007) and if they scored ≥ 2 on two or more areas
of impairments from the Barkley's functional impairment scale (BFIS;
Barkley and Murphy, 2006), they were classified as ADHD persisters at
follow-up. Out of the 108 participants with childhood ADHD, 23 were
classified as ADHD ‘remitters’ at follow-up and were not included in this
study.

2.2.1. Conners’ parent rating scale – revised (L)
is a questionnaire measure used to assess internalizing and ex-

ternalizing behavior from children and adolescents based on parent
ratings. The scale includes 18 statements that measure DSM-IV in-
attentive and hyperactive-impulsive ADHD symptoms (Conners, 1997).
Each statement is rated on a three-point scale, by parents, and the
highest possible score is 54. These subscales were used in the correla-
tion analyses as they were assessed in both ADHD cases and controls.

2.2.2. The development and well-being assessment (DAWBA;
Goodman et al., 2000)

is a structured interview administered by lay interviewers. The K-
section of the DAWBA questionnaire, which measures ‘behaviors which
sometimes gets children into trouble’, was administered to participants.
These items reflect current symptoms, closely related to DSM-IV diag-
nostic criteria of ODD and CD (Heiervang et al., 2007; Goodman et al.,
2000).

2.2.3. IQ
The vocabulary and block design subtests of the Wechsler

Abbreviated Scale of Intelligence (WASI) were administered to derive
an IQ estimate (Wechsler, 1999). The WASI subtests have shown strong
correlation with full-scale IQ (r=0.83–0.88; Wechsler, 1991) and
other measures of intelligence (r=0.66–0.89; Canivez et al., 2009,
Hays et al., 2002).

2.2.4. Resting-state with eyes open
Participants were asked to keep as still as possible while resting in a

chair with their eyes open before and after the cognitive assessments.
They were encouraged to find a spot on the wall in front of them where
they could fixate their gaze. The resting-state sessions each lasted for
3 min.

2.2.5. The Fast Task; baseline and fast-incentive condition (Andreou et al.,
2007)

The baseline condition of the Fast Task consists of 72 trials, which
followed a standard warned four-choice RT task. Four empty circles

(warning signals, arranged horizontally) first appeared for 8 s, after
which one of them (the target) was colored in. Participants were asked
to press the response key that corresponded to the target position.
Following a response, the stimuli disappeared and a fixed inter-trial
interval of 2.5 s followed. Speed and accuracy were emphasized
equally. If participants did not respond within 10 s, the trial terminated.
A comparison condition of 80 trials with a fast event rate (fore-period of
1 s) and incentives followed the baseline condition. The fast-incentive
condition is always administered after the baseline condition. Owing to
the longer fore-period in the slow condition, the two conditions were
not matched on task length, but they were matched on the number of
trials.

2.2.6. The cued flanker Continuous Performance Task (CPT-OX)
This CPT-OX (Doehnert et al., 2008; Valko et al., 2009) includes rare

cued Go and NoGo conditions embedded in a vigilance task with fre-
quent distractors to assess attentional and inhibitory processes. The test
originates from the AX Continuous Performance Task (Rosvold, 1956)
and stimuli were flanked by adjacent incompatible distractors, similar
to the classic flanker paradigm (Eriksen and Hoffman, 1973), to in-
crease task difficulty (McLoughlin et al., 2010). The test consists of 400
letters presented in a pseudo-randomized order for 150ms every 1.65 s.
The cue letter O occurred with 20% probability (80 Cue stimuli), sig-
naled a Go-NoGo task, and induced response preparation. Participants
pressed a mouse button as fast as possible every time the cue was fol-
lowed directly by the letter X (O-X) target sequence, 10% probability,
40 Go stimuli] but had to withhold responses to O-not-X sequences
(NoGo trials, also 10%, 40 NoGo stimuli).

2.3. Procedure

Participants were re-contacted by telephone and scheduled for a
follow-up clinical interview and cognitive assessments at our research
Centre while electrodermal and electroencephalogram (EEG) measures
were recorded. Before the cognitive assessments, participants were
asked to remain still and rest with their eyes open while fixating at a
point in front of them for 3 min. They then performed the CPT-OX for
11 min, followed by the Fast Task baseline condition for 13 min, and
were asked to rest again with their eyes open for 3 min at the end of the
testing session. A 48 h ADHD medication-free period was required and
the participants were also asked to abstain from caffeine, smoking, and
alcohol on the day of testing.

2.4. Skin conductance

Skin conductance response was recorded using PSYCHLAB SC5 24

Table 1
Descriptives and pair-wise comparisons between Groups (ADHD, control) in each condition on skin conductance measures.

ADHD (71) Control (140) t/χ² p Cohen's d Cohen's d Cov: ODD/CD

Male sex, n (%) 59 (83%) 107 (76%) 0.63 0.43 0.17
IQ, M (SD) 95.38 (14.97) 110.08 (12.69) 7.47 0.001 −1.03
Age, M (SD) 17.70 (2.83) 17.75 (2.28) 0.20 0.66 0.02
Resting-state time 1 SCL 2.88 (2.07) 3.29 (2.26) −1.43 0.31 −0.20 −0.18

NSF/s .07 (0.05) .06 (0.06) 0.33 0.74 0.05 0.01
CPT-OX SCL 3.72 (2.16) 4.24 (2.68) −0.96 0.32 −0.13 −0.09

NSF/s .23 (0.13) .23 (0.13) 0.02 0.98 0.01 0.01
Fast Task: Baseline SCL 2.96 (2.05) 4.16 (1.91) −3.44 <0.01 −0.49* −0.56*

NSF/s .10 (0.04) .08 (0.04) 2.06 0.04 0.33* 0.27
Fast Task: Fast-Incentive SCL 4.84 (2.03) 5.45 (3.06) −1.47 0.15 −0.26 −0.23

NSF/s .11 (0.04) .11 (0.05) −0.66 0.51 0.12 0.08
Resting-state time 2 SCL 4.28 (2.23) 4.73 (2.77) −0.41 0.69 −0.06 −0.01

NSF/s .09 (0.06) .07 (0.06) 2.14 0.03 0.32* 0.30*

Note. Data on SCL from the Fast Task have already been presented (James et al., 2016), but for ease of comparison, results specific to this analysis have been
replicated here with the additional results across other task conditions.

⁎ p < 0.05. Cov: Covariate included in models. CPT-OX: Continuous performance task. SCL: Skin conductance level. NSF/s: Non-specific fluctuations per second.
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bit equipment system, which has an absolute accuracy of± 0.1 mi-
crosiemens. The SC5 is connected to a computer that runs the PSYC-
HLAB software where the data can be monitored and recorded in real
time and parameters can be set. Skin conductance was measured by
attaching a pair of 8mm diameter silver-silver chloride electrodes on
the palm of participants’ non-dominant hand (thenar eminence and
hypothenar eminence) at the beginning of the cognitive test battery. An
electrode paste, formulated with 0.5% saline in a neutral lotion/cream
style base (provided by PSYCHLAB), was used to establish a stable
electrical skin conductance signal. The SC5 is DC coupled (infinite time
constant), and a constant imperceptible voltage (0.5 V) was applied.
SC5 automatically calibrates itself when switched on and then runs at a
fixed internal sample rate of 80 Hz and an additionally 10 Hz filter is
applied to response signal to prevent aliasing.

Skin conductance variables were calculated using a in-house system
that is based on a skin conductance sigmoid-exponential model that
allows the tonic measure of skin conductance level to be disentangled
from phasic skin conductance fluctuations and allows the

decomposition of overlapping skin conductance fluctuations (Lim et al.,
1997). The statistical model was applied to each task condition. Each
participant's data were inspected visually by a researcher to confirm
that the data were scored properly using the statistical model. Each
non-specific fluctuation reflects a rise in skin conductance level for at
least 500 milliseconds followed by at least 300 milliseconds of non-
rising skin conductance, and the minimum amplitude of the non-spe-
cific fluctuations was set to 0.02 microsiemens. The number of non-
specific fluctuations per second was used as the final measure to control
for minor individual differences in recording lengths. Mean skin con-
ductance level and non-specific fluctuations per second were calculated
for each participant in each testing condition. We examined average
measures of skin conductance level and non-specific fluctuations across
task performance in the CPT-OX and Fast Task, and did not exclude
event-locked skin conductance variables, as event codes during the
CPT-OX were not retrievable in these data.

Fig. 1. Mean skin conductance level (A) and non-specific fluctuations (B) for ADHD and control groups in each testing condition. Note. Data on SCL from the Fast
Task have already been presented (James et al., 2016), but for ease of comparison, results specific to this analysis have been replicated here with the additional
results across other task conditions. * p-value < 0.05 for comparison between ADHD-control groups. CPT-OX: continuous performance task.
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2.5. Data analysis

We ran regression models to investigate ADHD case-control group
differences in skin conductance level and non-specific fluctuation
measures within each testing condition (Resting-state time 1, CPT-OX,
Fast Task: Baseline and Fast-Incentive condition, Resting-state time 2).
Relatedness between sibling pairs was controlled for by using the ‘ro-
bust cluster’ command in STATA (StataCorp, College Station, TX).
Random-intercept linear models were used to test the main and inter-
action effects of group (ADHD cases, controls) and time (Resting-state
time 1, Resting-state time 2) on skin conductance level and non-specific
fluctuations, to examine the change in autonomic arousal in ADHD and
control groups over time. Random-intercept models control for clus-
tered data, due to relatedness between siblings, and handle missing data
using the maximum likelihood method, which in turn reduces the loss
in power from missing data points. We re-ran all analyses controlling
for ODD/CD symptoms (using DAWBA) to examine if any identified
ADHD case-control differences could be explained by co-occurring
ODD/CD symptoms. We did not control for internalizing symptomology
based on prior work with this sample that showed that controlling for
internalizing symptoms did not influence the results (James et al.,
2016).

We ran linear regression models to investigate the associations of
skin conductance measures with inattentive and hyperactive-impulsive
symptoms, respectively, and added an interaction term (skin
conductance*ADHD group) to investigate if the strength of the asso-
ciations were different in the ADHD and control groups. We tested these
associations only in conditions that showed sensitivity to ADHD as in-
dicated by a significant case-control difference in skin conductance
measures. We re-ran all analyses controlling for ODD/CD symptoms.

We re-ran the main analyses on ADHD case-control group compar-
isons with IQ added as a covariate to examine its potential effects. We
further ran sensitivity analyses testing age and gender as covariates in
the main analyses in line with previous analyses in the same sample
(Kitsune et al., 2015). The effects of potential longer-term use of
medication on skin conductance measures were examined by running
skin conductance comparison tests between unmedicated and medi-
cated participants with ADHD.

3. Results

3.1. ADHD case-control differences in arousal across testing sessions

Pairwise comparisons revealed no significant differences (p > 0.05)
between the ADHD and control groups in non-specific fluctuations or
skin conductance level during the two initial testing conditions
(Resting-state time 1 and CPT-OX task performance) and the Fast-
Incentive condition of the Fast Task (Fig. 1). During performance on the
Baseline condition of the Fast Task and Resting-state time 2, individuals
with ADHD showed significantly more non-specific fluctuations than
the control group. There was no significant group difference in skin
conductance level during Resting-state time 2, in contrast to the sig-
nificantly lower skin conductance level found during the Baseline
condition of the Fast Task, as reported James et al. (2016; Fig. 1,
Table 1).

Individuals with ADHD had a significantly higher level of ODD/CD
symptoms (M=4.03, SD=2.63) than individuals in the control group
(M=1.61, SD=1.90; t(210)= 6.87, p < 0.001). After controlling for
ODD/CD symptoms in the models, skin conductance level findings of
case-control differences did not change but non-specific fluctuation
findings during the Baseline condition of the Fast Task changed slightly,
in regards of the effect size (Cohen's d: from 0.33 to 0.27) and p-value
(from 0.04 to 0.07; Table 1), although an overlap in 95% confidence
intervals of coefficients indicated that the change in results was not
significant (95% CI [0.01, 0.70] to [−0.17, 0.17]).

3.2. ADHD case-control differences in arousal across time

The random-intercept models revealed significant main effects of
time (Resting-state time 1 vs 2) on non-specific fluctuations and skin
conductance level (Table 2), showing that non-specific fluctuations and
skin conductance level significantly increased over time. We found no
significant main effect of group (ADHD vs control) or group-by-time
interaction effects on non-specific fluctuations or skin conductance
level (Table 2). When ODD/CD symptoms were controlled for, the
group-by-time interaction effect became significant for non-specific
fluctuations (z=2.00, p=0.045). Post-hoc analyses when controlling
for ODD/CD symptoms revealed significant increases in non-specific
fluctuations from resting-state time 1 to time 2 in the ADHD group
(t=3.32, p=0.002), but not in the control group (t=0.63, p=0.53).

As the group-by-time interaction effect on non-specific fluctuations
emerged as significant after controlling for ODD/CD symptoms, we
decided to run regression analyses to explore the associations between
ODD/CD symptoms and skin conductance measures, within each group
(ADHD, control) and each condition. We found no significant associa-
tions between ODD/CD symptoms and skin conductance in any of the
groups or conditions (Table A.1).

3.3. Linear associations between arousal measures and each ADHD
symptom domain

Linear regression models revealed that non-specific fluctuations
recorded during the Fast Task was significantly and positively asso-
ciated with hyperactive-impulsive symptoms in the full sample, and
non-specific fluctuations during Resting-state time 2 was significantly
and positively associated with both inattentive and hyperactive-im-
pulsive symptoms (Table 3). Skin conductance level recorded during
the Fast Task was significantly and negatively associated with both
symptom domains. While non-specific fluctuations during the Fast Task
was not significantly associated with inattentive symptoms in the full
sample, the non-specific fluctuations-by-group interaction was sig-
nificant, revealing that the association between non-specific fluctua-
tions and inattentive symptoms was significant in the ADHD group
(Beta=0.13, p=0.01), but not in the control group (Beta=−0.01,
p=0.77) (see scatterplots in Figure A.1). No other interaction terms
(skin conductance*group) were significant (Table 3). When we con-
trolled for ODD/CD symptoms in the regression models, the pattern of
results did not change with regard to significance level (Table 3).

3.4. Sensitivity analyses

We re-ran the main pairwise comparisons of groups (ADHD vs
Control) with IQ added as a covariate (Table A.2). We found that the
pattern of results remained the same for non-specific fluctuations but
for skin conductance level the ADHD case-control difference during the
Baseline condition of the Fast Task was no longer significant and the
effect size (Cohen's d) changed from −0.49 to −0.09 (Table 1), al-
though 95% CI's showed an overlap before and after controlling for IQ
(95% CI [−0.95, −0.28] to [−0.58, 0.15]).

Due to the changes in results after controlling for IQ in the skin
conductance level analyses (Table A.2), we ran additional sensitivity

Table 2
Main effects of Group (ADHD vs Control), Time (Resting-state time 1 vs 2) and
interaction effects of Group-by-Time on skin conductance measures.

Skin conductance level Non-specific fluctuations
z p z p

Group −0.94 0.35 1.61 0.11
Time 8.91 0.001* 2.71 0.01*
Group*Time 0.38 0.71 1.53 0.12*

⁎ p < 0.05 after controlling for ODD/CD.
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analyses to investigate the associations between IQ and skin con-
ductance measures across conditions (see Table A.3 and A.5).

We further re-ran the main pairwise comparisons of groups (ADHD
vs Control) with age and gender added as covariates and found that the
pattern of findings remained the same in terms of significance of find-
ings (Table A.4). Furthermore, analyses were re-run excluding siblings,
and the pattern of findings remained consistent without these cases of
non-independence. We also ran skin conductance comparison tests
between unmedicated and medicated participants with ADHD to in-
vestigate the long-term effects of medication. Short-term effects of
medication were controlled for, as participants were asked to have a
48 h medication-free period before testing. There were no significant
differences in skin conductance level (t(34)= 0.68, p=0.50) or non-
specific fluctuations (t(35)=−0.48, p=0.64) between unmedicated
and medicated participants.

As we found significant ADHD case-control differences in skin
conductance during the 13 min long Baseline condition of the Fast Task
but not during the 11 min long CPT-OX, we aimed to explore whether
the significant differences during the Baseline condition of the Fast Task
emerged because of the longer testing session, rather than the order or
nature of the task. James et al. (2016) previously demonstrated that the
significant ADHD case-control difference in skin conductance level
during the Baseline condition of the Fast Task was consistent across
time, as significant differences were found in each 4 min long snippet of
the task. Here, we extracted non-specific fluctuation data during the
first 11 min of the Baseline condition of the Fast Task to match the CPT-
OX on task length, and re-ran the ADHD case-control comparisons. We
found that the ADHD case-control difference in non-specific fluctua-
tions during the Baseline condition of the Fast Task was reduced to
trend level when using the shorter 11 min time period (Beta=0.03,
p=0.068).

3.5. Follow-up tests of robustness

A false discovery rate-controlling analysis (Benjamini and Hochberg
1995, 2000) was conducted to test the robustness of effects in relation
to the many tests that were run and to control for the expected pro-
portion of false discoveries (Type I Error). All observed p-values were
ordered sequentially from low (p1) to high (pm), where m represents the
total number of p-values from the main analyses (m=28). The largest k
was then identified such that pk < 0.05 * k/m and the adjusted alpha
level of 0.05 * k/m was 0.011. All of the reported significant effects
relating to skin conductance level had p-values below the adjusted
alpha. However, several of the reported effects in relation to skin
conductance fluctuations had p-values above the adjusted alpha level:
the ADHD case-control difference in non-specific fluctuations in both
the Baseline condition of the Fast Task (p=0.04) and the Resting-state
time 2 (p=0.03), the Group*Time interaction effect after controlling
for ODD/CD (p=0.045) and the associations between ADHD symp-
toms and non-specific fluctuations during Resting-state time 2
(p=0.02). These latter results should therefore be interpreted with
caution and may represent trends rather than significant effects.

4. Discussion

In this large physiological study of 211 adolescents and young
adults, we found that autonomic arousal profiles of individuals with
ADHD varied across testing conditions. First of all, ADHD case-control
differences in tonic arousal, indexed by skin conductance level, only
emerged during a slow and low-demanding cognitive task. Case-control
differences in phasic arousal, indexed by non-specific fluctuations,
emerged towards the end of the assessments, during the low-demanding
cognitive task and the final resting-state condition (time 2). Further
analyses showed that case-control differences in phasic arousal, but not
tonic arousal, emerged over time from resting-state time 1 to time 2,
once ODD/CD symptoms were controlled for. It is, however, important
to note that after correcting for multiple testing, the findings on phasic
arousal emerged as trends rather than as significant effects. Lastly, both
ADHD symptom domains were significantly associated with lower le-
vels of tonic arousal and more fluctuating arousal, independently of
ODD/CD symptoms. Overall, our findings suggest that individuals with
ADHD experience difficulties regulating their arousal rather than being
constantly under-aroused. Inconsistent findings in the literature on
autonomic arousal in ADHD might be explained by differences in ex-
perimental designs and tasks.

Extending the initial report from James et al. (2016), we now show
that tonic autonomic arousal, measured by skin conductance level, did
not remain significantly lower in individuals with ADHD compared to
controls beyond the slow, baseline condition of the Fast Task; during
resting-state conditions or performance of the high-demanding CPT-OX
or the Fast-Incentive condition. These findings suggest that lower
arousal levels in individuals with ADHD may be especially salient
during slow and low-demanding tasks compared to faster-paced and
more demanding tasks such as the high-demanding CPT-OX or the fast-
incentive condition of the Fast Task (as also demonstrated in
James et al., 2016). We were unable to separate fatigue effects from
effects of cognitive demand, as the tasks were not counterbalanced in
this experiment. However, as the lower arousal level in the ADHD
group was found in the Baseline condition of the Fast Task but not the
Fast-Incentive condition, which was performed directly after the Base-
line condition, the group difference in arousal level is likely not due to
fatigue effects. Our analyses further revealed that lower tonic arousal
during the Baseline condition of the Fast Task, where case-control dif-
ferences were identified, was associated with a higher level of in-
attentive and hyperactive-impulsive symptoms, supporting initial
findings from a study only in girls (Dupuy et al., 2014). Our finding
suggests that individuals with ADHD may experience difficulties in
regulating their arousal levels rather than experience constant hypo-
arousal, which implies that arousal is malleable in individuals with
ADHD and may therefore be suitable as a potential treatment target.
Our findings further suggest that inconsistencies in the literature
(Hermens et al., 2004; Mayer et al., 2016) may be explained by the
different experimental paradigms used across studies.

We further found that individuals with ADHD displayed more
fluctuating arousal, indexed as a higher number of non-specific

Table 3
Main associations between skin conductance level and non-specific fluctuations with ADHD symptom domains and skin conductance-by-group (ADHD, control)
effects on ADHD symptom domains.

Fast Task Resting-state time 2
Non-specific fluctuations Skin conductance level Non-specific fluctuations
Main association Interaction (NSF*group) Main association Interaction (SCL*group) Main association Interaction (NSF*group)
B P B p B P B P B p B p

Hyperactivity-Impulsivity 0.20 <0.01* −0.06 0.66 −0.26 <0.01* −0.15 0.19 0.18 0.02* −0.01 0.98
Inattention 0.10 0.19 −0.12 0.04* −0.26 <0.01* −0.10 0.10 0.18 0.02* −0.02 0.77

Note: Associations between ADHD symptoms and arousal measures were only tested during the conditions that revealed significant case-control differences in
arousal.

⁎ p < 0.05 after controlling for ODD/CD.
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fluctuations per second, compared to controls, during the baseline
condition of the Fast Task and Resting-state time 2 only. These effects
were however not significant when false discovery rate-controlling
analysis was applied and may therefore be interpreted as trends. These
findings suggest that arousal variability in ADHD, similarly to under-
arousal, may become more salient during slower and low-demanding
tasks, but also towards the end of assessment, over time. This is further
supported by our sensitivity analysis showing that the ADHD case-
control difference in non-specific fluctuations during the 13 min long
Fast Task was no longer significant when we shortened the task to
closer match the lengths of the CPT-OX and Fast-Incentive condition of
the Fast Task. These findings indicate that more fluctuations in ADHD
may become especially salient over time, possibly in combination with
the low-demanding task.

Our results further showed that the fluctuations in and level of
arousal increased over time, from resting-state time 1 to time 2. When
we tested the group-by-time interaction on fluctuations, the effect
emerged as significant (trend after false discovery rate-controlling
analysis) once ODD/CD symptoms were controlled for and post-hoc
analyses revealed that the fluctuations in arousal increased over time
only in the ADHD group. These findings further suggest that fluctuating
arousal profiles in ADHD, relative to controls, become more salient over
time; an effect that is enhanced by controlling for other co-occurring
externalizing behaviors.

Non-specific fluctuations were associated with both inattentive and
hyperactive-impulsive symptoms, across groups, in the testing condi-
tions that showed case-control differences, with the only exception of
the Fast Task (Baseline condition) where non-specific fluctuations and
inattention were only significantly associated in the ADHD group.
Overall, we found that individuals with ADHD did not show stable
abnormalities in fluctuating arousal, similarly to under-arousal, which
may in turn explain highly inconsistent findings in the literature where
different experimental designs have been used. The direction of effects
is in line with findings from one previous study that showed a trend of
more non-specific fluctuations in children with ADHD compared to
controls (Pliszka et al., 1993), but is inconsistent with other studies of
children and adolescents which have found opposite effects of less
frequent non-specific fluctuations in individuals with ADHD (Lazzaro
et al., 1999; Satterfield and Dawson, 1971). Further research across
different experimental conditions and age groups, is therefore needed
to clarify the discrepancy in findings.

This is the first larger study, to our knowledge, to investigate the
specificity of both phasic and tonic arousal profiles in young adults with
ADHD by controlling for ODD/CD symptoms in analyses. ODD/CD
symptoms did not account for our findings on atypical tonic arousal
profiles in ADHD, which is in line with previous research (Beauchaine
et al., 2001; van Lang et al., 2007). For phasic arousal, ODD/CD
symptoms did not account for the associations with ADHD, however,
the group-by-time effect emerged as significant (trend after false-dis-
covery rate-controlling analysis) after controlling for ODD/CD symp-
toms. This suggests that controlling for ODD/CD symptom enhances the
relationship between phasic arousal and ADHD over time, but it is not
clear from these results how ODD/CD symptoms relate to the other
variables, as they (a) do not account for the linear associations between
non-specific fluctuations non-specific fluctuations and ADHD symptom
domains (Table 3) and (b) are not significantly associated with non-
specific fluctuations (Table A.1). While previous research has suggested
that individuals with antisocial/conduct problems have smaller ampli-
tude of specific skin conductance responses (Delamater and
Lahey, 1983), less is known of non-specific fluctuations. Further studies
are needed to clarify the complex relationship between ODD/CD, non-
specific fluctuations and ADHD, to determine the specificity of fluctu-
ating arousal profiles in ADHD.

A limitation of this study is that we used measures of non-specific
fluctuations averaged across each of the CPT-OX and Fast Task condi-
tions, as we were unable to retrieve event codes. This means that we

could not tease apart skin conductance fluctuations during stimuli
presentation and response execution from skin conductance fluctua-
tions during no task events. It would have been interesting to study both
event-specific and non-specific fluctuations separately to explore how
they each are implicated in ADHD, however, given that very few studies
have investigated arousal variability in ADHD, we believe it is still
meaningful to study average fluctuations in our rich dataset that spans
across a long testing session. Another issue to highlight is that we had
limited power to account for all relevant covariates in one model,
however, we controlled for these variables in separate models, which
allowed us to gain an understanding of their unique impact on the re-
sults. Finally, we found that the ADHD case-control difference in tonic
arousal was largely accounted for by IQ, suggesting that it is important
to take IQ into consideration in future studies that investigate arousal
levels in ADHD.

4.1. Correction for multiple testing

We did not correct for multiple testing in our initial main analyses
because of the exploratory nature of the investigations into context
effects on ADHD case-control differences in skin conductance level and
non-specific fluctuations. In our study, analyses were restricted to skin
conductance measures that were expected to be sensitive to impair-
ments in ADHD, in order to reduce the chance for false negative find-
ings from multiple testing. Further, in the interpretation of results, the
emphasis was places on both effect sizes and significance to provide a
complete picture of the full impact of results. We did however run
sensitivity tests where we applied a false-discovery rate-controlling
analysis. While all analyses on tonic arousal remained significant,
several of the analyses on phasic arousal emerged as trends rather as
significant, with p-values above the adjusted alpha level. The significant
association between phasic arousal during the baseline condition of the
Fast Task and ADHD symptoms, however, remained as significant after
the multiple testing correction. Future replication of our results is im-
portant to validate findings before drawing firm conclusions and ap-
plying implications of findings in practice.

5. Conclusions

We found that adolescents and young adults with ADHD displayed
lower levels of and more fluctuating autonomic arousal under certain
experimental conditions. ADHD case-control differences in tonic
arousal emerged only during a slow, low-demanding cognitive task. A
case-control difference in phasic arousal was also observed during the
low-demanding task and also towards the end of the assessment. We
further found that tonic and phasic arousal were associated with both
inattentive and hyperactive-impulsive symptoms, independently of
ODD/CD symptoms. Our findings suggest that both tonic and phasic
autonomic arousal profiles in ADHD are context-specific rather than
representing stable impairments. Our findings also highlight how in-
consistent findings in the ADHD literature on arousal may be explained
by differences in experimental paradigms used across studies.
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