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Abstract

Magnetic particle imaging (MPI) is a medical imaging modality of recent origin, and it exploits the
nonlinear magnetization phenomenon to recover a spatially dependent concentration of nanoparticles. In
practice, image reconstruction in MPI is frequently carried out by standard Tikhonov regularization with
nonnegativity constraint, which is then minimized by a Kaczmarz type method. In this work, we revisit
two issues in the numerical reconstruction in MPI in the lens of inverse theory, i.e., the choice of fidelity
and acceleration, and propose two algorithmic tricks, i.e., a whitening procedure to incorporate the noise
statistics and accelerating Kaczmarz iteration via randomized SVD. The two tricks are straightforward
to implement and easy to incorporate in existing reconstruction algorithms. Their significant potentials
are illustrated by extensive numerical experiments on a publicly available dataset.
Keywords: magnetic particle imaging, reconstruction, randomized singular value decomposition

1 Introduction

Magnetic particle imaging (MPI) is a relatively new medical imaging modality [11]. It exploits the nonlinear
magnetization behavior of (super-)paramagnetic nanoparticles in an applied magnetic field to reconstruct a
spatially dependent concentration of nanoparticles. The experimental setup is as follows. A static magnetic
field (selection field), given by a gradient field, generates a field free point or a field free line. Its superposition
with a spatially homogeneous but time-dependent field (drive field) moves the field free point / line along
a predefined trajectory defining the field-of-view. The most common trajectory is the so-called Lissajous
curve. The change of the applied field induces a change of the nanoparticle magnetization, which can then
be measured and used to recover the concentration of the nanoparticles.

MPI has a number of distinct features: high data acquisition speed, high sensitivity, potentially high
spatial resolution and free from the need of harmful radiation. This makes MPI especially attractive for
in-vivo applications, and the list of potential medical applications is long and growing. The potential for
imaging blood flow was demonstrated in in-vivo experiments using a healthy mouse [46]. The feasibility of
a circulating tracer for long-term monitoring was recently investigated [23]. The high temporal resolution of
MPI is shown to be suitable for potential flow estimation [8], tracking medical instruments [15] and tracking
and guiding instruments for angioplasty [40]. Further promising applications of MPI include cancer detection
[48] and cancer treatment by hyperthermia [36].

Hence, the numerical reconstruction in MPI is of enormous practical importance, and has received much
attention. In the literature, there are mainly two different groups of approaches, i.e., data-based v.s. model
based, dependent of the description of the forward map. The data-based approach employs experimentally
calibrated forward operators, whereas the model-based approach employs mathematical models to describe
the physical process. Currently, the former delivers state of the art numerical reconstructions. The model
based approach is predominantly based on the equilibrium model [24] or its variation, e.g., the x-space ap-
proach [13, 14], Chebyshev polynomials [39] and analytic inversion formulas [34, 6]. For example, x-space

∗Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28357 Bremen, Germany
(tkluth@math.uni-bremen.de)
†Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK (b.jin@ucl.ac.uk,

bangti.jin@gmail.com)

1



reconstruction [13, 14] views MPI as a linear shift-invariant imaging system with an analytic point spread
function, and obtains fast image reconstruction via a gridding operation in the x-space. In both model-based
and data-based approaches, MPI reconstruction techniques often boil down to solving a linear inverse prob-
lem using standard regularization techniques (see, e.g., the monographs [5, 42, 19]). The most popular idea
is standard Tikhonov regularization with nonnegativity constraint, which is then minimized by Kaczmarz
iteration [46, 29, 38]. The Kaczmarz method [22] is very attractive for large volume of data, due to its low
operational complexity per iteration. This idea was also combined with preconditioning (row normalization)
and row exclusion to improve the image reconstruction [29]. Recently, more advanced variational regulariza-
tion techniques, e.g., nonnegative fused lasso penalty [43], total least-squares approach [26], approximation
error modeling [1] and deep image prior [3], have been proposed and empirically evaluated. The total varia-
tion penalty allows recovering piecewise constant concentrations accurately. The approaches in [26, 1] allow
incorporating model errors into the reconstruction process for enhanced imaging quality. We refer interested
readers to the recent survey [27, Section 6] for an overview of other reconstruction methods. It is worth
noting that all these reconstruction techniques can be very expensive for three-dimensional imaging prob-
lems, where the available datasets are of relatively large volume. Therefore, there is a significant demand in
developing fast MPI image reconstruction algorithms (possibly with improved resolution).

There have been several important efforts [32, 41, 28, 31] in accelerating MPI reconstruction. One idea
is to employ sparse approximations of the linear forward map in predefined basis sets, achieved by first
applying discrete orthonormal transformations (e.g., Fourier / cosine or Chebyshev transforms) and then
thresholding small elements. The sparse approximation enables reducing the computing time of iterative
solvers (e.g., CGNE and LSQR) [32] or direct inversion techniques [41]. This idea simultaneously provides
a memory-efficient sparse and approximate representation [32, 31, 41]. Alternatively, one can reduce the
dimensionality of the forward map using a row selection technique, based on an SNR type quality measure
[28] (see Section 2.2 for details). The speedup is achieved by dimension reduction in the data space.

In this work, we revisit two issues in MPI reconstruction, i.e., the choice of fidelity and acceleration, in
the lens of inverse theory (see, e.g., [5, 42, 19]) and contribute to the development of robust, accurate and
fast reconstruction techniques. First, we highlight the importance of noise covariance in the reconstruction
algorithm, and propose a simple whitening procedure from the perspective of maximal likelihood estimation,
leading to a least-squares fidelity for the whitened problem. Second, we propose a dimension reduction proce-
dure in the data space to accelerate the benchmark MPI reconstruction algorithm using randomized singular
value decomposition (SVD). It exploits the inherent ill-posed nature of the MPI imaging problem, that is,
the system matrix admits a low-rank approximation, in order to reduce the effective number of equations.
This step can be easily incorporated into any existing algorithms. Third and last, we present extensive
numerical experiments on a publicly available dataset, i.e., the “shape” and “resolution” phantoms from
Open MPI dataset (available at https://www.tuhh.de/ibi/research/open-mpi-data.html), to demon-
strate the performance of the proposed algorithmic improvements. These represent the main contributions
of the work. Our findings include that the whitening step can improve the reconstruction accuracy, and
the randomized SVD can accelerate the benchmark algorithm by tens of times. Thus, these techniques may
greatly facilitate fast and accurate MPI reconstruction.

The rest of the paper is organized as follows. In Section 2, we discuss the proper formulation of the MPI
imaging problem, including system matrix calibration, frequency selection and whitening. In Section 3, we
describe the classical reconstruction method based on Kaczmarz iteration and its acceleration via randomized
SVD. Then in Section 4, we present extensive numerical results to illustrate the proposed algorithmic tricks.
In Section 5, we present concluding remarks and additional discussions. In an appendix, we provide an
error estimate of the approximate minimizer to the regularized functional with a low-rank approximation, to
justify the acceleration procedure. In the supplementary materials, we provide alternative visualizations of
the reconstructions in the inverted colormap, which can occasionally better display the background artifacts.

2 The MPI forward map

The accurate mathematical modeling of MPI is still in its infancy. Several mathematical models have been
proposed; see the recent survey [24] for an overview. Nonetheless, state of art numerical reconstructions
are achieved by experimentally calibrated forward maps, which we describe in Section 2.1 below. To give a
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self-contained description accessible to both practitioners and applied mathematicians, we give an abstract
formalism of the MPI inverse problem below.

First, we briefly describe the mathematical modeling of the physical process, and point out related
modeling challenges that have motivated data-based approaches. Let Ω ⊂ R3 be the spatial domain occupied
by the object of interest, and c : Ω → R+ be the concentration of the magnetic nanoparticles. Then the
measured voltage signal v` : I := [0, T ] → R, for ` = 1, . . . , L, obtained at L ∈ N receive coils, 0 < T < ∞,
is given by

v`(t) =

∫
Ω

c(x)

∫
I

−a`(t− t′)µ0p`(x)t ˙̄m(x, t)dt′︸ ︷︷ ︸
=s`(x,t)

dx+

∫
I

∫
R3

−a`(t− t′)µ0p`(x)tḢ(x, t)dxdt′︸ ︷︷ ︸
=vE,`(t)

, (2.1)

where the superscript t denotes the transpose of a vector (or a matrix), and the notation · denotes taking
derivative with respect to the time t. The relevant parameters in the model (2.1) are defined below

• s` : Ω× I → R: system functions characterizing the magnetic behavior of the nanoparticles

• m̄ : Ω× I → R3: mean magnetic moment of the nanoparticles

• µ0 > 0: magnetic permeability in vacuum

• a` : Ī := [−T : T ]→ R: analog filters in the signal acquisition chain

• p` : R3 → R3: sensitivity profiles of the receive coil units

• H : R3 × I → R3: applied magnetic field, which also induces a voltage in the receive coil

• vE,` : I → R: direct feedthrough

The analog filters a` are employed to filter out the direct feedthrough vE,`, and in practice, they are commonly
taken to be band stop filters adapted to excitation frequencies of the drive field. However, the direct
feedthrough vE,` is usually not perfectly removed by the analog filters a`. One big challenge in the modeling
is that the analytic forms of the filters a` are rarely available. A second challenge in the modeling is the mean
magnetic moment m̄. One often assumes that the moment m̄ is independent of the concentration c, and thus
ignore possible particle-particle interactions (which is however present for high concentrations [33]). Under
this and further assumptions, one popular way to relate the moment m̄ to the applied magnetic field H is
Langevin theory for paramagnetism, leading to the so-called equilibrium model [24]. These considerations
lead to a simplified affine linear forward map F : X → Y L:

c 7→
(∫

Ω

s`(x, t)c(x) dx+ vE,`(t)

)L
`=1

,

for suitable function spaces X and Y , e.g., X = L2(Ω), Y = L2(I), and {s`}L`=1 ⊂ L2(Ω × I). The task
in MPI is to recover the concentration c from the measured voltages (v`)

L
`=1 ∈ Y L. However, due to the

aforementioned practical complications, the precise kernels s` are usually unavailable, and instead they are
calibrated experimentally for MPI image reconstruction.

2.1 System matrix calibration

First we describe the calibration process for obtaining the system matrix. Let Γ ⊂ R3 be a reference volume
placed at the origin, which is often taken to be a small cube. Then one selects a set of calibration positions
{x(i)}mi=1 ⊂ Ω, which are often chosen such that the sets {x(i) + Γ}mi=1 form a partition of the domain Ω,
i.e., they are pairwise disjoint and Ω = ∪mi=1{x(i) + Γ}. Let χS denote the characteristic function of a
set S. Then the set of piecewise constant functions {χx(i)+Γ}mi=1 forms an orthonormal basis (ONB) for a
finite-dimensional subspace of L2(Ω) (the space consisting of all square integrable functions), which can be
used for approximating the concentration c in the domain Ω. In the experiment, a small sample is placed at
these predefined grid points {x(i)}mi=1, which is described as c(i) = c0χx(i)+Γ for some c0 > 0 and represents
one sample volume for calibration.

3



The measurements {v(i)
` = F`c

(i)}mi=1, ` = 1, . . . , L, are then used to characterize the discrete data-based
forward operator via a discrete system matrix. Mathematically, this procedure can be formulated using the
following map

Qn : L2(I)L → Rn:=
∑L
i=1 2|Ji|

(v`)
L
`=1 7→



(
Re(〈v1, ψj〉)j∈J1
Im(〈v1, ψj〉)j∈J1

)
...(

Re(〈vL, ψj〉)j∈JL
Im(〈vL, ψj〉)j∈JL

)
 , (2.2)

where {ψj}j∈N ⊂ L2(I) is an ONB of L2(I), which is commonly taken to be the Fourier basis of time-periodic

signals in L2(I), i.e. ψj(t) = T−
1
2 (−1)jei2πjt/T . The finite index sets {J`}L`=1 ⊂ Z serve as a preprocessing

step prior to image reconstruction, to be described below. Note that the ordering of the indices for real
and imaginary parts can be shuffled, and one may also employ complex measurements directly. Upon minor
changes, the techniques to be developed below can still be applied.

The map Qn in (2.2) consists of concatenating multiple receive coil signals, splitting real and imaginary
parts (if necessary), index / frequency selection, and discretization via projection onto a finite subset of the
ONB {ψj} (indexed by J`). The system matrix S is then given by

S =
[
Qn((v

(1)
` )`) . . . Qn((v

(m)
` )`)

]
∈ Rn×m. (2.3)

For the measured signals {v`}L`=1, we build the measurement vector v = Qn((v`)
L
`=1) analogously.

The background measurement v(0) = F0 (or more precisely, the mean over multiple measurements) is used

to remove the influence of the direct feedthrough vE,`. Then by subtracting the vector v0 = Qn((v
(0)
` )L`=1)

and the rank-one matrix S0 = v01
t
m (1m ∈ Rm is a vector with all its entries equal to unit), we obtain the

following linear MPI reconstruction problem
Ax = y, (2.4)

where A ∈ Rn×m, y ∈ Rn and x ∈ Rm are defined by

A = S − S0, y = v − v0, and c = c0

m∑
i=1

xiχx(i)+Γ.

In this construction, we have implicitly used a piecewise constant representation of the concentration c, with
c0xi being the concentration c on the cell x(i) + Γ. Problem (2.4) is the starting point of the proposed
algorithmic tricks, e.g., whitening and low-rank approximation, which are clearly oblivious to the calibration
process.

It is worth noting that the calibration procedure is laborious, time consuming and highly problem depen-
dent, and has limited spatial resolution. For example, it requires a recalibration whenever the experimental
setting changes. Therefore, there is a huge demand in developing accurate model-based approaches or hy-
brid approaches for MPI image reconstruction. We refer interested readers to [24] for relevant mathematical
models and [34, 6, 25] for preliminary mathematical analysis.

Remark 2.1. Note that several different strategies have been proposed to perform the background subtraction
for the system matrix in the literature [46, 45], which may require additional effort during the system matrix
calibration, in view of costly robot movements.

2.2 Frequency selection

In MPI there are two standard preprocessing approaches, i.e., band pass approach and SNR-type threshold-
ing, and they are often combined via the index sets {J`}L`=1. Let JBP = {j ∈ Z| b1 ≤ |j|/T ≤ b2} be the band
pass indices for frequency band limits 0 ≤ b1 < b2 ≤ ∞. The main purpose of band pass is to filter out the
direct feedthrough vE,` (although not perfectly), and outside the frequency band JBP, the signal is deemed to
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be too noisy and thus discarded. For the SNR-type thresholding, one standard quality measure is given by a

ratio of mean absolute values from individual measurements v
(i)
` (cf. Section 2.1) and a set of empty scanner

measurements {v(k)
`,0 }Kk=1 [7] obtained during the calibration process. Specifically, let ISNR ⊂ {1, . . . , N} be

the index set of individual measurements with calibration positions being an element of the smallest cuboid
region containing the trajectory of the field free point. Then we define

d`,j =

1
|ISNR|

∑
i∈ISNR

|〈v(i)
` − µ

(i)
` , ψj〉|

1
K

∑K
k=1 |〈v

(k)
`,0 − µ`, ψj〉|

, (2.5)

where µ` = 1
K

∑K
k=1 v

(k)
`,0 is the mean measurement, and µ

(i)
` = κiv

(ki)
`,0 + (1 − κi)v(ki+1)

`,0 is a convex com-
bination of the previous (ki-th) and following (ki + 1-th) empty scanner measurement with respect to the
i-th calibration scan. The parameters κi ∈ [0, 1] are chosen equidistant for all calibration scans between two
subsequent empty scanner measurements. Then for a given threshold τ ≥ 0, we define

J` = {j ∈ JBP|d`,j ≥ τ}, ` = 1, . . . , L. (2.6)

Remark 2.2. The SNR-type thresholding was also used to obtain a dimensionality reduction in the system
of linear equations in [28] to enable online reconstruction.

2.3 Whitening

The calibration process leads to a linear inverse problem

Ax = yδ with yδ = y† + η,

where η denotes the noise in the data, due to the imperfect data acquisition process. In practice, it is
often assumed to follow a Gaussian distribution N(µ,C) with mean µ ∈ Rn and covariance C ∈ Rn×n (real
symmetric positive semidefinite), upon invoking the central limit theorem (for repetitive measurements).
These statistical parameters µ and C are then estimated from repetitive measurements. The mean µ is
often approximately zero after background subtraction. The full covariance matrix C has a large number of
parameters, and requires a large volume of data for a reliable estimation, which is not necessarily available in
practice. One often imposes suitable structures on the covariance C, e.g., diagonal covariance, or uses more
advanced options, e.g., sparse inverse covariance [9], to facilitate the estimation. In MPI experiments, the
covariance C is often not a scalar multiple of the identity matrix (i.e., the noise components are not necessarily
independent and identically distributed). Thus it is important to exploit the structure of the covariance C
in image reconstruction, in the spirit of statistical inference. This can be achieved using a whitening matrix
W such that W (η − µ) follows a zero mean Gaussian distribution with identity covariance. The whitening
matrix W can be determined from the eigendecomposition (Q,Λ) of the covariance C (i.e., C = QΛQt) by

W = Λ−
1
2Qt. Alternatively one may employ the Cholesky decomposition C = LLt (L ∈ Rn×n is lower

triangular and W = L−t) to whiten the noise. Then we arrive at the following linear problem

WAx = W (yδ − µ). (2.7)

The whitening step enables the use of the standard least-squares formulation in MPI reconstruction, in the
spirit of the classical maximum likelihood approach, i.e.,

‖WAx−W (yδ − µ)‖2. (2.8)

Conceptually, a large variance indicates that the corresponding measurement may be not so reliable, and
thus may behave like an outlier within the dataset, for which an inadvertent use of the standard least-squares
formulation may significantly compromise the reconstruction accuracy. Instead, it should be weighed down
in the reconstruction step, which is precisely the role played by the whitening step. Clearly, the whitening
in (2.8) is equivalent to the weighted least-squares (Ax− (yδ − µ))tC−1(Ax− (yδ − µ)), which corresponds
to the maximum likelihood estimate for the data yδ. This formulation also properly accounts for the noise
statistics. However, the explicit whitening construction is advantageous for accelerating reconstruction via
the randomized SVD described in Section 3.2 below.
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Remark 2.3. Weighting was also used in [29], with the weight wk given by the energy of the kth row ak of
the system matrix A, i.e., wk = ‖ak‖−2. Thus the weighting in [29] represents a form of preconditioning,
which differs from the covariance interpretation in (2.7), despite the formal similarity. We refer also to [44]
for a related experimental study on several different weighting schemes.

For a calibrated system matrix A as in Section 2.1, the whitening process has to be adapted properly.
Specifically, for an ONB {bi}i ⊂ X, we have

wi = A†bi + ηi,

where A† : X → Y denotes the (unknown) true forward map and ηi follow the same distribution as the noise
η, i.e., (ηi − µ) ∼ N(0, C). Then the (mean) corrected and noisy forward map A is given by

Ax =
∑
i

〈x, bi〉(wi − µ) = A†x+
∑
i

〈x, bi〉(ηi − µ).

Thus, the noise term due to modeling error (in the forward map A) (relative to the exact one A†) is given
by
∑
i〈x, bi〉(ηi − µ). The statistics of this term is actually dependent of the unknown concentration x: the

mean is still zero, but the covariance is changed via a linear map dependent of x. In practical inversion, this
error term is often lumped into the data error, and combined with the measurement error in the data yδ,
whose noise statistics are then x-dependent. This short discussion highlights the distinct role of modeling
errors in data-based approaches. In the discussions below, we shall ignore model errors (for the acceleration
step) and employ the whitening procedure described above. Clearly, more suitable approaches should employ
alternatives, e.g., total least-squares approach [26] or approximation error modeling [1], which are, however,
beyond the scope of this work.

3 Enhanced image reconstruction

Now we describe the common MPI reconstruction method, and its acceleration via randomized SVD.

3.1 The common approach

Currently, the most popular and successful idea in MPI reconstruction is based on the following constrained
Tikhonov regularization with a quadratic penalty:

x† = arg min
x≥0
‖Ax− yδ‖2 + α‖x‖2, (3.1)

where α > 0 is the regularization parameter, controlling the tradeoff between the two terms [19]. The proper
choice of the parameter α is notoriously challenging, and many rules have been proposed, e.g., L-curve
criterion [17], discrepancy principle [35], balancing principle [19] and quasi-optimality criterion [10, 21], which
however have not been extensively studied within MPI reconstruction. The nonnegativity constraint x ≥ 0
is understood componentwise, and reflects the fact that the concentration x is nonnegative. The constraint
is essential for obtaining physically meaningful reconstructions. The whitening approach in Section 2.3 may
be implemented in the form (3.1) straightforwardly by penalizing the fidelity functional in equation (2.8),
and thus all the discussions below adapt accordingly.

In practice, a variant of the popular Kaczmarz method [22], developed in [2], is often employed for
solving the constrained optimization problem (3.1) in the MPI reconstruction. It has demonstrated excel-
lent empirical performance [46, 29, 38], and has been implemented in commercial MPI scanners (included
in ParaVision R© (Bruker BioSpin MRI GmbH, Germany) as reported in [8]). One distinct feature of the
Kaczmarz method is that at each iteration, it operates only on one equation, instead of the whole linear
system, and thus its computational complexity per iteration is nearly independent of the amount of data.
This feature makes the algorithm especially attractive for problems with large datasets e.g., 3D MPI, and
traditionally, it has been very successful within the computed tomography community [18, 37, 20]. The
complete procedure of the variant in [2] is given in Algorithm 1. The algorithm often reaches the desired
convergence within tens of sweeps through the equations, and thus its complexity is roughly proportional
to the number n of rows in the matrix A. We shall employ it as the benchmark algorithm, and propose a
preprocessing step to accelerate the computation.

6



Algorithm 1 Kaczmarz method for problem (3.1).

1: Input matrix A ∈ Rn×m, yδ ∈ Rn, and α > 0
Optional: initial value x0 ∈ Rm (0 default), relaxation parameter ω ∈ (0, 2) (1 default);

2: Initialize x = x0, z = 0 ∈ Rn, z̄ = 0 ∈ Rm;
3: for k = 1, . . . ,K do
4: i = (k mod n) + 1; \\row index

5: η = −ω 〈ai,x〉+
√
αzi−yδi

‖ai‖2+α ; \\ai is i-th row of A

6: zi ← zi + η
√
α;

7: x← x+ ηati;
8: if i = n or k = K then
9: η̄ = −(min(z̄j , ωxj))j=1,...,m;

10: z̄ ← z̄ + η̄;
11: x← x+ η̄; \\positivity constraint
12: end if
13: end for
14: Return the approximation xK ← x.

3.2 Acceleration by randomized SVD

Now we describe a simple acceleration method for Algorithm 1 based on randomized singular value decom-
position (SVD). Recall that SVD of a matrix A ∈ Rn×m is given by

A = UΣV t,

where U = [u1 u2 . . . un] ∈ Rn×n and V = [v1 v2 . . . vm] ∈ Rm×m are column orthonormal matrices,
Σ ∈ Rn×m is a diagonal matrix, with the diagonal entries ordered in a nonincreasing manner: σ1 ≥ σ2 ≥
. . . ≥ σr > σr+1 = . . . = σmin(m,n), where r is the rank of the matrix A. Traditional methods for computing
SVD, e.g., Lanczos bidiagonalization, are not attractive for general dense matrices as arising in MPI. For
example, the complexity of Golub-Reinsch algorithm for computing SVD is 4n2m+8m2n+9m3 (for n ≥ m)
[12, p. 254]. Thus, it can be prohibitively expensive for large-scale matrices. The randomized SVD (rSVD)
provides an efficient way to construct a low-rank approximation by randomly mixing the columns of A [16].
The procedure is given in Algorithm 2 for the case n ≥ m, and the case n < m can be obtained by applying
Algorithm 2 to the transposed matrix At.

Algorithm 2 rSVD for A ∈ Rn×m, n ≥ m.

1: Input matrix A ∈ Rn×m, n ≥ m, and target rank k;
2: Set parameters p (default p = 5), and q (default q = 0);
3: Sample a random matrix Ω = (ωij) ∈ Rm×(k+p), with ωij ∼ N(0, 1);
4: Compute the randomized matrix Y = (AA∗)qAΩ;
5: Find an orthonormal basis Q of range(Y );
6: Form the matrix B = Q∗A;
7: Compute the SVD of B = WSV ∗;
8: Return the rank k approximation (Ũk, Σ̃k, Ṽk), cf. (3.2).

In Algorithm 2, Step 4 is to extract the column space R(A) of A, i.e., R(Y ) ⊂ R(A), and Step 5 is to
find an orthonormal basis for R(Y ), e.g., via QR decompositon or skinny SVD. The remaining steps can be
regarded as one subspace iteration for computing SVD of the matrix QQtA. Since the involved matrices are
of much smaller size, these SVDs can be carried out efficiently. The accuracy of R(Y ) to R(A) is crucial
to the success of the algorithm. A positive exponent q can improve the accuracy when the singular values
of A decay slowly, and the oversampling parameter p is to improve the accuracy of the range probing. The
low-rank approximation Ãk by rSVD is given by

Ãk = ŨkΣ̃kṼ
t
k , with Ũk = (QW ):,1:k, Σ̃k = S1:k,1:k, Ṽk = V:,1:k, (3.2)
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where the notation 1 : k denotes taking the first k columns/rows of the matrix. The complexity of Algorithm
2 is around 4(q + 1)kmn, which is lower than computing SVD of A directly. Clearly, the efficiency of the
approach relies crucially on the low-rank structure of A. In the context of MPI, it was rigorous justified for
the equilibrium model in [25]: it is severely ill-posed for common experimental setups.

With the rSVD (Ũk, Σ̃k, Ṽk) at hand, we approximate problem (3.1) by

arg min
x≥0
‖Ax− yδ‖2 + α‖x‖2

≈ arg min
x≥0
‖ŨkΣ̃kṼ

t
kx− yδ‖2 + α‖x‖2

= arg min
x≥0
‖Σ̃kṼ tkx− Ũ tkyδ‖2 + α‖x‖2. (3.3)

The number k of rows in problem (3.3) is much smaller than n, enabling a significant speedup of Algorithm 1.
In essence, rSVD is a preprocessing step to extract essential information content in A, and can be viewed as
a dimensionality reduction strategy in the data space; see Appendix A for error estimates on the minimizer
due to the low-rank approximation. Note that this step does not alter the whole reconstruction procedure.

The low-rank approximation (Ũk, Σ̃k Ṽk) (actually the factors (Ũk, Σ̃kṼ
t
k ) are sufficient) essentially under-

pins the acceleration in the formulation (3.3). In principle, any numerical method for constructing low-rank
approximations can be employed, and rSVD given in Algorithm 2 represents a computationally attractive
choice, which is more efficient than the standard SVD computation. Further, an approximate optimization
problem can be constructed by means of sketching [47], which employs a random / deterministic matrix to
approximately preserve the magnitude of the fidelity while reducing the dimension of the data space, which
will not be explored in this work.

So far we have described an acceleration procedure for problem (3.1). It applies equally well to the
whitened problem (2.7) derived in Section 2.3. This can be achieved simply by applying rSVD to the
whitened matrix WA to construct an accurate low-rank approximation. The whitening matrix W may
influence the spectral behavior of WA, which generally is different from that of A.

4 Numerical results and discussions

In this section, we present numerical results to illustrate the proposed algorithmic tricks, i.e., whitening and
acceleration. The experimental setup is as follows. We employ a measured system matrix, where a band
pass filter is applied (with b1 = 80 kHz and b2 = 625 kHz), which yields a system matrix A ∈ Rn×m for the
L = 3 receive channels. Background measurements (with the same band filter) are used to obtain a diagonal
whitening operator W ∈ Rn×n and thus also the whitened matrix AW = WA ∈ Rn×m (for the whitening
approach). Let (Ũk, Σ̃k, Ṽk) be the rSVD of A given by Algorithm 2, and analogously (ŨW ;k, Σ̃W ;k, ṼW ;k)
for the rSVD of AW . All forward maps are scaled to have a unit operator norm.

Below we compare the reconstructions by the proposed method with that by the standard Kaczmarz
method (i.e., Algorithm 1) and the dimensionality reduction method proposed in [28]. Specifically, we
consider the following four reconstruction methods:

• [STD]: The reconstructions xSTD and xW ;STD are respectively obtained by

xSTD = arg min
x≥0
‖Ax− yδ‖2 + α‖x‖2 and xW ;STD = arg min

x≥0
‖AWx−Wyδ‖2 + α‖x‖2,

with Algorithm 1; cf. problem (3.1).

• [SNR]: For a given k ∈ N, there exists a τk > 0 such that a reduced system with k rows is obtained
via the SNR-type frequency selection for τ = τk (cf. Section 2.2) using Qk to build the system matrix
Ak and the measurement vector yδk as proposed for online reconstruction in [28]. Then the diagonal
whitening operator Wk is determined for the reduced system. The reconstructions xSNR and xWk,SNR

are respectively obtained by

xSNR = arg min
x≥0
‖Akx− yδk‖2 + α‖x‖2 and xWk;SNR = arg min

x≥0
‖Ak;Wk

x−Wky
δ
k‖2 + α‖x‖2,

with Algorithm 1; cf. problem (3.1).
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• [rSVD1]: The (rSVD) reconstructions xrSVD1 and xW ;rSVD1 are respectively obtained by

xrSVD1 = arg min
x≥0
‖Σ̃kṼ tkx− Ũ tkyδ‖2 + α‖x‖2,

xW ;rSVD1 = arg min
x≥0
‖Σ̃W ;kṼ

t
W ;kx− Ũ tW ;kWyδ‖2 + α‖x‖2,

with Algorithm 1 for given k ∈ N; cf. problem (3.3).

• [rSVD2]: The reconstruction xrSVD2 is computed via

xrSVD2 = PRm+ ṼkΣ̃−1;α
k Ũ tky

δ,

with Σ̃−1;α
k = diag(Σ̃k;ii/(Σ̃

2
k;ii +α2)) ∈ Rk×k, where the notation PRm+ denotes the projection into the

set Rm+ which consists of vectors in Rm with all entries nonnegative. The reconstruction xW ;rSVD2 is
obtained similarly. These methods treat the nonnegativity constraint in an ad hoc manner, and can be
used as rough approximations to xrSVD1 and xW;rSVD1, and can be viewed as close cousins of truncated
SVD, in the form of pseudo-inverse from the randomized SVD using Tikhonov filters. Note that rSVD1
and rSVD2 are drastically different in nature: rSVD1 is an iterative reconstruction method (based on
Kaczmarz iteration), whereas rSVD2 is a direct one.

The dimension reduction in the methods SNR, rSVD1 and rSVD2 may induce extra regularization besides
the penalty ‖x‖2 (and nonnegativity constraint), in the spirit of the classical truncated SVD [5], when the
target dimension k is small. This different source of regularization can significantly complicate the study
(e.g., parameter tuning).

These reconstruction methods are evaluated on a publicly available 3D dataset, i.e., open MPI dataset

(downloaded from https://www.tuhh.de/ibi/research/open-mpi-data.html, last accessed on January

19, 2019) provided in the MPI Data Format (MDF) [30]. The (measured) system matrix data {v(i)
` }mi=1,

` = 1, 2, 3, is obtained using a cuboid sample of size 2 mm × 2 mm × 1 mm. The calibration is carried out
with Perimag R© tracer with a concentration 100 mmol/l. The field-of-view has a size of 38 mm × 38 mm
× 19 mm and the sample positions have a distance of 2 mm in x- and y-direction and 1 mm in z-direction,
resulting in 19 × 19 × 19 = 6859 voxels, which gives the number m of columns in the system matrix A.
The entries of A are averaged over 1000 repetitions and empty scanner measurements are performed and
averaged every 19 calibration scans. The measurements are averaged over 1000 repetitions of the excitation
sequence, and with each phantom, an empty measurement with 1000 repetitions is provided, which are
used for the background correction of the measurement and the system matrix A (cf. Section 2.1) and also
for the approximation of the covariance C respectively the whitening matrix W (see Section 2.3). For the
experiments presented below, the Kaczmarz method, i.e., Algorithm 1, is always run for 20 loops over the
system, and numerically it is observed to be sufficient for ensuring convergence. Thus, there is no substantial
regularizing effect arising from possibly early stopping of Kaczmarz iteration.

We validate the proposed methods on the “shape” and “resolution” phantoms in the dataset. The “shape”
phantom is a cone defined by a 1 mm radius tip, an apex angle of 10 degree, and a height of 22 mm. The
total volume is 683.9 µl. Perimag R© tracer with a concentration of 50 mmol/l is used. See Fig. 1 for a
schematic illustration of the phantom and the visualization structure of the 3D reconstructions below, where
the pictures are partially adapted from Open MPI dataset. The “resolution” phantom consists of 5 tubes
filled with Perimag R© tracer with a concentration of 5 mmol/l. The 5 tubes have a common origin on one side
of the phantom. The tubes extend in different angles from the origin within the x-y- and the y-z-planes. In
z-direction, the angles in the y-z-plane are chosen smaller (10 deg and 15 deg) than in x-y-plane (20 deg and
30 deg); see Fig. 2 for the illustration. In all the reconstructions below, the concentration unit is mmol/l.
See also the supplementary material for the reconstructions in an inverted colormap, which occasionally
allow better display of the background artifacts.

4.1 The benefit of whitening

First, we illustrate the benefit of whitening in the standard reconstruction technique (i.e., STD). Due to
the small number of repetitions of the empty measurements (1000 repetitions compared to 23482 indices in
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Figure 1: “Shape” phantom from the open MPI dataset (left, middle) and visualization structure for the
3D reconstructions (right).

Figure 2: “Resolution” phantom from the open MPI dataset.

the band limits for each receive coil, when assuming the receive coils are independent), the covariance C is
approximated by a diagonal one to ensure a reliable estimation. The estimated (diagonal) covariance C for
the “shape” phantom is shown in Fig. 3. The magnitude of the noise variance is observed to vary dramatically
with the frequency over the frequency band for both real and imaginary parts, and the behavior is similar for
all three receive coils. The heteroscedastic nature of the noise necessitates the use of the whitening procedure
in the reconstruction algorithm in Section 2.3.

The STD reconstructions for the non-whitened and whitened cases are shown in Figs. 4 and 5 for the
“shape” and “resolution” phantoms, respectively. The results are presented for three different α values,
including the cases of over, medium and under regularization, respectively. For the medium and small α
values, the reconstructed phantoms for both non-whitened and whitened cases are of similar quality; see the
middle and right columns of the figures. However, a closer inspection of Fig. 4 shows that the reconstruction
in the non-whitened case suffers from pronounced background artifacts, whereas, in the whitened case, the
artifacts can be greatly reduced even for much smaller α values. Meanwhile, for a large α value (α = 2−10)
(the left column), the background artifacts largely disappear from the reconstructions in the non-whitened
case but also the reconstructed cone tends to be overly smooth and to suffer from undesirable smearing effect,
due to over-regularization introduced by the penalty; and these observations hold also for the whitened case.
Thus, the whitening step makes the reconstruction algorithm more robust to the choice of the α value, which
is highly desirable in practice, since its optimal choice is generally very challenging.

In summary, the STD reconstructions in Figs. 4 and 5 have similar quality in the whitened and non-
whited cases, except some smaller background artifacts for the non-whitened approach.
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x-coil y-coil z-coil

Figure 3: Variance structure of the diagonal covariance matrix C for the “shape” phantom. Visualized
individually for each receive coil with respect to the frequency; real part (top), imaginary part (bottom).

Non-whitened Whitened
α = 2−10 α = 2−15 α = 2−20 α = 2−10 α = 2−15 α = 2−20

Figure 4: Non-whitened/whitened STD reconstructions of the “shape” phantom.

Non-whitened Whitened
α = 2−10 α = 2−15 α = 2−20 α = 2−10 α = 2−15 α = 2−20

Figure 5: Non-whitened/whitened STD reconstruction of the “resolution” phantom.

4.2 Acceleration via randomized SVD

Now we illustrate randomized SVD for accelerating the Kaczmarz algorithm, and discuss its interplay with
whitening. In Fig. 6, we plot the singular values (SVs) of the non-whitened and whitened system matrices for
the “shape” phantom. The SVs decay algebraically with comparable decay rates for the whitened and non-
whitened cases, indicating that the MPI inverse problem is mildly ill-posed. A useful quantitative measure
of the low-rank approximation is the “energy” percentage (

∑k
i=1 σ

2
i )/(

∑m
i=1 σ

2
i ), which roughly corresponds

to the optimal error bound on the rank-k approximation in the Frobenius norm. According to the table in
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(
∑k
i=1 σ

2
i )/(

∑m
i=1 σ

2
i )

k Whitened Non-whitened
500 99.23 99.61
1000 99.46 99.73
1500 99.55 99.80
2000 99.61 99.85

Figure 6: Illustration of singular value decay (left) of the system A ∈ Rn×m for the “shape” phantom.

Table (right) including energy percentage (
∑k
i=1 σ

2
i )/(

∑m
i=1 σ

2
i ) for low rank approximations of A ∈ Rn×m;

relevant for constructing randomized SVD approximation.

Non-whitened Whitened

Figure 7: Picard plots for the “shape” phantom.

Fig. 6, five hundred SVs capture nearly all the energies for both whitened and non-whitened cases and thus
can give an accurate low rank approximation; although in the non-whitened case, the same number of SVs
can capture slightly more energy percentage than that for the whitened case. The decay behavior justifies
the use of the rSVD approach for accelerating the algorithm in Section 3.2. In MPI, the SV decay was
rigorously proved for simplified models in [6] and [25] for the one-dimensional and multi-dimensional cases,
respectively. In Fig. 7, we plot the quantities |utiyδ| and |utiyδ|/σi for the “shape” phantom, which is often
known as the discrete Picard plot and used for diagnosing the behavior of discrete inverse problems. The
quantity |utiyδ|/σi tends to blow up as the index i increases, indicating the ill-posed nature of the inverse
problem and necessitating regularization. Although not presented, similar behavior on the SV spectrum and
Picard plot can be observed for the “resolution” phantom.

In view of the SV decay in Fig. 6 and the energy percentage in the table therein, two truncation numbers,
i.e., k = 500 and k = 1000, are employed below for the accelerated reconstruction for both phantoms, which
both can capture a sufficient percentage of energy. The numerical reconstructions for the “shape” and
“resolution” phantoms are presented in Figs. 8–10 and Figs. 11–13, respectively, for three different α values,
i.e., 2−20, 2−15 and 2−10, used in Figs. 4 and 5.

With the α value properly chosen (i.e., α = 2−15), rSVD1 can provide reasonable reconstructions in the
whitened case for both k values (cf. Figs. 9 and 12), and the reconstructions are comparable with that by
STD in Figs. 4 and 5. However, in the non-whitenend case, slight blurring appears in the reconstructed
cone. With the choice k = 1000, SNR gives comparable reconstructions, but with k = 500, either significant
distortions or smoothing appear in the reconstructions for all three α values, and thus the choice k = 500
in SNR seems insufficient to capture the essential information of the data. Thus, rSVD is more effective
in compressing the data than SNR. Somewhat surprisingly, rSVD2, the simplest and fastest approach, can
also provide reasonable reconstructions of comparable quality, even in the over-regularized case, but in the
non-whitenend case, it gives reconstructions containing pronounced background artifacts, which, however,
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Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 8: “Shape” phantom reconstructions for α = 2−10.

can be greatly reduced in the presence of whitening; see Figs. 9–10 and 12–13. This clearly shows the
significant potential of the strategy whitening + rSVD2 for MPI reconstruction.

Next we focus on the role of whitening in rSVD acceleration. Whitening influences greatly both rSVD1
and rSVD2, especially when the α value is small: The whitened reconstructions are of better quality in the
senses that the background artifacts are strongly reduced; see Figs. 10 and 13. Note that for small α, a
small truncation number k can be very beneficial for improving reconstruction quality, due to its intrinsic
regularizing effect (in a manner similar to the classical truncated SVD [5]). Further, comparing k = 500
for rSVD1 in Figs. 9 and 10 (and also Figs. 12 and 13), e.g., in the x-y-plane, the reconstruction shows
that whitening may enable further dimension reduction while maintaining reconstruction quality (due to the
change in the SV decay curve), concurring with the observation from Fig. 6. Among the three methods
under analysis, rSVD2 benefits most from whitening, since for all three α values, the background artifacts
disappear almost completely. While the precise mechanism of this phenomenon remains unclear, it may
be attributed to the more robust SVD without too noisy singular vectors corresponding to large singular
values. These observations indicate that whitening is advantageous in the reconstruction: it enables using
smaller α values in rSVD1 and rSVD2 to obtain acceptable reconstructions without unnecessary smoothing
the actual phantom because of using a sufficiently large α; see Figs. 8 and 11. However, SNR benefits little
from whitening: it relies on the SNR-type quality measure for dimension reduction, already exploiting the
background noise characteristic to some content. Thus, the dimensionality is already dramatically reduced,
and the remaining rows of the reduced system have a large SNR-type quality measure and are only weakly
influenced by the noise.

The computing times of the reconstruction methods are summarized in Table 1 for the “shape” phantom
and Table 2 for the “resolution” phantom, where we have ignored the cost of preprocessing (e.g., frequency
selection or rSVD) since it can be carried out offline. Interested readers can also find the computing times
for rSVD in the last column of Table 1. All the computations are carried out on a server with 2×Intel R©

Xeon R© Broadwell-EP Series Processor E5-2687W v4, 3.00 GHz, 12-Core, and 1.5 TB DDR4 PC2666 main
memory, and the mean and standard deviation are computed from 100 repetitions. The computing time for
rSVD1 and SNR are more or less comparable, when using the same k value, due to similar complexity (more
precisely, rSVD1 has slightly longer computing times due to the additional matrix-vector multiplication to
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Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 9: “Shape” phantom reconstructions for α = 2−15.

Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 10: “Shape” phantom reconstructions for α = 2−20.
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Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 11: “Resolution” phantom reconstructions for α = 2−10.

Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 12: “Resolution” phantom reconstructions for α = 2−15.

project the measurement into the space spanned by the k singular vectors in Ũk respectively ŨW ;k). rSVD2
is the fastest method due to its non-iterative nature, even if one takes into account the 20 sweeps over the
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Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 13: “Resolution” phantom reconstructions for α = 2−20.

k SNR rSVD1 rSVD2 rSVD
500 0.3792±0.0227 0.3880±0.0265 0.0115±0.0011 3.7237±0.1439
1000 0.7572±0.0391 0.7775±0.0403 0.0210±0.0022 7.1799±0.0959
1500 1.1489±0.0618 1.1743±0.0609 0.0300±0.0023 12.3714±0.1994
2000 1.5465±0.0910 1.5605±0.0712 0.0395±0.0022 18.6500±0.1881

Table 1: Computing times (in seconds) using MATLAB for the “shape” phantom. The computing time for
STD is 53.5308±2.6653. STD for 20n iterations, SNR and rSVD1 for 20k iterations. The full SVD took
116.85s/123.64s (whitened/non-whitened); n = 70446 and m = 6859.

k SNR rSVD1 rSVD2
500 0.3761±0.0221 0.3868±0.0255 0.0118±0.0011
1000 0.7531±0.0328 0.7743±0.0337 0.0213±0.0036
1500 1.1336±0.0449 1.1533±0.0408 0.0308±0.0021
2000 1.5145±0.0630 1.5508±0.0666 0.0386±0.0026

Table 2: Computing times (in seconds) using MATLAB for the “resolution” phantom. The computing time for
STD is 53.1284±2.1240. STD for 20n iterations, SNR and rSVD1 for 20k iterations.

corresponding reduced systems for SNR and rSVD1. Thus, all the acceleration approaches can significantly
reduce the overall computational cost, with the speedup factor essentially determined by the size of the
reduced system. STD is the most expensive one among all methods under consideration. It is worth noting
that the computing time for rSVD increases nearly linearly with the rank k, concurring with the complexity
in Section 3.2, and even after including the rSVD computation, the method rSVD1 is still far more efficient
than STD. Note that the speedup is especially important in the multi-query context, since in practice one
has to choose a proper value for the regularization parameter α, which inevitably requires solving a fair
number of optimization problems. Further, it holds significant promise as a nearly online algorithm.

In summary, randomized SVD can significantly accelerate the reconstruction algorithms, within which
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the whitening procedure is highly beneficial, while maintaining the overall accuracy.

5 Concluding remarks

In this work we have discussed two issues in the MPI reconstruction from the perspective of inverse theory.
First, we propose to include a whitening strategy and to solve a generalized least squares problem that is
adapted to the noise statistics. This step can significantly improve the robustness of the algorithm and
reconstruction quality. Second, we propose a dimension reduction strategy in the data space via randomized
SVD. The randomized SVD is computationally efficient and scales to very large matrices. This step can
greatly reduce the number of equations, and arrive at an accurate reduced system (in the data space).
The numerical results on a publicly available dataset show that by combining whitening and low-rank
approximation, one can obtain reconstructions of similar quality compared to the benchmark approach, but at
a much lower computational complexity, and meanwhile can improve the image quality when compared with
alternative system reduction approaches like SNR. The experimental findings indicate that the algorithmic
tricks can facilitate developing fast robust MPI reconstruction algorithms.

This study has several implications on MPI reconstruction. The low-rank approximation provides an
alternative (and complementary) to the sparse approximation approaches for the forward map [32, 31, 41].
In contrast to these works, the dimension reduction based on randomized SVD does not rely on an a priori
choice of a basis for system representation, and it is optimal with respect to the (weighted) Frobenius
/ spectral norm. In theory, the ill-posed nature of the MPI inverse problem [25] allows a memory-efficient
representation (i.e., low-rank approximation with a small k) without significant loss of reconstruction quality,
which is confirmed by the numerical results in Section 4. The proposed method also does not require an
SNR-type quality measure, which is computed from the noisy measured system matrix data and empty
scanner measurements [8]. The latter is utilized in the proposed method (with a sufficiently large number
of repetitions) to obtain a reasonable approximation of the covariance matrix C for the whitening step. In
contrast to the SNR-type quality measure, the noise characteristic is incorporated via a whitening strategy.
The simple nature of the used background measurement correction does not require additional empty scanner
measurements during the calibration, which may prolong the calibration due to expensive additional robot
movements [46, 45]. Further, the optimal dimension reduction builds the basis for developing efficient online
reconstructions. In this context, the proposed method is advantageous since it allows more robust and faster
(due to possibly much more effective dimension reduction) image reconstruction when compared with the
online reconstruction approach based on the SNR-type quality measure proposed in [28].

This work shows that the study of the MPI reconstruction from the perspective of inverse theory can
be very fruitful, and it motivates further explorations along the line. The first is about choosing a suitable
regularization parameter, which is a long standing issue and often done in an ad hoc manner in practice. A
systematic investigation of the issue would greatly facilitate the development of automated reconstruction
techniques. One important factor in the context of MPI is the presence of significant model errors (and
possibly also the error due to low-rank approximation), which necessitates proper adaptation of existing
rules, e.g., discrepancy principle, L-curve criterion and quasi-optimality criterion. The second is to extend
the proposed low-rank trick to other penalties, e.g., total variation and sparsity. One obvious strategy is to
reduce the computational complexity of the gradient evaluation in related iterative minimization algorithms
(e.g., primal-dual algorithm and proximal gradient algorithm), using a low-rank approximation. Similarly,
it is also of interest to explore the potentials of alternative dimension reduction strategies, e.g., random
sketching. Third and last, it is important to analyze relevant theoretical issues, e.g., stability, uniqueness
and resolution limit, of the MPI inverse problem, and their dependence on the experimental setup so as to
guide the experimental design.
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A Error estimate

Now we give an error estimate on the approximation x̃δα in a general setting. Let X be a Banach space, and
Y be a Hilbert space, and A : X → Y be a compact linear operator. Consider the following inverse problem
Ax = y†, where x ∈ X. Instead of the exact data y† = Ax†, corresponding to the exact solution x†, we have
yδ ∈ Y with an accuracy δ = ‖yδ − y†‖. Let Ã : X → Y be an approximate forward map with ε = ‖Ã−A‖.
Then we aim at finding an approximate solution x̃δα by means of variational regularization [19]

J̃α(x) = 1
2‖Ãx− y

δ‖2 + αψ(x),

where the functional ψ : X → R+ ∩ {0} is a convex, proper and lower-semicontinuous functional. The
common choice includes ψ(x) = 1

2‖x‖
2, ψ(x) = ‖x‖`1 and ψ(x) = |x|TV etc. We denote by xδα a minimizer

to Jα and by x̃δα a corresponding minimizer to J̃α with a noisy operator Ã. By x†, we denote a minimum-ψ
solution of the equation Ax = y†: x† = arg minx∈X:Ax=y† ψ(x). It is easy to see that the derivation below
remains valid for in the presence of nonnegativity constraint, so long as the minimum-ψ solution is feasible.

Let ∂ψ(x) be the subdifferential of ψ at x [4]. For any ξ ∈ ∂ψ(x), we define the Bregman distance from
x to x′ with respect to ξ by

dξ(x
′, x) = ψ(x′)− ψ(x)− 〈ξ, x′ − x〉.
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Then we have the following error estimate on the approximation x̃δα. It may serve as a guideline for
determining the accuracy of the constructed approximation Ã: the model error ε = ‖A − Ã‖ should be
comparable with data error δ in order not to compromise the reconstruction accuracy. The proof is standard
[42, 19] and it is given only for completeness.

Theorem A.1. Assume that the exact solution x† fulfills the following source condition: there exists w ∈ Y
such that A∗w ∈ ∂ψ(x†). Then for the minimizer x̃δα to the functional J̃α, there holds

dξ(x̃
δ
α, x
†) ≤ α−1(ε‖x†‖+ δ)2 + α‖w‖2 + ε‖w‖‖x† − x̃δα‖.

Proof. By the minimizing property of x̃δα, we obtain

1
2‖Ãx̃

δ
α − yδ‖2 + αdξ(x̃

δ
α, x
†) ≤ 1

2‖Ãx
† − yδ‖2 − α〈ξ, x̃δα − x†〉.

Under the source condition, rearranging the inequality yields

1
2‖Ãx̃

δ
α − yδ‖2 + αdξ(x̃

δ
α, x
†) ≤ 1

2‖Ãx
† − yδ‖2 − α〈w,A(x̃δα − x†)〉.

Next we rewrite the terms on the right hand side as

‖Ãx† − yδ‖2 = ‖Ãx̃δα − yδ‖2 + 2〈Ãx̃δα − yδ, Ã(x† − x̃δα)〉+ ‖Ã(x† − x̃δα)‖2,
〈w,A(x̃δα − x†)〉 = 〈w,Ak(x̃δα − x†)〉+ 〈w, (A−Ak)(x̃δα − x†)〉.

Combining the last three estimates yields

1
2‖Ãx̃

δ
α − yδ‖2 + αdξ(x̃

δ
α, x
†) ≤ 1

2‖Ãx̃
δ
α − yδ‖2 + 〈Ãx̃δα − yδ, Ã(x† − x̃δα)〉+ 1

2‖Ã(x† − x̃δα)‖2

+ α〈w, Ã(x† − x̃δα)〉+ α〈w, (A− Ã)(x† − x̃δα)〉
= 1

2‖Ãx̃
δ
α − yδ‖2 + 〈Ãx† − yδ, Ã(x† − x̃δα)〉 − 1

2‖Ã(x† − x̃δα)‖2

+ α〈w, Ã(x† − x̃δα)〉+ α〈w, (A− Ã)(x† − x̃δα)〉.

Collecting the terms, we obtain

1
2‖Ã(x† − x̃δα)‖2 + αdξ(x̃

δ
α, x
†) ≤ 〈Ãx† − yδ, Ã(x† − x̃δα)〉+ α〈w, Ã(x† − x̃δα)〉+ α〈w, (A− Ã)(x† − x̃δα)〉

Thus, by means of Cauchy-Schwarz inequality and Young’s inequality,

αdξ(x̃
δ
α, x
†) ≤ ‖Ãx† − yδ‖2 + α2‖w‖2 + α‖w‖‖A− Ã‖‖x† − x̃δα‖.

Meanwhile by the triangle inequality,

‖Ãx† − yδ‖ ≤ ‖(Ã−A)x†‖+ ‖Ax† − yδ‖
≤ ‖Ã−A‖‖x†‖+ ‖y† − yδ‖ ≤ ε‖x†‖+ δ.

Upon substituting the estimate, we obtain

dξ(x̃
δ
α, x
†) ≤ α−1(ε‖x†‖+ δ)2 + α‖w‖2 + ε‖w‖‖x† − x̃δα‖.

This completes the proof of the theorem.

Remark A.1. For the quadratic penalty ψ(x) = 1
2‖x‖

2, the associated Bregman distance dξ(x
′, x) is given

by dξ(x
′, x) = 1

2‖x
′ − x‖2, and thus the error estimate in Theorem A.1 reduces to

‖x̃δα − x†‖2 ≤ 2α−1(ε‖x†‖+ δ)2 + 2α‖w‖2 + 2ε‖w‖‖x† − x̃δα‖,

which together with Young’s inequality yields

‖x̃δα − x†‖2 ≤ 4α−1(ε‖x†‖+ δ)2 + 4α‖w‖2 + 4ε2‖w‖2.

The estimate shows that roughly one should choose ε := ‖A− Ã‖ such that ε‖x†‖ ≈ δ, in order to ensure that
the overall accuracy is not compromised. This directly gives a guiding principle for constructing the low-rank
approximation Ã in Section 3.2. In particular, for a larger noise level δ, one may employ a less accurate
low-rank approximation (i.e., smaller k), which can further reduce the computational complexity. Note that
the last term in the estimate is generally of high order, and the first two terms essentially determines the
accuracy.
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B Supplements: Inverted colormap “shape” phantom

Non-whitened Whitened
α = 2−10 α = 2−15 α = 2−20 α = 2−10 α = 2−15 α = 2−20

Figure 14: Non-whitened/whitened STD reconstructions of the “shape” phantom (Fig. 4 with inverted
colormap).
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Figure 15: “Shape” phantom reconstructions for α = 2−10 (Fig. 8 with inverted colormap).
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Non-whitened Whitened
SNR rSVD1 rSVD2 SNR rSVD1 rSVD2

k = 1000

k = 500

Figure 16: “Shape” phantom reconstructions for α = 2−15 (Fig. 9 with inverted colormap).
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Figure 17: “Shape” phantom reconstructions for α = 2−20 (Fig. 10 with inverted colormap).
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C Supplements: Inverted colormap “resolution” phantom

Non-whitened Whitened
α = 2−10 α = 2−15 α = 2−20 α = 2−10 α = 2−15 α = 2−20

Figure 18: Non-whitened/whitened STD reconstructions of the “resolution” phantom (Fig. 5 with inverted
colormap).
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Figure 19: “Resolution” phantom reconstructions for α = 2−10 (Fig. 11 with inverted colormap).
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Figure 20: “Resolution” phantom reconstructions for α = 2−15 (Fig. 12 with inverted colormap).
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Figure 21: “Resolution” phantom reconstructions for α = 2−20 (Fig. 13 with inverted colormap).
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