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Radiomics in multiple sclerosis and neuromyelitis optica spectrum 

disorder 

Abstract 

Objective: To develop and validate an individual radiomics nomogram for differential 

diagnosis between MS and NMOSD. 

Methods: We retrospectively collected 67 MS and 68 NMOSD with spinal cord 

lesions as a primary cohort, and prospectively recruited 28 MS and 26 NMOSD 

patients as a validation cohort. Radiomic features were extracted from the spinal 

cord lesions. A prediction model for differentiating MS and NMOSD was built by 

combining the radiomic features with several clinical and routine MRI measurements. 

The performance of the model was assessed with respect to its calibration plot and 

clinical discrimination in the primary and validation cohorts. 

Results: Nine radiomics features extracted from an initial set of 485, predominantly 

reflecting lesion heterogeneity, combined with lesion length, patient sex, and EDSS, 

were selected to build the model for differentiating MS and NMOSD. The areas under 

the ROC curves (AUC) for differentiating the two diseases were 0.8808 and 0.7115, 

for the primary and validation cohort, respectively. This model demonstrated good 

calibration (C-index was 0.906 and 0.802 in primary and validation cohort).  

Conclusions: A validated nomogram that incorporates the radiomics signature of 

spinal cord lesions, as well as cord lesion length, sex, and EDSS score, can usefully 

differentiate MS and NMOSD. 
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Key points: 

1: Radiomic features of spinal cord lesions in MS and NMOSD were different. 

2: Radiomics signature can capture pathological alterations and help differentiate MS 

and NMOSD. 
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Introduction 

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are the 

two major inflammatory demyelinating diseases of the central nervous system[1,2]. 

Clinically distinguishing the two diseases is critical, because their prognoses and 

treatments differ2, and some MS treatments can exacerbate NMOSD[3,4]. Despite 

the existence of diagnostic criteria[5-7], the differential diagnosis of the two diseases 

can be difficult[8], especially at clinical onset. It is crucial to identify new effective 

biomarkers for quantifying the pathological alterations and accurately differentiating 

the two diseases, ideally biomarkers obtainable from routine clinical MRI data. 

 

The principal MRI findings in both MS and NMOSD are spinal cord lesions, which are 

assessed visually, and described qualitatively based on the clinical imaging 

settings[2,9]. The lesion characteristics cannot, however, be evaluated quantitatively 

by visual inspection. Quantitative evaluation requires advanced analysis techniques. 

Radiomics is the process of converting medical images into high-dimensional, 

mineable data via high-throughput extraction of quantitative features, followed by 

subsequent data analysis for decision support[10,11]. Radiomic features have great 

potential to provide valuable information for clarifying pathophysiology, assisting in 

differential diagnosis, and guiding personalized therapy in MS and NMOSD. A 

nomogram uses a set of discriminative features derived from a regression model, and 

assigns each feature a weight that represents its value for clinical prediction12.  
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This study aims to investigate the radiomic features of spinal cord lesions in MS and 

NMOSD, and to develop and validate a nomogram that incorporates the radiomic 

signature and other clinical variables, for individualized differential diagnosis of the 

two diseases. 
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Materials and Methods 

Standard protocol approvals, registrations, and patient consents 

The institutional review board of *BLINDED*, approved the study, and written 

informed consent was obtained from each participant prior to participation. 

 

Participants 

A total of 189 patients with spinal cord lesions, including 95 patients with MS and 94 

with NMOSD, were recruited from *BLINDED*. For the primary cohort, we 

retrospectively enrolled 67 MS and 68 NMOSD patients, from January 2015 to June 

2016. A validation cohort was collected prospectively, including 28 consecutive 

patients with MS and 26 with NMOSD, from July 2016 to December 2016. The 

inclusion criteria for this study were: (1) a confirmed diagnosis of either NMOSD, 

according to the standard diagnosis criteria[6], or relapsing remitting MS (RRMS), 

according to the 2010 McDonald criteria[13]; (2) spinal cord lesions visible on T2 

images; (3) being in remission (relapse-free for at least 4 weeks) and without 

treatment by disease-modifying medications within 4 weeks before the MRI scans, to 

exclude the confounding effects of edema or medication on the MRI measurements; 

(4) To exclude the possible diagnostic confounders of AQP4 negative NMO patients, 

all included patients with NMOSD were anti- AQP4 antibody positive. The exclusion 

criteria included: (1) a history of spinal cord injury or clinically significant neurologic 
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disease other than MS or NMOSD; (2) image artifacts or incomplete clinical 

information. The principal demographic and clinical characteristics of the patients are 

shown in Table 1. 

 

MRI Acquisition 

All spinal cord MRI scans were performed using a 3.0 Tesla MR system (Siemens 

Magnetom Trio Tim system, Germany). Whole spinal cord (cervical, thoracic and 

lumbar) imaging included 3-mm-thick sagittal sections and 4-mm-thick axial sections 

using turbo spin-echo T2-weighted sequences (TR/TE: 3000/130 ms, in-plane 

resolution 1.0 mm2, field of view = 320×260 mm2). Hyperintense cord lesions were 

marked as regions of interest (ROIs) on sagittal T2-weighted images by an 

experienced neuroradiologist (***) using MRIcro software 

(http://www.mccauslandcenter.sc.edu/mricro/mricro/mricro.html).  

 

Radiomic methods 

In our study, we applied the emerging technique of radiomics to discriminate MS 

from NMOSD (figure 1). The process included mainly the following steps:(A) Feature 

extraction: we described the ROIs including the spinal cord lesions by extracting four 

sets of radiomic features[14]: (1) shape and size features, (2) gray scale intensity 

features, (3) textural features, and (4) wavelet features. Shape and size features 

represented the basic geometric features of the ROIs, such as shape, area, volume, 

http://www.mccauslandcenter.sc.edu/mricro/mricro/mricro.html
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compactness, etc. Gray scale intensity features were based on the differences of 

signal intensity histogram and distribution within the ROIs. Textural features encoded 

the relationships between nearby voxels within ROIs. Wavelet features were derived 

from a transformation of the grayscale intensity and texture features. Further 

information about the specific radiomic features is shown in the supplementary 

materials (figure S1-3). (B) Feature selection: to determine representative features 

for generalizing and optimizing the model, we used the least absolute shrinkage and 

selection operator (LASSO) method to select features for building a logistic regression 

model.  

 

Radiomic nomogram construction and validation  

We built a predictive model for differentiating MS from NMOSD using the radiomic 

features combined with several clinical variables, and a receiver operating 

characteristic (ROC) curve was plotted to quantify the performance of the model. An 

individual radiomic nomogram was developed using multivariable logistic regression 

based on discriminative predictors for the primary cohort. To compare the 

performance of radiomic model and clinically routine methods, we also built two 

other models for differentiating NMOSD and MS: (1) longitudinal extensive 

transverse myelitis (LETM) and (2) only radiomic features. 

To quantify the discrimination of the radiomic nomogram, we generated a calibration 

plot for it, and also calculated Harrell’s significant concordance index (C-index). 
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Bootstrapping validation, with 1000 bootstrap resamples, was used to obtain the 

C-index. 

 

Statistical analysis  

We performed statistical analysis using Matlab 2015b (MathWorks, Natick, MA, USA) 

and R software, version 3.3.3 (http://www.R-project.org). We used SPM12 from 

Matlab 2015b to analyze the original MRI scans, for feature extraction and feature 

selection. The R packages “glmnet,” “rms,” and “Hmisc” were used for LASSO binary 

logistic regression and nomogram construction. A radiomic nomogram was 

constructed based on the results of the multivariable analysis, using the package 

“rms”. We calculated the C-index, to measure the performance of the nomogram, 

using the package “Hmisc”. Discrete data encoding the sexes of the patients were 

analyzed using the chi-square test. Two-sided two-sample t-tests or Wilcoxon rank 

sum tests were used to assess between-group differences for continuous 

demographic or clinical data, depending on whether they were normally distributed 

(Lilliefors test). A result was considered statistically significant if the P value was less 

than 0.05.  
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 9 

Results 

Clinical data analysis 

The demographic and clinical characteristics of the patients with MS and NMOSD are 

summarized in table 1. The NMOSD patients showed a greater female predominance, 

and higher expanded disability status scale (EDSS) values, than the MS patients, in 

both the primary and validation cohorts. There were no significant differences 

between the primary and validation cohorts in terms of clinical variables (P>0.05).  

Radiomic features  

To differentiate MS and NMOSD, we extracted 485 radiomic features from the ROIs, 

plus 6 clinical and routine MRI measurements: sex, age, disease duration, number of 

relapses, EDSS score, spinal cord lesion length, and the number of cord lesions. The 

process is shown in figure S4. After feature selection, the initial 485 radiomic features 

were reduced to 9 features, and the 6 potential clinical and routine MRI 

characteristics were reduced to 3 variables, which were used to develop the LASSO 

logistic regression model. The features used were WLLH_GLCM_cluster_tendency 

(P=0.027), WLHL_GLCM_difference_entropy (P=0.20), WHLL_GLCM_cluster_shade 

(P=0.098), GLRLM_SRE (P=3.5×10-5), WLHL_GLRLM_LRE (P=0.077), 

WLHL_GLRLM_LRLGLE (P=0.077), WHLL_GLRLM_LRHGLE (P=1.2×10-4), 

WHLH_GLRLM_LRE(P=5.6×10-5), WHLH_GLRLM_LRLGLE (P=5.6×10-5), sex (P=0.011), 

length (P=4.6×10-5), and EDSS score (P =0.05). The definitions of these features are 

shown in the supplementary materials (table S1, table S2). 
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We depicted receiver operating characteristic (ROC) curves to assess the 

performance of different models. Firstly, we developed clinical model by routine 

clinical method (LETM model) to discriminate the NMOSD and MS, and the areas 

under the ROC curves (AUC) were 0.623 and 0.560 for the primary and validation 

cohorts, respectively (figure 2a). The model with only radiomic features 

demonstrated the AUC were 0.836 and 0.731 in primary and validation cohorts 

(figure 2b). Particularly, when we constructed the model with the radiomic features 

in combination with clinical variables, the AUC were 0.8808 and 0.7115 in the 

primary and validation cohorts (figure 2c). We found that the accuracy of model by 

radiomic features combining with clinical variables were 26% (in the primary cohort) 

and 15% (in validation cohort) higher than the routine clinical method (LETM model). 

We calculated a radiomic score to represent the value predicted by the LASSO 

regression model for each patient. The distribution of scores was shown in the 

supplementary materials (figure S5-6). The mean values of the radiomic score for MS 

and NMOSD, respectively, were 0.335 and -0.272 in the primary cohort, and 1.553 

and -0.786 in the validation cohort.  

In consideration of the fact that MS and NMOSD occur more frequently in female 

patients, we also investigated the discriminative performance of the radiomic 

features in the female cohort. The AUCs were 0.898 and 0.6684 for the female 

primary and validation cohorts, respectively (figure S7). 

 

Radiomic nomogram and validation  

An individualized prediction model for discriminating MS and NMO was developed 
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using the multivariable logistic regression analysis, and represented by a nomogram 

(figure 3). The C-index for the nomogram was 0.8902 (95% CI, 0.851 to 0.932). 

Calibration plots were used to correct the predictions of the radiomic nomogram for 

the primary cohort, to satisfy the Hosmer-Lemeshow test. We calculated the C-index 

and 1000 bootstrap resamples for the corrected version of the nomogram. For the 

primary cohort，the corrected C-index was 0.870 via bootstrapping validation. For the 

validation cohort, the C-index of the calibrated version of the radiomic nomogram 

was 0.804 (95% CI, 0.690 to 0.917) and the corrected C-index was 0.782 via 

bootstrapping validation (figure 4).
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Discussion 

In this study, we identified differences between the radiomic features of spinal cord 

lesions in MS and NMOSD, and developed and validated a nomogram combining 

radiomic features with clinical variables, to differentiate the two diseases.  

 

Spinal cord lesions in MS and NMOSD are commonly observed clinically[9,15-16], but 

previous studies focused on visual assessment of properties of the lesions, such as 

the lesion length, lesion distribution, or lesion signal strength[17]. Complex patterns 

of pathology in lesions, which are commonly encountered in medical images, are 

difficult to interpret, and require advanced analysis techniques. Radiomics uses 

high-throughput advanced quantitative features to objectively and quantitatively 

describe the characteristics of lesions. These features, termed radiomic features, can 

be extracted from medical images using mathematical algorithms, with the goal of 

discovering lesion characteristics that may not be perceptible by the naked 

eye[10-11,14,18]. Thus, radiomics has great potential to capture important 

information for differential diagnosis and personalized therapy. The main radiomic 

features differentiating the two diseases (MS vs NMOSD) are measures of the 

heterogeneity of the lesion signal, such as WLLH_GLCM_cluster_tendency and 

WLHL_GLCM_difference_entropy. This radiomic signature can be used to differentiate 

MS from NMOSD based on significantly different radiomic scores. A previous 

MRI-pathological study showed that greater MRI radiomic heterogeneity (i.e., 

stronger texture features) is associated with more severe pathological damage (more 



 

 13 

severe demyelination and greater axonal damage)[19].  Our radiomics results 

identified more severe pathological damage in NMOSD than in MS, which is 

consistent with pathological studies showing more severe demyelination and greater 

axonal loss in NMOSD than in MS, and with the observation that NMOSD lesions can 

show necrotic and cystic changes with extensive tissue destruction[20-21]. These 

features can be captured and quantified by radiomics, and may help to understand 

the pathophysiology of the disease. Furthermore, the radiomic model is superior 

(around 20% increase in accuracy) than the clinically routine method which based on 

whether LETM present, highlighting its clinical importance. 

 

A nomogram permits calculation of the cumulative effect of multiple differentiating 

factors[22]. By weighting the influence of each factor, the nomogram provides an 

appreciation of the relative magnitude of influence of each factor on the differential 

diagnosis. The advantage of a nomogram over an adjusted regression model is that, 

while the latter returns estimates of the average effects across a population, a 

nomogram permits individualized predictions[12]. A nomogram based on clinical and 

MRI measurement has been used to predict the clinical conversion of the clinically 

isolated syndrome[23], however, radiomic features were not included in the model. 

The radiomic features of cord lesions dominated the nomogram in terms of relative 

contribution to total points and differential diagnosis between the two diseases.  

 

Spinal cord lesion length, sex, and EDSS score were also useful as factors in the 

nomogram, to help differentiate MS from NMOSD. This finding is consistent with our 

clinical observations and previous publications that patients with NMOSD showed 
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greater lesion length, greater female predominance, and higher EDSS scores than 

patients with MS[2,16]. By combining these clinical and routine MRI features with 

radiomic signatures, the model can differentiate the two diseases accurately, 

highlighting the importance of comprehensive consideration of clinical and imaging 

features.  

To avoid over-fitting or bias, we performed a robust statistical analysis. 

Representative radiomic features (9 features) were selected based on feature stability 

and prognostic performance in the cohort, and validated in an independent 

validation cohort. Internal and external validations of the radiomics nomogram were 

performed in the current study, and good calibration was observed, implying the 

robustness of the method and its potential clinical applications. To exclude the 

influence of an effect of sex[24-25], further validation was also performed in the 

female cohort (since female patients were more common in both MS and NMOSD). 

The radiomic nomogram showed equally good performance in distinguishing the two 

diseases as for the full patient cohort.  

 

Several limitations apply to this work. First, this was a preliminary cross-sectional 

study using only spinal cord MR images. We did not evaluate the radiomic features of 

brain lesions, optic nerve lesions, or normal-appearing tissues. A longitudinal study 

with multimodal images, including the brain, spinal cord, and optic nerve, is 

warranted to investigate radiomic characteristics in other tissues, and dynamic 

changes in radiomic features, in MS and NMOSD. Second, it is unclear which 

pathological mechanisms are responsible for the radiomic heterogeneity[26], and 
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how tissue repair may modify these features. Further studies are needed to confirm 

our findings and resolve these uncertainties. Finally, our study was a single center 

study using MR images from one MRI scanner. Further study using data from diverse 

scanners in a multicenter setting is required to validate our current findings and 

confirm their generalizability.  

 

Conclusion 

A validated nomogram that incorporates the radiomics signature combining with 

spinal cord lesions, cord lesion length, patient sex, and EDSS can well differential MS 

and NMOSD based on routine MRI data.
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Table and figure legends 

Table 1. Characteristics of patients in the primary and validation cohorts 

Data are presented as mean ± standard or median, depending on normality (Lilliefors 

test).  

EDSS, Expanded Disability Status Scale; F, female; HC, healthy control; M, male; MS, 

multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder 

aP values obtained using two-sample two-tailed t-tests. 

bP values obtained using Pearson chi-square test. 

cP values obtained using two-tailed Wilcoxon rank sum tests. 

The radiomic score measures the strength of prediction for each patient. 
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Figure 1. Radiomic procedure. (a) Original magnetic resonance images of patients. (b) 

Contours of lesions delineated by an experienced radiologist. (c) Extraction of 

features from the segmented regions of interest (ROIs), such as shape, intensity, 

texture and wavelet features. (d) Predictive analysis using least absolute shrinkage 

and selection operator (LASSO) regression model. 

Figure 2. Receiver operating characteristic (ROC) curve analysis. Each model was 

constructed in primary cohort with 135 patients, and validated with 54 patients in 

validation cohort to test the model. (a) ROC curve analysis for the model constructed 

by the presence or absence of longitudinal extensive transverse myelitis (LETM). (b) 

ROC curves for the model constructed by radiomic feature. (c) ROC curve analysis for 

the model constructed by radiomic features and clinical variables.  

Figure 3. Nomogram with radiomic and clinical variables. Using this tool, it is 

possible to generate a quantitative prediction for each patient by adding up the total 

number of points.  

Figure 4. Calibration of the radiomic nomogram. (a) Calibration plot of the radiomic 

nomogram for the primary cohort of 135 patients. The C-index was 0.8902 (95% CI, 

0.851 to 0.932). The corrected C-index was 0.870 via bootstrapping validation. (b) 

Calibration plot of the radiomic nomogram for the validation cohort of 54 patients. 

The C-index was 0.804 (95% CI, 0.690 to 0.917). The corrected C-index was 0.782 via 

bootstrapping validation. We generated the calibration plot for the primary cohort to 

test discrimination of model prediction ability for MS and NMOSD. The X-axis 



 

 21 

represents the nomogram predicted probability; the Y-axis represents the actual 

probability. The blue diagonal dotted line represents an ideal prediction by an 

optimal model. The red diagonal dotted line represents the prediction by the 

nomogram. The black solid line represents the performance on multiple sets of 

bootstrap samples. 

 


