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ABSTRACT 

Offshore supply vessel (OSV) collisions have been identified as the most frequent type of collision 

accidents in the offshore oil / gas or wind turbine industries. Quantitative risk assessment (QRA) is an 

efficient method for evaluating the collision risk to an offshore installation. In-depth information on 

collision load parameters, such as incoming ship velocity and impact location, is considered 

prerequisite for determining the consequences of collisions with accuracy. Thus, the aim of this study 

is to provide a new probabilistic method for determining collision design loads. Each input parameter 

is treated by a probability density function, and a set of 50 prospective collision scenarios is generated 

using Latin hyper cube sampling (LHS) technique. Numerical computations of ship motions are 

performed to obtain collision load parameters. The probabilistic characteristics of the parameters 

using a goodness of fit test and an interval study are carried out, and best-fit PDFs and the exceedance 

curve are plotted. A case study of the proposed method is demonstrated using a hypothetical OSV and 

an offshore jacket structure located in a hypothetical oceanic region. The details of the computations 

are documented, and the findings of the study are discussed. 

Keywords: Offshore supply vessel (OSV), Offshore installation, Collision, Quantitative risk 

assessment (QRA), Probabilistic approach, Scenario selection, Collision load parameters. 

 

1. Introduction  

Offshore installations require regular supplies of food, equipment, chemicals and other 

logistics support from the offshore supply vessel (OSV) depending on the supply requirement. While 

in service, these vessels pose a high collision risk to installations, either due to accidental impact 

during approaching or manoeuvring, or due to operational impact during transfer or berthing 

operations. Figure 1 shows an example of a collision between a supply vessel and an offshore 

installation. Operational impact is usually characterised by frequent collisions associated with minor 
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Fig. 3. The general flowchart of QRA study for collision between ship and offshore structures. 

 

In ALS, a ship-installation collision scenario can be classified into external dynamics and 

internal mechanics (Pedersen and Zhang, 1999), and the coupled method estimates collision forces 

and structural damage with a high degree of precision (Tabri, 2012; Yu et al., 2018, 2016). While the 

external dynamics includes a global analysis of ship motions and a calculation of initial kinetic energy 

imparted to the installation, the internal mechanics involves structural strength analysis. Determining 

the initial kinetic energy of the supply vessel is important for calculating the energy levels in the 

jacket structure. During a collision only part of the kinetic energy is dissipated as strain energy for 

both the installation and vessel. The elastic energy accumulated in the jacket structure allows the 

vessel to bounce back due to the elastic property of the steel structure. Table 1 shows the accident data 

for some recent OSV collisions (Kvitrud, 2011). 

 

Table 1 OSV collision accidents to the offshore installation. 

Year Supply vessel Offshore 
installation 

Velocity 
(m/s) 

Impact 
location (m) 

1996 Smith Lloyd 8 Ocean Traveller 
semisubmersible

- - 

2004 Far Symphony West Venture 
semisubmersible 

3.7  5m above sea 
level 

2007 Bourbon Surf Grane jacket  1 - 

Start

Characterization of topology

Selection of credible collision scenarios

Functional requirements
Metocean and 

Operational Data

Frequency analysis (F) Consequence analysis (C)

Risk calculation(R) 
(R=FxC)

External dynamics

Risk evaluation

Redesign

                    Acceptable

Hazard identification
Colliding objects-related parameters:
Type, size, geographical location, etc.

Unacceptable

Risk acceptance criteriaALARP

End

Supplementary measures 
for risk mitigation

Exceedance curve

Cost-benefit analysis

Internal mechanics

Personnel risk

Asset risk

Environmental risk

Contact frequency
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2009 Big Orange XVIII 
(Well simulation) 

Ekofisk 2/4-W 
jacket 

4.5 - 

2010 Far Grimshader Songa Dee 
semisubmersible

low  - 

 

The studies on the potential consequence of collisions that use numerical or model tests 

depend on input loading scenarios (Zhang and Pedersen, 2017). In general, two methods are visible in 

the literature: deterministic and probabilistic. The deterministic method consists of selecting a few 

unfavourable load scenarios based on historical data, expert judgements or assumptions. Often, the 

chosen collision scenario represents the worst-case situation. Most researchers have followed the 

deterministic approach (Emami Azadi, 2011; Moulas et al., 2017), but that approach is often 

ineffective at generalising the collision scenarios for other installations, being based limited historical 

data that may be either too conservative or out of date considering the large number of parameters 

affecting the collision. In this approach, both past collision accidents and expert judgements form the 

basis for the estimation of collision design loads. Various societies and regulatory committees have 

recommended specific collision load parameters for design (API, 2014; DNV GL, 2017a; HSE, 2000; 

Lloyd’s Register, 2014; NORSOK, 2004); for instance, a 2 m/s collision velocity for a 5000 tonne 

displacement supply vessel (with 0.5 m/s and 1000 tonnes for the Gulf of Mexico). The NORSOK 

standard (2007) defines the limits of the vertical impact zone to be -10 m and 13 m at the lowest and 

highest astronomical tide, respectively. However, these limits are a function of the draft and vertical 

motions of the colliding vessel. Modern supply vessels are built with displacements of more than 

10,000 tonnes and designed for sailing velocities greater than 2 m/s for installations situated in deep 

water or ultra-deep water, considering economic transportation and navigation in rough seas. 

Therefore, advancement in the design of the supply vessel demands a revision of the current design 

values for installations (Storheim and Amdahl, 2014). 

In contrast, the probabilistic approach selects prospective collision scenarios by considering 

each random variable in the form of a probability density function. This method has been successfully 

applied to various offshore and marine industry accidents (Hughes et al., 2010), for instance, ship-ship 

collisions (Brown, 2002; Faisal et al., 2017; Kim et al., 2015; Ko et al., 2018; Youssef et al., 2017, 

2014), grounding (Youssef and Paik, 2018), sloshing (Paik et al., 2015), corrosion (Mohd et al., 2014), 

dropped objects (Kawsar et al., 2015), ship hull loads (Chowdhury, 2007; Garrè and Rizzuto, 2012; 

Ivanov, 2009; Ivanov et al., 2011) and riser loads and mooring lines (Cabrera-Miranda et al., 2017; 

Cabrera-Miranda and Paik, 2017). In this approach, a historical database of collision load parameters 

becomes the basis for quantitative risk assessment. Indeed, much research can be found on the 

probabilistic impact scenarios of collision damage, for ship-ship collisions, that uses historical 

collision data to define the collision load parameters (Brown and Chen, 2002; Goerlandt et al., 2012; 

Lützen, 2001; Sun et al., 2017; Tagg et al., 2002). An examination of accident databases, however, 
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shows a lack of quantitative information on parameters. Although the HSE database (2001) provides a 

reasonable quantitative description of accidents, some load parameters, such as the collision velocity 

and the angle of the colliding vessel, are not to be found. Moreover, no single database provides a full 

quantitative description for all load parameters. Therefore, the lack of sufficient historical collision 

data on loads renders this probabilistic approach difficult to apply to cases of ship-installation 

collisions. In addition, collisions are highly uncertain and random, thus requiring cumbersome and 

time-consuming numerical computations to analyse all of the possible collision scenarios. Those 

limitations make the probabilistic approach more desirable. 

In this context, the aim of this study is to develop a probabilistic model to determine the collision 

scenarios for ship-installation collisions. Using the probability density functions of input parameters, a 

set of credible collision scenarios is generated by using statistical sampling techniques. Numerical 

computations are performed, and the best-fit probability distribution and the exceedance curves of 

load parameters are plotted, which can be used to determine the design collision load. 

 

2. Framework of the proposed procedure 

 

Fig. 4. Procedure for the probabilistic estimation of design collision load  

 

Figure 4 presents a procedure of the probabilistic assessment of the collision design load 

followed in this study. First, we define the collision event using offshore jacket installation topology, 

OSV characteristics, vessel operational conditions and site-specific metocean data. Then, we identify 

Start

Define collision event

Probabilistic analysis 

Jacket topology, OSV 
characteristics, operational condition

Numerical computation

Identify key collision parameters

Collision load parameters

End

Design collision load

Time series of  ship motions: ANSYS AQWA

Selection of credible collision scenarios Sampling technique - LHS

Selection of best-fit PDF: GOF 
test and interval study

Environmental and operational parameters

Velocity, angle and location

Design acceptance criteria

Collision frequency exceedance curve Best-fit PDF of load parameters
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key input parameters affecting the collision, namely environmental (such as wind, wave and current) 

and operational parameters (such as vessel speed and impact location). The probabilistic analysis is 

carried out to construct a best-fit probability density function (PDF) for each of the parameters. Next, 

a set of user-defined credible collision scenarios is generated using a statistical sampling technique 

such as Latin hypercube sampling (LHS) and Monte Carlo simulation (MCS).  

In this study, LHS is used because it is more efficient, recreating the input distribution using 

fewer samples. This generates scenarios by sequential random selection from the stratification of the 

cumulative probability distribution of input parameters, with one sample chosen per stratification. The 

number of division is determined depending on the number of the input scenarios required. A series of 

numerical simulations in a nonlinear time-domain analysis of global ship motions is performed and 

the load parameters are as follows: collision velocity, angle and location are determined. Subsequently, 

the statistical characteristics of the load parameters are analysed to assess the best-fit PDF. The 

goodness-of-fit (GOF) method, using the Anderson–Darling (A-D) test in combination with 

probability plots for a 95% confidence interval, is used to verify the compatibility of the selected PDF. 

The A-D test is a modification of the Kolmogorov-Smirnov (K-S) test that puts more weight on the 

tails of the distribution (Stephens, 1974). Liu et al. (2016) used LH-moments to estimate the unknown 

parameters of the probability distribution. In this study, the so called ‘minimum COV criterion’ (Paik 

et al., 2004; Paik and Kim, 2012) is used to investigate the effect of the histogram bin width (interval) 

on the parameters of the distribution. Accordingly, a parametric study of the interval size is conducted 

to locate the histogram interval that best shows the highest mean and the lowest coefficient of 

variation (COV) value. In addition, the total number of histogram intervals is calculated using the 

Doane’s formula, 
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where X, N and µ represent the sample point, total number and mean of sample points, respectively. 

Using the aforementioned parameters, the initial kinetic energy (E) imparted to the installation is 

calculated using the expression (Pedersen and Zhang, 1999), 

 

         22 21 1 sin 1 cos
2 x yE M m m V  

  
        (2) 

where M is the mass of supply vessel; xm and ym are surge and sway added masses;   is the collision 

angle between the ship and installation; and V is the collision velocity of the supply vessel. The added 
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mass depends upon the collision parameters, however, in this study the simple approximations are 

adopted, 1.1xm   and 1.4ym  . 

Given the total collision frequency   , the frequency of exceedance of load parameters is 

evaluated using (Czujko and Paik, 2015),  

       .R x P X x               (3) 

where  R x  represents monotonically decreasing frequency of exceedance function, which gives 

the frequency of X being greater than x. 

Based on the exceedance curve of the load parameters and impact energies, one can select the 

collision design load parameters based on the designer’s acceptable level of risk or on standard design 

criteria (Youssef and Ince, 2014).  

3. Applied example 

3.1 Target structures 

The viability of the proposed procedure is demonstrated by using a hypothetical model of an OSV 

approaching a four-legged offshore jacket platform (see Fig. 5); the particulars are given in Table 2. 

For simplicity, the considered vessel does not have the DP (dynamic positioning) system and the 

installation is assumed to be unmanned with no collision avoiding measures beyond those that include 

a standby vessel, a radar alarming system and a vessel traffic system.  

Table 2 Particulars for the target structures  

Principal dimensions Details Principal dimensions Details 

Jacket structure (4-legged) OSV  

Height  148 m Overall length 99.708 m 

Freeboard length  20 m Design beam 23.25 m 

Leg Diameter 2.4 m Design draft 7.1 m 

Brace Diameter 1 m Displacement 8546 tons 

 Radius of Gyration, XXK  8.16 m 

  Radius of Gyration, YYK  25 m 

  Radius of Gyration, ZZK 26 m 
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Fig. 5.  Target structures (obtained from ANSYS AQWA): offshore jacket platform (left) and OSV 

(right). 

3.2 Parameters affecting collision scenario 

Various parameters affecting the collision load can be broadly categorised into environmental and 

vessel operations parameters. In this study, eight environmental and three vessel operational 

parameters are considered (see Table 3).  

Table 3 Description of input collision parameters 

 Type of parameters Symbol Random variable  Unit 

 Environmental 
parameters 

1X  Significant wave height  m 

 2X  Zero-crossing wave period  s 

 3X  Wave direction  rad 

 4X  Wind speed (1-h avg.)  m.s-1 

 5X  Wind direction  rad 

 6X  Current velocity (surface)  m.s-1 

 7X  Current direction  rad 

 8X  Still water level (SWL) m 

 Vessel operational  
parameters 

9X  Vessel speed  m.s-1 

 10X  Vessel position  m 

 11X  Vessel heading  rad 

 

In the absence of real site-specific metocean data, this study considers a hypothetical oceanic 

region. One can construct a best-fit distribution of each parameter based on the actual collated data by 
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Other vessel parameters such as vessel mass, type and geometry are taken as a constant, due to the 

fact that the same vessel generally visits an installation based on the platform requirements, 

geographical location and type of the installation, among other considerations. The vessel draft is also 

taken as constant, with vessels approaching the installation with full ballast (Aas et al., 2007). The 

effects of possible waves from passing vessels are ignored in this study.  

 

Fig. 7. Schematic view of an OSV approaching to an offshore installation, showing its speed and 

course inside 500m safety zone {adopted from (Step Change in Safety, 2017)}. 

Table 4 Probabilistic characteristics of input parameters 

Random 
variable 

Distribution Parameters Reference 

1X  Weibull 1.81,  1.47   (DNV GL, 2017b) 

2X  Lognormal 0.1580.7 0.95 ,sH    
( 0.0312 )0.07 0.1685 sHe    

(DNV GL, 2017b) 

3X  Directional function 5s  (DNV GL, 2017b) 

4X  Lognormal 0.61,  0.725   (API, 2007) 

5X  Directional function 5s  (DNV GL, 2017b) 

6X  Lognormal 1.1187,   3.432   (API, 2007) 

7X  Directional function 5s  (DNV GL, 2017b) 

8X  Weibull 0.984,  3.245   (API, 2007) 

9X  Lognormal 0.5102,   0.5214   Assumed 

10X  Lognormal 1.67,  0.82   Assumed 

11X  Normal 0.5,  0.785   Assumed 

H

Speed<1.5m/s

Speed<0.5m/s

Safety Zone

OSVInstallation
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Fig. 8. Selected PDFs of environmental and vessel operational parameters.   
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3.3 Numerical simulation 

ANSYS AQWA software is used to simulate real-time ship motions to an installation. The 

simulation is based on potential theory and uses a three-dimensional panel method to model the vessel. 

First, the equation of motions is solved in the frequency-domain using the AQWA-LINE module, 

followed by the nonlinear time-domain analysis of ship motions in AQWA-NAUT. At each time step, 

a two-stage predictor-corrector method is used to get the time history velocities and positions of ship 

motions by integrating acceleration due to the forces of wind, waves and currents.   

The input wave frequencies and directions range from 0.0159 to 0.245 Hz (20 frequency 

intervals) and from -180 to +180 degrees (45-degree interval), respectively. The Pierson Moskowitz 

(P-M) spectrum is used to define the constant of irregular waves. Constant wind speed and current are 

considered during the simulation. For simplicity, initial rotational velocities and fluid-structure 

interaction are disregarded; the centre of gravity of the ship is located on the centre line amidships. 

Using Table A.1, a series of time-domain simulations of ship motions is performed. Figure 9 shows an 

example of the time history of ship velocities, heave, pitch and yaw angle corresponding to scenario-5, 

where the vessel is in contact with the installation at time t  = 270.8 s.   

 

(a)       (b) 

V
el

oc
it

y 
(m

/s
)
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(c)        (d) 

Fig. 9. An example of time history of ship motions (scenario-5): (a) velocity, (b) heave, (c) pitch and 

(d) yaw.  

The ship-installation collision geometry can be modelled using the mass of the ship (including 

hydrodynamic added mass), velocity, collision angle and location at the instant of impact (Deeb et al., 

2017; Wang et al., 2006; Zhang et al., 2015). In this study, four load parameters are considered: 

collision velocity  V , impact angle   , horizontal impact location  r  and vertical impact location 

 l . The angle represents the yaw motion of the ship with respect to jacket structure (see Fig. 10 for 

geometric definition). All of the parameters represent the exact moment when the ship touches the 

installation’s leg or braces. 

 

Fig. 10. Simplified 2D model of an OSV-offshore installation collision. 
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4. Results and discussion 

4.1 Probabilistic selection of collision scenarios 

The LHS sampling technique was used to generate a set of 50 collision scenarios using the PDFs of 

input parameters (see Table A.1). Figure 11 shows a summary of the selected values of all the input 

parameters in the form of a scatter diagram. The diagonal elements display the histogram of each 

parameter and the off-diagonal elements shows the correlation between two parameters. 

 

Fig. 11. Scatter plot of input parameters. 

Table 5 shows the summary of the fifty collision scenarios based on the simulation results. It is 

observed that the maximum velocity is 1.65 m/s, which is less than the design velocity of 2 m/s, 

conforming to the lower vessel manoeuvring speed inside the safety zone. The vertical impact 

location falls within the limits of the NORSOK (2007) guidelines (i.e., -10 to 13 m), except for 

scenarios 5, 10, 42 and 46. The total horizontal impact zone was calculated using the ‘collision 

diameter’ defined by Spouge (1999), which is the summation of platform width at the waterline 

section (38.2 m) and the vessel breadth (23.25 m). Vinnem (2014) classified collison into glancing, 

corner column and bracing, with the conditional probabilities of the collison scenarios defined by 20%, 

60% and 20% of the total impact zone, respectively. Figure 12 shows the number of collisons 

occurring at each of these locations. It can be seen that frequency of a jacket bracing collision is 

almost 50% higher than the frequency of a glancing or corner column collision, which demands 

greater care in the design stage. 

 

 



 

Scenario

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

 

 

4.2 Coll

o  V  (m/s) 

0.36 
0.68 
0.57 
0.35 
0.75 
0.26 
0.32 
0.74 
0.68 
0.23 
1.65 
0.70 
0.42 
0.70 
0.40 
0.26 
0.42 
0.22 
1.39 
0.65 
0.43 
0.66 
0.40 
0.15 
0.37 

Fig. 

lision load ch

Tab

  (deg) 

65.69 
10.29 
54.12 
4.32 
50.46 
108.88 
16.61 
23.25 
64.14 
127.45 
107.73 
53.65 
77.37 
57.49 
42.73 
77.40 
158.72 
123.65 
66.42 
68.41 
125.13 
25.82 
50.04 
110.04 
90.00 

12. Frequen

haracteristic


