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Abstract
Glioblastoma is highly heterogeneous in microstructure and vasculature, creating various tumor microenvironments
among patients, which may lead to different phenotypes. The purpose was to interrogate the interdependence of
microstructure and vasculature using perfusion and diffusion imaging and to investigate the utility of this approach in
tumor invasiveness assessment. A total of 115 primary glioblastoma patients were prospectively recruited for
preoperative magnetic resonance imaging (MRI) and surgery. Apparent diffusion coefficient (ADC) was calculated
from diffusion imaging, and relative cerebral blood volume (rCBV) was calculated from perfusion imaging. The
empirical copula transformwas applied to ADC and rCBV voxels in the contrast-enhancing tumor region to obtain their
joint distribution, which was discretized to extract second-order features for an unsupervised hierarchical clustering.
The lactate levels of patient subgroups, measured by MR spectroscopy, were compared. Survivals were analyzed
using Kaplan-Meier and multivariate Cox regression analyses. The results showed that three patient subgroups were
identified by the unsupervised clustering. These subtypes showed no significant differences in clinical characteristics
but were significantly different in lactate level and patient survivals. Specifically, the subtype demonstrating high
interdependence of ADC and rCBV displayed a higher lactate level than the other two subtypes (P = .016 and
P = .044, respectively). Both subtypes of low and high interdependence showedworse progression-free survival than
the intermediate (P = .046 and P = .009 respectively). Our results suggest that the interdependence between
perfusion and diffusion imaging may be useful in stratifying patients and evaluating tumor invasiveness, providing
overall measure of tumor microenvironment using multiparametric MRI.
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Introduction
Glioblastoma represents the most common brain malignancy,
characterized by treatment resistance and poor outcome [1]. The
remarkable interpatient variation of glioblastoma poses significant
challenges to treatment stratification [2].
Tumor angiogenesis results in aberrant microvasculature in

glioblastoma, which is typically inefficient in resource delivery and
may induce heterogeneous blood flow [3]. In the meanwhile,
cellularity significantly varies within the tumor, and high or low
cellularity can exist in either sufficiently or poorly perfused subregions
[4]. The spatial variations of tumor vascularity and cellularity can
reflect the heterogeneous tumor microenvironment, which may be
associated with patient treatment response [5]. For clinical decision
making of individual patients, a systematic method to evaluate the
overall tumor microenvironment is crucial.
Multiparametric magnetic resonance imaging (MRI) describes

complementary properties of tumor physiology. Particularly, the
relative cerebral blood volume (rCBV) calculated from perfusion
imaging can measure the tumor vascularity and is correlated to the
cellular proliferation [6]. The apparent diffusion coefficient (ADC)
calculated from diffusion imaging can describe the tissue microstruc-
ture by measuring the microscopic water mobility [7]. Therefore, an
integrated analysis of rCBV and ADC shows potential in evaluating
tumor microenvironment by incorporating the information regarding
tumor microstructure and vasculature [4].
Tumor habitat imaging is an emerging method of integrating

multiparametric MRI, which uses thresholding intensity of perfusion
and diffusion imaging to identify the local overlapping habitats [8,9].
These habitats, however, are established to reveal the intratumoral
various subregions and may be insufficient to provide the global
information for individual patient evaluation. Instead, the overall
evaluation of tumor microenvironment may potentially be enabled by
investigating the interdependence between rCBV and ADC,
describing vascularity and cellularity, respectively. However, the
parametric model fitting of this interdependence is significantly
challenged by the distinct marginal distributions of perfusion and
diffusion imaging.
The copula transform is a statistical method to describe the

interdependence of random variables by modeling the multivariate
probability distribution [10] (Supplementary material 1 demonstrates
the theoretical details of the method). In this study, we leveraged the
copula transform to obtain the joint distribution of ADC and rCBV,
from which discretized second-order features were extracted to
characterize the interdependence between ADC and rCBV.
The purpose of this study was to investigate the utility of the

interdependence between ADC and rCBV for evaluating tumor
microenvironment and stratifying patients. Our hypothesis is that the
interdependence among advanced imaging modalities may reflect
tumor microenvironment and offer prognostic value for glioblastoma
patients.

Materials and Methods

Patients
This study was approved by the local institutional review board.

Informed written consent was obtained from all patients. Patients
with a radiological diagnosis of de novo supratentorial glioblastoma
were prospectively and preoperatively recruited for maximal safe
surgical resection from July 2010 to August 2015. Exclusion criteria
include the history of previous cranial surgery or radiotherapy/
chemotherapy or contraindication for MRI scanning. All patients
were required to have a good performance status (World Health
Organization performance status 0-1). Preoperative MRI and
postoperative histology were performed on all patients. All imaging
and histological data were collected prospectively. A flowchart
demonstrating patient recruitment is in Supplementary material 2.

MRI Acquisition
AllMRI sequences were performed at a 3-TMRI system (Magnetron

Trio; Siemens Healthcare, Erlangen, Germany) with a standard
12-channel receive-head coil. MRI sequences included: postcontrast
T1-weighted, T2-weighted, diffusion tensor imaging (DTI) with an
inline ADC calculation using b values of 0-1000 s/mm2, dynamic
susceptibility contrast-enhancement (DSC), and multivoxel
two-dimensional 1H-MRS chemical shift imaging (CSI). Scanning
parameters were as follows: postcontrast T1-weighted [repetition time
(TR)/echo time (TE)/TI 2300/2.98/900 milliseconds; flip angle 9°;
field of view (FOV) 256 × 240 mm; 176-208 slices; no slice gap; voxel
size 1.0 × 1.0 × 1.0 mm] after intravenous injection of 9 ml gadobu-
trol (Gadovist,1.0 mmol/ml; Bayer, Leverkusen, Germany);
T2-weighted (TR/TE 4840-5470/114 milliseconds; refocusing pulse
flip angle 150°; FOV 220 × 165 mm; 23-26 slices; 0.5-mm slice gap;
voxel size of 0.7 × 0.7 × 5.0 mm); DSC (TR/TE 1500/30 millisec-
onds; flip angle 90°; FOV 192 × 192 mm; 19 slices; slice gap 1.5 mm;
voxel size of 2.0 × 2.0 × 5.0 mm) with 9 ml gadobutrol (Gadovist
1.0 mmol/ml) followed by a 20-ml saline flush administered via a
power injector at 5 ml/s. DTI was acquired before contrast imaging
using a single-shot echo-planar sequence (TR/TE 8300/98 millisec-
onds; flip angle 90°; FOV 192 × 192 mm; 63 slices; no slice gap; voxel
size 2.0 × 2.0 × 2.0 mm; 12 directions; b values: 350, 650, 1000,
1300, and 1600 s/mm2; imaging time: 9 minutes 26 seconds). CSI
utilized a semi-LASER sequence (TR/TE 2000/30-035 milliseconds;
flip angle 90°; FOV 160 × 160 mm; voxel size 10 × 10 × 15-20 mm).
PRESS excitation was selected to encompass a grid of 8 rows × 8
columns on T2-weighted images.

Treatment and Evaluation of Response
Tumor resection was performed with the guidance of neuronaviga-

tion (StealthStation, Medtronic, Fridley, MN) and 5-aminolevulinic
acid fluorescence (5-ALA, Medac, Stirling, UK) for maximal safe
resection. Chemoradiotherapy regimen was determined after surgery
by the multidisciplinary team according to patient postoperative
status. Extent of resection was assessed according to the postoperative
MRI scans within 72 hours as complete resection, partial resection of
enhancing tumor, or biopsy [11]. All patients were followed up
according to the criteria of Response Assessment in Neuro-Oncology
[12], incorporating clinical and radiological parameters. Patient
survival was analyzed for overall survival (OS) and progression-free
survival (PFS). The latter was made retrospectively in some patients to
avoid the issue of pseudoprogression, where new contrast enhance-
ment appeared within the first 12 weeks after completing
chemoradiotherapy.

Image Processing
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DSC data were processed and rCBV maps were generated after
leakage correction using NordicICE (Nordic Neuro Lab, Bergen,
Norway), during which an arterial input function was automatically
defined. For each subject, all MR images were co-registered to
T2-weighted images with an affine transformation using the linear
image registration tool (FLIRT) functions in FSL [13].

The superimposed 1H MR spectroscopy data were analyzed using
LC Model as described previously [14]. Briefly, only CSI voxels
within tumor regions were included for analysis. All spectra were
assessed for artifacts [15]. The quality and reliability of the 1H spectra
were evaluated using Cramer-Rao lower bounds, with values greater
than 20% discarded. A spectroscopic measure of lactate (Lac) was
calculated as a ratio to the total creatine (Cr) [16]. To account for the
different spatial resolution of T2 and CSI imaging, T2 pixels were
projected to CSI space according to the spatial coordinates in
MATLAB 2017b (The MathWorks, Inc., Natick, MA). Only CSI
voxels completely in tumor region were included for further analysis.
Regions of Interest
The study design is illustrated in Figure 1. Tumor regions of

interest (ROIs) were manually segmented using 3D slicer v4.6.2
(https://www.slicer.org/) by a neurosurgeon with N8 years of
experience (C.L.) and a researcher with N4 years of brain tumor
image analysis experience (N.R.B.) on the postcontrast T1 images. An
interrater reliability testing was performed using Dice similarity
coefficient scores to assure consistency among observers. For each
individual patient, ROIs of normal-appearing white matter were
manually segmented from the contralateral white matter and used
as normal controls. The ADC and rCBV images were normalized by
Figure 1. Study design. All images are co-registered before tumor
images (T1WI). Voxels are then extracted from both ADC and rCBVma
of ADC and rCBV voxels, which is then discretized before extracting
patient clustering to reveal patient subtypes.
dividing by the mean value in the contralateral normal-appearing
white matter.

Copula Transform and Patient Clustering
We applied the copula transform to the ADC and rCBV maps on

each patient individually, with no outliers removed. A discrete feature
extraction was then applied. The extracted features included Energy,
Contrast, Entropy, Homogeneity, Correlation, SumAverage, Vari-
ance, Dissimilarity, and AutoCorrelation [17]. A hierarchical
clustering, using the complete method, was then performed on the
patients based on the extracted features. To find the most stable and
unambiguous patient clustering, we varied the number of clusters
from 2 to 10. The optimal number of clusters was selected according
to the majority vote among the 26 indices as implemented in the
“Nbclust” package in R [18]. An R package, “XXXX,” for the
implementation of the empirical copular transform and feature
extraction was published online (https://github.com/XXX).

Leave-One-Out Cross-Validation of the Clustering
A leave-one-out cross-validation (LOOCV) procedure was applied

for constructing and validating the patient clusters. The clustering
step was repeated by leaving one patient out of the cohort at each
repetition. The consensus analysis was performed based on the
clustering results from the LOOCV approach. A consensus matrix M
was calculated, where M (i, j) indicates percentage of times that the
patients i and j were clustered together across the dataset
perturbations.

Statistical Analysis
All analyses were performed in RStudio v3.2.3 (RStudio, Boston,

MA). The clinical characteristics and CSI data of the clusters were
regions are manually segmented from postcontrast T1-weighted
ps. Empirical copula transform is performed on the joint distribution
second-order features from the matrix. These features are used in

https://www.slicer.org/
https://github.com/XXX
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compared with Kruskal-Wallis rank sum test using the
Benjamin-Hochberg procedure to control the false discovery rate in
multiple comparisons. Kaplan-Meier and Cox proportional-hazards
regression analyses were performed to evaluate patient survival.
Survival analysis was based on the subset of patients who received
concurrent temozolomide (TMZ) chemoradiotherapy followed by
adjuvant TMZ postoperatively. Cox proportional-hazards regression
was performed, accounting for relevant covariates, including
O-6-methylguanine-DNA methyltransferase (MGMT) methylation,
isocitrate dehydrogenase-1(IDH-1) mutation, sex, age, extent of
resection, and contrast-enhancing tumor volume. Patients who were
alive at the last known follow-up were censored. The hypothesis of no
effect was rejected at a two-sided level of .05.

Results

Patient Population
A total of 136 patients were recruited for preoperative MRI scan

and surgery. After surgery, 115 (84.6%) glioblastoma patients (mean
age 59.3 years, range 22-76 years, 87 males) were histologically
confirmed. Of the 115 patients, 84 (73.0%) postoperatively received
concurrent TMZ chemoradiotherapy followed by adjuvant TMZ
(Stupp protocol). Other patients received short-course radiotherapy
(17.4%, 20/115) or best supportive care (9.6%, 11/115) due to their
poor postoperative performance status. Survival data were available
for 80 of 84 (95.2%) patients as 4 (4.8%) patients were lost to
follow-up.
Interrater reliability testing of ROIs showed excellent agreement

between the two raters, with Dice scores (mean ± standard deviation
[SD]) of 0.85 ± 0.10.

Patient Clustering
Figure 2. Patient clustering. Three patient clusters are identified u
copula-transformed ADC and rCBV.
Based on the quantitative features characterizing the copula of
ADC and rCBV, three patient clusters were identified through the
hierarchical clustering, containing 40 patients (35%), 48 patients
(42%), and 27 patients (23%) respectively (Figure 2). The average
discretized matrices of ADC-rCBV joint distribution of three
subtypes are demonstrated in Figure 3. Among the three subtypes,
subtype I displayed a most uniform joint distribution, and subtype III
displayed a most diagonalized joint distribution. Three subtypes
showed no significant differences in clinical characteristics, as
indicated in Table 1. However, the lactate levels of three subtypes
were distinct (Table 2, Supplementary material 3). Particularly,
Subtype III displayed a higher level of Lac/Cr ratio than Subtype II
(P = .016) and Subtype I (P = .044).

LOOCV of Patient Subtypes
After the LOOCV, the co-occurrence consensus clustering matrix

was computed. The results showed that three patient clusters
generated from the unsupervised clustering were highly stable
(Supplementary material 4). The mean values of the co-occurrence
consensus clustering matrix were 0.91 for Subtype I, 0.95 for Subtype
II and 0.98 for Subtype III.

Survivals of Patient Subtypes
Kaplan-Meier analysis using the log-rank test showed significantly

different OS (P = .039) and PFS (P = .025) (Table 1, Figure 4) for
the three identified subtypes. The Cox regression models (Table 3)
accounted for all relevant clinical covariates. In the multivariate
modeling of PFS, Subtype I showed significantly worse survival than
Subtype II [hazard ratio (HR) = 1.992, P = .046]. Subtype III also
showed significantly worse survival than Subtype II (HR = 3.062,
P = .009). Extent of resection (HR = 2.710, P = .007) and
sing the features extracted from the joint distribution matrix of



Figure 3. Average joint distribution matrices of three subtypes. The joint distribution of transformed ADC and rCBV values is discretized
into a 10 × 10 joint distributionmatrix for eachpatient. This figure shows the averagematrix for each patient subgroup. Particularly, Subtype I
displayed a most uniform joint distribution, and Subtype III displayed a most diagonalized joint distribution.
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MGMT methylation status (HR = 0.532, P = .025) significantly
affected PFS. In the multivariate model of OS, Subtype I showed
significantly worse survival than Subtype II (HR = 3.042, P = .003).
The survival of Subtype III was not significantly different from
Subtype II. Extent of resection (HR = 2.691, P = .011) and tumor
volume (HR = 1.019, P = .001) significantly affected OS. Figure 5
demonstrates a case example of Subtype II.

Discussion
In this study, we characterized the interdependence of ADC and
rCBV using the copula transform and evaluated the clinical
significance of the interdependence in patient outcomes. The results
showed that the interdependence of ADC and rCBV may provide
information to evaluate the tumor microenvironment associated with
patient prognosis.

Tumor microstructure estimated from diffusion imaging and
vasculature estimated from perfusion imaging can describe key
characteristics of solid tumor. Although evidence suggests that
combining imaging modalities can identify tumor habitats respon-
sible for treatment failure [8], a systematic method to investigate the
interdependence of modalities is lacking. Previous studies have
validated the robustness of the copula transform in estimating
nonlinear correlation in multimodal neuroimaging data analysis [19].
Here we leveraged the copula transform to extract the joint
Table 1. Clinical Characteristics of Subtypes

Variable Subtype I
(n = 40)

Subtype II
(n = 48)

Subtype III
(n = 27)

P Value

Age at diagnosis (range, years) 59 (33-76) 62 (38-75) 55 (22-73) .261
Tumor volumes(cm3) 48.6 ± 31.4 41.0 ± 25.1 55.9 ± 33.1 .172
Male † 32 36 19

.663
Female † 8 12 8
Complete resection † 30 30 17

.208Partial resection † 7 16 9
Biopsy † 3 2 1
Methylated MGMT promoter*,† 20 17 11

.373
Unmethylated MGMT promoter*,† 19 30 14
IDH-1 mutant † 1 3 3

.354
IDH-1 wild-type † 39 45 24
Median OS (range) 403 (163-1077) 551 (78-1376) 407 (52-1333) .039 ‡

Median PFS (range) 262 (93-758) 389 (25-1130) 244 (37-589) .025 ‡

* MGMT promoter methylation status unavailable for four patients.
† Number of patients.
‡ Log-rank test.
distribution matrix of ADC and rCBV. The second-order statistics
calculated from the joint distribution matrix can yield an array of
measures for patient characterization. The resultant patient subtypes
showed no significance in clinical factors but demonstrated
significance in patient outcomes, suggesting that the interdependence
of perfusion and diffusion imaging may offer information comple-
mentary to clinical factors.

The second-order features of ADC-rCBV joint distribution in
Subtype III demonstrated the diagonalized pattern (Figure 3),
suggesting the higher interdependence between vasculature and
microstructure. Correspondingly, this subtype had a higher lactate
than the other two subtypes, indicating a more hypoxic microenvi-
ronment. Interestingly, although Subtype I showed the most uniform
joint distribution and therefore the least interdependent vasculature
and microstructure, the survival of this subtype was worse than
Subtype II. The higher lactate level of Subtype I implies a more
hypoxic microenvironment than Subtype II. This finding suggests
that both high interdependence and low interdependence between
vasculature and microstructure are associated with more hypoxic
tumor microenvironment and more invasive phenotypes, which may
imply the nonlinear correlation between tumor cellularity and
vascularity. A possible explanation could be that Subtype III may
represent a highly proliferative phenotype with an unmet oxygen
demand leading to global hypoxia, while Subtype I may have a less
coupled microvasculature and microstructure leading to subregional
hypoxia. The hypoxia in both subtypes could result in treatment
resistance and poorer outcomes.

Our findings have clinical significance. The subtypes revealed by
the interdependence between perfusion and diffusion may give
insights that are potentially relevant for treatment strategy. Our
findings showed that both high interdependence and low interde-
pendence in tumor vasculature and microstructure were associated
with hypoxia, which may cause resistance to adjuvant therapy.
Cytoreductive surgery may be more crucial in these phenotypes.
Table 2. Lac/Cr Ratio of Subtypes

Subtype Descriptive Subtype II Subtype III

Mean ± SD 95% CI P Value P Value

Subtype I 12.9 ± 2.7 7.2 ± 18.6 .341 .030
Subtype II 9.8 ± 5.8 5.8 ± 13.8 / .006
Subtype III 21.4 ± 3.4 14.3 ± 28.5 / /



Figure 4. Survivals of patient clusters. Log-rank test shows that Subtype II displays better OS (P = .039) (A) and PFS (P = .025) (B) than Subtype I and Subtype III.



Table 3. Survival Modeling

Factor PFS OS

Univariate Multivariate Univariate Multivariate

HR 95% CI P Value HR 95% CI P Value HR 95% CI P Value HR 95% CI P Value

Age 1.004 0.979-1.029 .758 1.027 0.994-1.062 .106 1.000 0.974-1.027 .988 1.004 0.971-1.038 .812
Sex (M) 1.555 0.923-2.618 .097 1.807 0.976-3.346 .060 1.243 0.695-2.222 .464 1.242 0.624-2.471 .537
Extent of resection 2.821 1.556-5.114 .001 2.710 1.321-5.560 .007 2.040 1.132-3.676 .018 2.691 1.259-5.754 .011
MGMT promoter methylation status * 0.619 0.369-1.039 .069 0.532 0.306-0.924 .025 0.573 0.320-1.027 .061 0.565 0.307-1.040 .067
IDH mutation status 0.986 0.356-2.733 .978 0.936 0.270-3.246 .917 1.038 0.369-2.926 .943 1.066 0.286-3.973 .925
Tumor volume † 1.005 0.996-1.015 .297 1.002 0.991-1.012 .742 1.018 1.008-1.029 .001 1.019 1.008-1.030 .001
Subtype I 1.267 0.701-2.289 .433 1.992 1.011-3.925 .046 2.017 1.051-3.873 .035 3.042 1.453-6.367 .003
Subtype III 2.389 1.240-4.602 .009 3.062 1.327-7.062 .009 2.089 1.092-4.386 .027 1.857 0.790-4.367 .156

* MGMT promoter methylation status unavailable for 2 patients.
† Contrast-enhancing tumor volume.
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Future studies using a prospective cohort study design is needed to
validate the clinical significance.

Previous studies have demonstrated the utility of classic radiomics
analysis of single modality in patient stratification [20,21]. Our proposed
method could be further integrated with classic radiomics analysis in
several regards. Firstly, the copula transform framework could be applied
to a singlemodality as a normalizationmethod, which could eliminate the
acquisition uncertainty from different MRI sequences and scanners.
Moreover, the features from the joint distribution of multiple modalities
could be integrated with classical texture features from single modalities
for tumor characterization. Further, our current study focused on the
characterization of intertumoral heterogeneity. In our future study, this
method could be integrated with habitat imaging to characterize the
intratumoral heterogeneity [22,23] by investigating the interdependency
within habitats.

Our approach had limitations. Firstly, the resolution of CSI was
lower than the resolution of the anatomical imaging, and 1H MR
spectroscopy voxels were, therefore, larger than rCBV and ADC
voxels. Secondly, our findings have not been validated in another
independent validation cohort. Thirdly, our findings need further
biological validation. Radiogenomics has been shown to unravel
tumor phenotypes, which could possibly validate our results. Lastly,
to reduce complexity, i.e., the spatial information–related noise, we
applied discretization to the copula-transformed joint matrix in this
Figure 5. Case example of Subtype II. Pixel-wise ADC values (A) and
After the copula transform, the joint distribution is discretized (C). The
interdependence of ADC and rCBV in this case.
study. Our future work will focus on feature extraction technique that
incorporates the weight and continuous information of copula matrix.

Conclusion
The interdependence between perfusion and diffusion imaging offers
useful information that could potentially be used for evaluating the
tumor microenvironment and glioblastoma patient stratification.
This method could be extended to include more imaging modalities
in future studies, with the advantage of copula transform in
multidimensional distributions.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.neo.2019.03.005.
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