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Abstract

The influence of micro/nanostructure on thermal conductivity is a topic of great scientific inter-
est and of particular technological importance to thermoelectrics. The current understanding is
that structural defects primarily decrease thermal conductivity through phonon scattering where the
phonon dispersion and speed of sound are fixed when describing thermal transport, especially when
chemical composition is unchanged. Experimental work on a PbTe model system is presented which
shows that the speed of sound linearly decreases with increased internal-strain. This softening of the
materials lattice completely accounts for the reduction in lattice thermal conductivity, without the
introduction of additional phonon scattering mechanisms. Additionally, we show that a major con-
tribution to the reduction in thermal conductivity, and the resulting improvement in thermoelectric
figure of merit (zT > 2), in high efficiency Na-doped PbTe can be attributed to this internal-strain
induced lattice softening effect. While inhomogeneous internal-strain fields are known to introduce
phonon scattering centers, this study demonstrates that internal-strain can also soften a materials
lattice on average, modifying the speeds of sound and phonon dispersion. This presents new avenues
to control lattice thermal conductivity, beyond phonon scattering, with microstructural defects and
internal-strain. In practice, many engineering materials will exhibit both softening and scattering
effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields
of energy materials, microelectronics, and nano-scale heat transfer.

1 Introduction

Pushing the thermoelectric figure of merit beyond two (zT > 2), has been a milestone achievement
in the field of energy science. In PbTe, this high zT has been achieved by significantly reducing the
lattice thermal conductivity (κL) at high temperatures [1, 2] (Figure 1a and b). The reduction of κL
in PbTe, and many other thermoelectric and systems, has been realized by controlling the materials
micro/nanostructure. This reduced κL has been rationalized by assuming the lattice defects introduce
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Figure 1: Milestone improvements in the figure of merit (zT ) of Na-doped PbTe due to reductions in lat-
tice thermal conductivity (κL) (a) The improved zT was previously attributed solely to phonon scattering from
micro/nanostructural defects. Data for (Na,Sr)-PbTe (Pb0.98Na0.02Te-10%SrTe) are from [1], (Na,Eu)-PbTe
(Na0.025Eu0.03Pb0.945Te) from [2], and Na-PbTe from [3]. (b) A reduction of κL upon the introduction of mi-
cro/nanostructural defects. The lines show the κL = Av3sT

−1 model describing phonon thermal conductivity
in the high-T limit where the only scattering mechanism is phonon-phonon scattering. A is normalized to the
Na-PbTe sample and fixed. The shaded region shows the reduction in κL expected from lattice softening alone,
without assuming an increase in phonon-defect scattering centers. Phonon scattering mechanisms could account
for the remaining reduction in κL, depicted by the cross-hatched region. The speed of sound (vs) reduction,
measured in this study, is given in the legend. The circles are data for a Na-doped (0.75% Na) sample synthe-
sized and measured in this study. The square data points are a low dislocation density sample from Ref. [4]
(Na0.015Eu0.03Pb0.955Te).

additional scattering centers which reduces the phonon mean free path (and relaxation time) while the
speeds of sound and phonon dispersion are assumed to be fixed (present authors included). However, κL
is very sensitive to changes in the phonon dispersion and thus a materials speed of sound (vs). This can
be demonstrated by considering a spectral analysis of the phonon thermal conductivity [5]

κL =
1

3

ωmaxˆ

0

Cs v
2
g τ dω, (1)

where Cs is the spectral heat capacity, vg is the group velocity, and τ is the phonon relaxation time.
At high temperatures (T > θD), when phonon-phonon scattering dominates (τ = τpp) Eq. 1 becomes
(details given in Section S1) [6, 7]

κL =
(6π2)2/3M̄

V 2/34π2γ2

〈
v3g
〉

T
= A

v3s
T
. (2)

This simple expression produces the same results as the spectral Callaway model (Eqs. 1, S1) when
T > θD and τ = τpp (Eq. S3), and is consistent with the model used by Tan et al. [8]. We express it
this way to demonstrate the sensitivity of κL on lattices stiffness which is reflected in the cubic dependence
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Figure 2: Illustration of phonon scattering and lattice softening effects due to internal-strain fields. The arrows
designate the phonon group velocity vector (vg) for each phonon wave packet (illustrated in the time domain).
Internal-strain fields locally change the phonon frequency. This causes both a change the phonon speed as well as
introduces phonon scattering centers. Lattice softening refers to a decrease in the phonon speed, the magnitude of
the group velocity vector. Phonon scattering refers to a change in the direction of the phonon velocity vector while
the phonon speed is unchanged. In order for phonon-defect scattering to be effective at reducing the thermal
conductivity it must compete with other scattering mechanisms, such as intrinsic phonon-phonon scattering.
Lattice softening is effective regardless of the dominate scattering mechanism.

of κL on phonon velocity. We denote the average group velocity over the Brilluon zone as
〈
v3g
〉
which is

defined in Eq. S5. Additionally, we consolidate the numerical constant and factors of the average atomic
mass M̄ , atomic volume V , and Grüneisen parameter γ into the coefficient A. In practice, A will be
normalized to a pristine (control) sample and the change in speed of sound will be used as an estimate for
the change in average group velocity (

〈
v3g
〉
∝ v3s ). Thus, if the speed of sound (i.e. lattice stiffness) can

be engineered in a material it is expected to be an effective parameter for controlling κL. In fact, tuning
the lattice stiffness is expected to have a larger impact on κL than micro/nanostructural scattering in
some cases. Specifically, at high temperatures, when phonon-defect scattering in anharmonic materials
is competing with an intrinsic phonon-phonon mean free path which is already very short. For example,
75% of the heat in intrinsic PbTe is carried by phonons with a mean free path less than approximately
10 nm (at room temperature), compared to 1000 nm (at room temperature) for Si [9]. This means only
lattice defects that are spaced on the order of 10 nm should significantly influence κL in PbTe [10], and
this length decreases with increasing temperature.

Internal-strain fields, which are induced by lattice defects such as dislocations and nanoprecipitates, will
locally change phonon frequencies within the material and can, in principle, lead to lattice softening.
This simultaneously changes phonon speed and induces phonon scattering. The two distinctly different
effects are illustrated in Figure 2. Again, the importance of each effect on the lattice thermal conductivity
depends on intrinsic material properties and the nature (e.g. length scale) of the internal-strain fields.
Specifically, when phonon-phonon scattering is strong (in anharmonic materials and at high tempera-
tures) phonon-strain field scattering is expected to be less important and lattice softening is expected to
dominate. Therefore, lattice softening provides a promising avenue for engineering the high temperature
thermal conductivity of anharmonic materials, such as thermoelectrics.

Several cases have been presented where an improvement in thermoelectric efficiency is attributed to
chemical lattice softening due to alloying or the introduction of vacancies [8, 11]. Additionally, there
has been much discussion about the connection between the chemical bonding, and a materials intrinsic
lattice stiffness and anharmonicity [12]. Due to the unique bonding characteristics of IV-VI compounds,
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such as PbTe, they are likely sensitive to the introduction of microstructural defects and in particular
lattice strain.

Here, we show a different lattice softening effect where the speed of sound is engineered in stoichiometric
PbTe, by changing the amount of internal-strain induced by lattice defects. Astonishingly, in PbTe the
observed reduction in speed of sound completely accounts for the reduced κL. Additionally, internal-
strain induced lattice softening is shown to be a major reason for the reduced κL in high efficiency
(zT > 2) compositions of Na-doped PbTe [1, 2]. Establishing internal-strain softening as a mechanism
for engineering thermal conductivity is not only of critical importance to the field of thermoelectrics, but
is also valuable to the fields of nanoscale heat transfer [13], microelectronics [14, 15], and thermal barrier
coatings [16, 17].

2 Results

2.1 Lattice softening and thermal conductivity of PbTe

To determine the influence of microstructure and internal-strain on thermal conductivity, stoichiometric
PbTe samples were synthesized with varying amounts of internal-strain induced by high energy ball
milling (Section 4.1). The low Debye temperature of PbTe (θD = 150 K) means that room temperature
measurements are within the ‘high temperature’ limit and Eq. 2 is applicable. Since the focus of this
study is the lattice thermal conductivity (κL), the samples were left undoped and were analyzed at
temperatures where bipolar effects are negligible (below 400 K). The electronic contributions to the total
thermal conductivity were found to be less than 1% of the total (i.e., κ ' κL). The internal-strain
of each pellet sample was measured via XRD peak broadening by the Williamson-Hall method (Section
4.2). The thermal and elastic properties of each pellet were measured by the laser flash method (Section
4.4) and pulse-echo ultrasound (Section 4.3), respectively. The time delay between ultrasound reflections
was accurately determined via the maximization of the cross-correlation such that the largest source of
error was the measurement of the sample thickness [18]. The error of the pulse-echo measurement was
determined to be approximately 1%.

Bulk PbTe pellets containing increasing amounts of internal-strain showed significantly decreased speeds
of sound, and this lattice softening was found to completely account for the observed reductions in κL
(Figure 3). Quantitatively, we use Eq. 2 and normalize the coefficient A to the nominally un-strained
sample (green squares in Figure 3). This value, A = 1.09 × 10−7 Ws3m−4, is held constant so that vs
is the deciding parameter of the model. Thus, since vs is a measurable, there are no free parameters in
this model when A is held constant. We note that the experimentally determined value of A is within a
factor of three of the theoretical value found for PbTe (A = 2.6× 10−7 Ws3m−4) which is comparable
to models used to predict κL with semi-emperical models or even ab intio calculations [19, 20].

The reduction in κL measured in these samples can be completely accounted for by lattice softening
effects alone (see Eq. 2 and Fig. 3a and b). It is important to recognize that small changes in vs
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Figure 3: Lattice thermal conductivity of PbTe samples with different amounts of internal strain and average speeds
of sound (vs). (a) κL vs. T of three characteristic samples. The lines are applications of the κL = Av3sT

−1 model
where, since the coefficient A = 1.09× 10−7Ws3m−4 is normalized to the unstrained sample (squares) and held
constant, there are no adjustable parameters and only difference in the model between samples is the measured
vs. (b) A different representation of Eq. 2, showing the data in panel (a) in comparison to a reproducibility
study containing three independently synthesized samples (Figure S4). The dashed lines show a 5% error in κL.
This data shows that the reduction in lattice thermal conductivity in stoichiometric PbTe is fully accounted for by
lattice softening. (c) The measured grain size (filled data points) and density (empty data points) of each sample
versus its room temperature κL showing that all samples have a density between 97 and 99% of the theoretical
density, are large grained, and that there is no systematic trend of κL with grain size or density.

correspond to large changes in κL. For example, the 7% reduction in vs observed in stoichiometric PbTe
results in a 20% reduction in κL, without introducing additional scattering parameters.

To verify the κL ∝ v3s relationship, a second series of samples were synthesized and measured, and the
results are displayed in Figure 3b, 3c, and S4. The agreement between this reproducibility study and the
primary study is shown in Figure 3b. Care was taken to ensure that there was no systematic relationship
between κL and grain size or density. Figure 3c shows that all sample had a density above 97% of the
theoretical density (confirmed by both the geometric and Archemedes method), and that there is no
systematic trend of κL with grain size measured via scanning electron microscopy (Figure S3). Since
the speed of sound measured ultrasonically is sensitive to sample density, the lattice softening measured
was confirmed by low-T heat capacity measurements and is shown in Figure S5. The 10% reduction in
the Debye temperature, θD ∝ vs, is in excellent agreement with the 7% reduction of vs measured via
ultrasound.

2.2 Elastic softening and internal strain

The reductions in speed of sound and lattice thermal conductivity correspond to an increase in internal-
strain. As can be seen in Figure 4, the speed of sound decreases linearly with an increase in internal-strain
measured via XRD peak broadening. The open diamond data point corresponds to the isotropic average
speed of sound of PbTe calculated from the components of the elastic tensor measured on a single crystal
[21, 22], and shows this linear trend of vs extends down to zero internal strain.
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Figure 4a shows the measurement of internal-strain of the pellet samples by Williamson-Hall analysis of
XRD peak broadening. β is the broadening (integral breadth) of the diffraction peak at angle θ after
correcting for instrument broadening. Figure 4b shows the peak fits of samples containing small and
large amounts of internal strain. Peak shape asymmetry can be observed, particularly in samples with
large amounts of internal strain, where the peak broadening is more significant on the low 2θ (larger
d-spacing) side of the peak maximum. This indicates that the state of inhomogeneous internal-strain of
these samples has a tendency to increase the lattice plane spacing distribution. An increase in lattice
plane spacing (d-spacing) most commonly corresponds to a decrease in phonon frequencies and speeds
of sound through considerations of the Grüneisen tensor [23, 24]. From a chemical perspective, bond
stiffness is inversely proportional to bond length. A number of extended lattice defects are known to
cause peak shape assymetry, including dislocations and coherency strains [25].

The slope of the plots shown in Figure 4a is a measure of CεXRD, where εXRD is the internal strain
determined via the Williamson-Hall method, and C is a constant related to the nature of the strain and
details of the analysis method [26, 27, 28]. The full peak broadening analysis, given in Section 4.2,
shows that the strain state of the PbTe samples is consistent with dislocations having Burger’s vectors
in the 〈110〉 direction [29], in agreement with the analysis of Chen et al. [4]. Since the spot size of
the X-ray beam is approximately 10 mm2, this method for characterizing strain is a bulk measurement.
While transmission electron microscopy provides detailed strain information about specific defects it is
limited to small a field of view and is often limited to nanoscale observations. While grain boundaries
and interfaces can be a means to introduce internal strain, they do not appear to be the primary cause
of internal-strain in the stoichiometric PbTe system (Figure 3c and Figure 4).

The present study also characterized the speed of sound and internal-strain of the zT > 2 samples shown
in Figure 1 reported by Tan et al. [1] and Chen et al. [2]. Remarkably, these measurements follow the
same trend as that measured in stoichiometric PbTe synthesized for this study (Figure 4). These data
indicate that the same softening mechanism observed in the stoichiometric PbTe samples of this study
is also present in the high-zT (Na,Eu)-PbTe and (Na,Sr)-PbTe systems. The measured vs in these two
samples suggests that a large percentage of the reduction in κL is due to lattice softening alone (Figure
1b).

The relationship between strain and phonon frequency (and thus the speed of sound) is described through
the Grüneisen tensor [23, 24]

γij = −d lnω

dεij
, (3)

which at small strains can be written as

ω = ω0(1− γijεij), (4)

where ω0 is the phonon frequency at zero strain. Recognizing that ω ∝ vs at low ω, it is possible to
define an engineering Grüneisen parameter γint, which is associated with the internal-strain state of PbTe
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measured via XRD. Then,
vs = vs,0 (1− γintεXRD) . (5)

This expression is consistent with the experimental observation of a linear dependence of speed of sound
on strain. From a fit of Eq. 5 to the experimental data in Figure 4c using C = 4 [28, 27, 26], we
estimate that γint = 5, which similar to the thermodynamic Grüneisen parameter of PbTe (γ = 2.2, Ref.
[21]). The order of magnitude agreement between γint and γ for PbTe strongly supports the argument
that internal-strain is the origin of lattice softening, reduced κL and improved zT . It should be noted
that the analysis shown in Figure 4a determines relative changes in internal-strain, and that the absolute
magnitude of internal strain depends on the value of C. Thus, γint is an experimental parameter that
is expected to be consistent when the analysis method is consistent between samples. Several other
theories predict softening with increasing strain and/or dislocation density [30, 31, 32, 33]. Theories that
relate lattice softening explicitly to strain energy give a quadratic dependence on strain, rather than the
linear dependence observed in this study [31, 32, 33].

3 Discussion

3.1 Temperature dependence of κL reduction: scattering vs. softening

Lattice softening is fundamentally different than phonon-defect scattering as a mechanism to reduce
κL. Thus, softening and defect scattering have distinguishing features in the temperature dependence
of κL. This difference stems from the fact that phonon-phonon scattering has a τ−1

pp ∝ T tempera-
ture dependence above the Debye temperature, whereas all elastic phonon-defect scattering mechanisms
(τdefect) are independent of temperature, given that the defect concentration is approximately constant
with temperature (Table I of Klemens [34]). Consequently, phonon-defect scattering should be propor-
tionally more effective at lower temperatures than at higher temperatures. Lattice softening is effective
at all temperatures since it reduces thermal conductivity regardless of scattering mechanisms. This is
demonstrated in the schematic model shown in Figure 5, which is based on Eqs. 1, S1, and S3. The black
line indicates a pristine sample with speed of sound vs,1 (e.g. a single crystal, or nominally unstrained
and large grained polycrystal). The dashed line represents a defective material where the speed of sound
stays constant at vs,1 and κL is reduced by defect scattering (i.e. temperature independent τdefect). The
dark red line illustrates a reduction in κL through lattice softening (i.e. a reduction in speed of sound,
vs,2 < vs,1) without changing scattering mechanisms. When analyzing thermal conductivity as κL vs.
T (as in Figure 5a) it may be difficult to determine if scattering or softening is the primary mechanism
of κL reduction. However the difference in the temperature dependence can be more clearly seen by
normalizing the thermal conductivity of the defective sample by that of the pristine sample (κ/κo). A
positive slope of κ/κo with temperature is characteristic of phonon-defect scattering. In contradistinc-
tion, if lattice softening dominates, κ/κo is expected to be constant with temperature (Figure 5b). To
verify lattice softening effects are present, elasticity, low-T heat capacity, and/or phonon density of states
measurements are required.
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Figure 4: Speed of sound decreases linearly with increasing internal-strain in PbTe based materials. a) Williamson-
Hall strain analysis of stoichiometric PbTe, as well as Na-doped, high zT, compositions (colors are consistent with
Figure 1 and 3). β is the integral breadth (peak area/height) of a diffraction peak at θ. The slope of the plots
(CεXRD) are proportional to the average internal-strain in the material (details in Section 4.2). b) Example
peak fits of a low and high internal-strain samples (circled in panel (c)). Diffraction peaks in samples with large
amounts of internal-strain show peak shape asymmetry where the peak has a larger broadening on the low 2θ
(larger d-spacing) side of the peak maximum. c) The speed of sound (vs) measured by pulse-echo ultrasound
versus the internal-strain (CεXRD) as measured in panel (a). The increase in internal-strain is correlated with a
linear decrease in the speed of sound, a reduction in the lattice thermal conductivity, and improved thermoelectric
efficiency.

Lattice softening has been observed by low-T heat capacity in Si, where the measured vs reduces from
5830 m s−1 in a Si single crystal [35] and 5700 m s−1 in a polycrystal, to 4440 m s−1 in a nanocrystalline
material [36]. However, the phonon-phonon mean free path in Si is large at room temperature, with
75% of the heat being transported with a mean free path (Λ = vgτ) larger than approximately 100 nm.
Therefore, nanocyrstalline Si is still expected to have significant phonon scattering effects at room
temperature due to grain boundary scattering. Figure 6a shows the lattice thermal conductivity of single
crystal [37] and nanocrystalline Si with an average grain size of 42 nm [36]. The lines show a transport
model constructed to estimate the relative importance of lattice softening and phonon-scattering in this
system. This Callaway-type model has been used previously for Si [38, 39], but did not consider changes
in speed of sound. In these studies, τpp is calibrated to single crystalline data and fixed. Here, τpp

is parameterized to capture the experimentally observed lattice softening effects, such that the explicit
dependence of τpp on the phonon velocity is left intact (Eq. 11). In the previous studies [38, 39],
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Figure 5: A schematic model transport model demonstrating the characteristics features of defect scattering and
lattice softening mechanisms in the reduction of lattice thermal conductivity (κL). a) The κL of a pristine sample
(κo) compared the κL of defective samples where the reduction in κL is induced by phonon-defect scattering and
lattice softening. In the pristine sample (κo), and the case of lattice softening (dark red), τ−1 = τ−1

pp ∝ T . For
the case of phonon-defect scattering (dashed), τ−1 = τ−1

pp + τ−1
defect ∝ T + constant. b) The ratio of κL for the

defective sample over that for the pristine sample. A positive slope of κ/κo indicates significant phonon scattering
effects, and no slope indicates softening effects.

this dependence was buried in the numerical constants. Thus, the model used herein is able to capture
lattice softening effects. It is not surprising, then, that the 24% reduction in vs going from single-
to nano-crystalline Si coincides with a large predicted reduction in κL (red shaded region in Fig. 6a).
To account for grain boundary scattering in the nanocrystalline material, the relaxation time due to
phonon interactions with lattice rotation and localized strain fields at grain boundaries (τgbs) is applied
[39]. All parameters associated with the nanoscale structure of the grain boundaries are fixed to those
that were used in the low-T κL model in Ref. [39], and the grain size was set to 42 nm, which was
measured experimentally [36]. Therefore, the model captures the entire reduction of κL from single-
to nano-crystalline samples using experimentally measured speed of sound and grain size, without any
additional fitting parameters (black and teal lines in Figure 6a). This model indicates that at room
temperature, phonon-grain boundary scattering and lattice softening are equally important, whereas at
high temperatures (> 1000 K) lattice softening dominates. The dashed line shows a predicted κL if
lattice softening is not included. Phonon scattering on point impurities and free charge carriers in the
Si-nc were determined to be negligible and are discussed in Section 4.6.

In Figure 6b and c, we show the κL of the defective samples normalized by that of the pristine sample (Si
single crystal, and large grain unstrained Na-PbTe). Indeed, a positive slope in κ/κo vs. T is observed
in Si near room temperature, where significant scattering is present (compare to Figure 5b). In PbTe,
however, κ/κo vs. T is relatively flat which is consistent with the lattice softening measured in Figure

9



!!
!!

!!
!!!

!!!!!
!!!!!!!

400 600 800 1000 1200
0.10

0.15

0.20

0.25

0.30

0.35

T !K"

#$
# o

Printed by Wolfram Mathematica Student Edition

Printed by Wolfram Mathematica Student Edition

a) b)

!! ! ! ! ! ! ! ! ! ! ! ! !

""" " "" """ "" "

! !Na,Eu"#PbTe

" !Na,Sr"#PbTe

300 400 500 600 700 800 900

0.4

0.6

0.8

1.0

T !K"

$%
$ o

Printed by Wolfram Mathematica Student Edition

c)

Printed by Wolfram Mathematica Student Edition

5830 m/s τ−1
pp

1

4440 m/s τ−1
pp

1

τ−1
pp + τ−1

gbs

1

5830 m/s 
4440 m/s τ−1

pp + τ−1
gbs

1

Lattice softening

Figure 6: The temperature dependent reduction of lattice thermal conductivity (κL) in Si and PbTe. a) A
Callaway-type thermal transport model used to estimate the effects of lattice softening and phonon-grain boundary
scattering in reducing κL from single cyrstal (sc, [37]) to nanocrystalline (nc, [36]) Si, with average grain size
of 42 nm. The red shaded region shows the reduction in lattice thermal conductivity expected from measured
lattice softening alone. Phonon-grain boundary scattering was included using the expression derived by Hanus et
al. [39], τgbs, where the only parameter changed from Ref. [39] to this study is the grain size. Therefore, the
only parameters in the model changed from Si-sc to Si-nc are the experimentally measured vs and grain size. The
dashed line shows the predicted κL if lattice softening is not included. b) The normalized κL of Si-nc showing
a positive slope with T around room temperature indicates phonon scattering effects are important. c) The
normalized κL of high-zT Na-doped PbTe samples showing a flat temperature dependence indicating that lattice
softening is important.

4. This analysis of Si and PbTe demonstrates that lattice softening and scattering effects can both
contribute to the reduction of κL in engineering materials. However, the relative contribution of each
effect depends on the specific material and microstructure. Here, it is shown that lattice softening can
account for over 50% of the reduction in κL, and is consequently a primary mechanism with which to
engineer thermal conductivity.

3.2 The connection between speed of sound and heat carrying phonons

The speed of sound is a measure of the slope of the phonon dispersion relation near the center of the
Brillouin zone (Γ-point). Acoustic measurements of speed of sound and elastic properties are typically
made in the kHz to MHz frequency range. Measurement of the speed of sound at higher frequencies can
be obtained from the Debye level found from low-T heat capacity (≈ 102 GHz) or phonon density of states
(≈ 1 THz). Phonons which carry significant amounts of heat are in the THz frequnecy range. Thus,
measurements of speed of sound are not typically made directly on heat carrying phonons. However,
speed of sound is inherently a measurement of bond stiffness which is governed by the interatomic force
constants.

Interatomic force constants simultaneously govern the speed of sound as well as the frequency and group
velocity of phonons throughout the Brillouin zone [24]. Consequently, acoustic measurements can be
used as a gauge for the general behavior of the full phonon dispersion. One justification for this is
that the speed of sound has been shown to be an accurate predictor for the average phonon frequency
across material systems [40]. Additionally, it is known that Raman-active optical modes typically have
a linear strain dependence that can also be characterized by a Gruneisen parameter [41, 42]. From
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theoretical considerations, this optical Gruneisen parameter is ≈ 6.5 for ionic materials and ≈ 3 for
covalently bonded materials [42]. The phonon mode dependent Grüneisen parameter has been computed
for PbTe and values for the optical branches are of similar sign and magnitude [43]. The thermal
conductivity of homogeneously strained PbTe has also been computed by Murphy et al. [44]. The results
show that positive tensile strain, indeed, strongly reduced the transverse optical Γ-point frequency and
the magnitude of reduction in κL with increasing strain generally agrees with the experimental results
presented here. Therefore, speed of sound measurements are very useful in probing the bond stiffness
and in turn the general behavior of heat carrying phonons in defective systems where direct measurement
or calculation of THz phonons is prohibitively difficult or impossible (e.g. polycrystalline and heavily
strained materials).

3.3 Engineering thermal conductivity through lattice softening

Internal-strain induced lattice softening has been demonstrated as a promising method to reduce ther-
mal conductivity. Therefore, methods of introducing and maintaining large amounts of internal-strain
should be considered, rather than methods which increase the spacial density of defects, particularly in
anharmonic materials. The PbTe study presented here utilized high-energy ball milling in conjunction
with a rapid hot-pressing procedure developed to minimize the annealling out of internal-strain. Other
processing techniques such as high pressure torsion [45], hot deformation [46], and liquid phase sintering
[47] may be optimized to maximize the amount of internal-strain in the material. The softening effects in
Si and Si-Ge alloys by Caudio et al. [36, 48], and in Bi2Te3 and Sb2Te3 based materials by Klobes et al.

[49] were seen with decreasing grain size. While decreasing grain size often correlates with an increased
amount of internal-strain, this is not always the case (as we show in Figures 3 and 4). Nevertheless,
given that microstructural defects contribute to both lattice softening and scattering, it is no surprise
that good thermoelectric materials with low thermal conductivity are highly defective. However, lattice
softening is a particularly promising avenue for thermoelectrics as it allows for a reduction in κL without
the requirement of a large spacial density of defects which likely induce electron scattering as well.

It is also possible to induce lattice softening through chemical methods. Recently, we reported a speed of
sound reduction when alloying SnTe with AgSbTe2 which is required to explain the dramatic reduction in
lattice thermal conductivity and improvement in zT [8]. Again, the transport model only quantitatively
agrees with experiment if the speed of sound is monitored throughout the study. Beyond semiconductors,
lattice softening has been measured in metallic [31] and ionic materials [50] with increased point defect
concentrations. The magnitude of such effects could be assessed with similar experimental methods as
those presented here. The totality of these reports indicates that elastic softening should be important in
many engineering materials other than PbTe. It is interesting to note that the internal-strain softening
effect described here may even be taken to the limit of amorphous materials, which have been theoretically
described as fully defective crystals, and whose elastic moduli are nearly universally lower than there
crystalline analogues [51].
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4 Methods

4.1 Synthesis

Ingots (between 20 to 40 g) of nominally stoichiometric PbTe were prepared from elemental Pb (Alfa
Aesar, lead rod, 6.35 mm diameter, 99.999%) and Te (Alfa Aesar, Tellurium lump, 99.999+%) by melt
reaction under vacuum (∼ 10−4 torr) in a carbon-coated quartz ampule (12 mm inside diameter x
16 mm outside diameter) at 1000 oC for 4 to 6 hours and quenched in ice water. Each ingot was
independently pulverized by mortar and pestle and sieved to have an initial particle size distribution
between 20 to 120µm. This material was considered to be nominally un-strained. Plastic deformation
was introduced via high-energy ball milling for varying durations (5 to 120 min). The ball milling process
was standardized such that 2.0 g of unstrained powder was loaded into a stainless steel jar (with inner
dimensions of 36.7 mm in diameter and 57 mm in height) along with the same size and number of grinding
media (2 stainless steel balls 12.7 mm in diameter and 15 stainless steel balls 6.3 mm in diameter) and
sealed in an argon atmosphere. All powders were consolidated by uniaxially hot pressing in a high density
graphite die under argon atmosphere. The maximum pressure of ∼ 45 MPa and maximum temperature
of 550 oC were held concurrently for 20 min. As the temperature ramped from room temperature to
550 oC, the pressure was applied stepwise in 10 MPa intervals. Both temperature and pressure reached
their maximum value in 10 min. After consolidating for 20 min, the samples were furnace cooled under a
nominal pressure of 5 MPa. All pellets had a density > 97% theoretical density (8.16 g cm−3), measured
by both geometric and Archimedes methods. To minimize error introduced in speed of sound and thermal
diffusivity measurements, all samples were sanded and polished to be parallel such that the thickness
variation was within 1% of the mean, measured with a micrometer.

Figure S1 shows the internal-strain (measurement described in Section 4.2) as a function of high energy
ball milling time. The amount of internal-strain induced during ball milling can vary with many experi-
mental factors. We found that if the initial particle size distribution is controlled by sieving, the amount
of powder being ball milled is kept constant, as well as the milling media and size of the ball milling vial,
the internal-strain versus ball milling time trend can be reproduced within experimental uncertainty, as
can be seen by comparing the two trials in Figure S1a.

Figure S1b shows the variability seen if all of the mentioned experimental parameters are not controlled.
Nevertheless, the speeds of sound correlate with measured internal strain regardless of ball milling con-
ditions (Figure 4b).

Figures S1a and b also show that internal-strain increases with ball milling time until a plateau is reached
at approximately one to two hours depending on previously mentioned details regarding the ball milling
procedure. This type of plateau is commonly observed in powder metallurgy, and is sometimes followed
by a decrease in internal strain [52].
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4.2 X-Ray diffraction and analysis

4.2.1 X-Ray data collection

X-Ray diffraction was conducted on a STOE STADI-MP with pure Cu K-α1 radiation (Figure S2). Pre-
pressed powders were measured in transmission mode (Debye-Scherrer geometry) and pressed pellets
were measured in reflection mode (Bragg-Brentano geometry). A NIST 640e silicon standard was used
to calibrate the peak position, and NIST 660c LaB6 standard was used to characterize the instrumental
peak broadening. The instrumental broadening is shown in relation to the peak broadening of a typical
PbTe sample in the inset of Figure S2a, where the 2θ = 71.8o LaB6 peak is normalized in intensity
and position for comparison to the PbTe peak. This shows that the instrument resolution in peak width
is sufficient for particle size and internal-strain analysis. Since strain information is contained primarily
in high angle reflections, data was collected up to 2θ = 110o for powders in transmission mode and
2θ = 130o for pellets in reflection, with sufficient counting time to fully resolve the high angle peaks.

4.2.2 Reitveld refinement and evidence of 〈110〉 dislocations

GSAS II was used to conduct Reitveld refinements [53]. An instrument parameter file was constructed
in GSAS II by refining the LaB6 standard, with no sample size or microstrain broadening included.
The instrument parameter file was not changed durning refinement of PbTe samples. When refining
PbTe (Fm3̄m) samples, the lattice parameter and sample position were first refined separately and then
together. Then the particle size was set to its maximum (10µm) and microstrain was refined. Since
significant anisotropic peak broadening was observed in all samples (peak width is not a smooth function
of θ) the generalized anisotropic strain model was used in GSAS II to describe the internal strain,
analogous to that used by Christensen et al. [54] in JANA2006. This model allows for two independent
strain parameters, S400 and S220, and a typical result is shown as a strain surface plot in Figure S2b. This
strain model shows that the crystal is less strained in the principle crystallographic directions, as observed
by the ‘dimples’ along the x, y, and z directions of Figure S2b. Additionally, this is reflected in the raw
peak fits shown in Figure S2c, as well as the aniostropic strain parameters in which all samples show,
2S400 < S220. This type of strain state is consistent with that of a dislocation with a Burger’s vector in
the 〈110〉 direction, as shown in Figure S2d. This dislocation line points into the page and the Burger’s
vector is rotated 45o from the principle directions, such that there is a zero strain node in the σyy and σxy
components of the stress tensor in the principle crystallographic directions [29]. This data suggests that
the dominate defect inducing the internal strain are dislocation with Burger’s vector equal to (a/2) 〈110〉,
which are known to be the low energy dislocation type in PbTe [29]. Finally, the size was refined separately
and then together with strain resulting in no significant contribution to peak broadening from particle size
effects. Then all previously refined parameters were refined together (instrument parameters still fixed)
and the resulting fit is shown in Figure S2. The reproducibility of internal strain analysis was verified by
refining five independent X-ray scans on the same batch of powder. The standard deviation of internal
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strain measurements had a value that was 3% of the mean. No change in the lattice parameter was
measured.

4.2.3 Williamson-Hall peak broadening analysis

To analyze the internal strain of the pressed pellets, select peaks were fit using a split psuedo-Voigt
function

I(2θ) = Ihkl[η L(2θ − 2θ0)) + (1− η)G(2θ − 2θ0)]. (6)

The Lorenzian full width half max (σ) was allowed to be different on the left and right side of the peak
maximum,

L(2θ − 2θ0) =
(σ/2)2

(2θ − 2θ0)2 + (σ/2)2
.

σ = σL , 2θ ≤ 2θ0

σ = σR , 2θ > 2θ0
(7)

The Gaussian peak shape function is given by

G(2θ − 2θ0) = exp

(
−π(2θ − 2θ0)

2

β2G

)
, (8)

where βG is the Gaussian peak width. The θ dependence of the peak width was analyzed via the
Williamson-Hall method. While the same conclusions can be made by analyzing Reitveld refinement
results of the pressed pellets, the Williamson-Hall method was used because it resulted in a lower analysis
related error. Additionally, while the results presented in Figure S2 suggest that the primary strain
inducing defect is a dislocation with Burger’s vector (a/2) 〈110〉, the Williamson-Hall approach used on
the pellets is model non-specific and no conclusion about the microscopic origin of the internal strain is
required.

Individual peaks were fit using the split pseudo-Voigt profile function (Eq. 6) the integral breadth
(area/height) of the fitted peak is given by βmeas. The instrument integral breadth, βinst was determined
by conducting the same fitting procedure on a NIST 660c LaB6 standard. The sample full width at
half maximum was then calculated by β2 = β2meas − β2inst and converted from degrees into radians for
analysis. The Williamson-Hall function was used to determine the relative amounts of internal strain in
each pellet sample

β cos θ = (CεXRD) sin θ +
λ

dXRD
, (9)

where β is the instrument corrected full width half maximum (in radians), θ is the angle of the diffraction
peak, λ is the wavelength of the radiation, C = 4 is a constant related to the nature of the internal
strain [28, 27, 26], and εXRD and dXRD are the internal strain and crystallite domain size determined
via this Williamson-Hall method. As can be seen in Figure S2c, the {h00} type peaks were significantly
sharper than the other peaks [38, 54] and were thus excluded from the Williamson-Hall analysis. The
resulting least squares fits are shown as lines in Figures 4a and S2c.
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4.3 Pulse-echo ultrasound

The speeds of sound were measured by the pulse-echo method where a piezoelectric transducer coupled
to the sample first sends the initial stress-wave pulse, and then acts as receiver measuring the echoed
ultrasound reflection [55]. Since no preferred orientation was observed in the X-Ray analysis, the ran-
domly oriented polycrystals were treated as elastically isotropic. The time-delay, td, between subsequent
reflections was determined by maximizing the cross-correlation of the two reflections as follows. If An(t)

is the amplitude of reflection n, then
∑

tAn(t)An+1(t − td) is maximized by varying td. This corre-
sponding value of td along with the sample thickness, h, was then used to calculate the speed of sound,
vL,T = 2h/td. A longitudinal transducer (measuring vL) with a principle frequency of 5 MHz (Olympus
V1091) and a transverse transducer (measuring vT) at 5 MHz (Olympus V157-RM) were used with
a Panametrics 5072PR pulser/receiver. A Tektronix TBS 1072B-EDU oscilloscope was used to record
the waveforms. A typical waveform contained around four reflections (3 time-delay measurements), and
the measurements from a minimum of three waveforms (corresponding to 9 individual speed of sound
measurements) were averaged. All measurements had a standard deviation of less than 1% of the mean.
The largest error in this measurement technique is the measurement of the sample thickness, and if
care is taken to ensure the sample faces are parallel and a micrometer is used to measure the sample
thickness, < 1% analysis related error is achievable. A single crystal of yttrium aluminum garnet (YAG)
with known elastic properties was used to determine that measurements of the speed of sound on this
home built system have an accuracy of better than 0.6%. The average speed of sound is calculated as
[56]

vs =

(
1

3

[
1

v3L
+

2

v3T

])−1/3

. (10)

4.4 Thermal diffusivity and conductivity

Thermal diffusivity was measured using a Netzch laser flash analysis (LFA) system. The diffusiv-
ity measurements, Dκ [m2s−1], were combined with the heat capacity of PbTe [3], cp [JK−1m−3] =

NR{3.07 + 4.07 × 10−4(T − 300)}/M (where N is the number of atoms per primitive unit cell,
R [JK−1mol−1] is the gas constant, and M [kgmol−1] is the molar mass of the primitive unit cell),
and the sample density, ρ [kgm−3], to calculate the thermal conductivity, κ = Dκcpρ [Wm−1K−1]. Elec-
trical conductivity measurements confirmed that the electronic thermal conductivity is less than 1% of
κ, so the thermal conductivity measured is essentially equal to the lattice thermal conductivity, κ ' κL

(bipolar thermal conduction is negligible in the temperature range considered for undoped PbTe).

4.5 Grain size from SEM

Figure S3 shows scanning electron microscopy (SEM) images of three samples, which were used to
determine the grain size via the lineal intercept method [57]. The images were obtained on a Hitachi
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S-4800 in the secondary electron mode, with a beam voltage of 2 kV. This method gives an estimate of
the grain size which is accurate to approximately 25%.

4.6 Thermal transport model for nanocrystalline Si

The thermal transport model shown Figure 6a is identical to that shown in Figure 2 of Ref. [58] and
Figure 8a of Ref. [39] except that the phonon-phonon relaxation time was formulated to maintain its
dependence on phonon velocity [7],

1

τpp(ω)
=
c1ω

2T

v3s
e−c2vs/T . (11)

The coefficients here are related to the coefficients in Ref. [39] as C1 = c1/v
3
s and C2 = c2vs. Phonon-

grain boundary scattering was included using the relaxation time derived in Ref. [39] which describes a
phonon being perturbed by the grain boundary rotation and localized strain field and is given by

1

τgbs(ω)
= A1 n1dvsγ

2

(
b

D

)2

+B1

(n1d
D

)
γ2b2(ω − ω∗)Θ (ω − ω∗) , (12)

where
ω∗ =

4πvs
3D

, (13)

is the dimensionality crossover frequency and Θ(x) is the Heaviside step function. A1 = 8/3 and
B1 = 0.93Kν , where

Kν = 1 +
(1− 2ν)2

4(1− ν)2
+

1

32(1− ν)2
. (14)

The total relaxation time is calculated according to Matthiessen’s Rule: τ−1 = τ−1
pp + τ−1

gbs.

The speed of sound for a Si single crystal is slightly different here than that used in Ref. [39] because we
are utilizing speeds of sound obtained by low-T heat capacity rather than elastic moduli. Intrinsic phonon-
point defects scattering (natural vacancies and isotopes), as well extrinsic point defect scattering due to
mass contrast and localized strain fields (P substituted on a Si site) were determined to be negligible [59].
From the measured carrier concentration of the nanocyrstalline Si sample [36], the fraction of P on Si sites
was only f = 0.002, and the mass difference and change in atomic radii of P and Si are relatively small.
Additionally, phonons scattering on conduction electrons, which mainly effects low frequency phonons,
was neglected since the relaxation time of low frequency phonons is already dominated by phonon GB
scattering [60]. The material parameters utilized for the model are shown in Table S2.

5 Conclusion

Here, in a PbTe model system, we experimentally established the importance of lattice softening ef-
fects on thermal transport. Significant reductions in the thermal conductivity of polycrystalline PbTe
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were completely accounted for by reductions in the materials average speed of sound, without invoking
additional phonon scattering terms. In nanocrystalline Si, both softening and scattering effects were
necessary to describe the thermal conductivity reduction. These results demonstrate that monitoring the
elasticity of a material throughout a study is of critical importance.

The reduction in speed of sound is found to be linearly related to the increase in the internal-strain
of a material. This can be described by defining an engineering Grüneisen parameter which behaves
like a material property of PbTe, γint ≈ 5. With this new understanding of lattice softening, and its
implications on thermal transport, it is not surprising that materials processing methods which create and
maintain large amounts of internal-strain tend to improve thermoelectric efficiency. Or, more specifically,
that these methods are effective at reducing the lattice thermal conductivity at high temperatures, even
in very anharmonic materials where the intrinsic phonon-phonon mean free path is already very small.
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