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OF THE INVERSE PROBLEM FOR 1+1
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Abstract. An inverse boundary value problem for the 1+1 di-
mensional wave equation (∂2t − c(x)2∂2x)u(x, t) = 0, x ∈ R+ is
considered. We give a discrete regularization strategy to recover
wave speed c(x) when we are given the boundary value of the wave,
u(0, t), that is produced by a single pulse-like source. The regular-
ization strategy gives an approximative wave speed c̃, satisfying a
Hölder type estimate ‖c̃− c‖ ≤ Cεγ , where ε is the noise level.
Keywords: Inverse problem, regularization theory, wave equa-
tion, discretization.

1. Introduction

We consider an inverse boundary value problem for the wave equation

(
∂2

∂t2
− c(x)2 ∂

2

∂x2
)u(t, x) = 0,

and introduce a discrete regularization strategy to recover the sound
speed c(x) by using the knowledge of perturbed and discetized Neumann-
to-Dirichlet map Λ̃N1 . Our approach is based on the Boundary Control
method [6, 11, 62].

A variant of the Boundary Control method, called the iterative time-
reversal control method, was introduced in [14]. The method was later
modified in [20] to focus the energy of a wave at a fixed time and in [53]
to solve an inverse obstacle problem for a wave equation. In [40] we
introduced a modification to the iterative time-reversal control method
that is tailored for the 1+1 dimensional wave equation.

The novelty in this paper is that we analyze the effect of the dis-
cretization in the regularized solution of the inverse problem. We give
a direct discrete regularization method for the non-linear inverse prob-
lem for the wave equation. The result contains an explicit (but not
necessarily optimal) convergence rate.
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By referring to direct methods for non-linear problems we mean the
explicit construction of non-linear map to solve the problem without
resorting to a local optimization method. In our case the map is given
by (41), shown below. The advantage of direct approaches is that they
do not suffer from the possibility that the algorithm converges to a
local minimum. In particular, they do not require a priori knowledge
that the solution is in a small neighbourhood of a given function.

Classical abstract regularization theory is explained in [22]. The
iterative regularization of both linear and non-linear inverse problems
and convergence rates are discussed in a Hilbert space setting in [15, 24,
26, 49, 51] and in a Banach space setting in [25, 30, 31, 36, 55, 56, 57].
In section 3.5 we compare our regularization strategy to Morozov’s
discrepancy principle (MDP). In the context of abstract regularization
theory, this principle has been discussed, e.g., in [58].

There are currently only a few regularized direct methods for non-
linear inverse problems. An example is a regularisation algorithm for
the inverse problem for the conductivity equation in [39]. Also, a direct
regularized inversion for blind deconvolution is presented in [28].

2. Regularization Strategy

2.1. Continuity of forward map. We define

‖c‖Ck(M) =
k∑
p=0

sup
x∈(0,∞)

| ∂
pc

∂xp
(x)|,(1)

where M denotes the half axis M = [0,∞) ⊂ R. We denote the set of
bounded Ck(M) -functions by

Ck
b (M) = {c ∈ Ck(M); ‖c‖Ck(M) <∞}.

Let C0, C1, L0, L1,m > 0 and define the space of k times differentiable
velocity functions

Vk = {c ∈ Ck(M);C0 ≤ c(x) ≤ C1,(2)

‖c‖Ck(M) ≤ m, c− 1 ∈ Ck
0 ([L0, L1])}.

Here Ck
0 ([L0, L1]) is the subspace of functions in Ck

b (M) that are sup-
ported on [L0, L1]. Let

T >
L1

C0

.(3)
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For c ∈ V2 and f ∈ L2(0, 2T ), the boundary value problem

(
∂2

∂t2
− c(x)2 ∂

2

∂x2
)u(x, t) = 0 in M × (0, 2T ),(4)

∂xu(0, t) = f(t),

u|t=0 = 0, ∂tu|t=0 = 0,

has a unique solution u = uf ∈ H1(M × (0, 2T )). Using this solution
we define the Neumann-to-Dirichlet operator Λ = Λc,

Λ : L2(0, 2T )→ L2(0, 2T ), Λf = uf |x=0.(5)

For a Banach space E we define

L(E) = {A : E → E;A is linear and continuous}.

Let Z = C2
b (M) and Y = L(L2(0, 2T )). The operator A is defined in

the domain D(A) = V3 by setting

A : D(A) ⊂ Z → R(A) ⊂ Y, A(c) = Λc.(6)

The notation in (6) means that the range R(A) = A(V3) and the
domainD(A) are equipped with the topologies of Y and Z, respectively.
Note that the maps (5) and (6) are continuous (see [40]).

2.2. Regularization strategies with discretizatized measurements.
Let T be as in (3) and N ∈ Z+. For n ∈ {1, 2, 3, ..., 2N} we define the
basis functions as

φn,N(t) =
(N
T

) 1
2
1

[
(n−1)T
N

,nT
N

)
(t), t ∈ [0, 2T ).(7)

Note that the functions φn,N are orthonormal in L2(0, 2T ). Having (7)
we define the space of piecewise constant functions as

PN = span
{
φ1,N , ..., φ2N,N

}
⊂ L2(0, 2T )(8)

and an orthogonal projection as

PN : L2(0, 2T )→ PN , PN(f) =
2N∑
j=1

〈f, φj,N〉L2(0,2T )φj,N(t).(9)

Let Λ be as in (5). Using (9) we define

ΛN = PNΛPN .(10)

Let E be a Banach space and H ∈ E. We denote

BE(H, ε) = {H̃ ∈ E :
∥∥∥H̃ − H∥∥∥

E
< ε}.(11)



4 JUSSI KORPELA, MATTI LASSAS, AND LAURI OKSANEN

2.2.1. A model for a single discrete and noisy measurement. Let ε0 > 0
and we define

l0(ε0) =
⌊4

7
log2 ε

−1
0

⌋
(12)

and

N0(ε0) = 2l0 .(13)

Let N = 2l ≥ N0, where l ∈ Z+. Let PN be as in (9) and Λ be as in
(5). Let us define

H(t) =

{
1, t ≥ 0,

0, t < 0.
(14)

Let us define

m̃N,ε0 = PNΛH + nN,ε0 ,(15)

in which nN,ε0 ∈ PN represents the error and ‖nN,ε0‖L2(0,2T ) ≤ ε0. We
consider the quantity (ε0, N0, m̃N,ε0) that we call a measurement. Let
A be as in (6) and H be as in (14). We define

A0 : D(A0) ⊂ Z → R(A0) ⊂ L2(0, 2T ), A0(c) = A(c)H = ΛH,

(16)

where D(A0) = V3 . Our main result on the reconstruction of c(x) from
the measurement (ε0, N0, m̃N,ε0) is given by the following theorem.

Theorem 1. For the operator A0 : V 3 ⊂ Z → L2(0, 2T ), there exists
an admissible regularization strategy R(0)

N0,α0
with the choice of parame-

ter

α0(ε0) = a0ε
4
45
0 ,

satisfying the following: For every c ∈ V3 there are ε̃0 >, a0 > 0, and
C > 0 such that

sup
{∥∥∥R(0)

N0,α0
m̃N,ε0 − c

∥∥∥
Z

: m̃N,ε0 ∈ PN , N = 2l ≥ N0(ε0),∥∥m̃N,ε0 − PNΛH
∥∥
L2(0,2T )

≤ ε0

}
≤ Cεγ00 ,

for all ε0 ∈ (0, ε̃0). Here γ0 = 1
270

and N0(ε0) is as in (13).

An explicit bound ε̃0 and the value for constant a0 are given in the
proof. The proof of Theorem 1 is given in Section 2.5.
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2.2.2. A model for several discrete and noisy measurements. Let

EN1 : PN1 → PN1 ,(17)

where N1 ∈ Z+. Having ΛN1 as in (10) we define a discrete and noisy
measurement operator

Λ̃N1 : L2(0, 2T )→ L2(0, 2T ),(18)

Λ̃N1f =

{
ΛN1f + EN1f, f ∈ PN1 ,

0, f ∈ (PN1)⊥.

Note that PN1 ∪ (PN1)⊥ = L2(0, 2T ). With data corresponding to sev-
eral boundary measurements (ε1, N1, Λ̃N1) we get the following results
with improved error estimates.

Theorem 2. For the operator A : V 3 ⊂ Z → Y , there exists an
admissible regularization strategy R(1)

N1,α1
with the choice of parameter

α1(ε1) = a1ε
4
9
1

that satisfies the following: For every c ∈ V3 there are ε̃1 > 0, a1 > 0,
and C > 0 such that

sup
{∥∥∥R(1)

N1,α1
Λ̃N1 − c

∥∥∥
Z

: N1 ≥ ε−4
1 , Λ̃N1 ∈ L(PN1),∥∥∥Λ̃N1 − ΛN1

∥∥∥
Y
≤ ε1

}
≤ Cεγ11 ,

for all ε1 ∈ (0, ε̃1). Here γ1 = 1
54
.

An explicit bound ε̃1 and the value for constant a1 are given in the
proof. The proof of Theorem 2 is given in Section 2.5. We will give
explicit choices forR(0)

N0,α0
in formula (82) and forR(1)

N1,α1
in formula (99)

below. For the convenience of the reader we give a short summary of the
regularization strategy. Assume that we are given Λ̃N ∈ L(PN1) ⊂ Y ,
that is, the discrete Neumann-to-Dirichlet map for the unknown wave
speed c(x) with measurements errors. Then the regularization strategy
is obtained by the following steps:

(1) Using operator Λ̃N1 in (69) we constructed a source that pro-
duces a wave such that ufα,r(t, x)|t=T is close to the indicator
function 1M(r)(x) of the domain of influenceM(r)—see (27).

(2) Using sources f̃Nα,r we approximately compute the volumes V (r)
of the domains of influences—see (28), (68), and Proposition 3.

(3) Using finite differences we compute approximate values of the
derivatives of the volumes of the domain influences ∂rV (r)—see
(78).
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(4) We interpolate the obtained values of ∂rV (r). This determines
the approximate values of the wave speed v(r) in the travel time
coordinates—see (29) and (79).

(5) Finally, we change the coordinates from travel time coordinates
to Euclidean coordinates to obtain the approximate values of
the wave speed c(x) for x ∈M—see (80).

2.3. Previous literature. From the point of view of uniqueness ques-
tions, the inverse problem for the 1+1 dimensional wave equation is
equivalent to the one-dimensional inverse boundary spectral problem.
The latter problem was thoroughly studied in the 1950s [23, 41, 50]
and we refer to [29, pp. 65–67] for a historical overview. In the 1960s
Blagoveščenskĭı [17, 18] developed an approach to solving the inverse
problem for the 1+1 dimensional wave equation without reducing the
problem to the inverse boundary spectral problem. This and later
dynamical methods have the advantage over spectral methods that
they only require data on a finite time interval. Applications of one-
dimensional inverse probems have been discussed widely in [16, 29, 33].

The method in the present paper is a variant of the Boundary Con-
trol method that was pioneered by M. Belishev [6] and developed by
M. Belishev and Y. Kurylev [10, 11] in the late 1980s and early 1990s.
Of crucial importance for the method is the result by D. Tataru [62]
concerning a Holmgren-type uniqueness theorem for non-analytic co-
efficients. The Boundary Control method for multidimensional inverse
problems has been summarized in [7, 33], and considered for 1+1 di-
mensional scalar problems in [9, 12, 40] and for multidimensional scalar
problems in [32, 34, 42, 46, 47]. For systems it has been considered in
[43, 44, 45]. Stability results for the method have been considered in
[1] and [35], and computational implementations in [5, 8, 21, 27, 54].
An application of the method to blockage detection in water pipes is
in preparation [64].

The inverse problem for the wave equation can also be solved by
using complex geometrical optics solutions. These solutions were de-
veloped in the context of elliptic inverse boundary value problems [61],
and in [52] they were employed to solve an inverse boundary spectral
problem. Local stability results can be proven using (real) geometrical
optics solutions [13, 59, 60], and in [48] a stability result was proved by
using ideas from the Boundary Control method together with complex
geometrical optics solutions.

There is an important method based on Carleman estimates [19],
often called the Bukhgeim-Klibanov method after its founders, that
can be used to show stability results requiring only a single instance of
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boundary values, when the initial data for the wave equation is non-
vanishing. We mention the interesting recent computational work [2]
that is based on this method, and also another reconstruction method
that uses a single measurement [3, 4]. This method is based on a reduc-
tion to a non-linear integro-differential equation, and there are several
papers on how to solve this equation (or an approximate version of
it)—see [37, 38] for recent results including computational implemen-
tations.

2.4. Notations. We will define R(1)
N1,α1

as a discrete version of the reg-
ulation strategy given in [40]. For that we recall some notation from
[40].

We denote the indicator function of a set E by

1E(x) =

{
1, x ∈ E,
0, otherwise.

We define

J : L2(0, 2T )→ L2(0, 2T ), Jf(t) =
1

2

∫ 2T

0

1N(t, s)f(s)ds,(19)

where N = {(t, s) ∈ (0, 2T )2; t+ s ≤ 2T and s > t > 0}.We define the
time reversal operator as

R : L2(0, 2T )→ L2(0, 2T ), Rf(t) = f(2T − t),(20)

and the projections as

Prf(t) = 1(T−r,T )(t)f(t), r ∈ [0, T ].(21)

Using (19), (20), and (21) we define that

K : Y → Y, KL = JL−RLRJ(22)

and

H : Y 7→ C([0, T ], Y ), HL(r) = Pr(KL)Pr.(23)

We define a regularized inversion with cutoff as

Zα : Y → Y, Zα(L) = ηY (L, α)(L+ α)−1,(24)

where ηY : Y × (0,∞)→ R is, for example, a continuous function that
satisfies ηY (L, α) = 1 when d(L, Y +) ≤ α/4 and ηY (L, α) = 0 when
d(L, Y +) ≥ α/2. Here

d(L, Y +) = inf{
∥∥L− L+

∥∥
Y

; L+ ∈ Y is positive semidefinite}.
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We denote by Zα the lift of Zα to C([0, T ], Y ), that is, Zα(L)(r) is
Zα(L(r)). Moreover, we define b(t) = 1(0,T )(t)(T − t) and

S : C([0, T ], Y )→ C([0, T ]), SL(r) = 〈L(r)Prb, b〉L2(0,2T ).(25)

We define the travel time coordinates by

τ : [0,∞)→ [0,∞), τ(x) =

∫ x

0

1

c(t)
dt, x ∈M,(26)

and the domain of influence

M(r) = {x ∈M ; τ(x) ≤ r}, r ≥ 0.(27)

The function τ is strictly increasing and we denote its inverse by χ.
Moreover, V (r) denotes the volume ofM(r) with respect to the mea-
sure dV = c−2dx, where c is the speed of sound in (4). From [40, Eq.
(21)] we see that

V = lim
α→0

(S ◦Zα ◦H)(Λ).(28)

Moreover, according to [40, Eq. (19), (20)], the speed of sound in travel
time coordinates v = c ◦ χ satisfies

v(r) =
1

∂rV (r)
, χ(r) =

∫ r

0

v(t)dt, r > 0.(29)

Thus c can be computed from V . We will next recall how the formula
(29) is regularized in [40]. For small h > 0 we consider the partition

(0, T ) = (0, h) ∪ [h, 2h) ∪ [2h, 3h) ∪ ... ∪ [Nhh− h,Nhh) ∪ [Nhh, T ),
(30)

where Nh ∈ N satisfies T − h ≤ Nhh < T . We define a discretized and
regularized approximation of the derivative operator ∂r by

Dh : C([0, T ])→ L∞(0, T ),(31)

Dh(f)(t) =


f(h)
h
, if t ∈ (0, h),

f(jh+h)−f(jh)
h

, if t ∈ [jh, jh+ h),
f(T )−f(Nhh)

T−Nhh
, if t ∈ [Nhh, T ).

Let us have

ϑ(t; a, b) = a1(−∞,a)(t) + t1[a,b](t) + b1(b,∞)(t).(32)

We define an inversion with a cutoff that takes into account the a priori
bounds in (2) by

z : R→ R z(t) =
1

ϑ(t;C0, C1)
.(33)
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We denote by z the lift of z to L∞(0, T ), that is, z(f)(t) = z(f(t)).
We define the extension by one

E : L∞(0, T )→ L∞(0,∞), Ef(t) =

{
f(t), t ∈ (0, T ),

1, otherwise,
(34)

and set W = E ◦ z. We define

χ̃ : L∞(0,∞)→ C(0,∞), χ̃(f)(r) =

∫ r

0

f(t)dt.(35)

Note that having f > 0 in (35) we have it that χ̃(f) is a strictly
increasing function. Having L0, L1, as in (2), we define

θR : L∞(0,∞)→ L∞(R),(36)

θR(f)(t) =

 1, if t ∈ (−∞, L0],
f(t), if t ∈ (L0, L1),

1, if t ∈ [L1,∞).
Having f > 0 and using (35) and (36) we define

Φ : L∞(0,∞)→ L∞(R), Φ(f) = θR(f ◦ (χ̃(f))−1).(37)

Let us define η ∈ C∞(R) by

η(x) =

{
C exp

(
1

x2−1

)
, if x ∈ (−1, 1),

0, if |x| ≥ 1,
(38)

where the constant C > 0 is selected so that
∫
R η(x) = 1. For ν > 0

we define

ην(x) =
1

ν
η
(x
ν

)
.(39)

By using convolution we define a smooth approximation to a given
function f ∈ L∞(R) by setting

Γν : L∞(R)→ C∞(R), Γν(f) = ην ∗ f.(40)

Using (23), (24), (25), (31), (34), (37), and (40) we define the family
of operators for the regularization strategy used in [40] by

Rα : Y → Z,(41)
Rα = Γν ◦ Φ ◦W ◦Dh ◦ S ◦Zα ◦H ,

where ν = Cε
1
54 , h = Cε

1
18 and α(ε) = 2

13
9 T

4
9 ε

4
9 . Note that in [40] we

considered perturbations of the Neumann-to-Dirichlet operator of the
form

Λ̃ = Λ + E ,(42)
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where E ∈ Y models the measurement error and ‖E‖Y ≤ ε. Below we
will introduce a discretized version of regularization strategy (41) that
takes in discretized measurements. To this end we start with auxiliary
lemmas.

2.5. The proofs of the main results.

Lemma 1. Let N ∈ Z+. Let Λ be as in (5) and ΛN as in (10). Then
we have

‖ΛN − Λ‖Y ≤ CN−
1
4 .

Here C = C(T ) > 0 depends on T .

Proof. By (5) and the trace theorem we have

‖Λ‖
L2(0,2T )→H

1
2 (0,2T )

≤ CLam.(43)

By (9) we have ∥∥I − PN
∥∥
L2(0,2T )→L2(0,2T )

≤ 2.(44)

Let f ∈ H2(0, 2T ). By (9) and H2(0, 2T ) ↪→ C1([0, 2T ]) we have∥∥f − PNf
∥∥
L∞(0,2T )

≤ T

N
‖f‖C1([0,2T ]) .(45)

Thus

∥∥f − PNf
∥∥
L2(0,2T )

≤ (2T )
1
2

∥∥f − PNf
∥∥
L∞(0,2T )

≤ (2T )
1
2
T

N
‖f‖C1([0,2T ]) .

(46)

By (46) and having Csob = ‖I‖H2(0,2T )→C1([0,2T ]) we get∥∥I − PN
∥∥
H2(0,2T )→L2(0,2T )

≤ (2T )
1
2
T

N
Csob.(47)

Using interpolation theory with (44) and (47) we have∥∥I − PN
∥∥
H

1
2 (0,2T )→L2(0,2T )

≤ 2
3
4

(
(2T )

1
2
T

N
Csob

) 1
4 .(48)

For self-adjoint operators PN and Λ we have∥∥Λ− ΛPN
∥∥
Y

=
∥∥(Λ− ΛPN)∗

∥∥
Y

=
∥∥(I − PN)Λ

∥∥
Y
.(49)

By (43) and (48) we have∥∥Λ− ΛPN
∥∥
Y

=
∥∥(I − PN)Λ

∥∥
Y
≤ 2

3
4

(
(2T )

1
2
T

N
Csob

) 1
4CLam.(50)

Thus ∥∥PNΛ− PNΛPN
∥∥
Y
≤ 2

3
4

(
(2T )

1
2
T

N
Csob

) 1
4CLam.(51)
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By (49), (50), and (51) we have∥∥Λ− PNΛPN
∥∥
Y
≤ 2

7
4

(
(2T )

1
2
T

N
Csob

) 1
4CLam ≤ CN−

1
4 .(52)

�

Proposition 1. Let ε > 0, N ∈ Z+ and N ≥ ε−4 . Let Λ be as in (5)
and ΛN be as in (10). Assume that Λ̃N ∈ BY (ΛN , ε), then∥∥∥Λ̃N − Λ

∥∥∥
Y
≤ C2ε.

Here C2 = C2(T ) > 0 depends on T .

Proof. Using Lemma 1 and having N ≥ ε−4 we get∥∥∥Λ̃N − Λ
∥∥∥
Y
≤ ε+ CN−

1
4 ≤ (C + 1)ε.(53)

�

Let J be as in (19) and using (9) we define

JN = PNJPN .(54)

Lemma 2. Let N ∈ Z+. Let J be as in (19) and JN be as in (54).
Then we have

‖J − JN‖Y ≤ CN−
1
2 .

Here C = C(T ) > 0 depends on T .

Proof. By (19) we have

‖J‖L2(0,2T )→H1(0,2T ) ≤ CJ .(55)

Using interpolation with (44) and (47) we have∥∥I − PN
∥∥
H1(0,2T )→L2(0,2T )

≤ 2
1
2

(
(2T )

1
2
T

N
Csob

) 1
2 .(56)

By (55) and (56) we have∥∥(I − PN)J
∥∥
L2(0,2T )→L2(0,2T )

≤ CJ2
1
2

(
(2T )

1
2
T

N
Csob

) 1
2 .(57)

We have∥∥J(I − PN)
∥∥
L2(0,2T )→L2(0,2T )

=
∥∥(I − PN)J∗

∥∥
L2(0,2T )→L2(0,2T )

.(58)

By (55), (57), and (58) we get

∥∥J − PNJPN
∥∥
Y
≤
∥∥(I − PN)J

∥∥
Y

+
∥∥PN

∥∥
Y

∥∥J(I − PN)
∥∥
Y
≤ CN−

1
2 .

(59)

�
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Let J be as in (19), JN be as in (54), and R be as in (20). We define

KN : Y → Y, KNL = JNL−RLRJN .(60)

By (21) and (60) we define

HN : Y → C([0, T ], Y ), HNL(r) = Pr(K
NL)Pr.(61)

Proposition 2. Let ε ∈ (0, 1), κ3 > 0, and N ≥ κ3ε
−4. Let Λ be

as in (5), H be as in (23), and HN be as in (61). Assume that
Λ̃N ∈ BY (Λ, ε), then we have∥∥∥HN Λ̃N −HΛ

∥∥∥
C([0,T ],Y )

≤ C3ε.

Here C3 = C3(T, κ3) > 0 depends on T and κ3.

Proof. By (22) and (60) we get

KN Λ̃N −KΛ̃N = RΛ̃NR(J − JN) + (JN − J)Λ̃N .(62)

Using (20), we have ‖R‖Y ≤ 1. Using [40, Theorem 5], we have ‖Λ‖Y ≤
M1 <∞. By (62) and Lemma 2 we have

∥∥∥HN Λ̃N(r)−HΛ̃N(r)
∥∥∥
Y
≤
∥∥∥KN Λ̃N −KΛ̃N

∥∥∥
Y
≤ 2(M1 + 1)CN−

1
2 .

(63)

By [40, Proposition 1] we have∥∥∥HΛ̃N −HΛ
∥∥∥
C([0,T ],Y )

≤ Tε.(64)

By (63) and (64), when ε ∈ (0, 1) and N ≥ κ3ε
−4 we have∥∥∥HN Λ̃N −HΛ

∥∥∥
C([0,T ],Y )

≤ 2(M1 + 1)C
( 1

κ2

) 1
2
ε2 + Tε ≤ C3ε.(65)

�

Let Pr be as in (21), b be as in (25), and PN be as in (9). We define

SN : C([0, T ], Y )→ C([0, T ]), SNL(r) = 〈PNL(r)Prb, b〉L2(0,2T ).

(66)

Lemma 3. Let L ∈ C([0, T ], Y ) and S be as defined in (25). Then∥∥SNL− SL
∥∥
C([0,T ])

≤ T 3

6N
‖L‖C([0,T ],Y ) .

Proof. By using (25), (66) with the self-adjointness of operator PN we
get

|SNL(r)− SL(r)| ≤ ‖L(r)‖Y ‖Prb‖L2(0,2T )

∥∥PNb− b
∥∥
L2(0,2T )

.
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We have ‖Prb‖L2(0,2T ) ≤ (T
3

3
)
1
2 and

∥∥PNb− b
∥∥
L2(0,2T )

≤ ( T 3

12N2 )
1
2 . �

Let K be as in (22) and KN be as in (60). Let H be as in (23) and
HN be as in (61). Let Zα be as in (24). For r ∈ [0, T ] and α > 0 we
denote

Zα,r = Zα(HΛ)(r),(67)

Z̃α,r = Zα(HN Λ̃N)(r).

Let S be as in (25). Using (67) we denote

sα = S ◦Zα ◦HΛ,(68)

s̃α = S ◦Zα ◦HN Λ̃N .

Let SN be as in (66). Using (67) we denote

s̃Nα = SN ◦Zα ◦HN Λ̃N , s̃Nα (r) = 〈PN Z̃α,rPrb, b〉L2(0,2T ).(69)

Proposition 3. Let ε ∈ (0, 1) and κ4 > 0. Let α = 2ε
4
9 and N ≥

κ4ε
−4. Let sα be as defined in (68) and s̃Nα be as defined in (69). Let

HΛ(r) ∈ Y be bounded and positive semidefinite for all r ∈ [0, T ].
Assume that HN Λ̃N ∈ BC([0,T ],Y )(HΛ, ε), then we have∥∥s̃Nα − sα∥∥C([0,T ])

≤ C4ε
1
9 .

Here C4 = C4(T, κ3) > 0 depends on T and κ3.

Proof. We have∥∥s̃Nα − sα∥∥C([0,T ])
≤
∥∥s̃Nα − s̃α∥∥C([0,T ])

+ ‖s̃α − sα‖C([0,T ]) .(70)

Let S be as defined in (25). We have ‖S‖C([0,T ],Y )→C([0,T ]) ≤
T 3

3
,

see [40, Proposition 2]. Having HN Λ̃N ∈ BC([0,T ],Y )(HΛ, ε) we get∥∥∥Zα(HN Λ̃N)−Zα(HΛ)
∥∥∥
C([0,T ],Y )

≤ 1
2
ε
1
9 , see [40, Proposition 2]. Us-

ing (68), for the second part of the sum in the right-hand side we get

‖s̃α − sα‖C([0,T ]) ≤ ‖S‖Ω

∥∥∥Zα(HN Λ̃N)−Zα(HΛ)
∥∥∥
C([0,T ],Y )

≤ T 3

3

1

2
ε
1
9 ,

(71)

where we denote Ω = C([0, T ], Y ) → C([0, T ]). Using (68) and (69)
with Lemma 3, for the first part of the sum in the right-hand side we
get ∥∥s̃Nα − s̃α∥∥C([0,T ])

≤ T 3

6N

∥∥∥Zα(HN Λ̃N)
∥∥∥
C([0,T ],Y )

.(72)
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We have∥∥∥Zα(HN Λ̃N)
∥∥∥

Ω
≤
∥∥∥Zα(HN Λ̃N)−Zα(HΛ)

∥∥∥
Ω

+ ‖Zα(HΛ)‖Ω ,(73)

where we denote Ω = C([0, T ], Y ). Using [40, Eq. (32)] we have

‖Zα(HΛ(r))‖Y ≤ α−1.(74)

Having ε ∈ (0, 1), N ≥ κ4ε
−4 and α = 2ε

4
9 with use of (72), (73), and

(74) we get∥∥s̃Nα − s̃α∥∥C([0,T ])
≤ T 3

6

ε4

κ4

(1

2
ε
1
9 +

1

2
ε−

4
9

)
≤ T 3

3κ4

ε
32
9 .(75)

By using (70) (71) and (75) we get the estimate. �

Proof of Theorem 2.
Let us consider the measurement (ε1, N1, Λ̃N1). There is N1 ≥ ε−4

1 and
Λ̃N1 , for which

∥∥∥Λ̃N1 − ΛN1

∥∥∥
Y
≤ ε1, and Proposition 1 gives us∥∥∥Λ̃N1 − Λ

∥∥∥
Y
≤ C2ε1.

Let ε1 ∈ (0, C−1
2 ) and ε = C2ε1. We choose κ3 = C4

2 and thus
N1 ≥ ε−4

1 = C4
2ε
−4. Having Λ̃N1 ∈ BY (Λ, ε), Proposition 2 gives us∥∥∥HN1Λ̃N1 −HΛ

∥∥∥
C([0,T ],Y )

≤ C3C2ε1.(76)

Let ε1 ∈ (0, C−1
2 C−1

3 ) and ε = C2C3ε1. We choose κ4 = C4
2C

4
3 and thus

N1 ≥ ε−4
1 = C4

2C
4
3ε
−4. Let α1 = 2C

4
9
2 C

4
9
3 ε

4
9
1 . Having (76), Proposition 3

gives us ∥∥s̃N1
α − sα

∥∥
C([0,T ])

≤ C4C
1
9
3 C

1
9
2 ε

1
9
1 .(77)

Let V be as defined as in (28) and Dh be as defined as in (31). Let
ε1 ∈ (0, ε̂), where ε̂ as defined in [40, Proposition 4]. Let κ5 > 0 and
h = κ5ε

1
18
1 . Having (77) and using [40, Proposition 4] we get∥∥Dh(s̃

N1
α )− ∂rV

∥∥
L∞(0,T )

≤ C5C
1
2
4 C

1
18
3 C

1
18
2 ε

1
18
1 ,(78)

where C5 = C5(κ5). Note that we use the parameter κ5 to control the
size of discretization in (31). Let v be as defined in (29) and W be as
defined in (34). Let us denote w̃N1

α = W (Dh(s̃
N1
α )). Having (78) and

using [40, Proposition 5] we get∥∥w̃N1
α − v

∥∥
L∞(M)

≤ C6C5C
1
2
4 C

1
18
3 C

1
18
2 ε

1
18
1 .(79)
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Let ν = κ6ε
1
54
1 and c ∈ V3. Let Φ be as in (37) and ην be as in (39). Let

us denote c̃N1
α = ην ∗ Φ(w̃N1

α ). Having (79) and using [40, Proposition
6] we get ∥∥c̃N1

α − c
∥∥
C2(M)

≤ C7C
1
3
6 C

1
3
5 C

1
6
4 C

1
54
3 C

1
54
2 ε

1
54
1 ,(80)

where C7 = C7(κ6). Note that we use the parameter κ6 to control the
support of ην in (39). We define

ε̃1 = min
{
C−1

2 , C−1
2 C−1

3 , ε̂
}
.(81)

By using (24), (31), (34), (37), (40), (61), and (66) we define

R(1)
N1,α1

: Y → Z,(82)

R
(1)
N1,α1

= Γν ◦ Φ ◦W ◦Dh ◦ SN1 ◦Zα1 ◦HN1 ,

and have the estimate∥∥∥R(1)
N1,α1

(Λ̃N1)− c
∥∥∥
Z
≤ a1ε

1
54
1 ,

when ε1 ∈ (0, ε̃1) and a1 = C7C
1
3
6 C

1
3
5 C

1
6
4 C

1
54
3 C

1
54
2 . �

Proof of Theorem 1.
Let φj,N0 be as in (7), where j ∈ {1, 2, 3, ..., 2N0}. Let r ∈ [0, 2T ) and
we define

Tr : L2(0, 2T )→ L2(0, 2T ), Trf(t) =

{
0, t ∈ (0, r),

f(t− r), t ∈ [r, 2T ).
(83)

Using (15) and (83) we define

Λ̃Pφj,N0 =
(N0

T

) 1
2
(
T (j−1)T

N0

− T jT
N0

)
PN0m̃N,ε0 .(84)

As
{
φ1,N0 , ..., φ2N0,N0

}
span PN0 this defines a linear map

Λ̃P : PN0 → PN0 .(85)

Using (84) and (85) we define a perturbed and discretizatized Neumann-
to-Dirichlet operator

Λ̃N0 : L2(0, 2T )→ L2(0, 2T ),(86)

Λ̃N0|PN0 = Λ̃P ,

Λ̃N0|(PN0 )⊥ = 0,



16 JUSSI KORPELA, MATTI LASSAS, AND LAURI OKSANEN

where PN0 ⊕ (PN0)⊥ = L2(0, 2T ). Using (15), (84), (85), and (86) we
define

EN0 : PN → Y, EN0m̃N,ε0 = Λ̃N0 .(87)

Let ε0 > 0. Let l0(ε0) be as in (12) and N0(ε0) be as in (13). Let
N = 2l ≥ N0, where l ∈ Z+. Let ΛN0 be as in (10) and Λ̃N0 be as in
(86). Let PN be as in (9) and φ1,N be as in (7). Let m̃N,ε0 be as in (15).
Assume that m̃N,ε0 ∈ BL2(0,2T )(P

NΛH, ε0) and ‖nN,ε0‖L2(0,2T ) ≤ ε0.
Then ∥∥∥Λ̃N0 − ΛN0

∥∥∥
Y
≤ CP1ε

1
5
0 .(88)

Here CP1 = CP1(T ) > 0 depends on T . Having (7), (14), and (83)
we get

ΛN0φ1,N0 =
(N0

T

) 1
2
PN0ΛPN0(I − T T

N0

)H.(89)

As N = 2l ≥ N0 = 2l0 we have PN0PN = PN0 . Using TrΛ = ΛTr and
PN0T T

N0

= T T
N0

PN0 with (15), (84), and (89) we get

Λ̃N0φ1,N0 − ΛN0φ1,N0 =
(N0

T

) 1
2
(I − T T

N0

)nN,ε0 .(90)

Using N0 ≤ ε
− 4

5
0 ,

∥∥∥T T
N0

∥∥∥
L2(0,2T )

≤ 1 and ‖nN,ε0‖L2(0,2T ) ≤ ε0 we get∥∥∥Λ̃N0φ1,N0 − ΛN0φ1,N0

∥∥∥
L2(0,2T )

≤ 2T−
1
2 ε

3
5
0 .(91)

Let f ∈ L2(0, 2T ). By (9) we get

∥∥∥Λ̃N0f − ΛN0f
∥∥∥
L2(0,2T )

≤
2N0∑
j=1

〈f, φj,N0〉L2(0,2T )

∥∥∥PN0Λ̃φj,N0 − PNΛφj,N0

∥∥∥
L2(0,2T )

.

(92)

Using (7), (84), (89), and (90) we have

∥∥∥Λ̃N0f − ΛN0f
∥∥∥
L2(0,2T )

≤
∥∥∥PN0Λ̃φ1,N0 − PN0Λφ1,N0

∥∥∥
L2(0,2T )

2N0∑
j=1

〈f, φj,N0〉L2(0,2T ).

(93)

Thus (91) and (93) gives us∥∥∥Λ̃N0f − ΛN0f
∥∥∥
L2(0,2T )

≤ (2N0)
1
2 ‖f‖L2(0,2T ) 2T−

1
2 ε

3
5
0 .(94)

We have N0 ≤ ε
− 4

5
0 ≤ 2N0 and this proves (88).
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We define

ε1 = CP1ε
1
5
0 .(95)

Using N0 ≤ ε
− 4

5
0 ≤ 2N0 and (95) we get

N0 ≥ 2−1C4
P1
ε−4

1 .(96)

By (96), Λ̃N0 ∈ BY (ΛN0 , ε1), and Theorem 2 we get∥∥c̃N0
α − c

∥∥
C2(M)

≤ C7C
1
3
6 C

1
3
5 C̃

1
6
4 C̃

1
54
3 C̃

1
54
2 ε

1
54
1 .(97)

Note that in the proof of Theorem 2 we have assumed N1 ≥ ε−4
1 .

After replacing this by (96), the proof is identical, only the constants
C̃2, C̃3, C̃4 change—see (53), (65), (74), and (80). Using (95) we get∥∥c̃N0

α − c
∥∥
C2(M)

≤ C7C
1
3
6 C

1
3
5 C̃

1
6
4 C̃

1
54
3 C̃

1
54
2 C

1
54
P1
ε

1
270
0 .

We define

ε̃0 = min
{
C4
P1
C̃−5

2 , C4
P1
C̃−5

2 C−5
3 , ε̂

}
,(98)

where ε̂ can be specified by using [40, Proposition 4]. By using (24),
(31), (34), (37), (40), (87), (61), and (66), we define

R(0)
N0,α0

: PN → Z,(99)

R(0)
N0,α0

= Γν ◦ Φ ◦W ◦Dh ◦ SN0 ◦Zα ◦HN0 ◦ EN0 ,

and have the estimate∥∥∥R(0)
N0,α0

(m̃N,ε0)− c
∥∥∥
Z
≤ a0ε

1
270
0 ,

when ε0 ∈ (0, ε̃0) and a0 = C7C
1
3
6 C

1
3
5 C̃

1
6
4 C̃

1
54
3 C̃

1
54
2 C

1
54
P1
. �

3. Numerical examples

In this section we describe a computational implementation of the
regularization strategy in Theorem 2. We will also compare this with
a heuristic variant of MDP—see (114). We will begin by describing
how the data—that is, the noisy discretized Neumann-to-Dirichlet map
Λ̃N1—is simulated.
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3.1. The simulation of measurement data. We choose T = 0.6 in
all the simulations. We use k-Wave [63] to solve the boundary value
problem (4) with f = φ1,N1 ∈ PN1 , where N1 = 210, and denote the
solution by u(sim). Recall that

φ1,N1(t) = h−
1
2 1[0,h)(t), t ∈ [0, 2T ),(100)

where h = T/N1. In order to simulate u(sim) for 2T time units, a fine
discretization needs to be used, and we choose a regular mesh with 213

spatial and N2 = 215 temporal cells. Then we define the simulated
Neumann-to-Dirichlet map, acting on the first basis function,

Λ(sim)φ1,N1(t) =

2N1∑
j=1

u(sim)(tj, 0)φj,N2(t), t ∈ [0, 2T ),(101)

where tj = (j−1)2T
N2

, j ∈ {1, 2, ..., N2}, are the temporal grid points. The
output of k-Wave is, of course, only an approximation of u(sim) but we
do not analyze this simulation error and use the same notation for both
u(sim) and its approximation.

Our primary object of interest is the following discretized version of
the Neumann-to-Dirichlet map

Λ
(d)
N1

: PN1 → PN1 , Λ
(d)
N1
f =

2N1∑
j=1

j∑
k=1

fkΛj−k+1φj,N1 ,(102)

where Λj = 〈Λ(sim)φ1,N1 , φj,N1〉L2(0,2T ) and fk, k = 1, 2, . . . , 2N1, are the
coefficients of f on the basis of PN1 . Observe that Λ

(d)
N1
φ1,N1 is simply

the projection of Λ(sim)φ1,N1 on PN1 , and that Λ
(d)
N1
f is then defined by

using the fact that the wave equation (4) is invariant with respect to
translations in time.

We will now describe how the noise is simulated. Consider

(103) n = (n1, n2, ..., n2N1) ∈ R2N1 ,

where nj ∈ N (0, 1), that is, nj is a normally distributed random vari-
able with zero mean and unit variance. We compute a realization of n
by using the randn function of MATLAB, and use the same notation
for n and its realization. Let ε(d)

0 > 0 and define, analogously to (102),
a noisy, discretized version of the Neumann-to-Dirichlet map

Λ̃
(d)
N1

: PN1 → PN1 , Λ̃
(d)
N1
f =

2N1∑
j=1

j∑
k=1

fkΛ̃j−k+1φj,N1 ,(104)
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where Λ̃j = Λj + n̂j and

n̂j =
ε

(d)
0

‖n‖l2
nj, j = 1, 2, . . . , 2N1.(105)

Following the formulation of Theorem 2, rather than using ε(d)
0 > 0, we

prefer to parametrize the noise level in terms of

ε
(d)
1 :=

∥∥∥Λ̃
(d)
N1
− Λ

(d)
N1

∥∥∥
PN1

.(106)

In what follows, we will consider the quantity (ε
(d)
1 , Λ̃

(d)
N1

), a simulated
analogue of the noisy measurements in Section 2.2.2.

3.2. Implementation of the regularization strategy. For the a
priori bounds in (2) we use values C0 = 0.01, C1 = 10, L0 = 0.01,
and L1 = 0.6. The crux of the regularization strategy R(1)

N1,α1
is the

computation of the inverse in (24). When starting from the simulated
measurement (ε

(d)
1 , Λ̃

(d)
N1

), the analogue of (24) is to solve Xj in the
equation

(PrjK
N1Λ̃

(d)
N1
Prj + α1)Xj = Prjb.(107)

Here Pr is the projection in (21), and we choose rj = jh, j = 1, 2, . . . , N1.
The choice of the regularization parameter α1 is discussed in detail be-
low.

We use the restarted generalized minimal residual (GMRES) method
to solve the system of linear equations (107) and choose six as the
maximum number of outer iterations and 10 as the number of inner
iterations (restarts). We use the initial guess f = 0 and the tolerance
of the method is set to 1e-12.

After this we simply follow the regularization strategy (82), that is,
we get an approximation of c by setting

c̃N1
α1

= Γν(Φ(W (Dh(s̃
N
α1

)))),(108)

where s̃N1
α1

(rj) = 〈Xj, b〉L2(0,2T ), j = 1, 2, . . . , N1. The scaling of ν is
chosen as follows

ν = 0.01(ε
(d)
1 )

1
54 .

In the numerical computations the parameter h was fixed to be h = T
N1

,
that is, the discrete derivative Dh was computed in the grid that is
used in (100) to represent the basis functions φ1,N1 . Observe that this
deviates from the theoretical choice h = Cε

1
18
1 used in (41). We will

describe next how the regularization parameter α1 is chosen, and then
we will study how the error c̃N1

α1
− c behaves as function of ε(d)

1 .



20 JUSSI KORPELA, MATTI LASSAS, AND LAURI OKSANEN

Figure 1. The velocity function cc used in the calibra-
tion of the regularization strategy.

3.3. Calibration of the regularization strategy. Recall that in
Theorem 2 the choice of regularization parameter is of the form α1 =

Creg1(ε
(d)
1 )p, where p = 4

9
. In particular, the choice is explicit apart

from the constant Creg1. In this section we choose Creg1 so that it gives
a good reconstruction of a particular velocity function cc—see Figure
1. Then the same constant is used in all the subsequent computational
examples.

In the regularization strategy we consider 10 values for measurement
errors, as defined in (106)

ε
(d)
1,k ∈ {k · 10−2|k = 1, 2, 3, ..., 10},(109)

and nine values for the multiplicative constant Creg1 = 10−j, j =
1, 3, ..., 9. Then we consider the error in the reconstruction as a function
of j,

error(j) =
∥∥∥c̃N1

αj,k
− cc

∥∥∥
L2(M)

,(110)

where for each error level, the reconstruction c̃N1
αj,k

is computed by (108).
These computations are summarized in Figure 2. We see that the choice
j = 4, that is,

α1 = 10−4(ε
(d)
1 )p, p =

4

9
,(111)

gives a good reconstruction on all the error levels. In what follows we
will systematically use this choice.
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Figure 2. The reconstruction error as a function of
the multiplicative constant Cj = Creg1. Each curve cor-
responds to a noise level in (109). As expected, the re-
construction error is monotonous as a function of the
noise level: The highest line corresponds to ε

(d)
1 = 0.1

and the lowest one to ε(d)
1 = 0.01. We also observe that

the reconstruction error becomes more sensitive to the
choice of Creg1 as the noise level grows.

3.4. Reconstruction results based on the analysis. We will now
consider the reconstruction (108), with the choice of regularization pa-
rameter (111), in two test cases. We begin with with a smooth velocity
function cs(see Figure 3), where reconstructions of two different noise
levels are shown.

To study the order of convergence of our reconstruction method, we
consider 10 noise levels,

ε
(d)
1 ∈ {k · 10−2|k = 1, 2, 3, ..., 10},(112)

and simulate noisy measurements with five different realizations of the
random vector n in (103) at each noise level. The corresponding re-
construction errors

∥∥c̃N1
α1
− cs

∥∥
L2(M)

are summarized in Figure 4. Com-
putations suggest that the order of convergence is 0.40. This is better
than 1

54
in Theorem (2).

We also tested the method with a non-smooth velocity function
cp(see Figure 5), where reconstructions of two different noise levels
are shown. This case is not covered by the above analysis, but the
reconstruction method is also robust in this case.
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Figure 3. Two reconstructions (the solid blue lines)
of a smooth velocity function cs (the dashed lines). Top:
Noise level ε(d)

1 = 0.1. Bottom: Noise level ε(d)
1 = 0.01.

3.5. Reconstruction results based on MDP. Here we use a heuris-
tic version of MDP as a parameter choice rule for α = α(ε). Typically
MDP is applied to a Tikhonov regularization of the form

(113) min
x
‖F (x)− y‖2 + α ‖x− x∗‖2 ,

where F is a model for the measurements, y is the data, and x∗ plays
the role of a selection criterion. In our case, the model F corresponds
to c 7→ Λc

N1
φ1,N1 and y = Λ̃c

N1
φ1,N1 gives the measurement data, but

we do not cast the inverse problem as a minimization problem and
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Figure 4. The reconstruction error as a function of
the noise level ε(d)

1 (in log–log axes). We have used here
5 different realizations of the noise. The solid line is the
average of these. Linear fitting (the dotted line) gives
the estimated convergence the order 0.40.

our regularization method is not of the Tikhonov type. In particular,
our method does not depend on the choice of the auxiliary parameter
x∗, which can be viewed as an initial guess, and that chooses a local
minimum of the non-linear optimization problem (113). Due to these
differences, the existing results on MDP do not apply to our method,
and (114) below is only a heuristic analogue of the classical MDP. We
refer to [58] for a study of MDP in an abstract context of the form
(113), with non-linear F .

The heuristic principle that we use is as follows. We fix tuning
parameters h > 1 and small δ > 0 and search for a regularization
parameter α in such a way that the following consistency condition
holds:

(h− δ)ε ≤
∥∥∥Λc̃

N1
α
N1
φ1,N1 − y

∥∥∥
L2(0,2T )

≤ (h+ δ)ε.(114)

Here ε > 0 is the noise level, y = Λ̃c
N1
φ1,N1 is again the measurement

data, and Λc̃
N1
α
N1
φ1,N1 is the corresponding data computed with the ve-

locity function c̃N1
α , given by the reconstruction method. Observe that

(114) is a relaxed version of (1.7) in [58].
We choose h = 1.1 and δ = 0.01 and use a bisection search to find

α. Our implementation was unable to find α satisfying the constraint
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Figure 5. Two reconstructions (the solid blue lines)
of a piecewise constant velocity function cp (the dashed
lines). Top: Noise level ε(d)

1 = 0.1. Bottom: Noise level
ε

(d)
1 = 0.01.

(114) for noise levels ε(d,k) > 0.02. For smaller noise levels, the regular-
ization parameters found using the principle are summarized in Figure
6. We see that, with the above choice of tuning parameters, the heuris-
tic MDP always gives a larger regularization parameter than (111).
The reconstructions are consistently worse than those produced by the
choice (111).
Acknowledgements. We thank Samuli Siltanen for inspiring discus-
sions on the regularization on inverse problems.
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Figure 6. Regularization parameter α, given by MDP
as a function of the noise level (in log–log axes). The
straight line represents the relation (111).
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