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Abstract 
Pickering emulsions, stabilised by organic or inorganic particles, offer long-term dispersibility 

of liquid droplets and resistance to coalescence. The versatility of stabilising particles and their 

ability to encapsulate and release cargo with high internal payload capacity makes them 

attractive in a wide variety of applications, ranging from catalysis to the cosmetic and food 

industry. While these properties make them an equally promising material platform for 

pharmaceutical and clinical applications, the development of Pickering emulsions for 

healthcare is still in its infancy. Herein, we summarise and discuss recent progress in the 

development of Pickering emulsions for biomedical applications, probing their design for 

passive diffusion-based release as well as stimuli-responsive destabilisation. We further 

comment on challenges and future directions of this exciting and rapidly expanding area of 

research.  

 

1. Introduction 
Emulsion-based systems have been applied for several decades in a wide variety of fields, 

from drug delivery and pharmaceutics to cosmetics and the food industry, thanks to their 

relative ease of formulation for poorly soluble drugs and other substances. Pickering 

emulsions, first described in the early 1900s,[1,2] are stabilised by solid particles rather than 

surfactants and can offer a plethora of advantages over traditional emulsions, including 

increased stability against solvent coalescence, lower toxicity, and added functionality, derived 

from the properties of the stabilising particles themselves.  

 

Pickering emulsions stabilise the interface between two immiscible liquids by using solid 

nanoparticles, which reduce the interfacial energy of the system to produce a stable emulsion. 

Which of the two classes of emulsion that can be formed, water-in-oil (W/O) or oil-in-water 

(O/W), is determined by the wettability of the particles, as described by the Young equation 

and three-phase contact angle, θ.[3] Stable Pickering emulsions are generally formed when 

the contact angle is close to 90°. Particles with moderately hydrophilic surfaces tend to form 

O/W emulsions (due to θ<90°), whereas slightly hydrophobic particles form W/O emulsions 

(where θ>90°). If the affinity of the particles is too pronounced, the droplet will not be stabilised, 

resulting in a break-up of the emulsion and dispersion of the particles in the phase with the 

greatest wettability. The stability of Pickering emulsions is also dependent on the particle size, 

shape and concentration. These aspects are described thoroughly in a number of excellent 

review articles and therefore will not be discussed in detail in this article.[3–8]  
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Pickering emulsions have been applied in a number of areas of research and industrial 

importance, such as food manufacturing, cosmetics, agrochemicals and therapeutic delivery. 

Their popularity in biomedical applications (i.e. for use in healthcare, such as therapeutics, 

diagnostics or imaging), in particular, has increased dramatically in recent years, thanks to 

their high stability, capacity for superior cargo loading compared to conventional systems, and 

diverse range of stabilising particles, creating a broad library of available building blocks. For 

biomedical and pharmaceutical application, the choice of emulsifier is critical; it must be 

biocompatible, non-toxic, and be able to be excreted from the body (if necessary). In this 

article, we will review the latest developments in the design and application of Pickering 

emulsions for biomedicine, with a focus on stimuli-responsive Pickering emulsions as a route 

to the triggered release of a payload towards advanced therapeutic delivery strategies. Within 

this discussion, we will describe systems which have been applied in proof of concept and in 

vitro assessments and emphasise areas of potential future development. 

 

2. Pickering Emulsions in Biomedical Applications 
The unique potential of Pickering emulsions may be most evident in applications such as 

delivery of therapeutics and medical imaging,[9] due to their stability, high payload capacity, 

and potential for bespoke modification, particularly through the exploitation of the properties 

of the stabilising nanoparticles themselves. Emulsifiers for biomedical Pickering emulsions are 

typically based on inorganic or organic particles, such as silica (SiO2) or magnesium 

hydroxide,[10–13] or polymer-based systems including poly lactic-co-glycolic acid (PLGA), 

poly(N-isopropylacrylamide) (pNIPAM), polystyrene (PS), or poly(methyl methacrylate) 

(PMMA). [14,15] More recently, there has been a drive to implement naturally-occurring 

polysaccharides, for example cellulose, starch, chitosan, or alginic acid, whose 

biocompatibility, non-toxic properties, and biodegradability are attractive for the development 

of biologically relevant Pickering emulsions.[16–19]  
 

There are a number of challenges associated with implementing Pickering emulsions in 

biomedical applications, typically associated with the physiological environments they are 

likely encounter en route to their target sites. For example, penetration of topical formulations 

face the difficulties of skin permeation; orally applied systems will encounter high pH, enzyme 

concentrations and microbes in the oral and gastrointestinal (GI) tract which could affect their 

structural integrity; and (often) large Pickering emulsion droplet sizes may pose problematic 

in intravenous delivery. These obstacles must be considered at the design stage of Pickering 

emulsions to ensure they remain relevant and robust for potential clinical application.  

 

A related challenge lies in preventing premature release of cargo from Pickering emulsion 

formulations. Some stabilising particles themselves have been directly linked to early release 

of cargo, often due to their porosity and structure.[20–23] Small (bio)molecules such as active 

pharmaceutical ingredients (APIs) can become entangled within the polymer chains (of 

polymer-based Pickering emulsions or microcapsules) or remain adsorbed on external 

emulsion surfaces, resulting in early ‘burst’ release.[20,22,23] Such issues can, of course, be 

avoided through judicious washing, or modification of components. Strategies such as 

increasing the shell thickness, cross-linking or solidification of the Pickering emulsion 

surfaces, or using a combination of particles for droplet stabilisation, can prevent untimely 
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cargo leakage.[21,23,24] There are, therefore, a number of considerations in the design of a 

successful therapeutic Pickering emulsion formulation. 

 

2.1 Therapeutic Delivery using Pickering Emulsions 

For the delivery of therapeutics, the emulsion stability is crucial with respect to the shelf life of 

the product and avoidance of systemic exposure in order to minimise side-effects. As a result, 

the majority of Pickering emulsions rely on therapeutic diffusion based delivery or distribution 

following emulsion destabilisation through degradation, for example in the low pH of the 

stomach. There are a number of routes for therapeutic delivery which have been explored and 

within these, significant modification of design principles must be used in order to develop 

effective delivery systems.  

 

2.1.1 Topical Application 

The topical administration of therapeutics involves local application to external surfaces such 

as skin or mucosa. Topical formulations are traditionally gels, creams, ointments, foams, 

aerosols, or lotions and their appeal stems from their ease of application by the end user 

(rather than requiring clinician application), local therapeutic effect and minimal adverse 

systemic side effects. For such agents to be successful, they must penetrate the epidermis, 

which can act as a barrier to the delivery of many impermeable therapeutics, and provide 

effective and sustained drug release. The adhesive ability and degree of penetration of a 

topically applied therapeutic is dependent on the product formulation itself. This remains the 

largest challenge in the development of dermally-applied Pickering emulsion systems, 

requiring significant development of the carrier system for effective function. Within this, 

careful consideration must also be given to ensuring that any formulation does not cause side 

effects, such as skin irritation or dermatitis. Pickering emulsions offer an interesting route to 

improving dermal drug permeation, since their formulation allows the incorporation of 

penetration-enhancing molecules, alongside their stability and high payload capacity.[6]  

 

Pioneering work by Chevalier and co-workers demonstrated the first example of W/O silica 

particle-based Pickering emulsions for the transdermal delivery of caffeine.[10] Compared to 

a traditional classical surfactant-stabilised emulsion, this Pickering emulsion showed a 3-fold 

higher transdermal permeation rate. This was related to improved adhesion of the Pickering 

emulsions to the skin surface, as well as deep skin penetration of the stabilising silica 

nanoparticles, leading to enhanced drug release. Subsequent work on O/W Pickering 

emulsions demonstrated their capability for targeting different, in particular deeper, skin layers 

due to their slow release capacity.[11] More recent work has shown that the choice of 

formulation emulsifier and oil can affect the permeability of the Pickering emulsions, its depth 

of penetration within the skin, and accumulation of particles, therefore affecting drug 

efficacy.[18–20] For example, using oils such as glycerol and evening primrose as permeation 

promoters, Wang et al. observed increased therapeutic delivery which they related to the 

structural distortion of the stratum corneum skin layer by the oils.[20] Hu et al. further validated 

this idea, establishing that the structure of the oil was critical not only for the stability of the 

Pickering emulsion, but also for controlling depth of penetration and accumulation within 

skin.[18] Oils containing ring-structures allowed the highest permeation through the skin, with 

linear chain oils showing the highest skin retention. This again indicates that careful choice of 

Pickering emulsion formulations allow regulation of the skin target site, an important 

consideration in topical applications. 
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The topical application of Pickering emulsions can be beneficial not only for direct therapeutic 

delivery, but also for skin decontamination, as has recently been demonstrated by Salerno et 

al., who developed Pickering emulsions for the removal of the chemical warfare agent VX.[12] 

In this case, the Pickering emulsion containing a warfare scavenging agent exhibited higher 

efficiency in the removal of the toxin than the scavenging agent alone. This was attributed to 

the strong adhesion of the emulsifiers to the skin surface, which aided in transfer of the 

chemical warfare agent from the skin to the oil phase of the Pickering emulsion (Figure 1a). 

Other recent work has used chitosan based Pickering emulsions as a method to enhance 

wound healing, where the synergistic effect of the cargo therapeutic and other components of 

the Pickering emulsion demonstrated improved functioning compared to the drug alone.[16] 

Another innovative topical application of Pickering emulsions is for sunscreens,[25,26] where 

the emulsifying particles can be physical UV filters in combination with an encapsulated active 

agent, such as melatonin.[27] Such formulations can present a stable and effective sunscreen 

with the added benefit of protection against oxidative stress, thanks to melatonin’s free radical 

scavenger and antioxidant activity.[27] Silica particle-stabilised emulsions containing a 

dissolved UV filter have also recently been demonstrated to produce effective sunscreen films 

due to evaporation-induced effects.[26] Their unique combination of volatile and involatile 

components allows the UV filter to remain soluble throughout evaporation, maintaining 

excellent sun protection. These emulsion films offer advantages over solution sunscreen films, 

thanks to reduced film shrinking, which circumvents potential loss of sun protection.  

 

These diverse applications of Pickering emulsions showcase their varied potential applications 

in topical biomedicine, with clear synergistic enhancements compared to traditional topical 

formulations. Increased activity and efficacy of the Pickering emulsions in these applications 

is linked directly to the design of the particulate emulsifier agents. These particles often 

demonstrate enhanced adhesion, resulting in increased skin adhesion and hence improved 

delivery efficacy, avoiding the requirement for chemical penetration enhancers. Such 

increased delivery efficiency, coupled with long shelf life and recent advances in the use of 

biocompatible and biodegradable emulsifiers,[14] exemplify the unique benefits of Pickering-

based systems over traditional topical designs and offer an exciting new direction in topical 

formulations.  

 

2.1.2 Oral Application 

Orally applied therapeutics offer obvious opportunities to treat internal organs, in particular in 

the GI tract, and their ease of application makes them highly desirable. Oral application does, 

however, pose unique challenges due to the systemic distribution of a drug after entering the 

GI tract and subsequently the blood stream, which can result in unwanted interactions with 

receptors, tissues and organs, causing undesirable, and potentially dangerous side effects. 

Unpredictable adsorption from uncontrollable degradation by oral enzymes, microbe 

environments, and/or stomach acid additionally means that medicines often require a 

structural barrier or preservative such as an enteric coating, a challenge which is also pertinent 

to the use of Pickering emulsions for oral delivery routes. On the other hand, exploitation of 

the pH and enzymatic environments that a formulation will encounter during ingestion can 

facilitate the development of formulations whose release is enhanced by, or even relies on, 

these environments, for example, initiating release of an active pharmaceutical specifically in 

the oral or gastro-cavity.  
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Pickering emulsions designed on this basis promise advantages over traditional (enteric) 

coating methods, based on their high surface areas and bespoke surface functionality. Cossu 

et al., for example, developed starch-based Pickering emulsion formulations for the treatment 

of oral infections of C. albicans with sensitivity to the oral enzyme α-amylase.[17] These O/W 

Pickering emulsions demulsified in response to the addition of α-amylase due to the enzymatic 

digestion of starch, initiating the controlled-release of the encapsulated active anti-fungal 

therapeutics thymol and amphotericin B. In a related effort, Sy et al. exploited the acidity of 

the GI tract for controlled destabilisation and cargo release of O/W Pickering emulsions based 

on the dissolution of the emulsifying Mg(OH)2 particles at low pH.[28]  

 

These tactics rely on the response of the emulsifier to the external environment to destabilise 

and release the therapeutic encapsulated in the Pickering emulsion. An alternative route has 

recently been described which exploits the therapeutic agent itself as the emulsifier.[29] The 

drug silybin, used to treat liver damage, has poor water solubility and bioavailability, however, 

silybin nanocrystals, which adsorb at the oil-water interface, have been demonstrated to 

behave as both an emulsion stabiliser and an active therapeutic. High drug release (compared 

to silybin alone) occurs due to the partial dissolution of the drug into the oil phase of the 

Pickering emulsion, leading to ready release and high efficacy. This is attributed to the 

formation of lipid-like drug solutions which interact with endogenous solubilising species (for 

example phospholipids, cholesterol or bile salts) and promote transfer into the aqueous phase 

for improved bioavailability. Careful choice of the stabilising particle therefore has the 

opportunity to transform the efficacy of Pickering emulsions. 

 

2.1.3 Parenteral Application 

Pickering emulsions further offer potential for parenteral applications, such as intramuscular, 

intravenous, and subcutaneous routes. As with oral applications, parenteral administration is 

systemic, therefore, enhancing the targeting ability of a formulation is beneficial to reduce 

undesirable side effects. Exploiting targeting agents has recently shown enhanced efficacy of 

W/O Pickering emulsions of oxaliplatin, a liver tumour chemotherapeutic, and Lipiodol 

stabilised with biodegradable PLGA particles, designed for intravenous delivery.[30] Key to 

this work was the targeting ability of the Lipiodol, an oil-based radio-opaque contrast agent 

which shows preferential tumour uptake. In comparison to conventional W/O emulsions, 

sustained release of the chemotherapeutic was observed in combination with reduced 

systemic exposure. Due to the reduced toxicity to non-diseased organs, these findings could 

lead to an extension of the therapeutic window, i.e. the ability to increase chemotherapy doses 

without the usual associated systemic side effects, which would be of vast importance in future 

patient therapies.   

 

A challenge associated with intravenous formulations is designing their controlled, sustained 

release, which can significantly lower systemic exposure to non-target organs, and aids in 

significant release of the therapeutic at the target site. Neufeld and co-workers have been 

working on such slow-release systems for a number of years,[31,32] most recently preparing 

W/O Pickering emulsions stabilised by glycerol monostearate for the delivery of an anti-cancer 

therapeutic oseltamivir phosphate which targets mammalian neuraminidase 1 involved in 

multistage tumorigenesis in a number of cancer types.[33] Efficient encapsulation of the active 

drug into the Pickering emulsions provided a stable formulation with slow-release properties, 

however the excellent stability led overall to only a low fraction of the active compound being 

released. The addition of a surfactant to the system, in this case sorbitan monooleate, 
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facilitated increased therapeutic release as a result of surfactant adsorption onto emulsifier 

particle surfaces. This altered their wetting behaviour and stimulated emulsion destabilisation. 

Sustained drug release was observed over a 30-day period, increasing the therapeutic effect 

against pancreatic cancer cells. Further work in this area to enable tight control over the 

duration of the therapeutic release could offer a unique opportunity for future patient 

treatments.  

 

In an alternative, but related subcutaneous delivery application, Pickering emulsions have very 

recently been explored as adjuvants towards new vaccine formulations.[34] PLGA-stabilised 

Pickering emulsions with immobilised antigens produced by Xia et al. provided the force-

dependent deformation and mobility necessary to enable multivalent interactions with antigen-

presenting cells, enhancing cellular internalisation of the emulsion droplets (Figure 1b). These 

properties provided significant advantages over conventional emulsions, with enhanced 

antigen binding, uptake and activation making this a potent adjuvant for vaccine delivery with 

enormous potential. Similar sustained delivery of vaccine antigens has been observed using 

polymeric bioresorbable amphiphiles as emulsifying agents for W/O systems, enhancing 

vaccine efficacy.[35] 

 

Whilst parenteral application of Pickering emulsions clearly shows strong promise, enabling 

targeting and sustained release, a major challenge is the physical construct of the formulation 

itself. Pickering emulsion droplets can be relatively large (up to several microns in size), which 

may prove problematic for effective delivery, and evasion of the mononuclear phagocytic 

system (MPS).[36] The subsequent biodistribution of such emulsions, as well as their 

breakdown products (i.e. stabilising particles following demulsification/dissolution) also require 

careful consideration. It has been noted that the shape and size of injected particles can have 

an effect on their biodistribution and accumulation within organs.[37] This is rarely mentioned 

in articles describing Pickering emulsions for therapeutic delivery in the literature, but it is a 

sizeable problem for translation to the clinic, and should be afforded more consideration in 

future investigations.   

 

2.2 Pickering Emulsions in Biosensing and Bioseparation 

Pickering emulsions can additionally be used for biorecognition and bioseparation by 

harnessing molecular imprinting technology. This technique traditionally uses polymeric 

matrices to design materials (molecularly imprinted polymers, MIP) capable of molecular 

recognition with strong binding affinities and high selectivity towards a (bio)molecule of 

interest, mimicking natural recognition systems such as antibodies and biological 

receptors.[38,39] Whilst already an established field, there are some reservations surrounding 

MIP generated though polymerisation, as the generated polymers often have limited control 

over the chain length, resulting in irregular morphologies or shapes.[40] Pickering emulsion 

polymerisation, on the other hand, where polymers are formed within the emulsion internal 

phase, typically generates polymers with controlled and well-defined lengths thanks to their 

regulation by the emulsion droplet size.[40] A variety of different biomolecules and chemicals 

have been imprinted in this way, facilitating targeting of proteins,[41] steroids,[42] bacteria,[43] 

and APIs.[40] A recent interesting application of Pickering emulsion enabled MIP is shown in 

the work of Hajizadeh et al., who developed MIP immobilised in cyrogels for the capture and 

purification of haemoglobin Hb protein from cell homogenate suspension and non-purified red 

blood cells lysate.[24] This work demonstrated clear advantages over traditional 

immobilisation strategies, with the Pickering emulsion-formed MIP exhibiting high binding 
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capacity and enhanced selectivity towards Hb proteins as a result of excellent accessibility of 

the active MIP groups. This bioseparation behaviour of MIPs formed using Pickering 

emulsions has been demonstrated in a number of other works, demonstrating the utility of 

Pickering emulsions in diverse biomedical applications.[21,44] 

 

 
Figure 1. Examples of the use of Pickering emulsions in different therapeutic delivery 

approaches: a) Schematic showing the topical application of Pickering emulsions for skin 

decontamination with enhanced scavenging and removal of a chemical warfare agent due to 

migration into the oil phase and electrostatic interactions; image adapted, with permission, 

from Elsevier copyright 2016.[12] b) Schematic showing a Pickering emulsion adjuvant system 

with enhanced cell delivery of an antigen (green sphere). Increased contact of the emulsion 

droplet with the cell surface, due to shape deformation, facilitates antigen-antibody (blue “Y” 

symbol) binding at the interface (Fc receptor-mediated process), boosting cellular 

internalisation of the emulsion droplets; image adapted with permission from Nature 

Publishing Group copyright 2018.[34,45]  
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3. Stimuli-responsive Pickering Emulsions 
Conceptually, it is evident that colloidal stability and stimuli-induced demulsification are key to 

the controlled release of cargo. All of the Pickering emulsion based delivery systems described 

thus far have been relatively stable systems, which rely on slow diffusion-based release or 

known exposure to specific environments (such as low pH stomach acid or enzymes) to allow 

destruction and hence therapeutic ‘escape’ from the stable emulsions. However, the concept 

of a Pickering emulsion that remains stable until the application of an external trigger, offers 

opportunities to control therapeutic delivery directly at the disease site.[46] This could increase 

efficacy, reduce overall required doses and potentially diminish side effects – of enormous 

benefit to the patient.  

 

Tissues, organs and cells are precision machines, and small changes in their 

microenvironment and behaviour can be indicative of the presence of diseased tissues and 

tumours. For example, certain enzymes are well-known to be linked with specific disease 

pathologies, including stroke, cardiovascular or neurodegenerative inflammatory responses 

and cerebral ischemia;[47] metal ions play vital roles in a number of important signalling 

pathways in the body, with changes in concentrations being indicative of diseases such as 

Alzheimer’s (increased Zn2+ levels);[48] pH can also be monitored in the detection of ischemia 

or metabolic disorders.[49] The presence or variation of such species has previously been 

exploited in order to produce useful biomedical systems, such as therapeutic delivery from 

nanoparticles as well as diagnostic imaging agents,[46,50] however Pickering emulsions 

possessing this responsive capability have been less widely probed.  

 

The design of Pickering emulsions which can be manipulated by the use of external stimuli 

has received increasing attention in recent years, with examples of droplet destabilisation in 

response to pH, salt concentrations, chemical or biological entities, temperature, light, shear, 

microfluidic collision, electric and magnetic stimuli.[9,51–57] In general terms, a transformation 

in the emulsifier upon exposure to a stimulus can result in a change in the emulsion stability. 

This transformation may distort the size of the particle, forcing it to swell or shrink; or initiate 

phase inversion due to a change in emulsifier wettability; or cause complete demulsification 

and disassembly of the emulsion (which can be reversible or irreversible). Stimuli-responsive 

Pickering emulsions have been reported for various applications in product recovery, oil 

recovery, and catalysis,[6]  however their potential in biomedical applications has only started 

to emerge in the past decade.[58]  

 

3.1 pH Responsive Pickering Emulsions  

Variation of pH in different regions of the body is well known and can be a useful indicator of 

the presence of disease. Malignant tumours present with pH ranging from 6.8 to 7.2, and the 

presence of hypoxia, tumour growth and metastases are generally indicated by regions of 

greater acidity than blood and healthy tissue.[59] pH changes can therefore prove useful for 

triggered therapeutic release directly at a site of disease and is one of the most popularly 

probed release mechanisms in stimuli-responsive Pickering emulsions.  

 

For the purposes of drug delivery via this stimulus, it is important to ensure the stability of the 

Pickering emulsion at physiological pH, with the cargo stably encapsulated until release at the 

desired pH trigger location.[46] Traditionally, highly charged small molecules or surfactants 

are employed to stabilise the surface of the emulsifying nanoparticle in a physiologically 

relevant pH range through electrostatic interactions.[60–63] Variation in pH subsequently 
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breaks these electrostatic interactions through protonation/deprotonation, leading to 

demulsification due to changes in particle wettability and subsequent cargo release. The same 

principles of triggered demulsification due to changes in electrostatic stabilisation and 

wettability can be exploited with the use of polymer-grafted inorganic nanoparticle 

emulsifiers.[64,65] Phase inversion can be observed with carefully-designed long-chain 

polymeric emulsifiers, such as polyurethanes or amphiphilic Janus particles.[66,67] In all these 

systems, care must be taken to ensure the species employed are biocompatible, and do not 

cause irritation, or unsought responses.  

 

Biocompatible materials including polysaccharides like chitosan,[68,69] soy peptides,[70] 

lignin[71] and alginic acid[72,73] show excellent potential as emulsifiers and emulsifier-

modification agents in stimuli-responsive Pickering emulsions. This is due to the abundance 

of pH-responsive functional groups in their structures, such as amines, hydroxyls, and 

carbonyls, which can cross-link and dissociate or decompose accordingly to stabilise or 

destabilise the emulsion systems.[74] The future of pH-responsive systems may lie within 

combining natural polymers and inorganic materials to form so-called double Pickering 

emulsion systems comprising multiple components, each capable of tailored and controllable 

release of different therapeutics systematically. Recent efforts towards this by Guo et al., have 

used graphene oxide (GO), polylactic acid (PLA), and hydroxyapatite (HA) to construct 

core@shell@shell GO@PLA@HA colloidosomes as a multistage drug-release system. This 

multi-component system was prepared via the double Pickering emulsion method and 

microcapsules were formed following volatile solvent escape from the initial droplets. The 

materials within the composites were chosen for their biocompatibility and differing surface 

chemistry which permits drugs of differing hydrophobicity (rose Bengal, coumarin and 5-

fluorouracil) to be encapsulated (Figure 2a).[51] The pH-sensitivity of the HA outer shell, which 

undergoes acid degradation, enabled controlled drug release of this multicomponent system, 

with efficient drug release at pH 5.0. The multi-layer system additionally facilitated staged and 

sustained release of the different drug components, as the emulsion degraded. This example 

of a solidification of a double Pickering emulsion system shows exceptional promise and 

inspiration can be taken for the next generation of drug-delivery carriers, where multi-drug 

systems can increase therapeutic efficacy, in particular for efficient tumour therapy.  

 

One of the most important considerations in the development of pH-responsive Pickering 

emulsions is the sensitivity and pH range of the release mechanism. The pH environment 

within the body that a formulation may encounter varies dramatically between organs, blood, 

tumour or infection sites. This necessitates that designed formulations remain stable across a 

wide pH range and only exhibit a narrow well-defined pH-responsive window, such that their 

triggered release occurs only at the desired site. While many of the systems described herein 

demonstrate stability over a relatively wide pH range, and release at a specific pH range, it 

remains unclear how robust and narrow the pH window remains under physiological 

conditions. More work is required before any translation to in vivo studies could be considered. 

 

3.2 Photoresponsive Pickering Emulsions  

Premature release can be a major issue associated with exploiting internal biological markers 

as a trigger for Pickering emulsion destabilisation and therapeutic release. A great deal of 

research has hence focussed on the use of stimuli which can be controlled ex situ by an end 

user or clinician.[75] Light-based clinical treatments are already popular, for example the use 

of near-infrared (NIR) radiation in photothermal therapy (PTT) for the treatment of cancer[76] 
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and photodynamic therapy (PDT) in the treatment of skin cancer and dermatological issues 

such as acne, cutaneous infections, or inflammatory disorders.[77] The benefit of these stem 

for the precise placement of the light source, minimising exposure and hence side effects, 

although poor tissue penetration means that the utility of such treatments can be limited.  

 

Light-responsive Pickering emulsions for biomedical applications are a steadily expanding 

area of research, although only a handful have been described in recent years. Similarly to 

the pH-responsive systems, their mechanism of release follows light-irradiation triggered 

changes in emulsifier particle wettability, leading to Pickering emulsion inversion[78–80] or 

coalescence.[52,81] Changes in wettability are again proffered by the surface modification of 

the stabilising particle. The optically sensitive molecule spiropyran (which undergoes a 

conformational change with light irradiation), when associated with silica particles, for 

example, produces an amphiphilic system which switches from being hydrophobic to 

hydrophilic upon UV illumination, resulting in emulsion inversion.[78,79] This approach has 

been demonstrated to be particularly useful for biocatalysis, where inversion aids product 

recovery and emulsifier recycling.[79] Stenhouse adducts, an alternative class of photoactive 

donor-acceptor molecules, have very recently been examined as an alternative emulsifier 

modification route to visible light triggered inversions of Pickering emulsions.[80] Their 

photoactivated transition between hydrophobic to zwitterionic species efficiently and quickly 

alters particle wettability and is the first example exploiting these interesting compounds for 

cargo release, as demonstrated using model dye compounds.  

 

Photocatalytically active materials, such as TiO2, have clear advantages as Pickering 

emulsion stabilisers for the production of light-responsive systems. They rely on the formation 

of surface defects upon light illumination; the production of oxygen vacancies at bridging sites 

results in the conversion of Ti4+ to Ti3+ species which favour dissociative water adsorption, 

producing the necessary change in wettability to cause emulsion destabilisation.[52,81] 

Importantly, this triggered demulsification can be carried out using UV, NIR or visible light, 

when TiO2 or N-doped TiO2 nanocomposites are employed as emulsion stabilisers (Figure 

2b).[52,81] Bai et al. have demonstrated this mechanism for the triggered release of an 

encapsulated API, astragalus polysaccharides.[52] 

 

Despite the relatively few examples of light-actuated Pickering emulsions for biomedical 

applications, the potential of these systems is clear. When designing light-responsive 

Pickering emulsions, consideration must be taken when choosing a light source; UV light, for 

example, is a major contributor to skin cancer development.[82] NIR, on the other hand, has 

deeper biological tissue penetration and low scattering, making it a useful non-invasive clinical 

tool. In addition, the impact of reactive by-products, such as reactive oxygen species, on non-

targeted cells must be minimal or non-existent to prevent damage to healthy cells.  

 

3.3 Thermoresponsive Pickering Emulsions 

Another approach to remote-controlled Pickering emulsion cargo release is the use of 

temperature. Thermal ablation is a common clinical treatment, for example in the hyperthermic 

treatment of cancer. Heat application is therefore readily available and can have slightly 

deeper tissue penetration than light irradiation. The exploitation of varying temperature within 

the body may be an alternative route of triggering therapeutic release; due to their increased 

metabolism, it is well-known that cancerous tissue locally presents with slightly elevated 

temperatures (40-42 °C) compared to healthy tissue (37 °C). This small thermal window has 
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been explored in other release and diagnostic systems and may be exploited for emulsion 

destabilisation.[83]  

 

In order to achieve thermally sensitive Pickering emulsions, control over stabilising particle 

wettability can be harnessed through the exploitation of thermoresponsive polymers. Their 

functionality is typically based on a conformational transformation with changing temperature. 

When utilised in Pickering emulsions, this change in geometry can cause destabilisation or 

increased permeability, causing cargo release.[84] Poly(N-isopropylacrylamide), pNIPAM, is 

one of the most extensively used thermoresponsive polymers for biomedical applications as 

its conformational transition temperature is close to biological temperatures (32 °C) and it can 

be easily modified. Within Pickering emulsion research, pNIPAM can be used independently 

as the emulsifier[85] or grafted onto other materials to achieve a responsive stabilising 

agent.[22,84,86–88] Below the polymer transition temperature, in its hydrophilic state, 

Pickering emulsions remain stable, however when raised above this temperature, their 

hydrophobic transformation alters particle wettability and disintegrates the emulsion. This 

approach holds advantages due to its reversibility and the narrow temperature range and 

timeframe of transition. 

 

Thermoresponsive materials are not only limited to drug delivery. Recent work by Chen et al., 

developed similar systems for biosensing/bioimaging applications.[9] In this study, carbon dots 

(CD) were incorporated into pNIPAM and grafted onto cellulose acetate nanocrystals (CA). It 

was observed that the formed composites had temperature dependent ‘on/off’ fluorescence 

switching behaviour. Below the transition temperature, fluorescence was turned on, however 

above it, fluorescence was turned off (Figure 2c). 
 

Alternatively, thermally-responsive Pickering emulsions can be achieved through emulsifier 

particle grafting with a stabilising surfactant whose weak interaction with the core stabilising 

particle can be broken through a change in temperature. Binks and co-workers recently 

demonstrated this approach using silica particles stabilised with the non-ionic surfactant alkyl 

polyoxyethylene monododecyl ether.[89] Hydrogen bonding between the oxygen atoms of the 

polyoxyethylene headgroup and nanoparticle surface silanol groups facilitated adsorption and 

stabilisation of the emulsion at low temperatures (25 °C). Loss of hydrogen bonding and hence 

emulsion destabilisation occurred when the temperature was raised (45 °C). The drawback to 

this approach was the time taken for demulsification to occur (up to 45 mins). Although such 

behaviour this may reduce efficacy of stimuli-induced drug delivery at a target site, it may hold 

advantages in the slow release of therapeutic, of benefit for bolus-delivery. 

 

While the potential for thermoresponsive systems is clear, issues could arise in its translation 

to clinic; the window in temperature difference between healthy and cancerous cells is narrow 

and therefore careful and precise design of the Pickering emulsion is critical to prevent 

destruction or contamination of healthy cells.  
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Figure 2. Examples of stimuli responsive Pickering emulsions. a) Left to right: SEM image of 

pH-responsive core@shell@shell GO@PLA@HA composite microcapsules formed from 

W/O/W Pickering emulsions and cumulative release profiles of rose Bengal, coumarin and 5-

fluorouracil, respectively, from the composites containing each of the 3 drugs. Different rates 

of drug release were observed at different pHs, with staged and sustained release from the 

multi-component system; image adapted, with permission, from Wiley copyright 2017.[51] b) 

Light responsive destabilisation of silane-modified TiO2 Pickering emulsions, which occurs 

following light irradiation as a result of increased dissociative water adsorption onto TiO2 

particle surfaces, changing wettability and destroying the stable Pickering emulsion. The use 

of N-doped TiO2 particles extends light response to the visible range; image adapted, with 

permission, from the American Chemical Society copyright 2016.[52] c) Temperature-

responsive core/shell nanospheres of cellulose acetate encapsulated by poly(N-

isopropylacrylamide) (pNIPAM) with incorporated fluorescent carbon dots (CDs). Reversible 

emulsion breakage can be triggered through thermal changes, exploiting the conformational 

transition temperature of the pNIPAM layer. These composites exhibited fluorescence ‘on/off’ 

switching behaviour in response to thermal triggers and changes in the emulsion stability; 

image adapted, with permission from the American Chemical Society copyright 2018.[9] 

 

3.4 Magnetically Responsive Pickering Emulsions  

The use of magnetic materials in biomedicine has been popular for several decades, with 

applications as contrast agents for medical imaging as well as therapeutic delivery and 

bioseparation thanks to their attractive magnetic properties.[90,91] Within Pickering 

emulsions, inorganic magnetic nanoparticles have been explored as emulsifier agents, most 

commonly with the aim of producing systems whose direction and motion can be controlled 

using an externally applied magnetic field whilst maintaining the integrity of the Pickering 

emulsion.[92–94] Such species are promising for magnetic targeting to enhance drug release 

at a specific site whilst minimising systemic exposure,[93] though little work has shown 

practical demonstrations of this behaviour in vitro or in vivo. An interesting application of 

magnetic particle-stabilised Pickering emulsions is for scavenging and removal of unwanted 
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species. Lee and co-workers showed the absorbance of a model dye compound into the 

aqueous phase of a magnetic Pickering emulsion, which can then be magnetically removed 

and recycled.[94]  

 

The magnetic properties of the particles within magnetic Pickering emulsions may also be 

exploited for triggered emulsion destabilisation and cargo release. This can be through the 

application of an alternating magnetic field which results in heating of the particles in a manner 

comparable to that used in hyperthermic treatments. This approach, usually combined with a 

thermoresponsive polymer, relies on destabilisation of the Pickering emulsion by wettability 

changes dictated by the polymer’s thermal transition, as described in section 3.3.[95] In fact, 

there are few examples of the direct effect of the application of an external magnetic field to a 

magnetic particle stabilised Pickering emulsion.[96] Of particular relevance to biomedicine is 

work by Fuller and co-workers, who observed reversible magnetically-triggered phase 

separation of a magnetic particle stabilised Pickering emulsion leading to emulsion 

destabilisation.[97] In their highly-tuned systems, the force of the movement of magnetic 

particles towards the magnetic field caused pressure which forced the films between droplets 

to thin and destabilise, removing the particles from the droplet entirely. Without a doubt, the 

ability to break an emulsion reproducibly using an externally applied magnetic field is 

extremely promising from a biomedical perspective, due to the low cost of the required 

magnetic systems, the depth of penetration and the fast triggering of the demulsification. This 

is an area which deserves further attention. 

 

3.5 Multi-stimuli Responsive Pickering Emulsions  

The future of stimuli-responsive Pickering emulsions for biomedical applications may lie within 

dual or multi-stimuli responsive systems, enabling controlled and staged release of 

therapeutics, or multi-stage biosensing, providing greater control, enhancing efficiency and 

selectivity. Combination (or multi-drug) anti-cancer therapy, for example, has become popular 

as a route to overcoming drug resistance, with ideal “cocktail therapies” capable of controlled 

release of each drug individually to maximise synergistic effects.[98] Acidic and mildly 

hyperthermic microenvironments of cancerous tissues could also be exploited as dual triggers 

for the targeted delivery of therapeutics directly at a site of disease. There has hence been a 

surge of research in the area of multi-responsive Pickering emulsions in the last 5 years for 

various applications, including industrially relevant processes such as catalysis and 

sensing.[99,100] Though promising, only a handful are directly applicable to or have been 

demonstrated for biomedical applications. [53,101] 

 

A range of stimulus combinations have been investigated, such as CO2 and light,[99] pH and 

light,[100] CO2 and redox environments,[102] temperature and ionic strength,[103] pH and 

temperature,[104–106] pH and magnetic fields,[101,107–109] and magnetic fields and 

temperature.[23,110] Many systems employ emulsifiers composed of a single amphiphilic 

polymer with multi-functionality or co-polymer systems bearing different stimuli-sensitive 

groups (often based on poly(N-isopropylacrylamide) or poly(methyl methacrylate) species), 

either as a polymeric emulsifier or via modification of an inorganic particle.[23,99,100,105,106] 

These polymers undergo a conformational change in response to different stimuli, usually 

based on a conversion from hydrophilic to hydrophobic state leading to a change in wettability 

and demulsification[105] or phase inversion,[99] or alternatively result in swelling/shrinking of 

the emulsifying particles,[100] leading to reduced emulsion stability. A noteworthy example is 

the use of amphiphilic double dynamers which exploit both supramolecular and intramolecular 
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dynamics to provide dual pH and temperature sensitivity resulting from morphological 

transitions leading to emulsion destabilisation (Figure 3a).[104] 
 

Most studies combining magnetic responsiveness allow sensitivity to some primary stimulus 

(e.g. pH), with the magnetic component additionally facilitating directional motion.[23,107,108] 

The group of Meng and co-workers have exploited a magnetic field to trigger emulsion 

coalescence and a chemical reaction only in the presence of UV light in a truly multi-

responsive manner (Figure 3b).[109] Pickering emulsions formed using a dual-emulsifier 

system of magnetic and titania particles aggregated near to an applied magnetic field. Upon 

UV irradiation, water surface adsorption onto titania particles (following the mechanism 

described in section 3.3)[52,81] led to a change in wettability and coalescence between the 

aggregated neighbouring droplets. This facile approach would facilitate a reaction between 

two cargoes, allowing difficult, highly reactive or toxic reactions to take place in a controlled 

manner at a site of interest. An alternative use of magnetic particles is to harness their 

magnetic heating behaviour through the application of an alternating magnetic field. This was 

originally used over a decade ago to provide (magnetic) directionality as well as hyperthermia-

generated thermal demulsification,[110] but more recently has demonstrated enhanced pH-

triggered Pickering emulsion destabilisation.[101] In the presence of an alternating magnetic 

field, destabilisation of magnetic nanocellulose stabilised Pickering emulsions occurred at 

alkaline pHs, due to the dual effect of droplet deformation upon magnetisation of the emulsifier, 

as well as the local field-induced thermal heating effect. This caused increased particle 

wettability due to increased surface adsorption of water, behaviour not observed in the 

absence of a field. 
 

Another interesting recent example of a multi-responsive system by Hong et al. describes the 

use of a O/W Pickering emulsion to form microcapsules with Au nanoparticles mutually 

connected by α-synuclein proteins, through the solidification of the Pickering emulsion.[53] 

These systems, designed to be sensitive to disease-specific physiological properties, 

demonstrated protease-dependent release. As a result of disruption of the α-synuclein-α-

synuclein interaction, controlled cargo release was facilitated, which, in combination with light 

sensitivity, provided photoelectronic and photothermal effects such as localised heating of the 

Au-based emulsifier particles. These solid colloidosomes could hold exceptional promise 

towards targeted cargo-carrying Pickering emulsions capable of precise pathological site 

recognition, of use for future sensor and therapeutic applications.  
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Figure 3. Examples of multi-component Pickering emulsions capable of responsiveness to 

multiple stimuli. a) Top panel shows photographs of an amphiphilic double dynamer stabilised 

Pickering emulsion (1), a broken emulsion upon thermal treatment (2) and a broken emulsion 

upon pH treatment (3). Photographs correspond to the behaviour shown in the schematic in 

the bottom panel; images adapted, with permission, from the Royal Society of Chemistry 

copyright 2018.[104] b) Schematic showing dual magnetic and UV responsive Pickering 

emulsions stabilised by magnetic and titania particles. In the left panel, orientation of stable 

emulsion droplets occurs alongside a magnet. In the right panels, UV-triggered coalescence 

and chemical reaction can occur; image adapted, with permission from the American Chemical 

Society copyright 2017.[109]  

 

4. Conclusions and Future Directions 
Since their first description by Pickering and Ramsden over a century ago, particle stabilised 

emulsions have been widely investigated for a variety of applications. Their improved 

biocompatibility, stability and ease of modification/tunability based on the chosen particle 

design, make them a favourable alternative to conventional surfactant-stabilised emulsions. 

Whilst Pickering emulsions are widely used in the food and cosmetics industry, advances in 

material design have not been widely translated to clinical applications such as biosensing 

and therapeutic delivery. The use of Pickering emulsions for biodelivery has been probed in 

the form of topical, oral and parenteral delivery formulations relying on diffusion-based 

therapeutic release (Figure 4a). Future research directions of this broad topic are already 

beginning to emerge. Recently, there have been efforts to utilise naturally occurring 

biodegradable and biocompatible materials. Li et al., for example, have developed Pickering 
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emulsions using combinations of corn prolamine zein and polysaccharide gum Arabic to 

encapsulate thymol, a natural anti-microbial agent.[111] This approach may overcome issues 

associated with poor biocompatibility of stabilising particles, and biodegradation may 

potentially facilitate sustained cargo release. 

 

The development of stimuli-responsive Pickering emulsions is a rapidly growing field, thanks 

to their potential for targeted delivery directly at a site of disease and the possibility of remote 

control, either by a trained clinician, or through exploiting a disease’s own pathology and 

microenvironment to trigger therapeutic delivery. This level of control could improve 

therapeutic efficacy and reduce side effects through decreased systemic exposure, of massive 

importance to the safety and well-being of patients. Stimuli-responsive Pickering emulsions 

can be categorised based on their sensitivity to external environments such as pH, light, 

temperature, magnetic fields or (bio)chemical entities, such as disease pathology-specific 

enzymes, proteins or acidity (Figure 4b, Tables 1 and 2). The pre-existence of clinical 

hardware, such as NIR for photodynamic therapy, which could be used to trigger light-

stimulated Pickering emulsions, for example, could make these systems even more attractive 

to the pharmaceutical and clinical industry.  

 

Further enhancement of the idea of triggered-delivery is more recently moving towards 

Pickering emulsions which are sensitive to a number of stimuli. The future of this area, we 

believe, lies in multi-component stabilising particle emulsion systems, wherein a number of 

different emulsifiers, each with their own independent response to a stimulus, are exploited. 

These would enable either staggered release from multi-shelled Pickering emulsions, or else 

release only at a site with the ‘perfect’ cocktail of stimuli. Whilst the benefits of such precise-

release systems are clear, current research needs to push further to explore the full potential 

of these multi-responsive dynamic systems, in particular towards in vitro and in vivo behaviour.  

It is clear, therefore that the area of Pickering emulsions for biomedical applications has 

enormous potential, with a lot still to be achieved, and we should see continuing and increased 

activity in coming years. 

 
Figure 4. a) Schematic showing passive diffusion-controlled release of cargo from a Pickering 

emulsion. b) Schematic showing actuated release of cargo from stimuli-responsive Pickering 

emulsions. Clockwise: exposure to a magnetic field results in removal of magnetic 

nanoparticles and demulsification; alteration of pH causes a change of surface charge and 

wettability, destabilising the emulsions; temperature dependent conformation changes of 
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polymer-based Pickering emulsions result in demulsification; and irradiation of light can lead 

to phase inversion of the Pickering emulsion.  
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